
 

 

 

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II 
 

PH.D. THESIS  
IN 

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING 
 

 
 

AUTONOMIC OVERLOAD MANAGEMENT FOR  

LARGE-SCALE VIRTUALIZED NETWORK FUNCTIONS 

 
 

STEFANO ROSIELLO 
 

 

 

TUTOR: PROF. DOMENICO COTRONEO 
 

COORDINATOR: PROF. DANIELE RICCIO 

 

XXXI CICLO 

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE 
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE 
 





UNIVERSITÀ DEGLI STUDI DI NAPOLI

FEDERICO II

DOCTORAL THESIS

Autonomic Overload Management For

Large-Scale Virtualized Network

Functions

Author:

Stefano ROSIELLO

Supervisor:

Prof. Domenico COTRONEO

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Information Technology and Electrical Engineering

Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione

.

http://wpage.unina.it/stefano.rosiello
http://wpage.unina.it/domenico.cotroneo
http://dottorato-itee.dieti.unina.it
http://www.scuolapsb.unina.it/
http://dieti.unina.it




UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Abstract
Doctor of Philosophy

Autonomic Overload Management for Large-Scale Virtualized Network Functions

by Stefano ROSIELLO

The explosion of data traffic in telecommunication networks has been im-
pressive in the last few years. To keep up with the high demand and staying
profitable, Telcos are embracing the Network Function Virtualization (NFV)
paradigm by shifting from hardware network appliances to software virtual
network functions, which are expected to support extremely large scale archi-
tectures, providing both high performance and high reliability.

The main objective of this dissertation is to provide frameworks and tech-
niques to enable proper overload detection and mitigation for the emerging vir-
tualized software-based network services. The thesis contribution is threefold.
First, it proposes a novel approach to quickly detect performance anomalies
in complex and large-scale VNF services. Second, it presents NFV-Throttle,
an autonomic overload control framework to protect NFV services from over-
load within a short period of time, allowing to preserve the QoS of traffic flows
admitted by network services in response to both traffic spikes (up to 10x
the available capacity) and capacity reduction due to infrastructure problems
(such as CPU contention). Third, it proposes DRACO, to manage overload
problems arising in novel large-scale multi-tier applications, such as complex
stateful network functions in which the state is spread across modern key-
value stores to achieve both scalability and performance. DRACO performs a
fine-grained admission control, by tuning the amount and type of traffic ac-
cording to datastore node dependencies among the tiers (which are dynami-
cally discovered at run-time), and to the current capacity of individual nodes,
in order to mitigate overloads and preventing hot-spots.

This thesis presents the implementation details and an extensive experi-
mental evaluation for all the above overload management solutions, by means
of a virtualized IP Multimedia Subsystem (IMS), which provides modern mul-
timedia services for Telco operators, such as Videoconferencing and VoLTE,
and which is one of the top use-cases of the NFV technology.

http://www.unina.it
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Chapter 1
Introduction

1.1 The need of autonomic overload management

The explosion of data traffic in telecommunication networks has been

impressive in the last few years. The networks of today connect computers,

phones, cars, TV and IoT devices and provide us billion of different services,

such as VoIP and instant messaging, gaming and VR, maps, IPTV and video-

streaming up to Ultra HD definition. Moreover, pervasive services provided

by the giants of the Internet as Google, Apple, Facebook, Amazon, and Netflix

are increasing the competition among Telecom operators: customers are con-

stantly pushing for more innovative services and expect them to be provided

with a high quality of experience, in their offices, in their homes as well as in

mobility through their smartphones and other smart devices.

As result, if in the past telecommunication networks where challenged by

exceptional events like a new year or a natural catastrophe (such as an earth-

quake), nowadays mass events are more frequents: we can think of a viral post

on the social networks, the release of a new version of a popular app or an up-

date of the Operating System, a new episode of a TV series, the live streaming

3



4 CHAPTER 1. INTRODUCTION

of a sport match. The above are only a few examples of challenges for today

networks and they cannot be considered exceptional events anymore.

In this context, traditional network architectures, which are complex and

hard to scale and to manage, become a real bottleneck for the innovation

due to higher maintenance costs and unacceptable higher roll-out times for

new services. To keep up with the demand and staying profitable, Telcos

are embracing the Network Function Virtualization (NFV) paradigm by shift-

ing from hardware network appliances to virtual network functions, imple-

mented in software. NFV aims to leverage standard IT virtualization tech-

nology to consolidate network functions in industry-standard high volume

servers, switches, and storage; and to take advantage of orchestration and

monitoring solutions used for cloud computing [1, 2].

Being a cloud-based solution, NFV inevitably inherits the threats coming

from this domains. A major cause of cloud service failures is represented by

overload conditions [3] which occur when the incoming traffic exceeds the

available capacity (e.g., by tens, or even hundreds of times). However, over-

loads are not only due to traffic spikes (e.g., due to mass events): an important

class of problems in this area is represented by faults that restrict the capac-

ity causing overload, such as faults that can occur in commodity hardware

and software components [4, 5, 6, 7], physical resource contention inside the

cloud infrastructure [8, 9] and, even more frequently, misconfigurations due

to human intervention.

Despite the above threats, the NFV solutions are expected to support ex-

tremely large scale architectures, providing high performance and high de-

pendability. Indeed, telecom regulation imposes carrier-grade requirements

in term of high packet processing and availability (99.999% or even higher).

For this reason, the main consortia behind NFV, including the ETSI and OP-

NFV, pointed out the need for solutions capable of:

• optimizing the performance at very large scale without human inter-
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vention in response to both service configuration and workload varia-

tions [10];

• detecting the occurrences of network problems and mitigating their

symptoms within few seconds [11, 12];

The problem of managing the overload conditions touches both these as-

pects: First, the overload management is responsible to dynamically optimize

the resource usage (such as Compute, Memory, Network), in order to prevent

both the exhaustion and the under-utilization of physical infrastructure re-

sources, in response to workload changes. Second, it is responsible to guar-

antee an acceptable QoS by masking or mitigating the effects of faults affect-

ing the service capacity. Moreover, an overload management solution needs

to reconfigure itself without human intervention in response to changes in

both service workload and scale. Therefore, an effective overload manage-

ment framework for NFV should be an autonomic solution, in order to react

timely to bottlenecks undermining the performance and the availability of the

network services.

This dissertation faces the problem of autonomic overload management for

virtual network functions, with a case study of a virtualized IP Multimedia Sub-

system (IMS), which is, today, according to ETSI [13], one of the network services

that will benefit the most from the NFV paradigm.

1.2 Overload management: Threats and challenges

An overload condition occurs when a system has insufficient resources to

serve the incoming requests. This condition happens when the current work-

load hits a bottleneck in one of its components, which limits the capacity of

the whole system. A performance bottleneck can arise as a consequence of

causes both external and internal to the system. The external ones are due to
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workload changes both in intensity, such as traffic surges causing an incom-

ing traffic exceeding the system capacity, and type, such as changes in users

behavior causing a bottleneck shift to a lower capacity component of the sys-

tem. Internal causes are due to factors reducing the available capacity, such

as hardware or software failures or misconfigurations, background and main-

tenance tasks, and contention/interference with other services co-located on

the same infrastructures.

When one of the above conditions occurs, the "useful throughput" of the

system (i.e., the rate of successfully processed traffic) can significantly de-

grade; high-priority requests may experience failures; user sessions that were

already admitted in the system may be disrupted, causing avalanche restarts

and cascade failures due to retries and traffic handover; and handling too

much traffic at the same time increases the likelihood of software failures such

as failed resource allocations, timeouts, and race conditions. Thus, to achieve

an effective overload management in NFV, there are several challenging issues

that need to be addressed, both for overload detection and for overload miti-

gation.

By looking at the existing literature, the classical approach to detect per-

formance bottlenecks in cloud infrastructures is based on anomaly detection

[14]. However, these techniques suffer from limited flexibility, as they require

to train classification algorithms with data obtained from extensive test cam-

paigns or with historical data [15, 16, 17]. Although there are few recent studies

that adopted these approaches in the context of NFV systems [18, 19, 20], the

need for data training could be unattainable for the following reasons. First,

since new service function chains have to be delivered in a short time, it is

very difficult to perform test campaigns to get training data. Second, his-

torical data cannot be used because each service has different characteristics,

thus it is very difficult to tailor previous datasets to new contexts. Further-

more, other studies on anomaly detection used threshold-based classifiers,
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which are easier to deploy. Even in this case, such approaches still need to be

calibrated for the specific service, which is very difficult to achieve.

In principle, virtual network functions could take advantage of cloud elas-

ticity by scaling-out network services with on-demand resource allocation to

face overload conditions. Unfortunately, cloud elasticity alone is not sufficient

to meet the strict high-availability requirements of “carrier-grade” telecom

services, which often can only afford few tens of seconds of outage per month

[21, 22]. As a matter of fact, scaling-out can require up to several minutes to al-

locate new VM replica [23, 24]; moreover, in the case of extreme overload con-

ditions, an individual cloud datacenter may lack resources for scaling, thus

requiring coordinated actions across several datacenters [25, 26]. For these

reasons, NFV requires additional solutions for mitigating overloads in the

short-term (i.e., within few tens of seconds), by rejecting or dropping the traf-

fic in excess with respect to the capacity of the network.

Overload management must also take into account the limited observ-

ability and the limited controllability imposed by the “as-a-service” model

of cloud computing, for both Virtual Network Function (VNF) and NFV In-

frastructure (NFVI) providers. On the one hand, providers of VNFaaS must

face the lack of control of the underlying public cloud infrastructures, limiting

the opportunities to introduce overload control solutions at the infrastructure

level. On the other hand, NFVI providers have little visibility and control on

VNF software, since it will be distributed and deployed as black-box VM im-

ages on their NFVIaaS [27]. In this case, overload control should not rely on

the cooperation of VNF software.

Another important, and often underestimated, cause of overload condi-

tions is the resource contention inside the cloud infrastructure, whose effect

is to decrease the available capacity for serving the incoming traffic. The re-

source contention has severe side effects on time-critical applications that run

at the guest level (i.e., inside VMs, such a VNFs). As the first effect, the ap-
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plication receives less virtual resources (e.g., less virtual CPU time) than the

resource quota agreed with the cloud infrastructure provider, which leads to

performance degradation and service failures. The second (and more sub-

tle) effect is that guest OS resource utilization metrics (in particular the virtual

CPU utilization) can mislead load control mechanisms inside the guest, such

as real-time rate adaptation [28], graceful performance degradation through

brown-out [29] and traffic shaping [30, 31]. Thus, overload management solu-

tions should be aware of the contention phenomena and provide mitigation

both at infrastructure and at service level.

Moreover, complex network functions are typically implemented as multi-

tier systems. Traditionally, this division enforces low coupling between tiers,

high cohesion within them, and agnosticism of consumers [32]. More recently,

these principles of transparency and decoupling have been challenged by the

extremely large scale reached computing systems. Highly scalable network

function implementations, such as the vIMS, are organized as a set of stateless

microservices keeping the state of the application nodes, in one or more sepa-

rate storage tiers. This approach is enabled by new highly-distributed NoSQL

datastores, such as Cassandra and Memcached [33], which can balance the

storage load across thousand of nodes using techniques such as consistent

hashing [34] and key-range topologies [35].

The above picture hide new threats for the overload management since

bottlenecks can shift from one tier to another as workload pattern changes.

Moreover, in large clusters, bottlenecks can arise because of a small group

of nodes, forming an unbalanced load condition within the same tier called

"hot-spot" [36, 37, 38]. When this occurs, even if there is still available ca-

pacity in each tier, the system is exposed to the risk of overload. Therefore,

overload control solution in large multi-tier systems must face two additional

challenges:

1. Traffic can only be throttled by the application tier. Typically, an ap-
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plication session involves a series of requests to several storage nodes.

In order to assure data consistency, the storage tier should not drop any

traffic in the middle of an application session; or, application transac-

tions should be rolled-back, resulting in a waste of resources and in ad-

ditional application complexity. Therefore, the traffic in excess should

only be filtered in the outer tier even if the bottleneck is in an inner tier.

2. Traffic throttling must account for data location dependencies. Since

key-value stores distribute and retrieve resources using consistent hash-

ing, the storage tier can experience a unbalanced overload condition

that affects a subset of storage nodes, for example in the case of “hot-

spot” resources that are requested at an unexpectedly-high rate. More-

over, it is possible that only specific nodes in the persistence tier are af-

fected by unbalanced overload conditions, because of resource exhaus-

tion or competition against other services due to a software bug, a failed

update, wrong configuration, or over-commitment.

Unfortunately, as discussed in the Chapter 2, the existing solutions, such

as limiting the incoming traffic according to the available capacity of a tier [39,

40, 41] or adding new resources by scaling up the tier [42, 43], do not consider

resource dependencies between the tiers, leading to severe inefficiencies in

the case of unbalanced overloads, since the capacity of even large multi-tier

system may be limited by the capacity of few nodes.

1.3 Thesis contributions

The main objective of this dissertation is to provide frameworks and tech-

niques to enable proper overload detection and mitigation for the emerging

virtualized software-based network services.

Chapter 3 presents a novel approach to identify performance anomalies in
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NFV services composed as a chain of network functions. The key feature is

that the approach neither requires to train a model nor to calibrate a thresh-

old to identify performance anomalies inside the VNF chain. Instead, the pro-

posed approach takes advantage from the fact that the VNF chain can be seen

as a multistage pipeline, where the output of a network function is the input of

the next one. Therefore, the resource utilization metrics of VNFs in a service

chain have a strong dependency (e.g., the outgoing network traffic from the

first stage is related to the CPU load on the second stage of the chain). Thus,

the approach collects metrics from connected VNF stages, as they are natu-

rally correlated. Then, it analyzes their co-variation over time to infer poten-

tial performance anomaly at each stage of the chain. The approach can also

be adopted in large-scale NFV systems with the presence of load-balancing

and replication.

Chapter 4 presents a novel overload control framework for NFV (NFV-

Throttle) to protect NFV services from overloads within a short period of time,

by tuning the incoming traffic towards VNFs in order to make the best use of

the available capacity, and to preserve the QoS of traffic flows admitted by the

network services. The framework consists of a set of modular agents, which

detect an overload condition (either of individual VNFs and hosts, or of the

NFV network as a whole), and mitigate it by dropping or rejecting the traffic

in excess, and by tuning resource allocation to VNFs according to their pri-

ority, in order to relieve physical resource contention. The agents can be in-

stalled either at VNF-level (for VNFaaS providers) or at NFVI-level (for NFVI-

aaS providers), without requiring changes to VNF software, and fitting into

the as-a-service model. The key idea of the proposed solution is to protect

the application at the guest-level (i.e., by running inside a VM), and to be

complementary to recovery mechanisms at the infrastructure-level. Such

an approach is especially relevant in the case of infrastructures-as-a-service

(IaaS), where a time-critical application (e.g., a VNF) has little visibility and
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control on the underlying physical resources (e.g., on scheduling priorities at

the physical CPU level). To the best of our knowledge, no previous work has

addressed the problem of physical contention from this perspective. More-

over, the (NFV-Throttle) framework studies the overloads due to physical CPU

contention, by showing that it can cause unpredictable side effects on the

QoS of time-critical applications. Chapter 4 presents a generalized overload

control solution, based on traffic-throttling, which includes overload condi-

tions caused by physical CPU contention. The contention-aware feedback-

loop based throttling solution, checks at run-time the resources that are cur-

rently available for the VM, and only accepts a portion of the traffic that can

be served with an adequate quality of service [31, 44, 45].

In Chapter 5, the thesis proposes a solution to the overload control prob-

lems arising in virtual network function implemented as large-scale multi-tier

applications. It presents DRACO (Distributed Resource-aware Admission COn-

trol), a novel autonomic solution that addresses overload problems arising in

any tier of the system. It performs a fine-grained admission control, by tun-

ing the amount and type of traffic according to resource dependencies among

the tiers (which are dynamically discovered at run-time), and to the current

capacity of individual nodes, in order to mitigate overloads while achieving a

high resource utilization. Moreover, the solution acts solely at the application

service interface, in order not to impact on data consistency and to preserve

the highly distributed and scalable architecture of multi-tier systems.

This thesis presents an extensive experimental evaluation for all the above

overload management solutions, including the anomaly detection framework,

NFV-Throttle and DRACO, by means of the Project Clearwater [46], an open-

source implementation of a Virtualized IMS, also commercially supported by

Metaswitch Networks Inc. This thesis also benefits from the fruitful collab-

oration with industry: the experimental evaluations are performed at differ-

ent scale (up to hundreds nodes) and with different service configurations
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in order to reproduce overload conditions which are representative of prob-

lems occurring in real-world NFV infrastructures, or to emphasize pathologi-

cal conditions of the NFV software stack.

The work includes material from the following research papers, already ac-

cepted or published in peer-reviewed conferences and international journals:

• D. Cotroneo, R. Natella, S. Rosiello. "A fault correlation approach to de-

tect performance anomalies in Virtual Network Function chains", Soft-

ware Reliability Engineering (ISSRE), 2017 IEEE 28th International Sym-

posium on. IEEE, 2017.

• D. Cotroneo, R. Natella, S. Rosiello. "NFV-Throttle: An Overload Control

Framework for Network Function Virtualization", IEEE Transactions on

Network and Service Management 14.4 (2017): 949-963.



Chapter 2
Related Work

2.1 Overload concepts in NFV

In traditional network functions (NF), the levels of performance and reli-

ability are well-known and understood. In NFV, traditional (hardware-based)

network functions will be superseded by network functions implemented in

software and leveraging virtualization technologies. NFV promises to reduce

costs, improve manageability, reduce time-to-market, and provide more ad-

vanced services [47].

Figure 2.1 shows the architecture of an NFV system. It is characterized by three

main components.

• Virtualized Network Functions (VNFs) are the software-implemented

network functions used to process the network traffic (according to some

network protocol and network topology). They use both virtual and

physical resources.

• NFV Infrastructure (NFVI) abstracts and manages access to physical re-

sources. It includes the hardware resources, a virtualization layer to cre-

13
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Figure 2.1. NFV architecture.

ate virtual resources on the available hardware, and the virtual resources

themselves.

• NFV Management and Orchestration (MANO) acts as coordinator/orche-

strator of the overall NFV system. It includes three types of sub-compone-

nts. An orchestrator, which allocates and releases resources of the NFVI

to the VNFs, by using the VIM, and manages the lifecycle of network

services (NS) (creation, scaling, configuration, upgrading, termination).

VNF managers are used to manage the lifecycle of VNFs. Each VNF is

linked to a VNF manager. Virtualised Infrastructure Managers (VIMs)

are controlled by the NFV Orchestrator and VNF Managers to manage

physical and virtual resources in the NFVI. A VIM is not aware of VNFs

executed in the VM.

A possible issue of the NFV approach is that virtualization adds more com-

plexity and new risks, which will threaten the performance and reliability of

the whole network infrastructure. Indeed, Telecom services are expected to
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be always available and, as soon as a failure or an outage occur, they must be

recovered within a short period of time (e.g., milliseconds), using automatic

recovery means.

If we think about legacy networks, overload can occur both in a physical node

(i.e., network function) and in a physical link. Commonly, network functions

(e.g., firewalls, load balancers, routers, switches, etc.) are considered as over-

loaded when their limited capacity, seen as the set of hardware (e.g., cpu,

memory) and software resources, is exceeded due to huge number of requests.

Furthermore, overload may occur also at physical links in the network when

the incoming traffic exceeds the link bandwidth. [48]

In general, we have to consider network congestion that occurs when an high

number of requests are submitted to the network infrastructure. Such a sit-

uation overcomes the total capacity of the infrastructure, and it may lead to

an overall degradation of the network as a whole; for instance, the through-

put may decrease, and the latency and jitter increase. Thus, shifting from

hardware-based network function to software-based network function is a big

challenge.

In NFV, the problem of overload is discussed by ETSI within the more gen-

eral problem of resiliency1.

ETSI GS NFV-REL (2015) [50] identifies use cases, requirements and architec-

tures that will serve as a reference for the emerging NFV technologies, includ-

ing resiliency requirements that the emerging NFV architectures will have to

meet. In the document, ETSI addresses the NFV resiliency problem by impos-

ing the following design criteria:

• Service continuity and failure containment;

• Automate recovery from failures;

1In general, resiliency is the capability of a system to adapt itself properly when facing faults
or changes in the environment [49]



16 CHAPTER 2. RELATED WORK

Figure 2.2. IMS S-CSCF transparent failover

• Prevent single point of failure in the underlying architecture;

• Multi-vendor environment;

• Hybrid Infrastructure.

The document also introduces the service continuity as the capability of

assuring quality of service goals when anomaly conditions, such as the over-

load ones, occur. The NFV will have to provide a continuous service even if a

component fails, or incoming service requests are much more than the norm.

For example, in the IP Multimedia Subsystem (IMS) use case identified by

the ETSI NFVI Industry Specification Group (ISG) [51], a critical scenario that

can lead to an overload condition of the IMS is when a crucial component

(such as the S-CSCF registrar server) fails; this situation may cause a poten-

tial (re)connection or signalling storm that overloads the whole infrastructure.
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Figure 2.3. Distributed resiliency

Figure 2.2 shows that a Virtualized Network Function (VNF) failure should be

recovered in a transparent way. Figure 2.3 shows that it is very critical to bal-

ance, in a seamless way, the traffic of requests from overloaded/failed VNF to

other VNFs, residing on different hosts.

Another aspect of resiliency is the service availability level of NFs. The vir-

tualized NFs must guarantee that the provided quality of service is the same

as hardware-based NFs (i.e., legacy networks). In order to meet these objec-

tives, the ETSI NFV architecture will include resiliency mechanisms both at

the VNF layer and at the NFV-MANO (Management and Orchestration) layer

[52]. The ETSI NFV scenarios envision the emergence of both stateless and

stateful VNFs. In the former case, VNF instances can be scaled to accommo-

date high volumes of traffic, and to recover from failures. As for stateful VNFs,

they will require mechanisms for storing and recovering the state of network

sessions and connections in a reliable way.
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In detail, ETSI identifies two main conditions that can cause a service to

deviate from normal operation: congestion conditions and failure condi-

tions. Congestion conditions occur when an unusual volume of traffic sat-

urates VNFs’ resources. This situation may result from special events (e.g.,

Chinese New Year festival, TV shows, etc.) or from a cyber-attack (e.g., DDoS

attack). In failure conditions, a service may be interrupted or it becomes un-

available due to faulty components. In that situation, two key factors play

a crucial role: priority of restoration and failure recovery time. Priority of

restoration level denotes which is the service that has the main impact on the

NFVI availability as a whole. Thus, restoring a service with a high priority in-

creases the overall service availability. Failure recovery time is the time needed

to recovery from failures, instead, and it depends on the amount of redundant

resources available. Furthermore, it is worth noting the real-time nature of

network functions: a latency-sensitive service need to be recovered as fast as

possible, rather than a lower priority service in which the availability level is

not stringent.

According to the NFV resiliency requirements [50], in such situations, the NFV

will need to assure the availability of deployed services according to well-

defined service availability levels, which are agreed with customers and/or

imposed by regulations. An availability level specifies the importance of a ser-

vice and the redundancy that will need to be provided for that service. For

instance, Table 2.1, adapted from [50], describes three availability levels, and

the services under each availability level: Level 1 includes the services with

the most stringent requirements (such as emergency telecommunication) and

prescribes the use of the highest level of redundancy (1+1 with instantaneous

switchover); Level 3 includes the less critical services (such as general data

traffic) and the less stringent requirements (e.g., best effort service with M+1

redundancy).

Given the varying resiliency needs, the NFV is expected to give priority to the
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most critical services in the case of overload conditions. The ETSI resiliency

requirements document provides an example of this behavior. Table 2.2 pro-

vides a list of services (Video call, gaming, financial transaction) and their

service availability levels; moreover, the table describes the grades of service

of the NFV infrastructure in the presence of different network conditions, in-

cluding: normal condition, overloaded condition, heavily overloaded condi-

tion, and emergency situation.

In normal conditions, a video call service can provide both video and audio fa-

cilities. When overload conditions arise, the video call service is downgraded

to a voice call service with static image only, since resources become scarce.

Furthermore, if the overload conditions worsen, the NFV must address an

emergency situation, in which it is necessary to keep available the most criti-

cal service (call service) with at least voice call capability. In the example, the

video call service is further downgraded to a voice call service only.

Beyond the NFV resiliency requirements document [50], the reader might

guess that in NFV we have to consider the same overload definitions as in

legacy networks. Currently, there is no precise definition of overload in NFV

standard documents. In providing a definition, we have to consider the differ-

ent layers of the NFV architecture (see [53]). Specifically,

NFV is overloaded when it has to process a high demand of resources that

exceed its limited capacity. Such a demand may saturate processing resources

within the VNF layer (i.e., the set of VNFs that provide the specific service), vir-

tual resources within the VM/Hypervisor layer (i.e., the virtual environment

that hosts VNF, and allows the sharing of the underlying physical resources

among the VNFs), resources within the NFV Management and Orchestration

layer (i.e., the components that orchestrate the NFV infrastructure and software

resources), or physical resources within the Physical layer (e.g., physical com-

pute, storage, and network resources).

Overload management approaches are specialized for NFV as follows:
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Table 2.1. Service Availability classification levels

Availability
Level

Customer Type Service/Function Type Notes

Level 1

• Network Operator Control Traf-
fic

• Government/Regulatory Emer-
gency Services

• Intra-carrier engineering traffic

• Emergency tele- communi-
cation service (emergency
response, emergency dispatch)

• Critical Network Infra- struc-
ture Functions (e.g. VoLTE
functions, DNS Servers, etc.)

Sub-levels within Level 1 may be cre-
ated by the Network Operator de-
pending on Customer demands. E.g.:

• 1A - Control

• 1B - Real-time

• 1C - Data

May require 1+1 Redundancy with In-
stantaneous Switchover

Level 2

• Enterprise and/or large- scale
customers (e.g. Corporations,
University)

• Network Operators (Tier 1/2/3)
service traffic

• VPN

• Real-time traffic (Voice and
video)

• Network Infrastructure Func-
tions supporting Level 2 ser-
vices (e.g. VPN servers, Corpo-
rate Web/Mail servers)

Sub-levels within Level 2 may be cre-
ated by the Network Operator de-
pending on Customer demands. E.g.:

• 2A - VPN

• 2B - Real-time

• 2C - Data

May require 1:1 Redundancy with Fast
(maybe Instantaneous) Switchover

Level 3 General Consumer Public and ISP
Traffic

• Data traffic (including voice
and video traffic provided by
OTT)

• Network Infrastructure Func-
tions supporting Level 3 ser-
vices

While this is typically considered to
be "Best Effort" traffic, it is expected
that Network Operators will devote
sufficient resources to assure "sat-
isfactory" levels of availability. This
level of service may be pre-empted
by those with higher levels of Service
Availability.

May require M+1 Redundancy with
Fast Switchover; where M > 1 and
the value of M to be determined by
further study
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Table 2.2. Examples of Grades of Service under Different Network Conditions

Service name [default SA level] Normal Overloaded Heavily Over-
loaded

Emergency Situa-
tion [dedicated SA
level]

Video call service
Video [2] available [2-I] available [2-I] Degraded to

Image service
[2-II]*

Not available (pre-
empted) [2-III]*

Voice [1] (regis-
tered a ETS)

available available available available

Gaming [3] available Not available
(pre-empted)

Not available
(pre-empted)

Not available (pre-
empted)

Financial Transac-
tion [1]

available available available Not available (pre-
empted) [3]

NOTE: * indicates that the Grade of Service is changed/reduced due to changes in the network status.

