
1

 via Claudio, 21- I-80125 Napoli - [#39] (0)81 768 3813 - [#39] (0)81 768 3816

 UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
 Dottorato di Ricerca in Ingegneria Informatica ed Automatica

ON THE USE OF EVENT LOGS FOR THE

ANALYSIS OF SYSTEM FAILURES

ANTONIO PECCHIA

Tesi di Dottorato di Ricerca

(XXIV Ciclo)

Novembre 2011

Il Tutore Il Coordinatore del Dottorato

 Prof. Stefano Russo Prof. Francesco Garofalo

Dipartimento di Informatica e Sistemistica

Comunità Europea

Fondo Sociale Europeo A. D. MCCXXIV

ON THE USE OF EVENT LOGS FOR THE

ANALYSIS OF SYSTEM FAILURES

By

Antonio Pecchia

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

FEDERICO II UNIVERSITY OF NAPLES

VIA CLAUDIO 21, 80125 – NAPOLI, ITALY

NOVEMBER 2011

c© Copyright by Antonio Pecchia, 2011

“Non ha mai commesso un errore

chi non ha mai tentato qualcosa di nuovo”

“Has never made a mistake

who never tried something new”

Albert Einstein

ii

Table of Contents

Table of Contents iii

List of Tables vi

List of Figures viii

Acknowledgements xi

Introduction 1

1 Characterizing System Failures with Event Logs 7
1.1 The Role of Event Logs . 7
1.2 Basic Notions of Dependability . 9

1.2.1 Fault, Error, Failure . 10
1.2.2 Attributes