• Prevention mechanisms, with the aim to prevent the occurrence of con-

gestion situations, which may be due to VNF’s resources saturations,

and result in the reduction of the work performed per time unit (through-

put) and in the slowing down in responding to service requests (re-

sponse time).

• Detection mechanisms, which monitor the NFV to detect the overload

condition. Such mechanisms can be hardware- or software-implemented,

and monitoring can be local or distributed among VNFs and the overall

NFVI. Furthermore, such mechanisms can act at different granularity,

that is at service level, or at infrastructure level. The latency of the de-

tection, i.e. the time from the occurrence of an overload situation to

its handling, clearly is an important characteristic of the mechanisms.

There could be services for which availability requirements are stringent

and require to be recovered as fast as possible.

• Control mechanisms, with the aim to handle congestion problems. Mit-

igation means that even though the capacity of the NFV is exceeded,

the service QoS can be decreased but not beyond a certain threshold.
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For example, control mechanisms allow dropping some incoming re-

quests or lowering the bit rate of the communication. Once an over-

load condition is detected, control mechanisms try to limit the perfor-

mance degradation by executing actions with the goals to keep the net-

work performance (e.g., throughput, latency) within a specific opera-

tional range.

Overload management mechanisms have to consider specific goals, for

example which are the minimum thresholds of latency or throughput to be

kept during overload conditions. To achieve such goals several actions can be

performed, including:

• Reconfiguration actions, that is migrate (relocating and restoring its state)

a specific VNF, in order to keep the service continuity;

• Scalability actions, in order to distribute the load. Such mechanisms

consist in the provision of additional resources for a specific VNF. These

resources could be taken from idle resource within a different VNF or

even a different geo-located NFVI;

• Filtering actions that allow the management of incoming traffic that

may lead to network congestion.

Overload conditions in NFV need to be addressed both at VNF and NFVI

level, and both on virtual and physical resources. For example, overload con-

ditions can lead to virtual or physical CPU overload, connection loss, network

latency increase, memory leaks, and deadlock. Parameters that indicates over-

load situations are both related to VNF/VM load, and the hypervisor load that

may impact on VNFs.

At first glance, elastic cloud management techniques appear to solve the

overload problem, but differing from the IT domain, network traffic in tele-
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com domain is highly dynamic and too difficult to predict. Thus, elastic re-

source mechanisms are good to prevent overload situations only when traffic

increment does not exceed a specific threshold; otherwise, such mechanisms

are not effective, since can not handle network VNFs will experience traffic

volumes that suddenly increase in a short period of time. However, elastic re-

configuration mechanisms are not suitable, and not meant, for providing very

high availability and performance levels (e.g., availability of 99.99% or more,

and response times in the order of milliseconds). Such objectives require very

quick reconfiguration mechanisms, which should be aware of the priority of

VNFs and services. This is the case of a failed VNF that maintains connection

state within million of users. When it is replaced as a result of elastic mecha-

nisms with an new VNF, a non-negligible number of VNFs may need to recon-

nect within the new VNF, but such reconnection process lead to traffic storm,

both at VNF level and at Hypervisor level. Another mechanism that can ex-

acerbate the problem of overload is traffic migration: if traffic is migrated to

an already-overload VNF, such migration process may lead to create new over-

load conditions to other VNFs.

Concurrently to this work, besides the ETSI recomendation, the research

projects H2020 Next Generation Platform-as-a-Service (NGPaaS) [54] and SONATA

[55] aim to fill the gap between the cloud computing models and the net-

work function virtualization framework, towards “telco-grade” quality for vir-

tual network services in the context of the next 5G communication services.

While these projects focus more on the architectural problems, proposing

solutions to ease the put in operation and the management of large-scale

services and new development processes such as Dev-for-Operations [56],

this thesis has a focus on service level reliability and service quality man-

agement. However, there are many points in common with the work in this

thesis. Chapter 4 discusses some architectural limitations of the cloud mod-

els in the context of NFV (such as NFVaaS and NFVIaaS), such as the limited
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observability and controllability of system parts in case of the separation of

infrastructure providers, service providers and network function service de-

velopers. The NGPaaS is a new service model which enforce the separation

between these entities but extends the management and orchestration com-

ponents with specialized APIs to overcome the observability and controllabil-

ity problems. However future virtual network function software needs to be

designed and developed according to this framework. On the contrary, this

thesis proposes a framework (NFV-Throttle), which adds monitoring/control-

ling agents in specific points of the NFV architecture (i.e., guest-vnf, host-nfvi

and vnf-tenant levels) and these agents communicate by using standard host-

guest interfaces (such as hypercalls or vmci-sockets). The advantage is that

this approach does not require changes both to the cloud infrastructure nor

to the virtual network function software. The same principles inspired also

the DRACO framework, presented in Chapter 5.

As discussed in this section, the problem of overload in NFV is still open,

and it includes research challenges and problems related to reliability, perfor-

mance and more in general to resiliency.

In the following sections, there are presented studies proposing approaches

that may be exploited to address the problem of overload in NFV.

2.2 Detection of performance anomalies

Continuous, online monitoring and analysis is a key component for man-

aging cloud infrastructures. The analysis of performance metrics and resource

utilization enables a better understanding of application and system behaviour,

helps to tune configurations to meet application SLA requirements, and pro-

vides insights for troubleshooting.

The most common cloud monitoring and dashboards systems, such as

Amazon CloudWatch [57] and Google StackDriver [58] monitor the system on
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per-VM basis and allow to setup and customize simple detection rules (e.g.,

thresholds on monitored metrics) and trigger maintenance task (e.g., scaling,

rebooting). More advanced commercial products, such as Datadog [59], also

implement simple data mining features, using seasonal auto regression, trend

detection, online adaptive learning, and statistical distribution models. How-

ever, since the products focus on symptoms on individual VM instances, they

are prone to false alarms: for instance, without any knowledge about the spe-

cific applications, they cannot discern if a drop in the load of a VM is caused

by a sudden workload decrease in the whole system or by an undetected fault

in some component. As discussed later, our approach takes into account the

nature of NFV applications (based on pipeline processing of high-volumes of

packet streams) to detect these scenarios: it analyzes the correlation of met-

rics from neighbour VMs in the VNF service chain, to distinguish licit work-

load variations from faulty conditions that affect the quality of service.

In general, anomaly detection systems aim to automate the discovery and

classification of problems by analyzing these data, and checking whether the

system behaves accordingly to what is expected. In order to characterize such

behaviors, classical approaches use machine learning techniques, such as

random forests classifiers [60], neural networks [16], automatic rule learning

and fuzzy logic [15], unsupervised clustering [61, 62]. Most of the anomaly

detection research has applications in intrusion and misuse detection.

More recently, these approaches have been applied in the context of NFV

applications. Miyazawa et al. [18] proposed a distributed architecture to per-

form fault detection using unsupervised data clustering techniques and self-

organizing maps. In [20], Sauvanaud et al. suggest a supervised learning ap-

proach. They perform fault injection experiments in a NFV testbed to col-

lect labeled monitoring data, from both hypervisors and virtual machines in-

stances. Then, they build a classifier using the random forest algorithm, show-

ing high detection accuracy and low false positive. However, both approaches
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require retraining the models in case of changes in the hardware or software

configuration, workload patterns or other influencing factors. A recent study

assessed these problems by proposing the StepWise framework [], which is

able to detect significant changes in data distribution (i.e., concept drifts) that

are not anomalies but due to changes in the system configuration on the user

behaviour. This approach, could be used in context of NFV to prevent false

alarms during common scaling-in or scaling-out operations.

Unfortunately, all the previous techniques require training models with

data coming from extensive test campaign or historical data. However, in the

context of NFV, the needed training data may be unattainable, since service

function chains must be delivered in a short time (thus limiting the amount

of tests for getting training data) and are tailored for each specific service

(thus limiting the usefulness of historical data). For the same reasons, most

anomaly detection systems used in practice are threshold-based classifiers,

which are ease to deploy and provide an acceptable quality of detection (in

terms of accuracy and latency), but they still need to be calibrated for the spe-

cific service.

Contemporary to this work, Schmidt et al. [63] proposed an unsupervised

anomaly detection framework tailored for NFV services, which is based on

on-line monitoring data and dynamic threshold learning. The approach has

been experimentally evaluated by means of anomaly injection experiments

and show high accuracy and a low false alarm rate.

In the field of classical (i.e., non-virtualized) network management sys-

tems, alarm correlation [64] between multiple distributed entities is widely

used to detect faults and isolate the causes across a big number of network

appliances interconnected [65, 66]. In [67], Kliger et al. defined the network-

ing graph as a causality graph on which nodes can be marked as problems

or symptoms, and use event correlation to find causal relations among the

events. They demonstrate that this approach is resilient to high rates of symp-
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tom loss (i.e., false negatives) and false alarms. Similarly, this thesis show that

it is possible to identify causal relationships in the VNF service chaining model

between the VNF instances in the network. We apply the correlation analysis

to the monitoring data to recognize symptoms of problems in the network.

2.3 Cloud elasticity and autonomic capacity scaling

One opportunity to face overload conditions in cloud computing is scaling

up the architecture, either in a proactive or a reactive way. Autoscale [42] is an

autonomic solution for modern multi-tier architectures that goes in this direc-

tion: application nodes are automatically scaled out in response to workload

pattern changes. However, this framework focuses on stateless bottlenecks

only. Indeed, scaling stateful datastore tiers can require complex data redis-

tribution and the time taken by a new instance for joining an existing cluster

increases during an existing overload condition. Recent work proposed new

techniques for scaling out datastores. PAX [43] is an approach to scale-out a

distributed datastore (i.e., Cassandra) that accelerates the distribution of hot-

spot data partitions on newly added nodes by performing workload profiling

to detect resources that are accessed more frequently. However, these capac-

ity optimization solutions designed for cloud computing are not enough to

protect virtual network functions for two reasons: the first is that scaling out

requires time, during which the system is exposed to a degraded quality of ser-

vice, cascading component failures due to resource exhaustion. In this time-

frame our solution can cooperate with scaling solutions to preserve the qual-

ity of service of already established sessions up to the system capacity, while

more capacity is added in background to pick up workload variations; the sec-

ond reason is that overload is not only caused by external workload surges but

can be a consequence of software bugs, misconfigurations, poor load balanc-

ing or transient management tasks running within the same infrastructure.
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In these cases, scaling up can be ineffective or even exacerbate the overload

problems. Moreover, scaling out is not always possible since it is constrained

by costs and resource availability.

2.4 Physical resource contention management

CPU contention and, more in general, resource contention are typical

problems happening in virtualization infrastructures and suffered by guest

VMs. Nikounia et al. [68] characterized the performance degradation due

to resource overcommittment in virtualized environments. Their study iden-

tified the CPU resource as the one that impacts the most on service perfor-

mance during contention with noisy neighbors VMs, and found a major case

of execution time slowdown in the hypervisor CPU scheduler.

Since the problem is widespread in virtualized environments, there have

been many studies on ensuring performance isolation at infrastructure level,

in order to avoid side-effects from CPU contention. In general, these solu-

tions either prevent or mitigate contention by enhancing the placement and

scheduling of VMs on the physical infrastructure. Q-Clouds [69] is a represen-

tative solution of this kind, which is a QoS-aware framework aiming to enforce

performance isolation by opportunistically provisioning additional resources

to alleviate contention. Caglar et al. [70] proposed HALT, a performance-

interference aware placement strategy based on on-line monitoring and ma-

chine learning. To avoid the side effects of the contention for time-sensitive

services, HALT proposes a VM migration plan to a different host, based on the

learned workload behavior. More recently, in the context of NFV, Kulkarni et

al. [71] presented NFVnice, a framework to dynamically adjust the scheduling

behavior according to the relative priority of the running services and the esti-

mated load. This approach uses cgroups to optimize the scheduling behavior

and traffic throttling at host level to prevent overloads in the guest.
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It is important to note that these solutions require full control of the un-

derlying infrastructure (e.g., they are meant for system administrators and in-

frastructure management products). However, as discussed in this this thesis,

contention issues at infrastructure level cannot be avoided completely, due to

faults, unexpected maintenance tasks, and misconfigurations. Thus, services

with very high-availability requirements need to include cautionary mecha-

nisms to mitigate such scenarios. Moreover, in the case of NFV Infrastructures

as a Service (NFVIaaS), the VNFs do not have control on the underlying infras-

tructure, where the infrastructure provider may adopt an over-commitment

policy that increases the risk of physical CPU contention, at the expense of

the VNFs.

At guest level, the steal time metric is a well-known indicator of physi-

cal CPU contention. This indicator is typically exposed by hypervisors to the

guest OSes. Ayodele et al. [72] demonstrated the impact of the steal time on

cloud applications performance under physical CPU contention. Moreover,

other studies focus on quantifying the effect of the steal time on CPU time

metrics at process- and thread-level [73, 74], provided by the guest OS. Unfor-

tunately, this metric is often adopted in unsound heuristics, such as to trig-

ger VM migration when the steal time is very high for a prolonged period [75].

However, a high steal time is not a sufficient condition for a physical CPU con-

tention. Indeed, a VM which is voluntary suspending to perform I/O activity

can be subject to high wait time due to the contention with other VMs (e.g.,

running a CPU-bound workload). In this case, the guest OS metrics will report

a lower CPU utilization and low steal time. VMware, for example, suggests not

to trust CPU consumption metrics provided by the guest OS as they can be

inaccurate in case of physical CPU contention [76] due to time accounting is-

sues. Additionally, even in case of CPU-bound workloads, the steal time can

also be inaccurate in case of hyper-threading enabled at host level [77]. Thus,

the percentage of steal time is dependent by the workload running in the guest
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VM. Moreover, a steal time quota can be the consequence of CPU quotas and

CPU credits imposed by the infrastructure providers [78].

2.5 Admission control and traffic throttling strategies

Admission control and traffic throttling solutions have been frequently

used in IT and telecom systems to promptly react to overload conditions.

In general, these approaches monitor service performance (e.g., in terms of

throughput and latency at the application layer) and resource consumption

(e.g., CPU utilization), and throttle the traffic according to a dynamic feed-

back on the available capacity. For example, Welsh et al. [31] proposed an

adaptive overload control approach using a token bucket and a closed control

loop to dynamically tune the traffic according to the service latency. Kasera et

al. [30] analyzed throttling algorithms in the context of carrier-grade telecom

switches: the Random Early Discard (RED [79]) throttles traffic according to

the request queue size, while the Occupancy algorithm ensures a target CPU

utilization by throttling the traffic according to the CPU utilization and the

rate of accepted calls. A similar algorithm has also been applied in the con-

text of virtual network functions by NFV-Throttle [80]. Hong et al. [45] present

a broad overview of these schemes for overload control for the SIP protocol.

Lately, these admission control systems have been applied in the context of

traditional three-tier web server applications with strict Service Level Objec-

tives, such as e-commerce platforms. Liu et al. [39] propose an admission

control technique based on the combination of queuing theory models and

feedback control loop to perform adaptive load control in these architectures.

In case of degraded quality, such as increased latency, the solution discards a

percentage of incoming requests. Unfortunately, a solution of this kind suffers

from poor performance in newly highly distributed architectures. Indeed, in

case of an unbalanced overload in few nodes of a large architecture, rejecting a
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percentage of random traffic causes the filtering of many requests that would

require not overloaded nodes and does not imply filtering requests directed

to overloaded ones. CoSAC [41] is a different approach to perform Session

Based Admission Control [40] in context of multi-tier web applications. CoSAC

considers that a different incoming request mix (e.g., due to users behaviors)

causes the shift from a bottleneck tier to another during the time, and uses a

Bayesian network to correlate the state of the application tiers, to perform an

admission decision. However, also this approach suffers from similar prob-

lems, since it considers the tiers as a whole, it cannot be applied in modern

large scale architecture in which a single node can become a bottleneck for an

underutilized tier of thousand nodes.

2.6 Unbalanced load control in stateful architectures

In addition to scaling solutions, other studies focus on the load balancing

optimization in the datastore tiers to prevent unbalanced overload conditions.

These solutions aim to solve the problem within the datastore tier, by mitigat-

ing load unbalance with dynamic replication and data migration strategies.

SPORE [37] is a solution to hot-spot problems due to a highly skewed work-

load. SPORE modifies the traditional Memcached behavior implementing ad-

vanced data replication strategies based on key popularity. Zhang et al. [81]

propose a solution to load imbalance due to a hot-spot workload and server

heterogeneity. They designed a middleware component that modifies the way

in which data is accessed and distributed in key-value stores (such as Mem-

cached). This component includes a hot-spot detector which takes account of

key request frequencies, and a key redirector module that can either replicate

the key on multiple servers (e.g., proportionally to its request frequency, sim-

ilarly to SPORE), or select some keys to be forwarded to servers less loaded or

more powerful. NetKV [82], is an accelerated proxy to inspect key requests and
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analyze the datastore workload to replicate hot-spot keys on multiple servers,

in order to limit the load unbalancing due to the workload skewness. MBal

[83] is a novel in-memory datastore architecture aiming to resolve load unbal-

ancing problems within the datastore tier itself. This architecture includes a

centralized coordinator that monitor the system state and applies data repli-

cation and migration strategies among not only the distributed instances but

also at thread level among the CPU cores within each node. However, none of

the previous solutions act at system level, by preventing an excess of unbal-

anced traffic from entering into the system. Dynamic replication and migra-

tions can cause an additional unpredictable amount of load among datastore

nodes, and they require additional space and time to handle consistency that

could be not available in some circumstances.



Chapter 3
On-line detection of performance

bottlenecks

Network Function Virtualization is an emerging paradigm to allow the cre-

ation, at software level, of complex network services by composing simpler

ones. However, this paradigm shift exposes network services to faults and

bottlenecks in the complex software virtualization infrastructure they rely on.

Thus, NFV services require effective anomaly detection systems to detect the

occurrence of network problems. This chapter proposes a novel approach to

ease the adoption of anomaly detection in production NFV services, by avoid-

ing the need to train a model or to calibrate a threshold. The approach in-

fers the service health status by collecting metrics from multiple elements in

the NFV service chain, and by analyzing their (lack of) correlation over the

time. The approach has been validated on an NFV-oriented Interactive Multi-

media System, to detect problems affecting the quality of service, such as the

overload, component crashes, avalanche restarts and physical resource con-

tention.

33
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3.1 Fault correlation approach

Our approach is based on the idea that a network packet or request follows

a chain of VNFs, as shown by the VNF graph in Figure 3.1. Each VNF in the

graph can have a different number of replicas, that are scaled according to

a preliminary capacity planning or to cloud elasticity. The load is balanced

across all the replicas of the VNF.

Figure 3.1. A pipeline of network functions

In this architecture, there are metrics from multiple stages that are nat-

urally correlated (e.g., the outgoing network traffic of the first stage and the

CPU load of the second stage). If resource utilization (e.g., CPU, memory, ...)

increases in a VM hosting a network function, an increase should also occur

in VMs hosting the subsequent VNF in the service chain. If this is not the case,

a VM is obstructing the network flow, causing a performance anomaly. Thus,

we analyze the correlation in the time between metrics from two distinct net-

work functions to infer the service health status. Figure 3.2 shows the vCPU

load of two connected network functions (i.e., the output traffic of VNF(A) is

processed by VNF(B)). When VNF(A) uses all the available CPU time (e.g., due

to an overload condition or a software fault), its throughput start decreasing.

As a consequence, the VNF(B) receives less traffic to process and the CPU load

on this VNF decreases. This condition can be detected noting that there is a

window of time in which the CPU load on VNF(A) increases and the CPU load

on VNF(B) decreases. In correspondence of that window, the two time series

become negatively correlated. We consider this condition a symptom of a per-

formance anomaly.

The algorithm 1 raises an alarm when an anomaly is detected between a
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pair of connected VNF stages, namely VNF(A) and VNF(B), with VNF(A) pre-

ceding VNF(B) in the chain.

The algorithm takes a window ∆t of n samples of a time series describing

a resource utilization in the time (e.g., the CPU usage) from both the VNF(A)

and the VNF(B) and computes the correlation according to the Pearson’s index

ρ (i.e., equation 3.1) as the covariance σX ,Y of the two variables divided by the

product of their standard deviations σX and σY . Then, it ranks the correlation

by computing a discrete score, namely D-score, according to equation 3.2.

ρ(X ,Y ) = σX ,Y

σX ·σY
(3.1)

Figure 3.2. Running correlation between two VNFs
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Algorithm 1: Fault correlation algorithm

Data: n: sampling window size
Data: ∆t : (t −n,. . . ,t ) time window
Set: counter=0
begin

foreach replica h of V N F (A) do
foreach replica k of V N F (B) do

ρh,k = pear son(V N F (A)
h (∆t ),V N F (B)

k (∆t )) Dk = D(ρh,k )

D = mean(Dk )
if D > 0.5 then

counter ++
if counter > |V N F (A)|/2 then

raise alarm

D(ρ) =



1, if −1.0 ≤ ρ ≤−0.7

0.75 if −0.7 < ρ <−0.3

0.50 if −0.3 ≤ ρ ≤+0.3

0.25 if +0.3 < ρ <+0.7

0 otherwise

(3.2)

A zero D-score indicates a strong positive correlation between the two

metrics considered, while a D-score equal to 1 indicates a strong negative cor-

relation among them. Intermediate D-score values indicate weak correlations

(i.e., D = 0.75, D = 0.25) or absence of linear correlation (D = 0.5). The values

used in this equation are widely used in statistics to evaluate the strength of

the correlation [84, 85], and do not depend on the specific system to be moni-

tored.

Since each VNF in the chain can have multiple active replicas, the Algo-

rithm 1 processes windows of samples gathered from each replica, and raises
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an alarm if more than half of the spare nodes exhibit a correlation anomaly.

More precisely, for each replica h of the VNF(A) the algorithm computes the

D-score with all the replicas k of the VNF(B). If the average D-score is greater

than 0.5 (indicating a negative correlation) we account a possible anomaly by

increasing the counter variable. When all the D-scores are evaluated, if the

counter is greater than the half of the number of VNF(A) replicas, a majority

of VNF instances exhibits a correlation anomaly and an alarm is raised.

The choice to wait for a feedback from a majority of nodes prevents false

alarms that may be due to sporadic variations of load balancing across repli-

cas in the same VNF stage. However, it is important to note that the algorithm

is not limited to detect problems caused by multiple nodes; it is still able to

detect performance anomalies caused by a single node. In the case of a single

faulty node, the algorithm will detect an anomaly for the correlations between

the faulty node (for example, VNF(B)
3 ) and all the replicas of the previous VNF

stage (for example, VNF(A)
1 . . . VNF(A)

n ) that access the faulty node. In general,

the algorithm is designed to detect performance anomalies that have an im-

pact on the capacity of a VNF stage, which can be either caused by single or

multiple failures.

By executing the Algorithm 1 on sliding windows of n samples, at time t ,

we compute the correlation between the samples from time t −n, t − (n −1),

t − (n −2), . . . , t −1. Samples are collected periodically every p seconds.

The configuration of the window, i.e., the size n and the period of sampling

p, is driven by the speed at which performance anomalies are expected to hap-

pen. In our context, according to the empirical experience of industries in

the ETSI consortium, performance anomalies such as avalanche restarts and

overloads are expected to develop within less than 30 seconds [11]. Therefore,

the n and p should be chosen such that n · p ≤ 30, as this represents a lower

bound on the detection latency. For example, to have an high enough resolu-

tion to notice variations of the resource utilization metrics, and enough values
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to compute the correlation, the period p should be in the order of few seconds

(e.g., p = 2s).

Of course, the need to configure an high sampling frequency may expose

our approach to false alarms, that may be caused by random fluctuations of

measurements. To make the approach robust to the high sampling frequency

and to the choice of these parameters, we discuss two strategies to mitigate

the downside of this choice:

1. use of smoothing functions on the time series to reduce the noise in the

data;

2. filtering the negative correlation events according to the variance con-

tained in the sampling window.

The first strategy requires to pre-process the sliding window with a smooth-

ing function. Multiple algorithms can be adopted to this purpose. In Sec-

tion 3.3 we compare the detection accuracy and the detection latency using

three different types of smooth: (1) Running Moving Average (RMA) to lower

the impact of values too distant from the average, (2) Running Moving Median

(RMM) to lower the impact of values too distant from the median, and (3) Ex-

ponential Moving Average (EMA) to lower the impact of older samples in the

current sampling window.

The second technique prevents spurious alarms that may occur when

there is a negative correlation, but the variability of the measurements is very

small and has been likely caused by random fluctuations (e.g., by chance, one

of the time series may slightly increase due to random fluctuations, and at the

same time the other time series may decrease). Thus, we detect a “represen-

tative” anomaly if both there is a negative correlation, and the variations of

the measurements is large enough to reflect some event that may be occurred

in the VNF (e.g., a fault or a workload change). To this purpose, we compute

the coefficient of variation (cv) on a window of samples W , as the the ratio
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between its standard deviation σW and its mean µW , according to the equa-

tion 3.3. Then, a correlation between the time series is taken into account

only if the cv is non-negligible, i.e., the variation exceeds the average value of

the metric (typically, a coefficient of variation below 10% denotes that varia-

tions are very small [86] and could be considered random). This filter has also

the advantage to exclude the sampling windows in which the chosen metric

remains constant; in this specific case, the correlation index is undefined.

cv(W ) = σW

µW
(3.3)

Figure 3.3 shows an example of this second approach, by considering the

vCPU consumption of two consecutive VNF in the pipeline. Before t = 200s

there are small variations in the vCPU utilization that are not representative

of a change in the workload. After t = 200s an increase in the load brings the

VNFx in overload, while reducing the load on VNFy by 23% as a side effect

(which is a consequence of resource saturation at VNFx). In correspondence

of this negative correlation, there is a peak in the coefficient of variation of

vCPU utilizations in both the VNFs. Thus, we consider this correlation an

anomaly.

3.2 The IMS Case Study

The Clearwater IMS [46] is an open-source implementation of the IMS

core standard [87]. IMS functions are implemented in software and pack-

aged in VMs, and are designed to take full advantage of virtualization and

cloud computing technology. All components can scale out horizontally using

simple, stateless load-balancing based on DNS. Moreover, Clearwater follows

common design patterns for scalable and reliable web services, by keeping

most components largely stateless, and by storing long-lived state in clustered

data stores. Clearwater is a large software project, mostly written in C++ and
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Figure 3.3. Coefficient of variation filter

Java, and including several subsystems. The architecture of Clearwater core is

showed in Figure 3.4, and includes the following components:

• Bono (P-CSCF): The Bono nodes are the first point of contact for an UE

(User Equipment), and they represent the edge proxy providing P-CSCF

standard interfaces to IMS clients.

• Sprout (S-CSCF and TAS): The Sprout nodes are SIP registrars and au-

thoritative routing proxies. These nodes implement the S-CSCF and I-

CSCF interfaces of the IMS standard. Furthermore, they implement a

distributed cache, using Memcached [88], for storing registration data

and other short-lived information.



3.2. THE IMS CASE STUDY 41

• Homestead: The Homestead nodes are redundant mirrors for the HSS

(Home Subscriber Server) data store, using Apache Cassandra [89], for

retrieving authentication credentials and user profile information. HSS

mirrors are part of both the S-CSCF and I-CSCF interfaces, and provide

Web services (over HTTP) to the Sprout layer.

• Homer: A Homer node is a XML Document Management Server (XDMS)

to store service settings documents for each user of the system, using

Apache Cassandra as the data store.

• Ralf (Rf-CTF): The Ralf nodes provide charging and billing functions,

used by Bono, Sprout and Homestead nodes to report events occurring

when the CSCF chain is traversed.

Figure 3.4. Architecture of the Clearwater IMS.

The experimental testbed (Figure 3.5) consists of four host machines: three

Dell PowerEdge R520 servers, equipped with two 8-Core 2.2 GHz Intel Xeon

CPU, 64GB DDR3 RAM, two 500GB SATA HDD, two 1-Gbps Ethernet NICs,
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8-Gbps Fiber Channel HBA; one Dell PowerEdge R320 server with a 4-Core

2.8 GHz Intel Xeon CPU, 8GB DDR3 RAM, two 500GB SATA HDD, two 1-Gbps

Ethernet NICs, 8-Gbps Fiber Channel HBA; A PowerVault MD3620F disk array

with 4TB of network storage with a 8-Gbps Fiber Channel link.

Figure 3.5. Experimental testbed.

The hosts are connected to a 1-Gbps Ethernet network for general-purpose

traffic, and another 1-Gbps Ethernet network for management traffic. The vir-

tual disks of VMs are stored on three distinct GlusterFS partitions of the Pow-

erVault SAN, which are mounted on the hosts through the Fiber Channel link.

The hosts are configured with CentOS Linux 7 and the KVM hypervisor.

The testbed is managed using the OpenStack virtualization platform, version

Juno [90]. The Dell PowerEdge R320 serves as OpenStack Controller and Net-

work node; the three Dell PowerEdge R520 servers represent the OpenStack

Compute and Storage nodes, and run the VMs of the Clearwater IMS. The

OpenStack services include: Nova, which manages the compute domain; Neu-

tron, which manages virtual networks among VMs; Cinder, which controls the

lifecycle of VM volumes; Glance, which manages the cloud images of VMs;

Heat, which orchestrates, through a native REST API, the virtual IMS deploy-

ment; Horizon, which supports the Web-based management dashboard.

To determine the number of VMs that had to host specific network ser-
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Table 3.1. Clearwater VMs deployment configuration.

Service Clearwater
Node
Name

# of
VMs

Flavor Details

Edge Proxy
(P-CSCF)

Bono 10 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

SIP Router
(I/S-CSCF)

Sprout 10 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

HSS Mirror Homestead 5 VCPUs: 1
RAM: 4GB
Disk Size: 80GB

Rf CTF Ralf 4 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

XDMS
(MMtel ser-
vices)

Homer 2 VCPUs: 1
RAM: 4GB
Disk Size:
100GB

Name service
(DNS)

- 1 VCPUs: 1
RAM: 2GB
Disk Size: 5GB

Workload
generator
(SIPp)

- 10-40 VCPUs: 1
RAM: 2GB
Disk Size:
100GB

vices, we made some preliminary capacity tests. We defined a deployment

configuration capable to handle 500,000 subscribers (i.e. the engineered ca-

pacity) corresponding to (i) 90,000 registration attempts per minute, and (ii)

8,000 call attempts per minute. At this level the average CPU utilization is 80%

in all the Clearwater VMs and all the requests are correctly served by the sys-

tem. The number and type of VMs hosting services is detailed in Table 3.1.

Each VM hosts a single VNF.

Other VMs are used to generate the IMS workload. Such machines run
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the SIPp traffic generator. Each SIPp instance generates SIP traffic towards a

specific P-CSCF instance. Each couple of subscribers will attempt to register

or renew the registration every 5 minutes, on average. After a successful regis-

tration, one can attempt to setup a call to the other (with 16% of probability) or

remain idle until the next registration renewal (with 84% of probability). The

call hold time is, by default, 60 seconds. 10 SIPp are used for generating the

initial load of 500,000 subscribers in 10 minutes (Initial Ramp-up period). To

generate the overload conditions in our test scenarios, we run 40 additional

SIPp VMs.

3.3 Experimental evaluation

In our experimentation, we study the ability of the detection algorithm to

identify performance anomalies, and to avoid false positives. In the context

of the IMS case study, such anomalies cause the failure of some user registra-

tions and/or some call setup requests. On the opposite, when there are no

faults affecting the quality of service, all the registrations and the call setups

are correctly processed by the system. Thus, we use the SIPp workload gener-

ator to check at client-side the success of such requests, in order to evaluate

the outcome of the detection algorithm.

In our evaluation, we consider test scenarios that involve service failures

of the IMS system. To have meaningful test scenarios, we induce performance

anomalies that cause service failures, that is, the quality of service experienced

by clients degrades, either in terms of throughput (i.e., there should be a gap

between the request rate from the client, and the throughput of traffic served

by the IMS) and latency (i.e., there is a long delay between a request and the

corresponding results). In quantitative terms, we cause service failures where

the throughput is less than 90% of the request rate for more than 5 seconds,

and the 90th-percentile of the request latency is lower than 250ms. The re-
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quests that violate the latency requirements are signalled either by the system

(i.e., with SIP 500 messages) or by the client (i.e., in case of timeout events).

In both cases, these requests are marked as failed and are not accounted in

the overall throughput. Thus, in our discussion, we focus on presenting the

throughput metric, as in all tests the latency violations were always accompa-

nied by throughput violations during the same periods.

To assess the detection algorithm, we consider a set of overload scenarios

(caused by workload surges and faults), and perform r repeated experiments

for each scenario, where we evaluate the number of times the algorithm is able

to detect the overload. The following Detection Outcomes are considered:

• Overload not detected: the algorithm detected the overload no more

than in 20% of the experiments;

• Overload detected: in at least 80% of the experiments, the algorithm was

able to detect the overload;

• Unreliable detection: in the other cases.

To summarize the detection outcomes across different scenarios, we com-

pute the Overall Detection Coverage, which we define as the percentage of the

scenarios where the detection outcome is overload detected.

Another requirement of NFV services is that anomalous conditions have to

be detected as soon as possible, so that mitigation mechanisms can be quickly

activated, and the impact on the quality of service can be reduced. Thus, as a

further metric for the assessment of the detection algorithm, we consider the

Detection Latency, which is defined as the time between the occurrence of an

overload condition (i.e., the moment at which users’ registrations and/or calls

start failing) and the detection of such condition by the algorithm.

Finally, we consider the rate of false alarms that are raised by the detection

algorithm. To this aim, we perform experiments without anomalies, and keep

track of any (false) alarms raised by the algorithm during the experiment.
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Ideally, to be deployed in production environments according to the feed-

back from our industrial partners, our proposed algorithm should have a quick

detection latency and no false positives, and a reasonably high detection cov-

erage; this can be a challenging goal considering that we do not rely on any

preliminary calibration of thresholds (e.g., we do not fix a minimum or maxi-

mum value for CPU or bandwidth utilization in our algorithm).

We applied the proposed approach by correlating the CPU utilization of

VNFs in the service chain. One of the reasons why we focus on this metric

is that, in NFV services, the network consumption is highly correlated to the

CPU utilization, since NFV is intended to use standard COTS CPUs to process

high volumes of network traffic.

Figure 3.6 shows an example of correlation, in the presence of a perfor-

mance anomaly, between the first two components of the Clearwater VNF

chain, the P-CSCF CPU % (Bono) and S-CSCF CPU % (Sprout). The figure

shows the time series for vCPU utilization of two instances of these network

functions, and the Pearson correlation index (the yellow line) computed be-

tween these two, by using a sliding window. A workload surge is generated at

minute 10. After minute 10, the Bono node starts dropping new connection

attempts due to the overload, thus causing a reduced load on the subsequent

Sprout node. When this happens, the correlation index drops close to −1, and

our algorithm considers this as a symptom of fault (a performance anomaly).

Analogue conditions occur in all the other failure scenarios that we consider

in the experimental evaluation.

In summary, we consider the following sets of experiments:

1. Sudden workload surges: the workload of the system rapidly grows, ex-

ceeding the engineered level of the IMS. In such a case, the available

resources of the system may not suffice to manage the incoming load.

2. Component failure: the failure of a component of the system reduces
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Figure 3.6. Example of negative running correlation between P-CSCF and S-
CSCF CPU utilization.

available resources to satisfy all user requests, thus, causing an overload

condition.

3. Anomaly-free, long-running workload: we consider long-running tests,

with both constant and variable workloads, within the engineered level

of the IMS and without any fault, to check whether any normal variation

of the workload may trigger false positives.

In each scenario, we apply the fault correlation approach to the main ser-

vice chain of the Clearwater IMS, including Bono, Sprout and Homestead, as

shown in Figure 3.7. More precisely, we apply the fault correlation algorithm to

both the Bono-Sprout and Sprout-Homestead VNF pairs. We do not consider

the Sprout-Ralf VNF pair since the external billing function (required by Ralf)

is not included in Clearwater. Moreover, we do not consider homer, since it

only provides a secondary functionality (a database service for the Telephony

Application Server) that is not included in the IMS standard.
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Figure 3.7. VNF graph representing the chain of services’ utilization.

3.3.1 Sudden workload surges

We study the impact of different types of workload surges on the QoS of

the IMS and on the effectiveness of our detection approach. In each test with

workload surges, we consider a different combination of the following three

factors:

• The number of subscribers, as the user volume affects the severity of re-

source contention and of the saturation of the IMS capacity;

• The duration of the ramp-up period, that is, the time for the workload

to increase from the engineered level to the selected level (the shorter

is the ramp-up, the quicker is the workload surge and the on-set of the

overload condition);

• The call hold time, which affects the the type and frequency of requests

to the IMS, and consequently lead to different workload patterns.

Table 3.2 reports in the detail the possible values that we selected for the

three factors (four possible numbers of subscribers, three possible ramp-up

periods, and two possible call hold times). In particular, the number of sub-

scribers is expressed in relative terms with respect to the engineered level,

that is, the users are 20,100,640,1000% more numerous than normal (denoted

with X%-MTN). We adopted a full factorial design, with 4 × 3 × 2 = 24 test

configurations in total. In these experiments, workload surges are introduced
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Table 3.2. Factors and levels for studying the impact of workload surges.

Factor Level 1 Level 2 Level 3 Level 4

# subscribers 600k
20%-
MTN

1M
100%-
MTN

3.2M
640%-
MTN

5.5M
1000%-
MTN

Ramp-up 10 min 6 min 3 min
Call hold
time

2 min 1 min

starting at minute 10 since the beginning of the experiment; the time required

to reach the peak of subscribers depends on the ramp-up period.

We found that covering boundary conditions (e.g., relatively high and rela-

tively low volumes of users) highlights different behaviors of the IMS: in these

extreme cases, either just few registrations and calls fail (but have still a no-

ticeable effect on the perceived QoS), or almost all registrations and calls fail

(as the resource competition is too strong to allow any request to get a suf-

ficient amount). These differences also reflected on the performance of the

detection algorithm. Instead, we found that the ramp-up period and the call

hold time have a limited influence on the performance of detection; thus, we

present detailed results only to a specific ramp-up period (i.e. 10 minutes) and

call hold time (i.e. 60 seconds).

We performed 5 repeated experiments for each test configuration (r = 5).

A performance anomaly condition occurs when a non-negligible percentage

(≥10%) of user registrations and/or call setups are not successful, either be-

cause the request is not served within a time limit (10 seconds), or the IMS

explicitly refuses the request and returns an error message to the client. The

anomaly condition is considered detected if the algorithm raises an alarm

within 60 seconds from the occurrence of registration and/or call failures.

Figure 3.8 presents two examples of overload due to the increase of the

number of subscribers. Figure 3.8a shows, respectively, the number of incom-

ing registration requests per minute, and the number of completed registra-
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(a) Load 20% larger than the engineered level (20%-MTN)

(b) Load 1000% larger than the engineered level (1000%-MTN)

Figure 3.8. Registration attempts per minute and registrations completed per
minute

tions per minute, when the workload is 20% larger than the nominal capacity.

The difference between the two curves represents the amount of requests that

could not be service due to resource contention and saturation. Similarly, Fig-

ure 3.8b shows the case where the number of subscribers increases by 1000%.

In the former case (20%-MTN), the workload peak affected the quality of ser-

vice for a small share of users, while the others were still serviced. Instead,

in the latter case (1000%-MTN), not only the users in excess could not be ser-

viced; but the workload surge caused a failure of the IMS software (which was

unable to allocate resources, such as memory), thus leading to the unavailabil-

ity of the IMS. Clearly, the larger the increase of the number of subscribers, the
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larger the number of registrations that are not correctly completed.

To evaluate the detection algorithm based on the running correlation, we

consider several values of sample window size, i.e., we vary the number of

samples from the time series that are correlated. Also, we evaluate detec-

tion performance when using different smoothing algorithms. Specifically,

we consider to use (i) 10, (ii) 20 or (iii) 30 samples; and, as a smoothing al-

gorithm, we test (i) Running Moving Median (RMM), (ii) Running Moving Av-

erage (RMA), and (iii) Exponential Moving Average (EMA).

The results for the detection algorithm under workload surges are reported

in Table 3.3. Clearly, the size of the sampling window and the smoothing func-

tion have a big impact on the detection performance. In all the considered

overload conditions, the RMM and RMA smoothing functions perform better

than EMA. This result is probably due to the fact that giving less importance

to older samples in EMA, makes the algorithm more sensitive to noisy peeks

revealing trends that are not representative. Moreover, the RMM algorithm ap-

pears more robust than RMA regarding the size of the sampling window due

to the fact that the mean is more sensitive to outliers than the median. This

results in lower detection latencies. In general, the average detection latency

varies between 30 and 60 seconds and increases when using bigger sampling

windows. Collecting a sample every 2 seconds, a sampling window of 10 sam-

ples requires at least 20 seconds to be filled. Longer windows (e.g, 30 samples)

result in worst coverage and longer detection latencies, especially with small

overload conditions. For this reasons we recommend to use small sampling

windows and the more robust RMM smoothing algorithm to achieve good re-

sults. With this configuration, we obtain 100% of detection coverage and an

average detection latency of 32 seconds.
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Table 3.3. Detection outcomes and latency under workload surges.

Overload
Window Smooth

Detection
Outcome

Detection
Latency
(seconds)

Subs.
(MTN)

20%

10
RMM

Detected (4/5) 29.0
20 Detected (4/5) 45.6
30 Not Det. (1/5) 28.0
10

RMA
Unrel. Det. (2/5) 37.0

20 Non Det. (1/5) 48.0
30 Not Det. (0/5) -
10

EMA
Unrel. Det. (3/5) 46.0

20 Non Det. (0/5) -
30 Not Det. (0/5) -

100%

10
RMM

Detected (4/5) 29.0
20 Detected (4/5) 44.0
30 Unrel. Det. (2/5) 57.0
10

RMA
Detected (4/5) 33.2

20 Detected (4/5) 47.2
30 Not Det. (0/5) -
10

EMA
Detected (4/5) 36.5

20 Detected (4/5) 42.0
30 Not Det. (0/5) -

640%

10
RMM

Detected (5/5) 42.4
20 Detected (5/5) 58.0
30 Detected (5/5) 46.2
10

RMA
Detected (5/5) 49.3

20 Non Det. (1/5) 58.0
30 Non Det. (0/5) -
10

EMA
Detected (5/5) 46.0

20 Non Det. (0/5) -
30 Non Det. (0/5) -

1000%

10
RMM

Detected (5/5) 29.4
20 Detected (5/5) 49.4
30 Detected (5/5) 46.2
10

RMA
Detected (5/5) 38.0

20 Detected (4/5) 57.0
30 Non Det. (0/5) -
10

EMA
Detected (5/5) 36.0

20 Non Det. (2/5) 57.0
30 Non Det. (0/5) -
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(a) the failure of 28 CPU cores over 32 (b) the failure of 8 S-CSCF nodes over 10

(c) the failover of 8 P-CSCF nodes over 10

Figure 3.9. Registration attempts and registrations completed per minute, under
component failures (due to faults injected at minute 20).

3.3.2 Component failure

We here analyze how component failure inside the NFV infrastructure

(and thus, the variation of the capacity of the service chain) impacts on the

QoS and on the effectiveness of the detection algorithm. We consider the fol-

lowing potential failure events:

1. The failure of physical CPU cores of a machine that hosts VNFs, which is

emulated by deliberately turning off a subset of CPU cores, thus forcing

the hypervisor and the VNFs to run on fewer CPU cores and causing

physical CPU contention.

2. The crash of VMs that run VNF software, which is emulated by deliber-

ately terminating a VM, thus forcing the IMS traffic to be load-balanced

on the remaining replicas of the VNF.

3. The restart of VMs that triggers the migration and restart of IMS ses-

sions. In the telecom domain, this phenomenon is often referred to
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as the avalanche effect, and is regarded as a problematic event due to

the need to quickly restart a high number of connections in a limited

time, and to force state migration in the case of stateful network func-

tions [11].

Table 3.4 reports in the detail the levels for experimenting with component

failures. In total, we consider 4 test configurations, with r = 5 repetitions for

each configuration.

Table 3.4. Factors and levels for studying the impact of failure events.

Factor Level 1 Level 2 Level 3 Level 4

Failure 16 out of
32 pCPU
failure

28 out of
32 pCPU
failure

8 out
of 10
S-CSCF
failure

8 out
of 10
P-CSCF
failover

We apply the first type of failure on one of the three physical nodes that

run the IMS; the second type of failure on S-CSCF services, by killing 8 VMs

running the Clearwater Sprout service; and the third type of failure on P-CSCF

services, by restarting 8 VMs running Bono, thus triggering the P-CSCF recov-

ery. All the injections are performed 20 minutes after the start of the experi-

ment.

Figure 3.9 shows examples of the impact caused by the failures on the IMS.

For three out of four failure events (the levels 2, 3, and 4 in Table 3.4), the in-

jected faults indeed caused an overload of the IMS system, since many users

were affected by failures due to unsuccessful registrations. Instead, in the re-

maining case (the level 1 in Table 3.4), the CPU failure were not enough to

cause an overload condition, as the IMS client did not perceive any service

degradation. The IMS components tolerate small a amount of physical CPU

contention (e.g., the loss of 10% of CPU time, spent in involuntary wait state)

with no effects on the throughput and the latency. Therefore, we decided

to consider this experiment as anomaly-free (the remaining CPUs were able
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to tolerate the component failure and to serve the workload, so no anomaly

should be detected for this case). This case is further analyzed in the next sec-

tion.

To analyze the detection algorithm under component failures, we focus

the discussion on the case with a workload below the engineered capacity

(i.e. 400k subscribers), sampling window size of 10 samples and a sampling

period of 2s (i.e., the window length is equal to 20s), and we apply the Run-

ning Moving Median (RMM) as smoothing function; these choices for the win-

dow size and smoothing were the best ones according to the previous analysis

with workload surges. Again, we have a performance anomaly when a notice-

able amount of user registrations and/or call setups are not successful. The

anomaly is considered detected if the algorithm raises an alarm within 60 sec-

onds from the occurrence of registration and/or call failures.

Results from these injection experiments, reported in Table 3.5, reveal a

high detection coverage. The mean detection latency (i.e., 18 seconds) is ap-

proximately equal to the time required to fill the window (i.e., 20 seconds) with

samples collected after the injected fault. The detection of this kind of issues

is faster than the case with workload surges, because the injection of the faults

caused quicker variations of the CPU utilization in a majority of the VMs, all

at the same time. In the case of CPU contention (e.g., caused by the CPU fail-

ures), all the VMs deployed on the same injection target experienced involun-

tary waits due to the hypervisor scheduler. In the case of a reduced number

of VMs (e.g., due to the crash of S-CSCF instances) the algorithm required less

feedback to reach the majority before raising an alarm, resulting in lower de-

tection latency. In case of avalanche restarts (e.g., due to the failover of P-CSCF

nodes) all the newly started instances immediately experienced overload and

the algorithm got a quick feedback from a majority of the nodes.
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Table 3.5. Results for detection based on running correlation for overload con-
ditions due to failures.

Failures Window Smooth
Detection
Outcome

Detection
Latency
(seconds)

physical
CPU
contention

10 RMM Detected (4/5) 13.0

S-CSCF
crash

10 RMM Detected (5/5) 24.0

P-CSCF
failover

10 RMM Detected (5/5) 18.0

3.3.3 Anomaly-free, long-running workload

To test for the occurrence of any false alarms under anomaly-free condi-

tions, we carry out a set of experiments that are within the engineered capacity

of the IMS system. We consider both the case of a stable workload at the en-

gineered capacity, and two scenarios with variable workload (still within the

limits of the engineered capacity). Finally, we consider the case of a failure

event that reduces the available physical CPU cores (16-out-of-32) while still

providing enough capacity for serving the workload (see also the discussion

in the previous section). In these conditions, the algorithm should not detect

any failure, thus any alarm is considered a false positive.

In the case of stable workload, we exercise the IMS with a constant num-

ber of subscribers (500k users). In the case of variable workload, we vary the

number of subscribers over time. Periodically (every 20 minutes on average)

the number of subscribers is reduced or increased, according to two patterns:

in the first pattern (Figure 3.10) the workload varies between three levels be-

low the engineered capacity; in the second pattern (Figure 3.11), the workload

varies between five levels, up to the engineered capacity of the IMS.
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200k  
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350k  
subs

Figure 3.10. Variable workload below the engineered capacity.

100k  
subs

200k  
subs

350k  
subs

400k  
subs

500k  
subs

Figure 3.11. Variable workload that saturates the engineered capacity.

In all these experiments, the detector provided an encouraging result: no

false alarms were raised, for all test configurations. This result is motivated

by the robust criteria that we adopt in the algorithm, as we require that (i) the

CPU utilization should not simply vary on individual nodes, but the variations

should be correlated at different pairs of VNFs; (ii) the correlation should show

a high strength; (iii) a majority of the replicas in a VNF tier should be involved

in the variation. Indeed, it is very unlikely that a false positive may occur, as

confirmed by our anomaly-free experiments.





Chapter 4
Managing the overload of

network functions in the Cloud

Network Function Virtualization (NFV) aims to provide high-performance

network services through cloud computing and virtualization technologies.

However, network overloads represent a major challenge. While elastic cloud

computing can partially address overloads by scaling on-demand, this mech-

anism is not quick enough to meet the strict high-availability requirements of

“carrier-grade” telecom services. Thus, this Chapter presents a novel overload

control framework (NFV-Throttle) to protect NFV services within a short pe-

riod of time, by filtering the incoming traffic towards VNFs in order to make

the best use of the available capacity, and to preserve the QoS of traffic flows

admitted in the network. Moreover, the framework has been designed to fit

the service models of NFV, including VNFaaS and NFVIaaS. Moreover, this

chapter presents an extensive experimental evaluation on the NFV-oriented

Clearwater IMS, showing that the solution is robust and able to sustain severe

overload conditions with a very small performance overhead.

59
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4.1 The problem of overload control in NFV

When a network element becomes overloaded, a large amount of traffic

can be lost very quickly. The overload may cause the disruption of already-

established connections and the unavailability of high-priority services, thus

violating SLAs. Moreover, overloads may expose network services to cascad-

ing failures due to user retries, traffic handover, and avalanche restarts. The

objective of overload control is to guarantee that the network is still able to

serve a high number of traffic flows by fully utilizing its capacity, and to as-

sure that an adequate QoS (for example, in terms of latency, packet loss, and

“goodput”) is provided to flows that are admitted in the network.

This problem is exemplified in Figure 4.1. Typically, the network capacity

is designed according to technical and economical considerations, in order to

support some “Reference load” (point C1), for example in terms of amount of

traffic per second. Under this load level, the network can perform well, and as-

sures an “engineered throughput”. However, when a mass event or a cascade

failure occurs, the network becomes overloaded (“Overload condition”, point

C2 in the figure). The network does not have enough resources to process all

the incoming flows. Thus, if the overload condition is not managed, the net-

work throughput can significantly degrade (dashed curve in the figure). Ide-

ally, using overload control, the network should maintain a steady throughput

(for example, no lower than 90% of the engineered throughput, the contin-

uous curve in the figure) even under an overload condition, by dropping or

rejecting the traffic in excess, in order to accept only few traffic flows in the

network, and by efficiently using its resources.

According to this view, the NFV overload control solution should consider

the following requirements:

1. The NFV network should achieve an acceptable level of service (for ex-

ample, not less than 90% of its engineered throughput) during severe overload
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Figure 4.1. Network throughput under overload conditions.

conditions (such as 10 times the reference load).

2. The overload control solution should quickly react to an overload con-

dition, in order to prevent violations of SLAs during the transition between a

normal load and the overload condition. Since carrier-grade services can af-

ford only few minutes of downtime per year, it is important to react to overloads

within few tens of seconds at most.

3. The overload control solution should be integrated with the use cases

and scenarios of NFV, including VNF providers, and NFVI providers. For VNF

providers, it is desirable that the solution is transparent to VNF software, which

can be developed by third-party vendors and whose source code may not be

available. Moreover, the solution should allow NFVI providers to perform over-

load control at the infrastructure-level, without relying on cooperation of the

VNF layer.

4. The overload control solution should introduce minimal overhead, and

must not degrade the quality of service under normal load conditions (for ex-

ample, it should not filter traffic when processing resources are available).
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4.2 The proposed overload control solution

In the following, I describe an overload control solution aimed at fulfilling

high-availability and performance requirements of Telecom services, and at

complying with the service models of NFV and cloud computing. In particular,

we consider two main use-case scenarios:

1. A telecom operator designs a network service (e.g., to offer it as a service,

VNFaaS), by assembling VNFs and composing them into a VNF service

chain (see Figure 4.2a). The VNFs can run VNF software developed in-

house or provided by third-party NFV software vendors. The VNFs are

deployed on an NFVI managed by a third-party NFVI provider (NFVI-

aaS). In this scenario, the telecom operator can customize the VNFs and

deploy VMs on the NFVI, but it cannot change the underlying NFVI.

2. An NFVI provider manages an infrastructure (e.g., to offer it as a service,

NFVIaaS) to host VNFs from telecom operators (see Figure 4.2b). In this

scenario, it is desirable (or even mandatory, if the VNFs are provided

as black-boxes) to address overloads at the infrastructure level, without

making changes to VMs.

The proposed solution is an overload control framework based on a set

of overload detection agents and overload mitigation agents. These agents are

software modules to be deployed inside the NFV network, and transparent to

VNF software (Figure 4.2):

• Overload detection agents check whether the incoming traffic towards

the VNF exceeds its capacity, either due to a workload peak, or due to

contention on physical resources of the NFVI. If an overload condition

occurs, the detection agent triggers an overload mitigation agent.
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(a) Deployment managed by the VNF provider.
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(b) Deployment managed by the NFVI provider.

Figure 4.2. Overview of the overload control solution.

• Overload mitigation agents protect the VNF from incoming traffic in

excess, by dropping it, or by only admitting a subset of users to the ser-

vice, and it allows again the traffic once the overload condition disap-

pears. Moreover, overload mitigation agent interact with the virtualiza-

tion infrastructure manager (VIM) to reserve physical resources to crit-



64 CHAPTER 4. MANAGING THE OVERLOAD OF NETWORK FUNCTIONS IN THE CLOUD

ical VNFs, in order to mitigate physical resource contention.

Overload detection and mitigation agents are further divided in three com-

plementary types. The VNF-level agents protect individual VNFs, and react to

overload conditions by dropping traffic in excess. The host-level agents pro-

tect groups of VNFs that share the same physical host, with respect to overload

conditions that arise from physical resource contention. Finally, network-level

agents protect the NFV network from overload condition that affect the whole

network (i.e., overloads spread across several VNFs), and react by rejecting

traffic and notifying the clients about the overload condition.

The agents can be deployed across the NFV network to support any of the

two use-case scenarios mentioned before:

1. A telecom operator can install the detection and mitigation agents both

in the same VMs of VNFs, and in dedicated VMs (Figure 4.2a). The VNF-

level agents collect resource utilization metrics from VMs, and forward

traffic to VNF software through a transparent network tunnel, which

drops traffic in excess in the case of an overload. Moreover, the telecom

operator can deploy host-level agents on dedicated VMs, which detect

physical resource contention impacting on the VNFs, and mitigate it by

re-configuring VMs. Finally, network-level agents are deployed on ded-

icated VMs, and are interposed between the NFV network and exter-

nal networks. They detect overload conditions that are spread across

several VNFs, and use a transparent network tunnel in order to forward

network traffic and to reject traffic in excess.

2. An NFVI provider may not be allowed to install agents inside the VMs

of VNFs, but has the opportunity to install agents in the physical hosts

of the NFV infrastructure (Figure 4.2b). Host-level detection and mit-

igation agents are deployed as processes or services running on the
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physical hosts. The host-level agents use a transparent network tun-

nel towards each VNF, by leveraging virtual networking mechanisms

provided by the infrastructure, in order to protect an overloaded VNF

from ingoing traffic in excess. In a similar way, network-level agents

can be deployed on physical hosts and can be interposed between the

NFV network and external networks. Moreover, host-level agents can be

adopted to mitigate physical resource contention on the host.

The proposed overload control framework is designed to react to overload

in the short term (e.g., few tens of seconds), and is complementary to elastic

cloud computing mechanisms that expand the capacity of VNFs. The frame-

work does not require to change VNF software and virtualization software, and

can be transparently installed into NFV networks with third-party VNF soft-

ware and virtualization technologies. The overload detection agents only rely

on metrics that are widespread across guest OSs and hypervisors, and that are

easily collectible through APIs or IPC channels exposed by the guest OSs and

hypervisors, without modifying their internals. Moreover, the solution gives

to NFV designers and administrators the ability to install agents only for spe-

cific VNFs, where overload control is most needed; reuse the overload control

framework across different types of network functions; to address overload ei-

ther at VNF- or at host-level, and/or globally at the NFV network level.

4.2.1 VNF-level design

The architecture of the overload control solution at VNF level is showed in

Figure 4.3, which includes a detection agent and a mitigation agent.

VNF-level Detection Agent

The VNF-level Detection Agent is a component deployed by a VNF provider

inside a VM, in order to address overloads of an individual VNF (Figure 4.2a).
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Figure 4.3. Architecture of VNF-level detection and mitigation.

It collects resource utilization metrics from the VM, by using interfaces ex-

posed by the guest OS (such as the procfs virtual filesystem of the Linux OS).

Specifically, it collects metrics about the utilization of virtual CPU by the VM.

These metrics include the busy virtual CPU ticks, consumed both by user-

space applications (including VNF software) and by the guest OS (including

system calls and interrupt service), and the idle CPU ticks of the VM. More-

over, to relate overload conditions to the workload of the VNF, the VNF-level

Detection Agent measures the ingoing and outgoing traffic throughput of the

VNF. Network traffic metrics are collected from the VNF-level Mitigation Agent

(discussed later in this section), which tunnels network traffic to the VNF soft-

ware.

The VNF-level Detection Agent must quickly react to an overload condi-

tion within a short time frame (e.g., 10 seconds for critical NFV networks).

Therefore, the VNF-level Detection Agent periodically samples resource uti-

lization metrics, and continuously updates a traffic drop rate in near real-time,

using a simple and robust update rule, which is defined as:

capacity = MEAN[accepted_traffic[1. . . N ]]
MAX[cpu_usage[1...N ]]
reference_cpu_usage

(4.1)
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drop_rate = 100 ·
(
1− capacity

incoming_traffic[N ]

)
[%] (4.2)

where cpu_usage is a sliding window of the latest N samples of the percentage

of busy virtual CPU ticks (up to 100%); incoming_traffic is the volume of traf-

fic in input to the VNF-level Mitigation Agent; and the accepted_traffic is the

volume of traffic that is actually passed to VNF software by the agent. In these

equations, MAX[cpu_usage[1. . . N ]] > 0, and incoming_traffic[N ] > capacity >
0; otherwise, if capacity > incoming_traffic[N ], then the traffic drop rate is set

to zero. The traffic drop rate is capped between 0% and 100%.

The drop_rate for VNF traffic is updated following Alg. 2. The VNF-level

Detection Agent periodically collects a new sample of resource utilization

metrics (cpu_usage, incoming_traffic, and accepted_traffic) at a high frequency

(later in this study, we configure the agent to collect one sample every 2 sec-

onds). Moreover, the VNF-level Detection Agent analyzes the most recent N

samples (e.g., we consider the last N = 5 samples when sampling every 2 sec-

onds) of virtual CPU utilization and of the network traffic throughput. The

VNF-level Detection Agent first identifies the highest virtual CPU utilization

sample among the recent samples, and compares it to a reference virtual CPU

utilization. The reference virtual CPU utilization is chosen by NFV designers

or administrators: it represents a "factor of safety" for virtual CPU utilization,

under which the VNF is designed to perform well (e.g., no service disruptions),

as discussed in section 4.1. For example, the VNF software and configura-

tion can be designed (e.g., through capacity planning of virtual and physical

resources) to have a virtual CPU utilization below 90% and to provide good

performance under a reference workload.

If the virtual CPU utilization exceeds the reference virtual CPU utilization,

the traffic allowed into the VNF (capacity) is reduced by the update rule (eq.

(4.1)). The new value is obtained by scaling down the average of the most re-

cent N samples of traffic volume accepted into the VNF; the scaling is propor-
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tional to the gap between the reference virtual CPU utilization and the actual

virtual CPU utilization. Thus, the larger the gap, the lower the capacity, and

the higher the traffic drop rate.

This computation is periodically repeated for each new sample of resource

utilization. If the overload condition persists (i.e., the CPU utilization is still

higher than the reference value), the accepted_traffic and the capacity will

keep reducing, and the drop_rate will further increase. Instead, when the VNF

leaves the overload condition (i.e., the virtual CPU utilization is below the ref-

erence value), the VNF-level Detection Agent will gradually increase the ca-

pacity and reduce the traffic drop rate, until it becomes zero (that is, all the in-

put network traffic is again allowed in the VNF software). At each update, the

traffic drop rate is sent to the VNF-level Mitigation Agent. Finally, the VNF-

level Detection Agent sends periodic updates on virtual CPU utilization to the

Host-level Detection Agent, in order to detect physical resource contention,

as discussed later in this section.

This approach is robust to false positives, since a sporadic increase of the

virtual CPU (e.g., transient peaks in the samples that are not due to an over-

load condition, but are due to random effects) is quickly discarded since we

adopt a relatively small window of samples (e.g., N = 5), which only causes to

drop a small amount of traffic and a negligible impact on the quality of service.

In the case of a larger window, the update rule can be changed by replacing the

MAX[·] function with a percentile (such as the 90th percentile among the N

samples). Moreover, the VNF-level Detection Agent applies a moving-average

filter to the samples of network traffic throughput, which lessens the effect of

sporadic out-of-norm samples from network measurements.

VNF-level Mitigation Agent

The VNF-level Mitigation Agent acts as a network tunnel between the VNF

software and other VNFs in the NFV network. The network traffic towards



4.2. THE PROPOSED OVERLOAD CONTROL SOLUTION 69

Algorithm 2: VNF-level detection and mitigation

Data: SP : sampling period
Data: N : size of the vector of samples
Data: reference_cpu_usage: "factor of safety" for virtual CPU usage
Result: dr op_r ate for incoming VNF traffic
begin

while True do
collect cpu_ticks, incoming_traffic and accepted_traffic

measurements;

update capacity and drop_rate;

send cpu_ticks to the Host-level Detection Agent;

send the updated drop_rate to VNF-level Mitigation Agent;

wait SP seconds;

the VNF software is forwarded to the VNF-level Mitigation Agent. In turn, the

VNF-level Mitigation Agent connects to the VNF software, and it forwards the

traffic to the VNF software.

This forwarding is accomplished by using network traffic forwarding mech-

anisms that are provided by the guest OS. For example, in the case of the Linux

OS, the iptables network utility can be used to introduce a forwarding rule in-

side the guest OS, to redirect VNF traffic, according to the destination port, to

a different network port that is exposed by the VNF-level Mitigation Agent.

The VNF-level Mitigation Agent is transparent to the VNF software. More-

over, the VNF-level Mitigation Agent has only a small impact on network la-

tency and throughput, since it does not perform any traffic analysis or manip-

ulation. The VNF-level Mitigation Agent only computes metrics on network

throughput, and sends these metrics to the VNF-level Detection Agent.

When an overload condition occurs, the VNF-level Mitigation Agent fil-

ters out part of the input network traffic, in order to protect the VNF software
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Figure 4.4. Architecture of host-level detection and mitigation.

from the traffic in excess. The traffic in excess is dropped and is not forwarded

to the VNF software. The traffic is dropped according to the traffic drop rate

configured by the VNF-level Detection Agent.

The VNF-level Mitigation Agent applies a traffic-matching rule on the con-

tents of network traffic (such as, to a "type" field in the header), in order to

identify which network traffic it should drop. For example, in the case of the

SIP protocol, it is preferable to only drop "REGISTER" and "INVITE" requests

in excess, and not to drop other types of messages. In this way, new users are

prevented from registering, and the VNF software is protected from the over-

load caused by new users that try to enter in the network. Moreover, the users

that are already registered are not affected by the traffic drop, and do not ex-

perience any degradation of the quality of service.

4.2.2 Host-level design

The architecture of the overload control solution for this level is showed in

Figure 4.4, which includes a detection agent and a mitigation agent.
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Host-level Detection Agent

The Host-level Detection Agent is a multi-threaded application, which can

be deployed by the VNF provider in a dedicated VM, in the same cloud infras-

tructure running the VNFs (Figure 4.2a). An alternative approach, which is

viable for the provider of the NFVI, is to run the Host-level Detection Agent on

the hypervisor as a privileged process (Figure 4.2b). In both cases, this agent

is adopted to detect physical resource contention; in the latter approach, the

agent also replaces the VNF-level Detection Agent, in order to protect a VNF

from traffic in excess. The Host-level Detection Agent monitors one or more

VNFs in the NFV network. It is possible to deploy more than one Host-level

Detection Agents on the same cloud infrastructure, where each Host-level De-

tection Agent monitors a subset of VNFs in the NFV network.

The Host-level Detection Agent receives data on virtual CPU utilization,

either from VNF-level Detection Agents (if it is deployed by the VNF provider),

through a shared ring buffer or other inter-VM communication channels, or

from the hypervisor (if it is deployed by the NFVI provider), using APIs pro-

vided by the hypervisor.

The Host-level Detection Agent can detect the traffic in excess towards a

VNF, by using the same algorithm of the VNF-level Detection Agent (Alg. 2,

and eq. (4.1) and (4.2) in section 4.2.1). It periodically samples the virtual CPU

usage of the VM, and the network throughput from the Host-level Mitigation

Agent; then, it tunes the traffic drop ratio of individual VNFs to drop traffic. In

addition, the Host-level Detection Agent can identify overload conditions that

are due to physical resource contention. These conditions may occur when

the NFVI experiences a fault (such as, a broken CPU that must be turned off),

which reduces the resources available to the VNFs, and which causes com-

petition among them for the remaining resources (but may be insufficient to

sustain the current workload). Moreover, physical resource contention can

occur due to bad capacity planning and oversubscription of the NFVI [8, 9].
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In the case of physical resource contention, it may not suffice to drop traf-

fic, since a VNF would free physical resources that could be consumed by

neighbour VMs, causing a vicious circle and worsening the performance of

the VNF. In this scenario, the most appropriate course of action is to detect

that overload is caused by physical resource contention, and to mitigate the

contention by disabling part of the VNFs and by reserving resources for the

most critical ones. According to the ETSI NFV resiliency requirements [21,

sec. 7.3], NFV is expected to support multiple levels of service availability and,

under overload conditions, it should be able to downgrade low priority ser-

vices and to preempt resources from them (e.g., a video call service should be

downgraded or preempted in favor of voice calls).

Under physical CPU contention, a virtual CPU reaches full utilization (i.e.,

there are no idle CPU ticks) even if the workload is below the virtual CPU

quota. For example, if two VMs have both a 1 GHz CPU quota, but they both

run on an oversubscribed physical CPU (e.g., a 1 GHz physical CPU, with a

2:1 vCPU-to-pCPU ratio), then the hypervisor may be unable to honour the

quota, and each VM will actually get up to 0.5 GHz CPU cycles. However, de-

tecting physical CPU contention is problematic for a telecom provider that

uses an NFVIaaS, since it has no visibility of the underlying physical host.

Moreover, physical CPU contention cannot be detected within the VM using

traditional CPU monitoring tools: both in the case of CPU contention and of

workload peaks, CPU monitoring tools would report a 100% consumption of

the virtual CPU, since they compute the ratio between busy and idle CPU ticks,

and thus would not be able to discriminate between the two cases.

In order to discriminate between physical CPU contention and other over-

load conditions, and to perform special actions against contention, we con-

sider the absolute number of busy CPU ticks (including ticks spent executing

both in user-space and kernel-space) that are actually executed by the virtual

CPU per unit of time. If there is physical CPU contention, the hypervisor CPU
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scheduler gives to the virtual CPU less physical CPU cycles than its expected

CPU quota. Thus, we detect physical CPU contention by monitoring the num-

ber of actual busy CPU ticks of the virtual CPU, and comparing it to the maxi-

mum number allowed by its CPU quota:

pCPU contention ⇔ idle ticks ≈ 0

∧ busy ticks 6≈ maximum busy ticks

where the maximum for busy ticks is calibrated by running on the virtual

CPU a CPU-intensive load under no physical CPU contention. The count of

busy ticks can be obtained from the VNF-level Detection Agent inside a VM

(section 4.2.1), or from the virtualization infrastructure using hypervisor APIs.

The Host-level Detection Agent periodically samples the number of busy ticks

since the previous sample, and estimates the physical CPU share allotted to

the virtual CPU, by computing the ratio between busy ticks and the amount of

“wall-clock” time that has been elapsed. The wall-clock time can be collected

by the VNF-level Detection Agent inside a VM (using a paravirtualized clock

provided by the hypervisor [91, 92]) and from the virtualization infrastructure.

The Host-level Detection Agent notifies the Host-level Mitigation when phys-

ical CPU contention arises or disappears.

Finally, the Host-level Detection Agent aggregates the information about

the overload state of VNFs that it monitors (either caused by excess traffic,

or by physical CPU contention), and sends periodic update messages to the

Network-level Detection Agent, as discussed later in this section.

Host-level Mitigation Agent

The Host-level Mitigation Agent is an application that executes in the same

environment of the Host-level Detection Agent. It interacts with the Virtu-
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alization Infrastructure Manager (VIM) in order to alleviate the contention

on physical CPUs, by pre-empting resources from the less important ("non-

critical") VMs. The relative importance of VMs is configured according to per-

formance and availability requirements of NFV services (e.g., the ETSI NFV

resiliency requirements provide examples of service availability levels, where

emergency telecommunications have priority over video streaming and other

internet traffic [21, sec. 7]).

The Host-level Mitigation Agent periodically checks the presence of phys-

ical CPU contention: if this is the case, it selects the VMs with the lowest crit-

icality, and decreases their scheduling priority in order to free CPU time for

the highest-criticality VMs. If the scheduling priority is already at the lowest

priority, the VM is suspended. These steps are repeated until the physical CPU

contention persists, and reverted when CPU resources are available. This ap-

proach can be easily deployed on existing virtualization technologies, such as

the KVM hypervisor and OpenStack, using their APIs to change the execution

state of VMs.

Optionally, in the case of NFVI providers, such as in NFVIaaS (Figure 4.2b),

the Host-level Mitigation Agent can be used to drop the traffic in excess to-

wards individual VNFs, in a similar way to the VNF-level Mitigation Agent

(section 4.2.1). This objective is achieved by configuring network traffic for-

warding mechanisms of the virtualization infrastructure to establish a net-

work tunnel. When the Host-level Detection Agent detects an overload con-

dition, it can trigger the Host-level Mitigation Agent to drop the traffic in ex-

cess. The amount and the type of traffic to drop is configured by the Host-level

Detection Agent as described in section 4.2.1: the Host-level Detection Agent

updates the traffic drop ratio according to a rule that uses resource utilization

metrics, and it applied traffic-matching rules to identify which traffic should

be dropped.
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Figure 4.5. Architecture of network-level detection and mitigation.

4.2.3 Network-level design

The architecture of the overload control solution for this level is showed in

Figure 4.5, which includes a detection agent and a mitigation agent.

Network-level Detection Agent

The Network-level Detection Agent is a multi-threaded application, which

executes in a dedicated VM in the same cloud infrastructure of the VMs run-

ning VNF software. Alternatively, it can execute as a privileged process on a

physical machine of the NFVI.

The Network-level Detection Agent collects the status of all VNFs in the

NFV network, and checks the presence of an overload condition (Alg. 3), ac-

cording to overload notifications coming from several Host-level Detection

Agents. The criteria for detecting a network-level overload condition can be

configured by the administrators of the NFV network: a simple criterion is

to count the number of VNFs affected by overload, and detect an overload

state when overloaded VNFs are the majority. Another possible criterion is to

compute a weighted count of the number of overloaded VNFs, by taking into

account the relative importance of VNFs in the NFV network.
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In a similar way to the VNF-level, the Network-level Detection and Mitiga-

tion Agents protect the NFV network from the input network traffic in excess.

Since these agents are deployed at the boundary of the VNF network, they can

prevent new users from entering the VNF network by explicitly rejecting them,

which differs from traffic drops inside individual VNFs or hosts, where traffic is

dropped without notifying the user. The traffic is rejected according to a traffic

rejection rate, which is controlled by the Network-level Detection Agent.

The traffic rejection rate is gradually increased when the VNFs are in an

overload condition, and it is decreased otherwise. It is periodically updated

according to a configurable, multiplicative function:

capacity =
capacity/(α+γ) if overloaded

capacity · (β−γ) otherwise
(4.3)

reject_rate = 100 ·
(
1− capacity

incoming_traffic[N ]

)
[%] (4.4)

in which the reject_rate is capped between 0% and 100%. The incoming_traffic

is the volume of traffic in input, and α and β are constants, with α> 1 and β>
2. The γ coefficient is a variable factor, which tunes the reject rate according

to the persistence of the overload condition. It is defined as:

γ= dropped_traffic[N ]

incoming_traffic[N ]
(4.5)

that is, γ represents the fraction of traffic that has been rejected during the

last sampling period. This coefficient has been introduced to keep the reject

rate low if the overload condition lasts for a short amount of time, in order to

soften the impact of sporadic false positives in overload detection; and, at the

same time, this coefficient serves to keep the reject rate high if the overload

condition is severe and persists over time. When the current fraction γ of re-



4.2. THE PROPOSED OVERLOAD CONTROL SOLUTION 77

jected traffic is null or low, α+γ is closer to 1, thus the capacity decreases with

a smaller step, and increases with a larger step. Thus, the approach avoids to

reject too much traffic when the overload condition is short and sporadic. In-

stead, when theγ is high (which happens when the overload condition already

lasted for a relatively long time), the capacity decreases with a larger step, and

increases with a smaller step. In this way, if the overload condition disappears

only for a small amount of time, the reject rate is still kept high; the full capac-

ity is restored only once the network becomes stable and non-overloaded.

Algorithm 3: Network-level detection and mitigation

Data: SP : sampling period
Data: VNF[1 . . . M ]: overload state of monitored VNFs
Result: reject_rate for incoming VNF Network traffic
begin

while True do
forall monitored VNFs do

collect overload state for VNF[k]

if majority of VNFs is overloaded then
decrease capacity;

else
increase capacity;

update and send the reject_rate to the Network-level
Mitigation Agent;

wait SP seconds;

Network-level Mitigation Agent

The Network-level Mitigation Agent acts as a network tunnel at the bound-

ary of the NFV network. The Network-level Mitigation Agent receives the traf-

fic that was originally intended for the NFV network, and forwards it to the
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VNFs.

This forwarding is accomplished by installing the Network-level Mitiga-

tion Agent into a load balancer, placed at the boundaries of the NFV network,

either in a dedicated VM, or on a physical machine. Therefore, the Network-

level Mitigation Agent is transparent to the VNFs. Moreover, the Network-level

Mitigation Agent has only a small impact on network latency and throughput,

since it does not perform any traffic analysis or manipulation. The traffic in

excess is dropped and not forwarded to VNFs. Moreover, the Network-level

Mitigation Agent can reject input traffic by replying with an overload notifica-

tion to clients, in order to prevent them to generate more network traffic. For

example, in the case of the SIP protocol, the Network-level Mitigation Agent

can reply with a “503 Service Unavailable” response in order to notify clients

about the overload state. Moreover, the Network-level Mitigation Agent ap-

plies a traffic-matching rule on the contents of network traffic (such as, to a

“type” field in a packet header), in order to identify which network traffic it

should drop (such as, session initiation requests).

4.3 Experimental evaluation on an NFV IMS

To evaluate the overload control framework, we performed an experimen-

tal analysis on the NFV-oriented IP Multimedia Subsystem (IMS), Clearwater.

This analysis is aimed at evaluating the ability of the overload control frame-

work in the context of a real NFV software, in terms of performance under

overload conditions, overhead of the framework, and failures of NFV software.

4.3.1 Testbed and technical implementation

The experimental testbed consists of four host machines: three Dell Pow-

erEdge R520 servers, equipped with two 8-Core 2.2 GHz Intel Xeon CPU, 64GB

DDR3 RAM, two 500GB SATA HDD, two 1-Gbps Ethernet NICs, 8-Gbps Fiber
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Channel HBA; one Dell PowerEdge R320 server equipped with a 4-Core 2.8

GHz Intel Xeon CPU, 8GB DDR3 RAM, two 500GB SATA HDD, two 1-Gbps

Ethernet NICs, 8-Gbps Fiber Channel HBA; A PowerVault MD3620F disk ar-

ray with 4TB of network storage with a 8-Gbps Fiber Channel link.

The hosts are connected to a 1-Gbps Ethernet network for general-purpose

traffic, and another 1-Gbps Ethernet network for management traffic. The vir-

tual disks of VMs are stored on three distinct GlusterFS partitions of the Pow-

erVault SAN, which are mounted on the hosts through the Fiber Channel link.

The hosts are configured with CentOS Linux 7 and the KVM hypervisor.

The testbed is managed using the OpenStack virtualization platform, version

Juno [90]. The Dell PowerEdge R320 serves as OpenStack Controller and Net-

work node; the three Dell PowerEdge R520 servers represent the OpenStack

Compute and Storage nodes, and run the VMs of the Clearwater IMS. The

OpenStack services include: Nova, which manages the compute domain; Neu-

tron, which manages virtual networks among VMs; Cinder, which controls the

lifecycle of VM volumes; Glance, which manages the cloud images of VMs;

Heat, which orchestrates, through a native REST API, the virtual IMS deploy-

ment; Horizon, which supports the Web-based management dashboard.

The agents of the NFV-Throttle framework are deployed both on the VMs

(VNF-level agents) and on the hosts (Host-level and Network-level agents).

The agents have been developed in C, respectively as background daemons

at VNF-level and Host-level, and as extensions of the OpenSIPS [93] proxy at

Network-level. The VNF-level and Host-level detection agents collect CPU uti-

lization metrics from the proc FS, and network utilization metrics from the

mitigation agents. The mitigation agents, both at VNF-level and at Host-level,

act as a filtering proxy for all the network traffic destined to a specific VNF, us-

ing iptables NAT rules. The network traffic accepted by the agent is forwarded

to the VNF, on behalf of the originator. In the case of UDP traffic (such as in the

case of SIP clients and P-CSCF VNF instances), UDP datagrams are forwarded
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by the agent on behalf of the source, by replacing the source IP and port with

the ones of the SIP client; thus, the destination (e.g., P-CSCF) can directly reply

to the source. In the case of TCP traffic (such as between a P-CSCF VNF and

a S-CSCF VNF), during the TCP handshake phase, the mitigation agents es-

tablishes two connections, respectively with the source (e.g., P-CSCF) and the

destination (e.g., S-CSCF). Then, the agent reads and writes data from both

the two streams, acting as a man-in-the-middle. Note that, for both UDP and

TCP, only a fixed set of iptables rules is required, regardless of the number of

clients and connections.

4.3.2 Experimental plan

We evaluate the proposed overload control framework in the context of the

Clearwater IMS case study, by performing experiments with stressful work-

loads and resource contention. In particular, we evaluate:

• The ability of the framework to assure a high throughput (up to the max-

imum capacity of the system), in terms of RAPS (register attempts per

second) and CAPS (call attempts per second) that are successfully han-

dled with no failures (i.e., requests that are neither timed-out nor re-

jected).

• The resource overhead introduced by the framework, in terms of CPU

and memory footprint consumed by the agents of the overload control

framework.

The experiments use a mix of SIP registrations and call setup requests. The

workload is generated using the SIPp traffic generator [94] to emulate SIP sub-

scribers. Each couple of subscribers will attempt to register or renew the regis-

tration every 5 minutes on average. After a successful registration, a subscriber

can either attempt to setup a call to the other (with 16% of probability), or re-

main idle until the next registration renewal (with 84% of probability). The call
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hold time is configured to 60s. We calibrate the number of VNF instances with

a preliminary capacity planning using 400k subscribers. These numbers have

been suggested by our industrial partners as a realistic baseline for testing an

IMS service, and on which we impose overload conditions.

We tuned the number of VNF instances to have at most 80% virtual CPU

utilization (which is measured by sampling the average CPU utilization every

minute), and no failures. The IMS can handle this workload with 10 replicas of

Bono, Sprout, and Homestead, 4 replicas of Ralf, and 1 replica of Homer and

DNS. Each replica runs on a distinct VM with 1 virtual CPU. In this experimen-

tal setup, 400k subscribers represent the engineered capacity of the IMS (see

also Figure 4.1). The IMS experiences an overload condition when the number

of subscribers exceeds this engineered capacity (À 400k subscribers). In these

cases, the CPU becomes the performance bottleneck. Moreover, an overload

condition happens when the IMS compete for resources with other services

that are deployed on the same physical infrastructure.

We consider three high-workload scenarios to evaluate the performance

of overload control under a peak of subscribers. Every scenario is executed

four times, respectively with: the plain Clearwater IMS; the VNF-level over-

load control; the Host-level overload control; and the Network-level overload

control. In total, we perform 12 high-workload experiments. We adopt the

following workloads (Table 4.1):

• Small overload (480K subscribers): the load is at 120% with respect

to the engineered level, and saturates the maximum capacity of the

testbed. At this load level, the overload control solution should throttle

a small part of service requests, in order to preserve the QoS for sub-

scribers that are already registered in the IMS before the overload.

• Medium overload (1M subscribers): the load is 250% with respect to

the engineered level, and above the maximum capacity of the testbed.
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At this load level, the overload control solution should throttle a large

amount of requests to prevent a significant throughput degradation.

• High overload (4M subscribers): the load is ten times higher (1000%)

than the engineered level. At this load level, there is a significant re-

source pressure since a considerable amount of connections must be

handled, thus exposing the IMS software to potential crashes due to re-

source exhaustion.

Each experiment lasts 1 hour, and is divided in three phases:

• Load generation (Ramp-up): When the experiment starts, 400k sub-

scribers are created in the initial 15 minutes (Initial ramp-up period).

The system can handle this load without failures. This load is generated

by a set of 10 SIPp instances, for all the duration of the experiment. This

phase is common to all the experiments.

• Overload generation: This phase starts at the 20th minute, and lasts

for 30 minutes. In this phase, additional subscribers, over the engi-

neered level (Table 4.1), are introduced in a short amount of time (Over-

load Ramp-up period). Then, all the subscribers constantly generate

requests for call setup and registration renewal.

• Overload termination (Ramp down): This phase starts at the 50th minute,

and lasts until the end of the run. In this phase, each subscriber that

fails to register or make a call, will not attempt to retry and will leave the

system.

Moreover, we consider an additional experimental scenario, in which the

overload condition is caused by resource contention between the IMS and

other services deployed on the same physical infrastructure. In this scenario,

the Host-level agents have to shield the IMS from resource contention, by

throttling other services. Thus, we perform this additional experiment:
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Table 4.1. Workloads used to evaluate the overload control solution.

# Subscribers Load Level RAPS CAPS

400k
(Engineered Level)

100% 1,379 111

480k

(Small Overload)
120% 1,655 133

1M

(Medium Overload)
250% 3,448 278

4M

(High Overload)
1000% 13,793 1,111

• Resource contention: At the steady state, the load level is 350k sub-

scribers, close to the engineered level. After 20 minutes, we run a “CPU

hog” on one of the three physical hosts (using the cpuburn tool [95]),

causing CPU contention between the processes and VMs running on

that physical host.

4.3.3 Experimental results

Node level

We first consider the case in which overload control is performed only

at the VNF-level (i.e., by installing an agent inside VMs, as discussed in Sec-

tion 4.2.1). Figure 4.6 shows the performance of the Clearwater IMS at varying

levels of overload, respectively at 120%, 250% and 1000% load with respect to

the engineered capacity.

The graphs of Figure 4.6 show the registration throughput on the left side,

and the call throughput on the right side. Each graph shows three curves:

the input load, in terms of registration and call requests per second, and the

throughput of successful requests, respectively without and with overload

control at VNF-level.
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(a) Registration Throughput 120% (b) Call Throughput 120%

(c) Registration Throughput 250% (d) Call Throughput 250%

(e) Registration Throughput 1000% (f ) Call Throughput 1000%

Figure 4.6. Registration and Call Throughput for each overload level (i.e., 120%,
250% and 1000%) at Node Level.

With an overload level of 120% (Figure 4.6a and 4.6b) the registration and

call throughput are close to the input request rate, both with and without the

proposed overload control framework. In both cases, the capacity of the IMS

has been saturated. However, in the case without our overload control frame-

work, the call throughput exhibits a significant variability, and tends to be

lower than the input rate of requests. This behavior is a consequence of the

problem discussed in Section 4.1: even if resources are fully utilized, they do

not necessarily produce useful work, since the system attempts to manage too

many users but cannot provide an acceptable QoS to any of them. Instead, the

overload control solution has been able to avoid service failures for already-
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established sessions, by rejecting the requests in excess during the overload

phase.

With higher overload levels (Figure 4.6c – 4.6d at 150% load, and Figure 4.6e

– 4.6f at 1000% load), and without our overload control framework, the im-

pact of overload is even more severe. We observed that most of the nodes

exhibit failures due to resource exhaustion, causing the crash of VNFs and

performance degradation of the IMS. This results in a significant performance

degradation, with registration throughput lower than 200 RAPS and call through-

put lower than 1 CAPS in the worst case.

In the same scenarios, with the overload control framework, the registra-

tion and call throughput are stable around the engineered level, which is the

maximal throughput attainable by the IMS. Moreover, there are no failures of

the VNFs, since the overload control framework is implemented outside VNF

software and is more robust to huge overload conditions. In particular:

• Load level of 250%: (1) the registration throughput reaches on average

1664.9 RAPS, which is 137% more than the case without the mitigation

and 20% more than the engineered level; (2) the call throughput reaches

on average 114.60 CAPS, which is 194% more than the case without the

mitigation and close to the engineered level.

• Load level of 1000%: (1) the registration throughput is 1439.5 RAPS,

which is 152% more than the case without the mitigation and 4% higher

than the engineered level; the call throughput reaches on average 97.17

CAPS, which is 200% more than the case without the mitigation and

close to the engineered level.

Host level

We performed the same experiments using the Host-level overload detec-

tion and mitigation, which replace their VNF-level counterparts. The results
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obtained with Host-Level overload control are comparable to VNF-level over-

load control in Figure 4.6, thus they are not showed here for the sake of brevity.

In summary, the overload control framework, under an overload level of 250%,

can achieve a registration throughput 136% higher than the case without the

mitigation, and 18% more than the engineered level. Similar results were also

obtained under an overload level of 1000%. Again, overload control prevented

IMS failures due to resource exhaustion.

Network Level

(a) Registration Throughput 120% (b) Call Throughput 120%

(c) Registration Throughput 250% (d) Call Throughput 250%

(e) Registration Throughput 1000% (f ) Call Throughput 1000%

Figure 4.7. Registration and Call Throughput for each overload level (i.e., 120%,
250% and 1000%) at Network Level.
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Figure 4.7 show the performance measurements obtained with Network-

level overload control. As for the previous cases (VNF-level and Host-level),

the overload control at Network-level is able to sustain a high throughput in all

overload scenarios. Moreover, with a load level of 250% and 1000%, the control

solution is able to avoid resource exhaustion and crashes of IMS components.

These experiments point out an additional benefit of Network-level over-

load control. During the overload, the Network-level mitigation agent rejects

the registration requests in excess by replying to the clients. During the first

10 minutes of overload (in the period 1200s-1800s in the graphs), the rate of

incoming registration requests gradually decreases due to rejections, and sta-

bilizes again around the engineered capacity.

Figure 4.8 summarizes the results, by providing aggregated statistics (me-

dian, upper and lower quartiles, minimum and maximum) obtained respec-

tively with overload control at VNF-level, Host-level, and Network-level. Fig-

ure 4.8a shows the performance of the IMS in terms of registration throughput

at different loads (from 400k to 4M subscribers), while Figure 4.8b shows the

performance of the IMS in terms of call throughput.

At the engineered level (400k subscribers), there are no significant differ-

ences between the three cases and the engineered capacity (Table 4.1). In all

cases, during the first 20 minutes of the experiments, when the load is within

the engineered level, the performance with and without overload control are

closely matching. Thus, the overload control does not have negative side ef-

fects on the IMS when there is no overload condition.

In overload conditions, the Host-level overload control provides the best

average registration and call throughput compared to VNF-level and Network-

level control. The performance gap between VNF-level and Host-level can be

explained by observing that the VNF-level control incurs in the overhead of

transmitting all of the traffic to VMs, and to discard the traffic in excess in

the VM. The Host-level solution acts in the hypervisor rather than the VM,
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thus avoiding this additional overhead. Thus, when feasible, the Host-level

solution should be preferred to the VNF-level one. The Host-level solution

can be adopted in the case of NFVIaaS providers, which have access to the

infrastructure, while it may not be feasible for NFVIaaS consumers, which can

only deploy VNF-level solutions.

The Network-level overload control also exhibits lower performance than

the Host-level one, in particular with respect to the registration throughput.

The performance of Network-level overload control is mainly affected by the

detection mechanism. The main factor is that detection is distributed and

uses a longer sampling period compared to the Host-level solution (which

are respectively 30s and 10s), since the Network-level solution needs to col-

lect information from several nodes. Thus, the Network-level solution has a

slightly higher detection latency, and it is thus more exposed to oscillations

of the workload. Moreover, there are sporadic cases in which the workload is

not uniformly balanced across the replicas. Since the Network-level solution

detects an overload when a majority of nodes is overloaded, these cases lead

to sporadic delays in overload detection.

Resource contention

To complete the evaluation of the Host-level overload control solution, we

performed an experiment in which the overload is caused by an additional

workload that shares the physical infrastructure with the IMS.

Figure 4.9 shows the registration attempt rate (which is approximately

constant for most of the experiment), and the registration and call throughput,

both without mitigation (red lines) and with the Host-level mitigation (yel-

low lines). Without mitigation, the overload condition (starting after 1200s)

halves the registration throughput, and significantly reduces the call through-

put. With Host-level mitigation, the CPU contention is relieved by reducing

the priority of the “CPU hog”, until the throughput of the IMS stabilizes again
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(a) Registration Throughput

(b) Call Throughput

Figure 4.8. Mitigation performance at different operational levels (i.e., node,
host and network level)

around the engineered capacity.

Overhead Evaluation

The mitigation agents act as a lightweight filtering proxy for the network

traffic destined to VNFs. Since all the traffic, both TCP and UDP, will be pro-

cessed by the mitigation agent, we analyze the performance overhead of this

critical component. Moreover, since the implementation of the proxy agent

is different between the UDP and the TCP transport protocols, we separately

analyze both of them.

We performed experiments with the High Overload scenario (that is, 1000%

the engineered level), as discussed in Section 4.3.2. This scenario is the most

stressful among our experiments, and thus represents a worst-case for our

overload control framework.

The plot in Figure 4.10 shows the CPU consumption of the mitigation
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(a) Registration Throughput

(b) Call Setup Throughput

Figure 4.9. Overload control results at Host level for pCPU contention.

agent during the experiments when processing UDP datagrams. When the

workload is within the engineered level of traffic (900s-1200s), the CPU con-

sumption is very little (≈ 1.5%). When the workload reaches ten times the

engineered level, the mitigation agents drops the UDP traffic in excess, and

its overhead is less than 4%. The memory consumption during the whole ex-

periment is fixed at 3.5MB, since the agent does not allocate any dynamic

memory.

We repeated the same experiment, at maximum level of overload (i.e.,

1000% the engineered level), by analyzing the overhead under TCP traffic. The

plot in Figure 4.11 shows the CPU consumption of the mitigation agent during
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Figure 4.10. CPU Consumption of the UDP mitigation proxy

the experiment. At the engineered level of traffic (900s-1200s), the overhead

is again very little (≈ 1.5%). At ten times the engineered level, when dropping

the TCP traffic in excess, the overhead of the mitigation agent is less than 3%.

In the case of TCP, the memory consumption is dependant of the number of

TCP connections that are currently active. Even during the peak of the traffic,

the maximum memory consumption was only 16MB.

Figure 4.11. CPU Consumption of the TCP mitigation proxy
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4.4 Managing the threats of the physical CPU contention

at guest-level

This section analyzes the problem of overloads caused by physical CPU

contention in cloud infrastructures, from the perspective of time-critical ap-

plications (such as Virtual Network Functions) running at guest level. In this

particular scenario, overload control solutions to counteract traffic spikes (e.g.,

traffic throttling) are counterproductive against overloads caused by CPU con-

tention. Then I propose a general guest-level solution to protect applications

from overloads also in the case of CPU contention. We reproduced the phe-

nomena on the Clearwater IMS testbed. The results show that the approach

can dynamically adapt the service throughput to the actual system capacity in

both cases of traffic spikes and CPU contention, by guaranteeing at the same

time the IMS latency requirements.

4.4.1 Overview of CPU overloads and CPU utilization metrics

In this section, we expose the problem of overload conditions, how to in-

terpret CPU utilization metrics, and the pitfalls for overload control strategies

when using these metrics.

Ideally, the input traffic for a service should not exceed its engineered ca-

pacity, that is, the maximum amount of input traffic that can be served while

achieving SLAs. SLAs typically require a low probability of failures (such as,

traffic loss or processing errors) and low latency (such as, the time to process

or respond to an individual traffic unit). These requirements are especially de-

manding in the case of the telecom domain [22, 96], where the engineered ca-

pacity is carefully planned at design time, by allocating computing resources

according both to cost considerations, and to the expected reference work-

load: for example, according to the expected rate of busy-hour call attempts

(BHCA) in the case of a VoIP service.
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In the context of IaaS, the designers of VNFs need to plan in advance

the flavor and the expected amount of VMs; for example, a common rule-of-

thumb is to plan for VMs such that each VM consumes at most 90%, or some

other threshold (the engineered level), of the available virtual CPUs under the

reference workload, leaving a small amount of residual capacity as a factor of

safety [3, 97]. Overload conditions saturate the capacity of virtual CPUs; in

these cases, the VNFs should throttle the input traffic (i.e., rate-limit by drop-

ping or rejecting requests) in order to assure that the traffic processed by the

VNFs is within the engineered capacity and can meet the SLAs. This strategy

is further discussed in Section 4.4.2.
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Figure 4.12. CPU utilization metrics under three scenarios.

Physical resource contention is a special case of overload condition, in

which the available capacity of the VNFs is reduced due to competition. How-

ever, the behavior of the system is different than the case of traffic spikes. To
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illustrate the problem, we consider thorough the paper a generic example (in

Figure 4.12) of a VNF with a 1-GHz virtual CPU, deployed on a 2-GHz physi-

cal CPU. Therefore, the CPU quota of the VM is 50% of the physical CPU. In

this example, we assume that the engineered capacity of the VNF uses 75%

of the virtual CPU under the reference workload. From inside the VM (Fig-

ure 4.12, CASE 1), the OS measures the virtual CPU utilization by counting

the virtual CPU cycles that have been spent busy at executing applications

or the OS kernel, and idle at waiting for I/O or without any workload (i.e.,

vCPU utilization = busy/busy+idle). When the input traffic overloads the VNF

(Figure 4.12, CASE 2), the virtual CPU utilization raises to 100% to serve all of

the traffic, and hits the CPU quota at 1 GHz enforced by the hypervisor.

In addition to these metrics, we also consider the CPU steal time metric,

which is also influenced by overload conditions, but can be mistakenly con-

sidered as an indicator of physical CPU contention. We use the name “CPU

steal” in reference to the metric available in Linux and in the KVM and IBM

z/VM hypervisors [98, 99, 100]; an equivalent metric is also available in other

hypervisors such as VMware ESXi, Xen and Microsoft Hyper-V, respectively

under the name “CPU Stolen Time” [101, 102] and “CPU Wait Time Per Dis-

patch” [103]. This metric is provided by hypervisors to VMs, e.g., through hy-

pervisor calls. In all these systems, this metric is technically defined as the

time that a virtual CPU is ready to execute, but it is waiting to execute on the

physical CPU. In other terms, the metric represents the time spent by the vir-

tual CPU on the hypervisor’s scheduling queue. The term “steal” refers to CPU

cycles that a VM spends waiting because either the hypervisor or other VMs

are using the physical CPU (for example, the hypervisor is using CPU cycles

to emulate an I/O device). However, in most situations no CPU cycle is actu-

ally “stolen” from the VM, as the hypervisor still assures the CPU quota for the

VM, and that the VM is eventually scheduled; it would be better understood

as an “involuntary wait” time. For example, in the CASE 2 of Figure 4.12, the
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VM is put on hold after that it consumes its virtual CPU quota; thus, the rest

of the physical CPU time is accounted as “steal time” from the perspective of

the VM, since it is waiting on the scheduling queue. Even in the case of low

workload, it is still possible that a moderate share of CPU time is accounted as

stolen, e.g., when two VMs are sporadically ready to execute at the same time.

Thus, steal time is not a sufficient condition for an overload condition.

The third scenario involves physical CPU contention (Figure 4.12, CASE

3). In this case, we are assuming that 3 VMs with equal priority are scheduled

on the same physical CPU (e.g., because of overcommitment, bug or miscon-

figuration of the infrastructure). The 3 VMs all have a CPU quota set to 1 GHz,

and an engineered capacity that uses 75% of the virtual CPU (as in the pre-

vious two scenarios). Since the total CPU demand (0.75 ·3 GHz) exceeds the

capacity of the physical CPU (2 GHz), the hypervisor equally divides the CPU

bandwidth among the VMs, where each virtual CPU actually gets a slice (fair

share) of 0.66 GHz (i.e., 33% of the physical CPU time). Since the VNF is ready

to execute even after consuming this slice (as the workload exceeds the virtual

CPU capacity), the rest of the physical CPU time (66%) is accounted as steal

time for the VM.

Both in CASE 2 and CASE 3 of Figure 4.12, the VNF is in an overload con-

dition. However, if the VNF is deployed on IaaS, it cannot easily distinguish

between the two cases, since the VNF cannot inspect or control the under-

lying infrastructure. From the perspective of the VNF, only looking for high

virtual CPU consumption or for high CPU steal time does not suffice to dis-

criminate between a traffic spike or physical resource contention. The only

difference between the two cases is that the actual CPU share of the VM (0.66

GHz) is lower than the original CPU quota (1 GHz). Therefore, to address both

these cases, the proposed overload control approach throttles the workload by

adapting to the CPU share (either the quota or the fair share) that is actually

available to the VNF.
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4.4.2 Mitigation strategy

To recover from overload conditions, the long term solution would be

to meet the high demand by scaling up the computing resources, or to re-

lieve physical resource contention by shutting down other services that have

a lower priority or that are hogging the resources. However, these recovery

actions can take several minutes, even in an optimistic case. During this tran-

sient period, VNFs are still exposed to the risk of outages. If the VNFs attempts

to serve much more traffic than their capacity, then each traffic unit will not be

served with enough computing resources to meet SLA requirements. As a re-

sult, the useful throughput of the VNFs (i.e., the rate of successfully processed

traffic) can significantly degrade [104, 45]. Moreover, handling too much traf-

fic at the same time increases the likelihood of VNF software failures such as

failed resource allocations, timeouts, and race conditions [105, 106].

Therefore, long-term recovery actions should combined with short-term

solutions for throttling the traffic, in order to let in the system only the traffic

that can be processed with the currently available capacity [30, 107, 31, 44]. In

the case of traffic spikes in VNFs (the CASE 2 in Figure 4.12), the throttling al-

gorithm should reject part of the traffic, in order to reduce the virtual CPU uti-

lization to the engineered capacity (i.e., to return to the CASE 1 in Figure 4.12).

For example, increase/decrease algorithms are a popular solution to tune the

amount of traffic to be accepted (e.g., the window size for packet flow control)

[108, 109, 110] by decreasing the traffic when the network is overloaded (e.g.,

by a constant or multiplicative factor), or by increasing the traffic otherwise.

This approach has been recently applied in the context of NFV [111], using a

heuristic criterion to tune the traffic that a VNF can serve (capacity):

capacity = processed_traffic

current_vcpu_usage
· reference_vcpu_usage (4.6)

where the first factor estimates the cost per traffic unit (in terms of virtual CPU
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cycles), which is multiplied by the reference virtual CPU budget (i.e., the en-

gineered level) to get the total amount of traffic that can be correctly served.

When the virtual CPU utilization exceeds the engineered level, the heuristic

drops a percentage of the incoming traffic (drop rate):

drop_rate = 100 ·
(
1− capacity

incoming_traffic

)
(4.7)

in which the higher the gap between capacity and the incoming traffic, the

higher the drop rate. The drop rate is periodically updated every few seconds,

and is capped between 0% and 100%. In the case of a traffic spike, the virtual

CPU utilization increases, thus the heuristic lowers the capacity and increases

the drop rate; as result, the virtual CPU utilization settles again around the

engineered level.

Nevertheless, this heuristic may not work correctly in the case of physical

CPU contention. We consider again the example of Section 4.4.1, where the

physical CPU contention leads to the following chain of events (see also the

Figure 4.13):

1. Due to the contention, the hypervisor allocates less physical CPU time

to the VM (0.66 GHz, as in the CASE 3 in Figure 4.12). As a result, the

current workload saturates the VNF, and the virtual CPU utilization be-

comes 100% (i.e., the ratio busy/busy+idle), which is higher than the refer-

ence CPU utilization (e.g., 75% in the example).

2. The heuristic increases the drop rate to reduce the load. The virtual CPU

utilization then settles around 75%. It is important to note that the 75%

of the virtual CPU is equal to 0.66 ·75% = 0.5 GHz of physical CPU. The

residual 25% of the virtual CPU (i.e., 0.66 ·25% = 0.166 GHz of physical

CPU) becomes idle.

3. Due to the physical CPU contention, the hypervisor opportunistically
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schedules these idle CPU cycles for the demand of other VMs or pro-

cesses on the host machine. Thus, the virtual CPU is not anymore idle,

and virtual CPU utilization becomes again 100%.

4. The heuristic further increases the drop rate, to reduce again the virtual

CPU utilization down to 75% (as in the previous step 2). The virtual CPU

now consumes 0.66 ·75% ·75% = 0.375 GHz of physical CPU.

5. The hypervisor preempts again the idle CPU time. The heuristic enters

a vicious cycle where the virtual CPU utilization is reduced more and

more.
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Figure 4.13. Chain of events caused by physical CPU contention.

The vicious cycle is caused by the work-conserving behavior of hypervi-

sor schedulers (i.e., they ensure that the CPU is never idle if there is at least

one VM ready for execution) [112, 113, 114]. The VNF yields to the hypervi-
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sor part of its virtual CPU time, by dropping part of the incoming traffic. In

the case of physical CPU contention, in which several VMs or processes on

the host machine are demanding more CPU time than the available physical

CPU, the hypervisor scheduler uses the freed CPU cycles to meet these de-

mands. Then, the virtual CPU shrinks again and causes the vicious cycle. In

general, the feedback control loop approach (not limited to the heuristics of

eqs. (4.6) and (4.7), but any other control rule based on virtual CPU utiliza-

tion) can be vulnerable to physical CPU contention, due to the distortion of

virtual CPU utilization metrics.

To address the problem of overload control under physical CPU contention,

we extend the feedback control loop approach with an additional mechanism

to break the vicious cycle. The design goal of the approach is to assure that the

VNF gets no less than its fair share of the physical CPU even under contention

(e.g., 0.66 GHz in the previous example); and, at the same time, that the vir-

tual CPU utilization inside the VNF settles at the engineered level (e.g., 75% of

the virtual CPU in the example). This condition is showed in Figure 4.14: the

available virtual CPU under physical contention reduces to 0.66 GHz; since

this virtual CPU is not sufficient to reach the original engineered level (0.75

GHz), we still apply the feedback control loop to reduce the virtual CPU uti-

lization down to 75% of the available virtual CPU (i.e., 0.5 GHz of physical

CPU). This is the same condition of the step 3 of the vicious cycle; we break

the cycle at this point, using the following approach.

We introduce a mechanism into the VNF to avoid the preemption of idle

virtual CPU cycles under physical CPU contention. This effect can be obtained

in different ways depending on the guest OS used in the VNF. The most generic

approach is to add a placeholder process (one process per virtual CPU of the

VM) that actively consumes virtual CPU cycles to avoid preemption by the

hypervisor; it executes a CPU-bound task for the sake of consuming virtual

CPU cycles. The placeholder process should execute at minimal priority on
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Figure 4.14. CPU utilization metrics under physical contention, with virtual CPU
placeholder.

the guest OS of the VNF; moreover, it should be configured as a batch task in

order not to take away any virtual CPU cycle from the VNF software (i.e., the

placeholder only uses the virtual CPU when the VNF is not executing). For

example, this effect can be obtained on Linux by setting the SCHED_BATCH or

SCHED_IDLE scheduler class for the task [115], and on Windows by setting an

idle trigger [116]. Yet another approach is to configure or to modify the idle

loop of the guest OS [117]. As a result, the placeholder takes the place of the

idle time of the virtual CPU, as in Figure 4.14: at any given time, the virtual
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CPU is either executing the VNF or the placeholder process, and the virtual

CPU consumes the residual physical CPU cycles granted by the hypervisor

scheduler. This behavior breaks the vicious cycle, since the hypervisor cannot

preempt the virtual CPU cycles that are freed by the feedback control loop.

Moreover, settling the virtual CPU utilization at the engineered level provides

a “margin of safety" (e.g., to compensate for small random workload fluctua-

tions) as in the case of the original engineered level, since the VNF software

can preempt the placeholder process at anytime.

We enable the placeholder process on the condition that the CPU steal

time spans all the physical CPU not used by the VM. This condition occurs

when the VNF consumes its available virtual CPU, either because of a traffic

spike that saturates the virtual CPU quota (CASE 2 in Figure 4.12), or because

of physical CPU contention that reduces the available virtual CPU (CASE 3 in

Figure 4.12). We apply the same solution regardless of which one of these two

cases is causing the saturation of the virtual CPU. The solution still applies the

feedback control loop, but excluding the CPU consumption of the placeholder

process from the virtual CPU utilization metric, that is:

vCPU utilization =
busyall −busyplaceholder

busyall + idle
. (4.8)

For example, in Figure 4.14, the virtual CPU utilization is 75% if the utiliza-

tion of the placeholder is not included. The virtual CPU utilization metric (i.e.,

the dependent variable controlled by the feedback loop) is thus not influenced

by the presence of the placeholder process (which only opportunistically con-

sumes the idle virtual CPU cycles). Therefore, in the case of traffic spikes, the

proposed feedback control loop still works as in previous work [111]. In the

case of physical CPU contention, the placeholder avoids the interaction be-

tween the feedback control loop (that frees the virtual CPU) and the hypervi-

sor (that preempts the freed virtual CPU), thus allowing the feedback control

loop to work correctly in this additional case.
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Since CPU contention is a relatively rare event, we designed the place-

holder process not to execute when there cannot be physical CPU contention.

Since CPU steal time is a necessary condition (even if not sufficient, as dis-

cussed in Section 4.4.1) for physical CPU contention, the placeholder process

remains idle if there is no accounted CPU steal time (CASE 1 in Figure 4.12).

The placeholder process becomes active (i.e., it consumes virtual CPU cycles)

once it detects that the CPU steal time has peaked (which denotes that the

virtual CPU is trying to exceed a limit), and runs for a fixed amount of time

Tactive. Once Tactive has elapsed, the placeholder process returns in the idle

state. Then, the placeholder process inspects again the CPU steal time to

check whether the VNF is not anymore saturating its virtual CPU. If there is

still either a traffic spike or CPU contention, the placeholder process contin-

ues to be active, repeating the check later. The Tactive should be chosen ac-

cording to the expected duration of the recovery actions, such as for scaling

out, hot-fixing a bug, or migrating the services to another host machine. Even-

tually, the virtual CPU executes again on a non-overloaded physical CPU.

4.4.3 Experimental evaluation

We performed experiments on an NFV IMS system to reproduce the prob-

lem of physical CPU contention, and to evaluate the effectiveness of over-

load control solutions, including both the basic and the enhanced feedback

control-based approaches.

We executed experiments on a testbed based on the Clearwater open-

source IMS system [46].

Our experimental testbed runs these components on three Dell PowerEdge

servers, equipped with two 8-core 2.6 GHz Intel Xeon CPUs, connected by two

Gigabit Ethernet networks, and attached to a Fiber Channel storage area net-

work. The physical machines are managed using OpenStack (version Juno)

and the KVM hypervisor (based on the Linux kernel version 3.10). Each Clear-
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water service is replicated in two VMs, configured with 1 virtual CPU and 4GB

of RAM; each VM runs one VNF instance, and Ubuntu Linux 14.04 as guest

OS. We use the SIPp workload generator [94] to exercise the IMS with register

and call-setup requests. The IMS workload reproduces the typical message

flows between subscribers, according to the SIP protocol. These flows are also

adopted to test the Clearwater IMS, and the complete scenario used in our

tests is available online [118].

Therefore, our workload reproduces a stressful traffic profile of 5 BHCA

(i.e., Busy Hour Call Attempt) per user and 60 BHRA (i.e., Busy Hour Regis-

tration Attempt) per user. We regulate the workload intensity by varying the

number of subscribers in order to reach the engineered level of the system.

The engineered capacity of the experimental testbed is 40,000 subscribers,

which can perform on average 660 registration requests and 55 call requests

per second without SLA violations. The engineered level for the virtual CPU

utilization is 75% under this reference workload.

We reproduce physical CPU contention by pinning an additional VM run-

ning a CPU-bound workload on the same physical CPU core running a critical

component of the IMS. CPU pinning and CPU scheduling affinities are often

considered best-practies to optimize latency-sensitive application [119]. In-

deed, the scheduling affinities, can optimize memory access times in NUMA

architectures and reduce the hypervisor scheduling latency. However those

practies can end to increase the risk of physical CPU contention due to non

optimal load balancing in case of vCPU oversubscription. Moreover setting

manual CPU affinities increase the risk of contention problems due to mis-

configuration by the infrastructure administrators. [120]. Thus the scenario

we reproduce is representative of typical issues occurring in time-critical ap-

plication running in virtual environments.

In the following, we present and discuss two groups of experiments. In the

first group (Section 4.4.4), we consider a basic overload control solution, using
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the feedback control loop and heuristic that was introduced in Section 4.4.2.

On this configuration, we reproduce overload conditions both due to traffic

spikes and to physical CPU contention, in order to show that the feedback

control loop can degenerate because of the vicious cycle. In the second group

of experiments (Section 4.4.5), we enhance the feedback control loop with the

mechanism for breaking the vicious cycle, and reproduce the same overload

conditions to evaluate the proposed solution.

During the following failure scenarios, we analyze the registration attempts

and the registration throughput. These quantities include both new users and

retries of failed attempts. After a failure, a user starts a back-off period (uni-

form between 0 and 2 min) before making a new registration attempt.

4.4.4 Basic feedback control-based overload control

We deployed the basic feedback overload control in the two Clearwater

VMs running the IMS P-CSCF network function, since this component is a ca-

pacity bottleneck for our deployment configuration. In a first experiment we

reproduce a workload surge which is 2.5 times higher than the engineered ca-

pacity level. The experiment lasts 15 minutes and it consists of two phases: in

the first phase, we gradually introduce 40,000 subscribers and wait until the

workload reaches the steady state at engineered level; in the second phase,

starting at second 450s, we introduce in the system 100,000 additional sub-

scribers, causing a workload surge and the overload of P-CSCF components.

Figure 4.15 shows the registration request rate and throughput of the IMS

during the experiment. Before the overload phase, the average registration

throughput at steady state is 624 registrations per second; during the overload

phase the average throughput is 634 registrations per second, with an aver-

age CPU utilization of 73.32%. The basic overload control solution described

in Section 4.4.2 (eqs. (4.6) and (4.7)) has been able to successfully protect the

IMS system: it avoids service failures for already-established sessions, by cor-
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rectly estimating the capacity of the system and rejecting the requests in ex-

cess with respect to the capacity, which would saturate resources and cause

failures both for the initial and the new subscribers. As a result, the through-

put is constant despite the traffic spike.

Figure 4.15. Performance of the IMS registrations during a 2.5x traffic spike (450-
900s), using the basic feedback control loop.

In a second experiment, we consider again the basic control loop ap-

proach, and we reproduce an overload condition due to physical CPU con-

tention. To this purpose, we pin the virtual CPU of the VMs running the IMS

P-CSCF functions to a separate, reserved physical CPU. Then, we introduce a

new VM running a CPU-bound workload (generated using the cpuburn tool 1 )

and we pin its virtual CPU to the same physical CPU core of the IMS P-CSCF, in

order to cause the contention. The experiment lasts 15 minutes (900s) and it is

organized in three phases: during the first 5 minutes we generate a workload

up to the engineered level; then, we activate the CPU-bound workload in the

second VM to cause physical CPU contention for additional 5 minutes; finally,

in the last 5 minutes of the experiment, we simulate the resolution of the CPU

contention (e.g., as an effect of scaling out or migration of VMs to relieve the

contention), by unpinning the virtual CPU of the CPU-bound VM. Figure 4.16

shows the registration request rate and the throughput of the system during

the experiment with CPU contention.

1The tool can be downloaded at https://patrickmn.com/projects/cpuburn/
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Figure 4.16. Performance of the IMS registrations during CPU contention (300-
600s), using the basic feedback control loop.

Figure 4.17. Virtual CPU utilization during CPU contention (300-600s), using the
basic feedback control loop.

During the contention in the middle of the experiment, the throughput is

affected by a high variability, which is a symptom that the basic control loop is

unable to stabilize the load at the actual capacity of the VM. By looking at the

virtual CPU usage during the experiment, showed in Figure 4.17, we noticed

that as soon as we inject the CPU contention at min 5, the virtual CPU uti-

lization raises to 100% since the hypervisor scheduler preempts physical CPU

time from the virtual CPU, causing involuntary waits of the VM. As a conse-

quence, the basic feedback control loop starts dropping part of incoming re-

quests to reduce the virtual CPU utilization to the reference value of 75%. The

Clearwater VM reduces its load and enters the vicious loop, since the CPU-

bound VM takes advantage of the idle CPU time freed by the overload control
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mechanism. As a result, the virtual CPU utilization gradually drops down to

about 20%. We also observed that the virtual CPU utilization saturates again

to 100% after a period of approximately 10 seconds. This pattern is repeated

periodically until the physical CPU contention is removed at minute 10, caus-

ing the high variability of CPU utilization. We found that this behavior is a

side effect of the overload control mechanism, which sporadically resets the

drop rate to 0 when the virtual CPU utilization becomes much lower than the

reference value, thus admitting a high amount of input traffic and saturating

again the virtual CPU. This high variability has a strong impact on the service

latency, as further discussed in the next subsection.

4.4.5 Enhanced feedback control-based overload control

We deployed the enhanced feedback overload control strategy, and vali-

dated it by reproducing the same scenarios described in the previous subsec-

tion.

In the first experiment, after 450s, we caused a workload surge 2.5 times

higher than the engineered capacity, and we evaluate the throughput of the

IMS. As shown in Figure 4.18, in absence of physical CPU contention, the en-

hanced approach exhibits the same performance of the basic approach. Be-

fore the overload phase, the average registration throughput at steady state

is 620 registrations per second while; during the overload phase the average

throughput is 645 registrations per second with an average virtual CPU uti-

lization of 74.55%. Therefore, our extension to the feedback loop does not

cause any negative effect in the case of traffic spikes.

In the second experiment, we reproduced the scenario with physical CPU

contention, under the same conditions of Section 4.4.4. The time series in

Figure 4.19 shows the throughput of the IMS. At 5 min, we enable the CPU-

bound VM. The enhanced heuristic described in Section 4.4.2 timely detected

a change in the system capacity. The during the contention the average through-



108 CHAPTER 4. MANAGING THE OVERLOAD OF NETWORK FUNCTIONS IN THE CLOUD

Figure 4.18. Performance of the IMS registrations during a 2.5x workload spike
(450-900s), using the enhanced feedback control enabled.

put is reduced by about 32% and the system is able to complete 380 registra-

tion per second, with an average CPU consumption of 68%. Moreover, the

throughput during the contention is more stable than the case with the basic

feedback approach: since the placeholder process avoids the preemption of

CPU time from the hypervisor, since the reference value of CPU utilization is

not anymore a “moving target”, thus avoiding the variations of the heuristic

for capacity estimation.

If CPU contention is not properly managed, the system accepts more re-

quests that it can actually handle with the available CPU. However, many of

the accepted requests are served with a poor quality of service, and many oth-

ers fail in the middle of a session (therefore, the “goodput” of the system is

actually lower than the throughput). A key goal of service providers is to en-

sure an appropriate QoS for users that are admitted into the system, and to

gracefully handle users that cannot be admitted (e.g., to notify an overload

status without starting a session that cannot be assured).

It is worth noting that the throughput only appears to be higher without

our enhanced control. Figure 4.21 compares the IMS throughput under CPU

contention, with the basic and the enhanced feedback control loop. By look-

ing at the throughput of the two approaches, the differences of the throughput

are not significant. However, the variance of the enhanced control approach is
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Figure 4.19. Performance of the IMS registrations during CPU contention (300-
600s), using the enhanced feedback control loop.

Figure 4.20. Virtual CPU utilization during CPU contention (300-600s), using the
enhanced feedback control enabled.

slightly lower, for both the registration workload (Figure 4.21a) and call-setup

workload (Figure 4.21b).

(a) Registration Throughput (b) Call-setup Throughput

Figure 4.21. IMS Registration (4.21a) and IMS Call-setup (4.21b) throughput dur-
ing CPU contention, with the basic and the enhanced feedback control.
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A more accurate capacity estimation has also a strong positive impact on

the quality of service perceived by the IMS users in terms of service latency,

which is a key performance indicator considered by SLAs for telecommunica-

tion systems. In particular, SLAs typically mandate latency requirements for

the average (e.g., the median latency) and the worst cases (e.g., the 90th per-

centile of latency) [22]. In Figure 4.22, we compare the CDFs of the latency

of the successful registrations, respectively under the basic and the enhanced

overload control strategies, during the contention phase of the experiments.

The median latency (i.e., the average case, represented by the 50th-percentile

of the CDF) is up to 118.6ms for the basic approach. In the worst case, repre-

sented by the 90th-percentile, the IMS with the basic approach exhibits laten-

cies up to 369.9ms. These latency values are close, and even exceed the SLA

objectives typically adopted for IMS systems (e.g., 150ms and 250ms respec-

tively for the 50th and 90th percentiles) [5, 121]. Instead, the proposed ap-

proach significantly improves the quality of service, by achieving a service la-

tency up to 28.5ms and 106.2ms respectively for the 50th and 90th percentiles.

Figure 4.22. Cumulative distribution of registration latency, with the basic (red
line) and the enhanced (blue line) feedback control.

4.4.6 Performance evaluation under different contention patterns

In the following, we present another group of experiments, to assess the

performance of the basic and the enhanced feedback loops in response to dif-
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ferent CPU contention patterns. The purpose of this analysis is to identify

which scenarios will benefit the most from the proposed solution. We vary the

intensity of the CPU contention, and the duration of CPU contention periods.

• Intensity. The intensity of contention is determined by the amount

of competing virtual machines that are deployed on the same physical

machine. The intensity of contention can impact on the variability of

CPU utilization by the virtual machine (e.g., the amplitude of swings in

CPU utilization metrics), with side effects on the overload control loops.

Therefore, we performed additional experiments where we vary the in-

tensity of contention between 1x (i.e., 50% available CPU time due to

the CPU contention with one additional VM) and 3x (i.e., 25% available

CPU time due to the CPU contention with three other VMs).

• Duration. The duration of contention is determined by the overlap over

time of CPU-bound activities on several virtual machines. If contention

periods are long (e.g., due to a configuration error with persistent ef-

fects), then the overload control algorithm can eventually converge to

a stable condition; instead, if contention periods are short and inter-

mittent (e.g., due to transient high CPU usage by background tasks in

the VMs), the overload control algorithm may exhibit unstable behav-

ior and poor performance. Therefore, in addition to the previous ex-

periments (where the CPU contention is constant for a relatively long

period), we perform more experiments with short, periodic contention

periods, where the periods last respectively for 5s and 10s.

We applied these conditions both on the basic and on the enhanced feed-

back loop solutions. Each experiment lasts 15 minutes (900s) and it is orga-

nized in three phases: during the first 5 minutes we generate a workload up

to the engineered level; then, for 5 more minutes, we force physical CPU con-

tention (either periodically or constantly, depending on the duration as dis-
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(a) IMS Latency

(b) IMS Throughput

Figure 4.23. IMS Throughput (4.23b) and IMS Latency (4.23a) under different
CPU contention patterns, with the basic and the enhanced feedback control.

cussed above), by activating the CPU-bound workload in the additional VMs

(between one and three VMs, depending on the intensity as discussed above);

finally, in the last 5 minutes of the experiment, we simulate the resolution of
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the CPU contention, by unpinning the virtual CPU of the CPU-bound VMs, as

an effect of scaling out or migration of VMs to relieve the contention.

Figure 4.23 summarizes the performance of the IMS (latency and through-

put) during these additional scenarios, with both the basic (blue boxes) and

the enhanced (red boxes) feedback loop strategies. When the contention pe-

riod is very short (5s) there are no significant differences between the two so-

lutions. This scenario represents the most unfavourable condition for our en-

hanced solution, since the control feedback is based on a sampling window of

5 seconds, and thus the proposed solution is unable to provide any improve-

ment. The percentage of requests violating the latency goal of 250ms is 9.6%

for the basic approach and 9.8% with the other. In both cases, the SLA goal of

90%-percentile is not violated.

Starting with a period of 10s up to constant patterns, the enhanced feed-

back loop shows a significant improvement of latency compared to the basic

feedback loop. In the case of a periodic contention of 10s, only the 0.1% of

the requests experiences latency higher than 250ms, in contrast to the basic

approach in which the 20.1% of the requests were served with a latency higher

than the requirement, thus violating the SLA goal.

With a constant contention pattern at 1x intensity, the average available

CPU capacity is reduced to 50%, since the CPU is contended between 2 VMs.

As discussed in the previous section, there are no significant differences in

the IMS throughput between the two approaches, but the proposed approach

shows significant reduction in latency: by using the enhanced approach the

percentage of requests violating the 90%-percentile requirement decreases

from 17.9% to 0.2%.

This behavior is exacerbated by higher contention intensities (2x, 3x). In

these cases, the basic overload control solution is unable to accurately esti-

mate the available CPU capacity, due to the wider swings in CPU utilization

metrics; therefore, it degenerates by accepting more requests than the actual
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capacity of the IMS system. The result is a significant increase of IMS latency

in the basic feedback loop. With a constant CPU contention at 2x intensity,

the available CPU capacity of the VNF is reduced to 33% on average, since the

CPU time is contended with 2 additional VMs. In this case, more than the 42%

of the requests violates the 90%-percentile latency requirement, in contrast to

the 8.1%, when using the enhanced approach. With CPU contention at 3x in-

tensity, with only 25% of the CPU time is available to the VNF. By using the en-

hanced solution, the number of requests violating the 90%-percentile latency

requirement drops from 48% to 9%, thus achieving the SLA requirement.

It is interesting to note that, under the higher intensities of CPU con-

tention, the average throughput with the basic approach is higher than the

enhanced approach (e.g., 380 req/s versus 270 req/s in the case of 2x inten-

sity). The (apparently) better throughput comes at the cost of a poor quality

of service, since the IMS is processing a volume of requests which is higher

than its capacity. The result is that the IMS takes a long time to serve many of

these requests, thus violating the latency requirement. Instead, the enhanced

solution only lets in the IMS the subset of requests than can be processed

with adequate quality of service: this is a desirable effect of throttling, which

is intended to drop the traffic in excess to the system. This result points out

that the proposed feedback solution is best suited for those applications (such

as the IMS, and NFV in general) where latency and throughput are both im-

portant SLA goals. If the proposed solution is not deployed, the throttling

mechanism degenerates and lets in the IMS too much traffic, thus favoring

throughput at the expense of latency.



Chapter 5
Managing the overload of stateful

multi-tier network functions

Modern multi-tier architectures achieve massive scalability by balancing

the load on thousand stateless application nodes, and leveraging highly dis-

tributed NoSQL datastores as persistence tier, in order to achieve the required

levels of performance and reliability. This Chapter revisits overload problems

that affect these architectures, and it proposes DRACO, a novel autonomic so-

lution that addresses overloads arising in any tier of the system. When over-

load occurs in the inner tiers, overload control must be aware of the depen-

dencies between the application and the storage resources, and, in the case of

unbalanced overload conditions (such as hot-spot resources), it should only

drop application requests that map to resources on overloaded storage nodes.

DRACO is a fine-grained admission control solution, which has been designed

to dynamically discover such resource dependencies and assess the current

capacity of individual nodes, in order to mitigate overloads while achieving

a high resource utilization. DRACO is evaluated on two case studies: a Dis-

tributed Fileserver, which is very sensitive to problems of data consistency and

115
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hot-spots, and a virtualized IP Multimedia Subsystem, which requires carrier-

grade levels of performance and availability.

5.1 The problem of unbalanced overloads in multi-tier

systems

At a higher level, a modern multi-tier architecture is composed by two

kinds of tiers: stateless, such as application ones, and stateful, such as data-

stores. A typical interaction between these elements is showed in Figure 5.1.

Clients interact with the system by issuing service requests towards one of the

nodes of the application tier. These service requests are uniformly distributed

to application nodes according to a load balancing mechanism (e.g., round-

robin selection from a pool of IP addresses, using DNS). Since application

nodes are stateless, they will forward data requests to a datastore cluster in

order to retrieve data needed to process the service request; moreover, they

will issue data requests to update the datastore to reflect the state of the dis-

tributed application. For example, the storage tier can be used to hold data

records for user authentication, billing, tracking long-term sessions, etc., and

even to hold large binary blobs, such as for multimedia and file sharing appli-

cations.

In general, a single service request causes one or more data requests to the

datastore tier, either sequentially or concurrently. Differently from the service

requests, data requests need to be directed to the specific storage nodes that

manage the resources required by the user. The location of resources is typ-

ically identified using consistent hashing [34], which computes a lightweight,

deterministic function to map a service request to storage nodes. With this

approach, the dependencies among application nodes and datastore nodes

are dynamically generated based on the content of service requests from the

clients and, thus, they are not known a-priori.
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Figure 5.1. The typical multi-cluster architecture

An overload condition occurs when a system has insufficient resources to

serve the incoming requests. This condition happens when the current work-

load hits a bottleneck in one of its components, which limits the capacity of

the whole system. In principle, overloads can be avoided with an appropriate

capacity planning, by identifying the potential bottlenecks and characterizing

their performance. Unfortunately, in a multi-tier architecture, a bottleneck

can dynamically shift from a tier to another according to changes in workload

patterns. Moreover, especially in large-scale systems, new (and unexpected)

bottlenecks can arise from specific nodes of a tier due to server heterogeneity,

software bugs, maintenance tasks and misconfigurations. As result, in prac-

tice, preventing overloads in such systems is a challenging task.

A bottleneck in the application tier is the easiest case to manage. Appli-

cation nodes are stateless and independent from each other by design, and

requests can be dispatched to any node without restrictions. These properties

make possible a uniform load balancing among nodes in the tier. Therefore,

an overload occurs when the available capacity of the tier as a whole is not

enough to serve the incoming requests. In this case, the existing solutions,

such as throttling and scaling out the tier, can efficiently mitigate the overload.

Throttling performed in the application tier can reject requests that go beyond
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the available capacity of the tier, while admitted requests can be served at peak

performance; moreover, since nodes are independent from each other, scal-

ing out the tier is relatively easy and, thanks to load balancing, leads to an

increase of the available capacity of the tier as a whole. In a similar way, the

communication between two or more stateless application tiers follows the

same principles.

Overload conditions are more challenging when caused by the interaction

between stateless and stateful tiers. Indeed, when some components of the

application architecture are stateful (e.g., a datastore), a typical problem is

represented by hot-spots: when users access a subset of resources much more

frequently than others (for example, multimedia content or application that

suddenly becomes popular on the web), the load on the stateful nodes that

manage these resources will be higher. When the load on this subset of nodes

exceeds their capacity, the application services also become prone to failures.

A symptom of an hot-spot is a highly skewed distribution of the requests to the

nodes. Figure 5.2 shows an example of skewed request distribution, causing

an overload in a group of storage nodes.
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Figure 5.2. Distribution of the request rate and the CPU utilization across the
data-tier nodes

The effect of the hot-spot is an unbalanced load among the storage nodes.

This problem is difficult to address since it is not simply caused by the con-

figuration of the nodes or by the scale of the tier, but it depends on which

services and resources are requested by the external users. Since the workload



5.1. THE PROBLEM OF UNBALANCED OVERLOADS IN MULTI-TIER SYSTEMS 119

profile is not known a-priori, it is difficult to manage the capacity of the state-

ful tier. Due to the hot-spot problem, every stateful node can be a potential

bottleneck for the entire cluster, even when there is available capacity in the

remaining nodes.

Figure 5.3 shows two external clients that make requests to the application

tier. In order to complete these requests, the two application nodes (i.e., S1

and S4) need to access the same resource in the node M3. Thus, the node M3

has less resources available for subsequent requests, and can become over-

loaded more quickly than the other nodes in the storage tier.

Redistributing the resources and scaling the stateful tiers can alleviate the

problem as a long-term solution, but they are not effective in the short-term.

Since these strategies require time and resources (e.g., scaling-out with new

virtual machines can take up to several minutes [23, 24]), the system can re-

main prone to service failures (e.g., SLA violations) for a significant amount of

time. Therefore, in order to mitigate the unbalanced overload in the short

term, the system needs to reduce the volume of requests for hot-spot re-

sources.

However, the storage tier cannot simply discard the requests, since this

would either violate data consistency (e.g., ACID properties for transactions

that span over several storage nodes); or, it would trigger a complex and waste-

ful roll-back of the transaction. For example, in Figure 5.3 the Client 2 makes

a service request that updates resources in the datastore nodes M3 and M4.

If the node M3 rejects the update while the node M4 completes the update,

the datastore may be left in an inconsistent state. For the above reasons, an

overload control mechanism should prevent the hot-spot by rejecting service

requests at the application tier, before they enter into the multi-tier system.

It is worth noting that even if the load from external users is balanced,

overloads can still affect the stateful nodes. The use of hashing schemes (such

as consistent hashing) ensures a uniform distribution of the resources among
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Figure 5.3. The overload scenario caused by hot-spot resources

the datastore nodes. However, these nodes may have different configurations;

they can be deployed on physical machines with different characteristics; or

they can be shared among several services from different tenants. As a conse-

quence, the nodes of the distributed datastore can exhibit a different capacity.

This means that some nodes can become overloaded more quickly than the

others.

Figure 5.4 shows an example in which the requests to the stateful tier are

balanced across the M1, M2 and M3 nodes. However, if the node M3 is mis-

configured with less capacity than the other nodes, it becomes overloaded,

and the application tier experiences service failures even though the nodes

M1 and M2 still have available capacity.

As discussed for the case of hot-spots, redistributing resources can miti-

gate the problem only on the long-term, since resource migration is an slow

operation. In order to avoid service failures, the load on the storage tier should

not be balanced uniformly across nodes, but an overload control mechanism

should block new requests that would put more load on the saturated storage

nodes. Moreover, to maintain the consistency of the datastore, the overload

control should reject requests at the application tier, before they enter into
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Figure 5.4. The overload scenario caused by unequal node configurations.

the system.

Finally, even when the nodes have the same resources, overloads can still

occur due to variations of the capacity. These variations can be due to overlaps

with background or periodic tasks, or due to resource “hogs” caused by soft-

ware bugs. The effect of this scenario is that a storage node can be temporarily

overloaded even though it has enough resources to handle the requests.

Figure 5.5 shows an example of this problem. In this scenario, all nodes

are configured with the same capacity and the datastore is configured to dis-

tributed resources uniformly across its nodes. The requests from the two

clients are balanced across the nodes. However, part of the requests on behalf

of the Client 2 fail since the node M3 is temporary overloaded by a competing

task that consumes its available capacity.

Since these capacity variations are unexpected, the multi-tier system should

be able to dynamically adapt. However, even in this scenario redistributing the

resources cannot solve the problem in the short term. Therefore, an overload

control should mitigate the unbalanced overload by rejecting user requests

before they reach the overloaded storage node.

In summary, overload control should meet the following requirements in

order to mitigate unbalanced overloads in all of the scenarios discussed above:
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Figure 5.5. The overload scenario caused by a transient reduced capacity

1. The capacity of storage nodes must be dynamically monitored, to detect

hot-spots and transient capacity variations that may be caused by re-

source hogs.

2. The application requests in excess should be rejected before they are pro-

cessed by the application, in order not to perform partial operations on

the storage tier, which would violate data consistency or cause a waste of

resources.

3. In order to use resources efficiently, the overload control solution should

only reject service requests that access to overloaded storage nodes. In-

stead, service requests that do not access these nodes should be allowed in

the system.

5.2 The proposed solution

The proposed solution is an enhanced overload control approach that is

aware of data dependencies in multi-tier systems. The main novel feature of

DRACO is the ability to mitigate unbalanced overload conditions that arise

from a subset of nodes in the storage tier, and at the same time to achieve a
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high utilization of the non-overloaded parts of the storage tier. The driving

idea to achieve this goal is to opportunistically take advantage of knowledge

of the application logic, in order to map service requests to the storage nodes

needed to serve that request; and to only admit into the system a selected

subset of service requests, by rejecting the ones that would attempt to get data

from storage nodes that are already overloaded.

The solution adopts a distributed architecture, in order to scale well with

the size of the tiers. Moreover, the solution is designed to filter traffic at the

application tier; that is, it avoids to filter the traffic at the storage tier, which

would cause inconsistencies between the application and storage tiers, and

among the nodes of the storage tier. In the following, we present the solu-

tion by introducing its general architecture and components (Figure 5.6). In

sections 5.3 and 5.4, we will discuss more in detail the implementation of this

general architecture in the context of two case studies.

The main part of the solution is the Distributed Memory block. This com-

ponent keeps track of the location of resources across storage nodes, and of

the residual capacity of the storage nodes. The residual capacity is an esti-

mate of the number of data requests that a storage node can serve, which is

computed by algorithm (described more in detail later) according to the num-

ber of data requests previously served by storage nodes, and the correspond-

ing utilization of critical resources (in particular, the CPU consumption) when

these data requests were served. This information is periodically collected by

a Capacity Monitoring component distributed on the nodes of the datastore

cluster.

The residual capacity gives indication of how many data requests are in ex-

cess in the storage tier, and it used to identify which service requests should be

rejected at the application tier by the Distributed Admission Control compo-

nent. The admission decision is done by inspecting the service request, and by

checking if there is enough residual capacity in the current application node



124 CHAPTER 5. MANAGING THE OVERLOAD OF STATEFUL MULTI-TIER NETWORK FUNCTIONS

and in all of the storage nodes that are needed to process the service request.

In summary, the components of the DRACO are:

• The Distributed Memory, which stores the information about the loca-

tion of resources and the residual capacity of the storage nodes.

• The Distributed Admission Control, which acts as a tunnel between the

users and the application processes, and which decides if an incoming

service request should be accepted or rejected, according to the infor-

mation produced by a Resource Location Discovery phase aimed to iden-

tify the required datastore resources and their locations.

• The Distributed Capacity Monitoring, which is in charge of collecting

resource consumption metrics from storage nodes. These metrics are

used to dynamically estimate the residual capacity of storage nodes

(e.g., in terms of number of read/write accesses that can be performed

on the storage node).

5.2.1 The Distributed Memory component

The Distributed Memory is an additional datastore that handles the fol-

lowing two kinds of data (Figure 5.6):

• Node Capacity Status: The residual capacity of every storage node, in

terms of number of requests the node can accept in current time win-

dow. This information is periodically updated by the Capacity Monitor-

ing block. At the beginning of a new time window, this block estimates

the residual capacity according to the load of the storage nodes in the

previous windows. Moreover, this information is read by the Admission

Control block in order to check if there is enough available capacity in

the required nodes, and will be also decremented upon the acceptance

of a service request.
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Figure 5.6. Overview of DRACO architecture (red blocks).

• Data Location Cache: The location of the resources accessed by service

requests. This information is added, retrieved and updated during the

Resource Location Discovery phase of the Distributed Admission Con-

trol.

The Distributed Memory stores this information as key-value pairs. The

value for the Node Capacity data is an integer representing the number of re-

quests that can be served by the storage node in the current time window. This

number is associated to a key that represents the node (e.g., using its host-

name or IP address). The Data Location Cache stores a key-value pair for each

service request. The value of an entry is an array of integer values, with one

element for each storage node. These values represent the number of requests

to perform on each storage node in order to process the service request. This

information is associated with a key, which is application-dependent, that
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represents a specific service request.

We leverage existing datastore technology for this part of the overload con-

trol solution. In particular, using a distributed datastore (such as Memcached)

allows the solution to handle data from a large number of nodes in the clus-

ters, and simplifies the collection and the distribution of capacity monitoring

data across the nodes. The Distributed Memory can be deployed either on any

of the existing tiers, or in a dedicated tier, for example by introducing a stand

alone group of VMs running the datastore. To avoid performance bottlenecks

and to achieve scalability, we create a fixed pool of persistent connections be-

tween each node and the Distributed Memory. Thus, the number of connec-

tions to the cache only grows linearly with the amount of nodes in the cluster.

The solution avoids any direct communication between pairs of nodes in the

tiers. Moreover, the capacity of the Distributed Memory can scale linearly with

the number of its nodes, by splitting the information about resources across

several nodes. In section 5.5 we discuss in detail about the capacity planning

and scalability of the Distributed Memory.

The Distributed Memory block stores the location of the resources ac-

cessed by previous service requests. The use of such distributed cache im-

proves the performance of the overload control solution, especially in the case

of hot-spot resources, since the information on hot-spot resources (which are

repeatedly accessed in a short amount of time) is likely already cached by this

block. However, this cache is not always necessary. When the application can

retrieve the location of resources solely from the request message (e.g., by ap-

plying consistent hashing on the fields of a service request), the Admission

Control block can perform the same computation and find the location of the

resources. In this way, caching resource locations is not strictly needed. It

is useful to still have a distributed cache if the application needs to access to

a large number of resources per service request, and when the computation

is expensive. On the contrary, if service requests involve only few resources
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and there are no hot-spot resources (e.g., as in the case of an IMS scenario

discussed in Section 5.4), it can be advantageous to compute the location di-

rectly, avoiding to use the cache.

5.2.2 The Distributed Capacity Monitoring

The Distributed Capacity Monitoring component (Figure 5.7) is deployed

within every storage node, and it is in charge of dynamically estimating the

available capacity of the storage node. This block will collect information

about resource utilization from the OS or from the hypervisor on the storage

node. In particular, we focus the discussion on the case where each moni-

toring block estimates the capacity of a storage nodes with respect to its CPU

utilization (i.e., in terms of percentage of busy CPU cycles per unit of time),

since the CPU is often the resource most prone to become a bottleneck [122]:

for example, in the context of NFV [123], industry-standard COTS CPUs are

adopted to process high volumes of network traffic. In addition to CPU uti-

lization, the proposed approach can be easily generalized to be applied on

memory, network, and disk bandwidth utilization.

Distributed Memory

performed periodically 

by each storage node
Storage Node

Capacity Monitoring

capacity info

update

Datastore node

Figure 5.7. The Capacity Monitoring block

This block periodically estimates the residual capacity, in terms of num-

ber of requests that the node can serve in a time window. The time window is



128 CHAPTER 5. MANAGING THE OVERLOAD OF STATEFUL MULTI-TIER NETWORK FUNCTIONS

meant to be short (e.g., in the order of few seconds), in order to quickly adapt

the solution to variations of the load condition of the storage node. In addition

to the CPU utilization, the Capacity Monitoring block uses the number of data

requests that have been served by the storage node in the last time window,

which is recorded by the Admission Control block when a service request is

accepted. The residual capacity is estimated according to the following equa-

tion:

residual capacity = # data requests

CPUused%
·CPUreference% . (5.1)

In this equation, the first factor estimates the cost of an individual data

request, in terms of CPU cycles, by dividing the number of data requests in

the last time window with the average CPU utilization during the same period.

This approximation is simple but still accurate enough in the context of multi-

tier systems, since the complexity of an individual data request is relatively low

in the case modern datastores. In the case of older types of storage systems

(e.g., based on a traditional SQL DBMS), the cost of an individual data request

would depend on the types of SQL queries performed by the application, and

it should be estimated using a more complex cost model [124]. Since we focus

this work on modern datastores, we leave out of scope the analysis of other

cost models.

The second factor in the equation represents the reference CPU budget,

beyond which the storage node is considered saturated. This value represents

a “factor of safety” for CPU utilization, within which the storage server is de-

signed to perform well (e.g., without performance disruptions), while leaving

a small amount of residual CPU bandwidth to handle occasional load fluctu-

ations. We base our algorithm around a reference value since setting a refer-

ence is a frequent practice among system administrators (e.g., for monitoring

and troubleshooting purposes). For example, when testing the capacity of a
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system (e.g., by imposing a representative workload), the system administra-

tor may want to check that the CPU utilization is below a reference value (e.g.,

90%), and that a good quality of service can be provided under these condi-

tions.

In Eqn. (5.1), these two factors are multiplied to get the total amount of

data requests that can be correctly served by the storage node. The capacity

value is then updated in the distributed cache. The Algorithm4 is executed

periodically within the Capacity Monitoring block deployed in each datastore

node. It updates the available capacity budget for the local storage node in

the Distributed Memory component, according to the request rate and the

corresponding CPU utilization measured during the last period.

Algorithm 4: Capacity Monitoring algorithm

// Periodically on the "node capacity status" block
begin

// Get CPU utilization and the number of storage
requests // that arrived since the previous update
C PUi = get_CPU_utilization(nodei )
#r equest si = get_served_storage_requests(nodei )

// Compute the capacity budget of the storage node
(see eq. (5.1))
C (i ) = compute_capacity_budget(nodei ,C PUi ,#r equest si )
node_capacity_status.update_capacity_budget(nodei , C(i))

5.2.3 The Distributed Admission Control

Figure 5.8 shows the internal organization of the Distributed Admission

Control. A Data Location Discovery step is performed when a service request

is received by the application tier, and before it is processed by the applica-

tion tier. This component produces a list of the resources needed by an ap-



130 CHAPTER 5. MANAGING THE OVERLOAD OF STATEFUL MULTI-TIER NETWORK FUNCTIONS

plication request, and of the storage nodes where these resources are located.

The Admission Logic uses this list in the decision process. The implementa-

tion of this component depends on the specific application, and it is meant to

be tailored by the application programmer. From a general point of view, the

Data Location Discovery parses service requests by looking for information

that uniquely identifies the data needed by service requests, such as the user

identity, the session identifier, the name of the resource(s) involved in the ser-

vice request (such as, the identifier of application records, or the name of mul-

timedia content), the type of operation to be performed on the resource, and

similar information. This information is then used to query the distributed

cache to find the location of resources in the storage tier. The main assump-

tion of the proposed solution is that service requests hold such information,

and that it allows to establish the mapping with storage nodes. This assump-

tion holds in practice for many applications: since application nodes are state-

less, the service request message includes all the information needed by the

application logic to access the datastore. We will further discuss this aspect in

the context of two case studies (sections 5.3 and 5.4).
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Figure 5.8. The Admission Control process

If the service request involves resources that may have already been ac-
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cessed in the past (such as, a request to retrieve a resource for the user), the

Data Location Discovery block checks if there is an entry for the service re-

quest in a distributed cache, and retrieves information on the resources from

there. It is possible that an entry does not exist yet (for example, the service re-

quest comes from a new user); in this case, the Data Location Discovery block

uses the information extracted from the request to find the location of the re-

quired resources in the storage tier, then it updates the cache.

More specifically, in the case of a storage tier with a NoSQL datastore, the

Data Location Discovery block computes the same hash function that is com-

puted by the application to resolve the location of a resource on the datastore,

according to the technique of consistent hashing (as previously discussed in

section 5.1). In other cases, the Data Location Discovery block obtains the lo-

cation of a resource by retrieving resource metadata. In Figure 5.9, we refer to

this computation as the location function, which maps the information from

a request (i.e., the “key” of an entry in the datastore) with the corresponding

resource. The figure provides two examples of location functions in the con-

text of the two case studies that will be presented in sections 5.3 and 5.4. In

the first example, the resource is represented by a file block; the key is rep-

resented by the combination of the filename and of the numeric identifier of

the block; and the output of the function is the storage node with the block.

In the second example, the resource is represented by a record with user in-

formation; the key is represented by a combination of the username and the

SIP URI; and the output is the storage node with the record. In general, the

output of this computation is the set of nodes that need to be accessed by the

service request (e.g., several nodes in the case that a service request involves

several resources, or that the resources are replicated across several nodes for

fault-tolerance).

One approach to implement the Data Location Discovery block is to inte-

grate it in the Admission Control block, and to execute it in a separate process
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Figure 5.9. The location function maps application requests to their location in
the storage tier

that tunnels the traffic from clients to the application tier. In this case, appli-

cation developers have to supply a small module (to be linked with the data lo-

cation discovery block before deployment) that implements the location func-

tion. The Data Location Discovery block calls this module, by passing in in-

put a incoming service request. In the module, the developers provide code

to parse the service request and to extract information for mapping the re-

quest to storage nodes. Then, the information is used to query the distributed

cache, or to compute the location function as discussed above. Since both the

information extraction and the location function are simple operations, their

overhead on service requests is expected to be negligible; this overhead is fur-

ther analyzed in the experimental part of this work. An alternate approach is

to implement these blocks as a library linked to the application, in the case

that developers need to further reduce this overhead and are willing to intro-

duce small modifications to their application. The application would call the

library API when there is an incoming service request, by querying the Dis-

tributed Admission Control component to check if the request should be pro-

cessed; since the application already computes the location function to locate

the resources, it is possible to reuse the results of this computation in the Ad-
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mission Control and Data Location Discovery blocks.

The Algorithm 5 describes the steps performed by the Distributed Admis-

sion Control on every service request, before it is processed by the applica-

tion, in cooperation with the other components. The Admission Control block

first checks if local application nodes has enough available capacity to process

the service request. The local capacity budget Cl ocal is computed similarly to

the Distributed Capacity Monitoring discussed in Section 5.1 for the storage

nodes: The available capacity is periodically estimated according Eqn. 5.1 by

considering the number of service requests accepted in the last period and the

CPU consumption of the local node. Differently from the Capacity Monitoring

in storage tier, this information is not exported to the other nodes through the

Distributed Memory component, since it will be used to prevent the overload

of the local application node.

If the local node has enough available capacity to process the incoming

service request, the Algorithm 5 gets the location array L(1..n) from the Data

Location Discovery process: the i -th component of this array represents the

number of data requests that will be directed to the storage node i . Moreover,

the Admission Control block retrieves from the distributed cache the capacity

array C (1..n): the i -th element of this array represents the number of data re-

quests that the storage node i can accept in the current time window without

saturating its capacity. This node capacity status is updated on the distributed

cache by the Capacity Monitoring block.

The algorithm compares, for each storage node i , the residual capacity of

the node with the number of data requests for the node. When L(i ) > 0, there

is at least one resource on the i -th data node required to complete the current

service request. If there is at least one storage node in which the residual ca-

pacity is not sufficient to process the data requests (i.e., C (i )−L(i ) < 0), the

algorithm decides to reject the service request. Otherwise, it will accept the

service request. In this case, the Algorithm 5 discounts the number of data
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requests towards node i from the residual capacity of the node i , and it will

update the residual capacity of the node in the distributed cache. Moreover,

the algorithm updates the residual capacity for the local application node to

reserve a capacity budget (i.e., 1) for the accepted service request. Since in

many applications, some service requests may require more capacity than the

others, the algorithm can be easily adapted to account a weighed local budget

capacity, by subtracting to Cl ocal a quantity Br eqt y pe > 0, depending on the re-

quest type. For example, in the IMS case study, a SIP Register service request

requires less application tier CPU resources than a SIP Invite request. More-

over, this approach is robust due to a control loop feedback: if the estimated

capacity is lower (or greater) than the actual capacity of the node, the CPU

consumption of the node will decrease (or increase) respectively. When this

happens, in the next control period the estimated capacity will be higher (or

lower) according to the heuristic in eq. (5.1) to compensate the error of the

previous control period.

5.3 The Distributed Fileserver Case Study

We analyze the overload control solution in the context of a distributed

file system service, based on the Memcached datastore. This service includes

three tiers: a frontend tier, based on HAproxy, which performs load balancing

among applications nodes; an application tier, composed of a cluster of web

application nodes, which accepts users’ requests, and translates them to re-

quests towards the data tier; the datastore tier, which is composed of a pool

of Memcached nodes. Figure 5.10 shows how these tiers are related. The web

application has been developed by us in order to reflect the architecture of

a proprietary distributed fileserver from our industrial project partners, and

to reproduce the unbalanced overload scenarios that they experienced in the

context of this application.
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Algorithm 5: Admission control algorithm

// Part 1: Arrival of an incoming service request (to
be accepted or rejected)
Data: app_r equest : the incoming service request
begin

// Check if there is enough capacity on the current
node
Clocal = get_local_capacity_budget()
if Clocal = 0 then

REJECT the request

M = get_metadata(app_r equest )
L = data_location_cache.get_location(M)

foreach storage node i in L do

// Get the current capacity of the i-th node
C (i ) = node_capacity_status.get_capacity_budget(nodei )

// Check if there is enough capacity to perform
// L(i ) accesses to the storage node
if C (i )−L(i ) < 0 then

REJECT the request

// Decrement the capacity budget for all storage
nodes
foreach storage node i in L do

node_capacity_status.update_capacity_budget(nodei , C(i) -
L(i))

// Decrement the local capacity budget
update_local_capacity_budget(Cl ocal - 1)

ACCEPT the request

The user can request 4 types of operations on the system: (1) registration,

(2) upload of a file, (3) download of a file, and (4) de-registration. Clients can

select any instance of the HAproxy by querying a DNS server (bind9 in our
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Figure 5.10. The architecture of the distributed fileserver casestudy

setup). The application cluster is stateless: no session state is stored in the web

server. For example, it is possible to send a register request to the server S1 and

an upload request to the server S2. The stateless web application stores the

data in the nodes of Memcached key-value store cluster. The four operations

that a client can perform are implemented in a C application based on libevent

library to perform asynchronous networking communication with the clients,

and libmemcached to communicate with the datastore tier.

The register is a “set” operation that stores user account information on

a Memcached server (such as the username and the last access time) un-

der a specific key, while the unregister is a “delete” operation that removes

the key-value pair from the server. To perform an upload request, the client

sends a file through an HTTP POST request message that includes the “user-

name”, the “filename” and the file content. Then, the application divides

the file content into chunks of equal size (1MB) and stores the chunks into

data nodes. The application uses the string key "username$filename$1"

to identify the first chunk, and the string "username$filename$n" to iden-

tify the chunk n. Then, sequentially for each chunk, the application com-
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putes the hash on the key MD5("username$filename$1) to identify the loca-

tion of a data node and send the chunk to that node. Finally, the application

uses the key "username$filename" to store the entire file size, which is ob-

tained from the Content-Length HTTP header. The upload function takes

the username, the filename and the content as parameters, and uses a set-

Multi function to store an array of key-value pairs on the servers. To serve

a download request, the application uses the same strategy: it extracts the

“username” and the “filename” from the request message. Then, it gets the

current file length by querying the key "username$filename", and generates

the hash for ("username$filename$1" . . . "username$filename$n"). The

download uses a getMulti function to concurrently retrieve multiple items

from the Memcached server pool.

5.3.1 Integration of the overload control solution

To apply the overload control solution in the Distributed Fileserver, we

deploy two agents within the nodes of the case study:

• A capacity monitoring agent: This component runs within the datas-

tore nodes, and implements the Distributed Capacity Monitoring com-

ponent of the solution (see Section 5.2.2).

• An admission control agent: This component runs within the appli-

cation nodes and implements the Distributed Admission Control Algo-

rithm (see Algorithm 5, Section 5.2.3) with a specialized Resource Loca-

tion Discovery phase).

The Overload Control Distributed Memory can be implemented either by a

new set of standalone nodes, or by the existing tiers. During the evaluation of

the solution, we will use the first option (i.e., the distributed cache is managed

by a standalone pool of Memcached nodes) in order to assess the overhead
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of this component (as further discussed in Section 5.5). As we discussed in

Section 5.2, the Data Location block implementation depends upon the ap-

plication type. For this case study (see Figure 5.11), the location algorithm

parses the HTTP Request message, to extract information such as the request

type, the Username, the Filename and the content-length. Then, with this in-

formation it builds the same group of hash-keys generated by the application

(e.g., user8, user8$file.txt, user8$file.txt$chunk1, . . . ).

Using the request identifier (i.e., username for the register and the unreg-

ister operations, and username$filename for the upload and the download

operations) the agent performs a lookup to retrieve the location of all the re-

sources required to complete the user request. In case of cache miss, the agent

finds these location by applying the hash function (MD5) to all the hash-keys,

and creates a new entry in the Data Location Cache. Once the locations have

been computed, it returns to the Admission Control Algorithm an array with

the number of storage requests that are going to be performed on each stor-

age node (denoted with L in the previous section). In this context, the i − th

position of the array represents the number of file blocks to be accessed on

the storage node i .

5.3.2 Experimental evaluation

The experimental testbed infrastructure consists of eight host machines

SUPERMICRO (high density), equipped with two 8-Core 3.3Ghz Intel XEON

CPUs (32 logic cores in total), 128GB RAM, two 500GB SATA HDD, four 1-Gbps

Intel Ethernet NICs, and a NetApp Network Storage Array equipped with 32TB

of storage space and 4GB of storage SSD cache. The hosts are connected to

three 1-Gbps Ethernet network switches, designed for management, storage

and VM network traffic respectively. The infrastructure is managed by Open-

Stack Mitaka and the hosts are equipped with VMware ESXi 6.0 hypervisor.

In order to reproduce representative unbalanced overload conditions, we
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Figure 5.11. Resource Location Discovery logic for the distributed fileserver case
study

setup a testbed with a large number of nodes. In detail, we scaled both the

application and the datastore tiers up to 50 independent VMs. The application
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Table 5.1. Configuration of the experimental Fileserver testbed

Node Type # of nodes VM configuration

HAProxy (fron-
tend)

10 1 vCPU, 4GB RAM, 20 GB HDD

Fileserver (appli-
cation)

50 1 vCPU, 4 GB RAM, 20 GB HDD

Memcached
(datastore)

50 1 vCPU, 2 GB RAM, 20 GB HDD

JMeter runner
(workload genera-
tor)

10 4 vCPU, 8 GB RAM, 40 GB HDD

JMeter master
(workload con-
troller)

1 4 vCPU, 16 GB RAM, 40 GB HDD,

Total 140 154 vCPU, 436 GB RAM, 2.6 TB HDD

requests are balanced to the application nodes by a front-end tier composed

by 10 VMs running the HAProxy load balancer. The details of the resources

allocated to each VM is given in Table 5.1, in which we indicate the number of

node replicas in each tier, and the resources of the VM (virtual CPU, memory

and storage).

The workload is generated by Apache JMeter through a distributed setup.

To this purpose, we deployed ten additional VMs that submit requests to the

system, and a controller VM to set-up the experiment and collect performance

data, such as application latency, throughput and service failures. Each JMe-

ter VM submits requests on a specific load balancer instance, at frontend tier.

The requests are then balanced in round-robin fashion to the nodes of the

application tier. The JMeter scenario reproduces a set of clients that initially

register on the system, and that then perform a session of uploads and down-

loads of random files. The size of a file is randomly distributed between 8Kb

and 4Mb. With the above configuration, the system can handle up to 700 con-
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current users with no failures, corresponding to an average throughput of 175

uploads/s and 175 downloads/s.

Each experiment lasts 9 minutes and it is divided in three phases, as ex-

emplified in Figure 5.12:

1. Initial ramp-up phase (2 min): In this phase, we gradually introduce

new clients in the system, up to the engineered capacity, and we wait

for a steady state. We then use this condition as starting point for the

evaluation.

2. Hot-spot generation (5 min): In this phase, we vary the workload by in-

troducing groups of users accessing shared file resources, with the pur-

pose of generating an hot-spot in the storage tier.

3. Final ramp-down phase (2 min): In this phase, we gradually reduce the

unbalanced workload until we remove the effects of phase 2.

time

Initial ramp-up to the 

engineered level

Hotspot workload 

up to 10x or 100x 

causing overload

Final ramp-down to 

the engineered 

level

PHASE 1 PHASE 2 PHASE 3

start
Injecting

hotspots

Removing

hotspots end

Figure 5.12. Phases of the evaluation experiments.

To evaluate the performance of the proposed overload control solution,

we designed an experiment plan with unbalanced overload conditions in the

storage tier caused by the client workload (hot-spots). Initially, we apply a

workload with a balanced request mix at a rate within the engineered capac-

ity, in which each user requests its own random files; then, we apply a skewed

workload, in which groups of users repeatedly access a shared set of files, at

a rate 4, 10 and 100 times the engineered capacity. We reproduced the same
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scenarios with and without our solution, by varying the number of hot-spot

clients injected during the phase 2 between 0 (i.e., balanced workload) and

70K (100x skewed workload). We performed in total 8 experiments, lasting

9 min each. We first present the balanced case at the engineered capacity;

then, we discuss the effect of the hot-spot injection, with reference to a repre-

sentative case at 10x the engineered capacity; finally, we compare the overall

throughput across all the experiments, with and without our solution enabled.

The experiment with the workload at the engineered level (1x) confirms

that our solution works as expected under normal conditions (Figure 5.13a),

since the upload throughput of the system is still at the engineered capacity,

and no failures are experienced. Similarly, the throughput of the downloads at

steady state is the same of uploads (Figure 5.13b), with no failures.
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Figure 5.13. Fileserver performance at the engineered capacity (1x)

To reproduce the hotspot scenario, we consider a workload that exceeds

the engineered capacity, by applying workload surges about 10x the engi-
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neered level. To this purpose we add a new group of users accessing shared

files, causing hot-spots on 7 out of 50 datastore nodes. Without the overload

control solution, both the upload (Figure 5.14a) and download (Figure 5.14b)

throughput degrade significantly. Since the two operations are not indepen-

dent, the download throughput is degraded because of both the growth of the

latency and failures of upload operations. At the 10x overload, the hotspot

users (min 4-7) also affect normal users. During the initial peak, the system

tries to process all hot-spot requests, but failing at completing most of them.

This behavior is also visible by looking at the CPU utilization of a hotspot node

during a 10x overload (Figure 5.14c). In the case of no overload control, the

CPU utilization pathologically saturates to 100%; instead, with overload con-

trol, the CPU utilization stabilizes at 85%, which is the target CPU utilization

that we configured in the Admission Control Agent to avoid excessive resource

competition. Finally, after the hot-spot phase, the CPU utilization reduces as

expected in both cases (min 7-9). Our solution ensures that the performance

matches the engineered level both for the upload throughput and download

throughput. By preventing the admission of the requests that are going to

require hot-spot datastore nodes, the overload control solution leaves the sys-

tem with enough available capacity to serve all the other requests, even during

a workload surge of ten times the capacity. We found that the system exhibits

the same behavior under the other levels of skewed workload surges (i.e., from

4x to 100x).

In the Figure 5.15, we summarize all of the results obtained with the File-

server case-study. When the overload mitigation is not deployed (without mit-

igation), the fileserver exhibits a noticeable throughput degradation. In the

worst case (100x overload), the throughput reduces to about one half on av-

erage for uploads, and to about one third on average for downloads. Instead,

with the overload mitigation enabled, the throughput is always close (i.e., it is

higher than 90%) to the engineered throughput, even in the worst case of the
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Figure 5.14. Fileserver performance at 10x engineered capacity

100x overload condition.

5.4 The IP Multimedia Subsystem Case Study

The IP Multimedia Subsystem (IMS) is an architectural framework for de-

livering multimedia services over internet. The current vision of telecom op-

erators, and the focus of research, is to adopt cloud computing technologies

in the telecommunication industry [125]. As a matter of fact, many telco oper-

ators are migrating and upgrading their systems to benefit from the emerging

cloud paradigm. The key enabling technology for the cloud is virtualization:

the telecom operators are thus attempting to virtualize the IMS infrastructure

to optimize costs, performance and management of services and equipments.

In this section, we will analyze the impact of unbalanced overload condi-

tions in the context of the Clearwater project [46]. We deployed the proposed
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Figure 5.15. Summary of the results on the distributed fileserver, with and with-
out the overload control solution

solution on top of the Clearwater IMS. In particular, we consider the commu-

nication between Sprout (S-CSCF) and Memcached nodes since reflects the

view of a modern multi-tier architecture. The IMS users (subscribers) access

its own data (e.g., authentication and billing information), and user requests

are balanced across the datastore tier through consistent hashing. Thus, there

are no hot-spot resources in this case study; instead, unbalanced overloads

can be caused by resource hogs and by configuration issues.

Since Clearwater is an implementation of IMS, its architecture (showed in

Figure 5.16) reflects the traditional IMS architecture, but with notable differ-

ences. In particular, all components are horizontally scalable using simple,

stateless load-balancing; most long-lived state is stored in back-end nodes

using storage technologies such as Cassandra [126]; interfaces between the

various components use connection pooling.

The Clearwater IMS includes a throttling mechanism, which rejects re-

quests in excess to avoid overloading a node [127, 128]. It uses a token bucket

to control the rate of requests that a node is allowed to process. The token re-

placement rate is tuned by measuring the latency for processing requests, and

by comparing, every twenty requests, this measure with a configured latency

target. Clearwater adopts a variation of the algorithm proposed by Welsh and

Culler [31], by using a smoothed mean latency to compare with the latency tar-



146 CHAPTER 5. MANAGING THE OVERLOAD OF STATEFUL MULTI-TIER NETWORK FUNCTIONS

Round robin

node selection

Direct (by hash)

node selection

BONO
SPROUT 

ASTAIRE
MEMCACHED

HOMER

HOMESTEAD

SIP/TCP BIN/TCP

IMS Client 

(SIP)

Round robin (DNS)

node selection

Figure 5.16. Clearwater IMS Components

get. In our analysis, the experiments labeled as “without mitigation” represent

a standard Clearwater installation inclusive of this overload control mecha-

nism, which we compare to our resource-aware overload control solution.

5.4.1 Integration of the overload control solution

To apply the overload control solution, we deploy two agents:

• A capacity monitoring agent: This component runs within the Mem-

cached nodes and implements the Distributed Capacity Monitoring com-

ponent of the solution.

• An admission control agent: This component runs within the SPROUT

nodes and implements both the Distributed Admission Control Algo-

rithm (see Algorithm 5 with a Resource Location Discovery phase spe-

cialized for the IMS. This agent can also run on BONO VMs (i.e., along
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with the P-CSCF function).

The Overload Control Distributed Memory has been implemented by a

new set of standalone nodes (i.e., a standalone pool of Memcached nodes).

This separation allows us to assess the overhead of this component (Section 5.5).

The Resource Location Discovery block implements the procedure de-

scribed in the flowchart of Figure 5.17. It extracts the user identity

(e.g., 50012345@example.com) and, in case of an INVITE message, the iden-

tity of the callee (e.g., 5001244@example.com) from the incoming SIP mes-

sage.

Figure 5.17. Resource Location Discovery logic for the IMS case study

On each user request, the Sprout node accesses the information about the

user session in JSON format, by performing a single query on Memcached,
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using the key reg\\user_identity (e.g., reg\\50012345@example.com).

The Resource Location Discovery phase finds the right Memcached node

by applying the hash function to the key (e.g., MD5(reg\\50012345@example.com)).

The Data Location Cache here is optional, as the hash function can be com-

puted on every request with a small overhead. The Distributed Admission

Control Algorithm takes into account the type of the request and rejects only

the first REGISTER and the first INVITE messages, in order to give priority to

the already established SIP sessions. Since the data location can be deter-

mined solely from the request, we use the Distributed Memoory component

to store and update only the capacity information about the datastore nodes.

After an REGISTER or an INVITE message, the IMS and the user agent gen-

erate a flow of messages that is pre-defined by the SIP protocol. We can rely

on the fact that the SIP protocol generates the same flow of messages (e.g.,

INVITE - 100 Trying - 180 Ringing - 200 OK - ACK). In all these messages,

the server will request the same key and thus the same node. Thus, in order to

accept a first INVITE message, we check to have enough capacity to satisfy all

the subsequent messages. We apply the admission control at the first message

of a SIP session, in order to avoid user-perceived errors in the middle of a SIP

session.

5.4.2 Experimental evaluation

The experimental testbed consists of the same hardware and software of

the previous case study (Section 5.3). In order to reproduce unbalanced over-

load conditions, we defined a large IMS installation, which includes 50 nodes

in the Sprout application tier, 50 nodes in the Memcached storage tier, and 10

nodes in the Bono front-end tier. We configured the number of nodes for the

other components of Clearwater proportionally to the capacity of the Sprout,

Bono, and Memcached nodes, such that to have an average CPU utilization

in each component of 80% and no request failures. Moreover, we deployed a
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Table 5.2. Configuration of the experimental IMS testbed

Node Type (component) # of nodes VM configuration

Bono (P-CSCF) 10 1 vCPU, 4GB RAM, 20 GB HDD
Sprout (S-CSCF + astaire) 50 1 vCPU, 2 GB RAM, 20 GB HDD
Memcached (DB) 50 1 vCPU, 2 GB RAM, 20 GB HDD
Homer (MMtel XDBMS) 10 1 vCPU, 8 GB RAM, 40 GB HDD
Homestead (HSS) 10 4 vCPU, 8 GB RAM, 40 GB HDD,
SIPp (workload gen.) 10 1 vCPU, 2 GB RAM, 20 GB HDD
Total 140 170 vCPU, 420 GB RAM, 2.2 TB

HDD

cluster of 10 SIPp workload generators to generate the IMS workload to the

system. The workload reproduces the typical message flows between sub-

scribers, according to the SIP protocol. These flows are also adopted to test

the Clearwater IMS, and the complete scenario used in our tests is available

online [118]. The details of the resources allocated to each VM are given in

Table 5.2, in which we indicate the number of node replicas (one VM for each

replica) in each tier, and the resources of the VM (vCPU, memory, storage).

Each SIPp instance generates SIP traffic towards a specific P-CSCF in-

stance. The IMS scenario reproduced with the workload generator is the fol-

lowing: every subscriber registers and periodically renews the registration ev-

ery minute, on average. After a successful registration, a subscriber attempts

to set up a call with another subscriber (with 16% of probability) or remains

idle until the next registration renewal (with 84% of probability). The call hold

time is, by default, 60 seconds. Thus, the scenario reproduces 60 Busy Hour

Register Attempts (BHRA) per user and 5 Busy Hour Call Attempts (BHCA) per

user. Then, we vary the number of subscribers to soliciting the system with

different levels of load. As this work has been conducted in the context of

a R&D cooperation with an industrial organization (a major vendor of cloud

and NFV products and services), we tuned the parameters of this workload
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(e.g., the rate of busy-hour call attempts) according to the experience of our

industrial partner with overload conditions [80].

With the above workload configuration, our deployment can handle up to

110k subscribers without exhibiting any failure, corresponding to 1,833 REG-

ISTER/s and 153 INVITE/s on average, with an average CPU consumption

(measured in the application nodes) of 80%. In the following, we refer to this

load level as engineered capacity.

Each experiment lasts 16 minutes and it is divided in three phases, as ex-

emplified in Figure 5.18:

1. Initial ramp-up phase (4 min): In this phase, we gradually introduce

new subscribers in the system, up to the engineered capacity and we

wait for a steady state. We then use this condition as a starting point for

the evaluation.

2. Workload surge (6 min): In this phase, we vary the number of sub-

scribers, e.g. to reproduce a workload surge (up to 10 or 100 times the

engineered capacity) causing the overload of the application tier.

3. Hog injection (6 min): In this phase, we inject in a subset of storage

nodes a busy wait in the Memcached request handling code to simulate

unbalanced overload conditions, such as reduced capacity due to back-

ground tasks (hogs) or an incorrect capacity planning or configuration

of a subset of machines.

time
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Workload surge up 

to 10x or 100x 

causing overload

Reduced capacity 

in the storage tier 

during overload

PHASE 1 PHASE 2 PHASE 3

start

Injecting

Overload
Injecting

Hogs end

Figure 5.18. Phases of the evaluation experiments.
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To evaluate the performance of the overload control solution we designed

an experiment plan to evaluate the following scenarios:

• During a normal workload (at 70% and 100% the engineered capacity),

we emulate reduced capacity in 5 out of 50 storage nodes causing un-

balanced load. We evaluate the ability of the solution to prevent request

failures in the storage tier due to the CPU saturation of the slower Mem-

cached nodes, ensuring the success of user session requiring the faster

storage nodes.

• During a workload surge (at 4, 10 and 100 times the engineered capac-

ity), we emulate reduced capacity in 5 out of 50 storage nodes causing

unbalanced load. We evaluate the ability of the solution to protect ap-

plication nodes from the workload surge by discarding the excess of the

requests and, at the same time, ensuring the engineered throughput de-

spite the load unbalance in the storage tier.

We reproduced these scenarios with and without our solution enabled by

varying the number of subscribers in phase 2 of the experiment according to

the above 5 levels, ranging from 0.7x (i.e., 80k subscribers) to 100x (i.e., 11M

subscribers). Thus, we performed in total 10 experiments, lasting 16 min each.

We first present the details of a representative experiment of the first group

(at 1x load), discussing the effect of the unbalanced load on the storage; then,

we discuss the combined effect of a workload surge, by presenting the detail of

a representative experiment of the second group (at 10x load); then, we com-

pare the overall IMS throughput through all the experiments, with and without

our solution enabled.

Figures 5.19a and 5.19b show the performance of the IMS system for reg-

istration requests, with a workload at the engineered level (i.e., 1x), by gener-

ating 110k subscribers during the first 2 minutes.
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During the steady state of phase 2 (starting at minute 4), after all the sub-

scribers performed an initial registration, the system is able to process 1800

registrations/s and 150 call-setup/s on average. The throughput with the over-

load control solution matches the throughput without the solution: thus, the

solution does not interfere with the system under normal conditions.

When the hog is enabled (at minute 10), the registration throughput de-

creases by 12% (both in the cases with and without mitigation). Our solution

detects and discards these requests before they enter in the system, avoiding

the overload of the storage tier. Instead, without our solution, most of the re-

quests experience failures due to the overloaded storage nodes. This situation

should be avoided since it might cause consistency issues across the storage

tier (i.e., some storage nodes are updated while other storage nodes cannot

be updated). Thus, the overload control solution can prevent these consis-

tency issues. The effect of overload mitigation is more evident in Figure 5.19c,

showing the CPU consumption with and without the overload control enabled

of one of the five Memcached nodes slowed down during the experiment (i.e.,

with a CPU hog injected in the memcached code). The traffic throttling per-

formed in the application tier prevents the saturation of the CPU in the Mem-

cached instances with the CPU hog enabled, and stabilizes the average CPU

utilization at 75%.

In Figures 5.20a and 5.20b, we show the performance of the IMS under

a workload that exceeds the engineered capacity. After the first phase, at

minute 4, we generate the workload surge by about 10 times the engineered

level, by provisioning up to 1.1M subscribers. Without mitigation, the regis-

tration throughput is very low (about 20 registrations per second), while none

of the registered users is able to make a call. With the mitigation enabled, the

throughput is always above the engineered throughput, for both registration

and call-setup operations.

It is worth noting that during the intermediate phase of the experiment
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Figure 5.19. Timeseries IMS at the engeenered capacity

(workload surge), the registration throughput is even higher than the engi-

neered level (close to 2000 regs/s). In this phase, most of the new registra-

tion requests are discarded. However, re-registration requests of the previous

sessions require fewer datastore requests than new registrations (a new reg-

istration requires 6 database accesses, a renewal requires only two accesses).

Since the load on the datastore is lower, our solution can accept some new

users. With the hog injected, our solution quickly discards requests that re-

quire the slower nodes, and it is able to preserve the registration throughput

for the already registered requests (Figure 5.20a).

Even in the last phase of the experiment (during the hog injection) the

throughput is still above the engineered level. The reason is that each ses-

sion makes some requests to several storage nodes, and if any of these storage

nodes is overloaded, the entire session is not admitted. In this way, we are able

to prevent the requests to the overloaded storage nodes, and also to prevent
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some of the requests to the non-overloaded storage nodes. For this reason, it

could be possible that some storage nodes become less loaded, so other ses-

sions (i.e., the ones that do not use the overloaded nodes) are gradually ad-

mitted in place of the rejected ones. The CPU utilization of Memcached node

(shown in Figures 5.20c) is stable at 50% during the phase 2. At beginning

of phase 3, the hog slows down also all the requests currently being served

by the node. This causes the saturation of the CPU for 1 minute, both with

and without the solution. During this time, with our solution, the admission

control does not accept any new request that requires resources on the over-

loaded Memcached nodes. Thus, when this effect ends, part of the requests

are admitted to the system and the CPU utilization becomes stable at 80%.

Vice versa, without our solution, the application nodes keep submitting new

requests to the storage nodes causing the exhaustion of the socket pool, since

all the requests are waiting for a response. This, in turn, causes some applica-

tion nodes to fail.
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Figure 5.20. Timeseries IMS at 10x the engeenered capacity
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In the Figure 5.21 we summarize the performance of the IMS, for all the

considered load levels, both with and without the overload control solution

during the phase 3. The Figures 5.21a and 5.21b provide the average through-

put for the IMS registrations and the IMS call-setups, respectively. The er-

ror bars indicate the standard deviation of the throughput. Without workload

surges (i.e., levels 0.7x-1x) there are no significant differences between the ex-

periments with and without mitigation. However, as discussed before for the

1x case, without mitigation the excess of the requests exhibit failures at the

storage tier, while with mitigation enabled, those requests are discarded by the

admission control, before they enter in the system, thus preventing the over-

load of the storage tier nodes. Under high load conditions (i.e., 4x, 10x, 100x

load levels), the Clearwater IMS components experience software crashes due

to resource exhaustion (especially in the frontend Bono nodes). When we en-

able the overload control solution, the IMS does not experience any crash, and

it can reach a stable throughput above the 90% of the engineered capacity.
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Figure 5.21. Summary of the results with and without the overload control solu-
tion, during unbalanced datastore overload
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5.5 Overhead and scalability of the overload control so-

lution

The solution requires an agent deployed on each VM of the application tier

to perform a fine-grained admission control. This agent has a small memory

footprint (less than 10 MB during the 100x overload case). The request inspec-

tion and admission requires some CPU resources, depending on the volume

of the incoming load; in our experiments, the CPU overhead was always small

(less than 8% during the 100x overload case).

In the overload control solution, we used a distributed memory as a shared

memory among all the nodes, to store the state of the overload control algo-

rithm and the state of the nodes. Since the solution is meant to be deployed

in systems with a big number of nodes in each cluster (with 10k nodes in pro-

duction systems of our industrial partners), we designed this component to

achieve a high scalability and low overhead.

The complexity of the control algorithm does not depend on the number

of application nodes, nor storage nodes. Indeed, the algorithm finds the lo-

cation of the required nodes by extracting the metadata from the user request

message. Then it retrieves the current available capacity of these nodes to

check if there is enough available capacity in all of them. If the request can be

accepted, then it updates the capacity. Therefore, the number of operations

does not increase by scaling up the storage tier.

In detail, for the Clearwater case study, the solution requires to query (get)

the capacity of:

• 4 storage nodes for an initial registration

• 2 storage nodes for a registration renewal

• 1 storage node for a call setup
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In Figure 5.22 we show the average CPU consumption of the control agent

component across all experiments in the IMS case study.
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Figure 5.22. Overhead of the mitigation agent at each load level for the IMS Case
Study

For the Distributed Fileserver case study, the number of accesses depends

on the number of blocks in which the file is divided, but is the same for an up-

load and a download request. According to our test configuration, the average

number of blocks per file is 8. In detail:

• 1 set request to update the Distributed Memory and B requests accord-

ing to the locations of the file blocks in case of a upload request.

• 1 get request to check the Distributed Memory and B requests according

to the locations of the file blocks in case of a download request.

In Figure 5.23 we show the average CPU consumption of the control agent

component during all of the analyzed cases, for the Distributed Fileserver sce-

narios.

To achieve scalability, the Distributed Memory creates a fixed pool of per-

sistent connections per-node; thus, the number of connections to the Dis-

tributed Memory only grows linearly with the amount of nodes in the clus-

ter. We avoid any direct communication between pairs of nodes in the tiers.
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Figure 5.23. Overhead of the mitigation agent at each hotspot scenario for the
Fileserver Case Study

Moreover, the Distributed Memory is based on a separate Memcached datas-

tore. In this way, the Distributed Memory can benefit from the scalability fea-

tures of Memcached. In particular, Memcached can distribute the datastore

of the Distributed Memory across several nodes, thus increasing the capac-

ity and avoiding that the Distributed Memory becomes a performance bot-

tleneck. Moreover, Memcached can transparently manage the distribution of

key-value pairs, and can optimize the memory consumption of the datastore.

5.5.1 Sizing the Distributed Memory

In this Section we derive analytic relationships to describe the expected

load on the Distributed Memory component at different scales. The objective

of this analysis is to obtain a practical formula to quantify the number of nodes

to deploy, in the worst case.

Let it TA , the engineered throughput of a single application node. Let it

NA and NC the number of application and distributed memory nodes, re-

spectively. Let it R the average number of accesses per service request.

Each application node maintains a pool of p connections to each of the

NC storage nodes (this avoid opening TCP connections on-demand, since it

is a costly operation). Therefore, the total number P of connections to each
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node is constant (P = NA ∗p).

the maximum number of requests performed to the Distributed Memory

is limited by the engineered capacity of the application tier. If requests exceed

the capacity of the application node, they are rejected without any further in-

spection. The maximum number of requests inspected by an agent is equal to

the engineered capacity of the application node.

We denote the maximum throughput of a Distributed Memory node at

concurrency level P as T (P )
C . This throughput can be obtained by performing a

simple experiment with a synthetic workload generator (such as the memtier-

benchmark tool), by reproducing a workload with P concurrent connections

and measuring the corresponding throughput (see Section 5.5.2 for the exper-

imental results).

The maximum number of requests that the whole Distributed Memory

can handle is NC ∗T (P )
C . The average number of requests performed by the ap-

plication tier at the engineered level is NA ∗TA ∗R. To ensure a correct sizing

of the system, the number of requests that the Distributed Memory should be

handle needs to be at least equal to the average number of requests performed

by the whole application tier (at the engineered level):

NATAR = NC T (P )
C

Therefore, we can find the minimum number of required Distributed

Memory nodes as:

NC =
⌈

NATAR

T (P )
C

⌉

5.5.2 Example: scaling the solution up to 10K nodes

We performed a simulation in order to estimate the maximum throughput

of a Distributed Memory node at different contention level. We used the open-
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source memtier-benchmark tool to generate a Memcached synthetic work-

load. We configured the workload to be an equal mix of “set” and “get” re-

quests, since the admission control solution performs updates (a “get” fol-

lowed by a “set” on the same key).

Figure 5.24 shows the values of the throughput T (P )
C for increasing values

of the number of concurrent connection P , ranging from 50 to 50k.

Figure 5.24. Performance of a Distributed Memory server at increasing level of
concurrent connections (up to 50K)

In the following we show how to use the model described in Section 5.5.1

and the simulation results, to figure out the minimum number of datastore

nodes required to scale to 10k nodes.

A) Our testbed configuration (up to 50 nodes). The number of application

nodes is NA = 50. The average number of requests to the Distributed Memory

per service request is R = 4. The engineered throughput of a single application

node is TA = 40 req/s at the steady state (the whole throughput is 2,000 req/s).

The connection pool size in each application node is p = 5 connections. The

concurrency level at Memcached server is P = NA p = 250 connections. Each

server is configured with 1 vCPU and 4GB RAM. The performance of a single

Memcached server at this concurrency level is T (250)
C = 203,349 req/s.

Therefore, the minimum number of nodes to deploy is:
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NC =
⌈

NATAR

T (P )
C

⌉
=

⌈
50∗40∗4

203,349

⌉
=

⌈
8,000

203,349

⌉
= 1

B) Scaling the system up to 10k agents. Under the same conditions, if we

scale the application tier up to 10k nodes (NA = 10,000), we obtain a Mem-

cached concurrency level P = NA p = 50,000 connections. Considering that a

single TCP connection requires up to 1 kb of RAM in a Linux system, the mem-

ory overhead will be less than 50 MB per node. However, the performance of a

Memcached server under this level of contention will drop to T (50K )
C = 130,579

req/s. Therefore, the minimum number of Memcached nodes that are re-

quired to handle 10,000 agents will be:

NC =
⌈

NATAR

T (P )
C

⌉
=

⌈
10,000∗40∗4

130,579

⌉
=

⌈
1,600,000

130,579

⌉
= 13

This is a worst-case result. On average a big part of the 50,000 connections

are idle most of the time: the concurrency level is lower than the number of

active connection, since the connection pools can have spare connections.

Figure 5.25 shows the required number of nodes for increasing number

of application nodes (NA) and for different values of R, assuming that each

application nodes has the same engineered throughput as the previous exam-

ples (i.e., TA = 40 req/s). All the configurations below 200 application nodes

can correctly work with a single Memcached node. In the extreme case with

a deploy with 10,000 application nodes, in which a single application request

accesses 20 different storage nodes on average, the solution requires 62 Mem-

cached nodes, assuming the performance of our test machine, reported in Fig-

ure 5.24.
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Figure 5.25. Minimum number of Distributed Memory nodes required by the
solution, for different scale of application servers (NA), by varying the average
number of storage operations per each user request (R)

5.5.3 Further optimizations

There are more strategies to improve the performance of Memcached at

this extreme scale. These strategies can improve the throughput of each Mem-

cached server, and at the same time reduce the level of resource contention.

1. Use of a TCP concentrator proxy, such as Twitter Twemproxy [129].

This middleware is a fast and lightweight proxy for Memcached and

Redis protocols. It was built primarily to reduce the number of con-

nections to the caching servers. It accepts requests coming from mul-

tiple connections and forwards them in pipeline on a smaller number

of connections in order to achieve a lower concurrency and a higher

throughput.

2. Use of the UDP protocol. Memcached can work on both TCP and UDP.

The last is not very used, since it provides lower performance in case of

a small number of concurrent connections. However, at the scale of 10K
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agents, we expect a significant reduction of the system overhead and

better performance than the TCP protocol.

The first strategy allows very a high throughput improvement, and it is

widely used in production systems (e.g., by Twitter Twemproxy [129], Face-

book [130] and Flickr [131]). However, it has the disadvantage that requires

to deploy an additional component (the proxy). On the other side, the second

strategy is simpler, it does not require additional resources and it is built in the

Memcached code, but is not widely tested in production.





Chapter 6
Conclusion

A key challenge for telecom operators and service providers is to efficiently

deploy rich network services, and to optimize network resources to improve

customer’s quality of experience. NFV solutions are expected to support ex-

tremely large scale architectures, providing high performance and high de-

pendability. Overload management is a critical aspect of VNF systems that is

affected by these concerns: if the system attempts to serve more traffic than its

capacity, then each traffic unit will not be served with enough computing re-

sources to meet Quality of Service (QoS) requirements, as specified in Service

Level Agreements (SLAs); high-priority requests may experience failures; user

sessions that were already admitted in the system may be disrupted, causing

avalanche restarts and cascade failures due to retries and traffic handover; and

the software becomes prone to failures due to resource unavailability, time-

outs, and race conditions.

Therefore, to react timely to bottlenecks undermining the performance

and the availability of the network services it is necessary optimizing the per-

formance at very large scale without human intervention in response to both

service configuration and workload variations and detecting the occurrences

165
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of network problems to mitigate their symptoms within few seconds. The the-

sis has contributed to these issues with a threefold proposal.

First, It presented an approach to ease the adoption of anomaly detection

systems in production NFV services. I showed that, by taking into account

the VNF service chain topology, it is possible correlating performance met-

rics from different VNFs to infer the health of the service chain (e.g., service

performance anomalies caused by the occurrence of bottlenecks and com-

ponent failures). I propose an algorithm to combine the correlations across

multiple VNF replicas, to improve the accuracy of the detection. I validated

the approach using an opensource NFV-oriented IP Multimedia Subsystem

(IMS), namely Clearwater. I selected a set of scenarios including overload,

contention on physical resources and crash of the VNF instances, and stud-

ied the impact on the quality of service. I evaluated the detection coverage

(i.e., the percentage of the scenarios where the detection outcome is detected)

and the detection latency (i.e., the time between the occurrence of a failure

and the detection of the anomaly). The experimental results show that the

approach performs well across several conditions when using the Running

Moving Median (RMM) smoothing function and a window of 10 samples with

a sampling period of 2s. With these parameters, an anomalous condition is

detected within half minute on average, with a very high detection coverage

and no false positives. The insensitivity of the algorithm against false posi-

tives, along with the freedom from thresholds that depend on the system (that

would need to be calibrated with training samples, and to be tuned when the

system is upgraded or reconfigured), are two key concerns that I took into ac-

count in the design of the algorithm, in order to make easier its adoption in

production environments.

Second, the thesis proposed a novel framework, NFV-Throttle, for overload

control in NFV services. This framework has been designed to support the ser-

vice models of NFV (in particular, NVFIaaS and VNFaaS), by providing a set of
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overload detection and mitigation agents to be deployed either on VMs or on

the physical hosts. These agents adopt simple and robust rules to control traf-

fic drop and reject, by analyzing CPU utilization and the network traffic vol-

ume. Moreover, the proposed framework addresses not only workload peaks,

but also physical resource contention, which can occur because of oversub-

scription of NFV services on the physical infrastructure, or because of faults

that reduce the available resources. The contention is mitigated by tuning the

priority of services that share the physical infrastructure. Moreover, I analyzed

the problem of overload conditions caused by physical CPU contention within

the guest VMs: this form of overload conditions have a different behavior (e.g.,

in terms of CPU utilization metrics) than the case of traffic spikes; and that the

overload control solutions for traffic spikes can be ineffective, or even coun-

terproductive, in the case of physical CPU contention. Therefore, I proposed

an extention to the existing feedback control-based approach at guest-level

to also address physical CPU contention to support VNFs deployed on IaaS,

where the VNF has little visibility or control of the underlying infrastructure.

This solution introduces a mechanism inside the VNF to occupy the CPU cy-

cles freed by traffic throttling, in order to protect the feedback control loop

from the opportunistic behavior of the hypervisor that may reclaim the CPU

cycles. As done for the anomaly detection, I evaluated the proposed frame-

work in the context of Clearwater. In the experiments, I considered stressful

overload conditions with high workloads (up to 1000% of the nominal capacity

of the system), and with resource hogs competing with the IMS for the physi-

cal resources. In all the scenarios, the proposed framework is able to achieve

a high throughput, comparable to the maximum throughput under normal

conditions, with a negligible memory and CPU overhead. Moreover, the over-

load control framework avoids failures of the NFV software that are triggered

by stress and resource exhaustion. I also analyzed the relative benefits and the

complementarity of VNF-level, host-level, and network-level overload con-
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trol. The host-level control achieves the best performance, since it avoids the

overhead of forwarding the traffic in excess to the VMs; however, the VNF-level

control achieves comparable results, and can be applied in scenarios in which

the physical infrastructure cannot be modified; finally, the network-level con-

trol allows to reject traffic at the boundaries of the NFV network, thus enabling

the network to send notifications to clients and to neighbours about overload

conditions, in order to gradually reduce the traffic in excess.

Last, the thesis analyzed the overload condition problems in modern large-

scale architectures, especially when uniform load balancing among the nodes

is not possible. In fact, during the interaction between stateless and stateful

tiers typical problems are represented by hot-spot resources, unequal node

configurations and unpredictable capacity variations due to background tasks

or hogs. I propose DRACO, a distributed overload control solution for large

multi-tier architectures, that dynamically monitors the capacity of the nodes

to detect hot-spots and capacity variations that may be caused by resource

hogs. Moreover, DRACO is designed to perform a fine-grained admission con-

trol by discovering the resources that will be required by a user request before

its admission in the system. This will prevent unbalanced load conditions to

cause overload in specific nodes when there is still available capacity in the

tiers. The key innovative aspects of DRACO are:

• The solution is suitable to be applied to multi-tier systems, in which the

traffic can only be filtered in the front-end tier (i.e., the application tier).

In these multi-tier systems, an internal tier (in particular, the storage

tier) should not drop any traffic; otherwise, it would cause inconsisten-

cies between the application and storage tier, and among nodes in the

storage tier. The solution has been designed to map the application re-

quests to storage resources and to only drop requests at the application

tier, without loss of consistency.
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• The solution mitigates overload conditions that are unbalanced, that is,

the overload only affects specific nodes in the system. The solution has

been designed to make the most efficient use of the capacity of the stor-

age tier, by admitting user requests that only use non-overloaded stor-

age nodes.

• The solution can be applied without making any change to the storage

tier (thus, it is suitable to be applied even if the system uses “off-the-

shelf” key-value data store technologies).

• The solution uses simple and robust heuristics to estimate the number

of requests that can be accepted by the multi-tier system. The heuristics

are easy to deploy in production since they only require generic metrics

for CPU utilization and network bandwidth utilization.

I evaluated DRACO by means of two case studies: a Distributed Fileserver,

which is very sensitive to problems of data consistency and hot-spots, and

the Clearwater IMS, which require carrier-grade levels of performance and

availability. For both the case studies I performed two groups of experiments:

The first group is with a load up to the capacity and an unbalanced condition

among the nodes of the tiers, in order to evaluate the performance of the con-

trol system in absence of overload. The second group is with a load up to 100

times higher than the engineered capacity of the system, in order to evalu-

ate the performance (and the overhead) of the control system during extreme

overload conditions. Results show that the solution quickly reacts to bottle-

neck changes, and preserves more than the 90% of the throughput during the

most severe overload conditions and prevents service failures due to resource

exhaustion in the nodes.
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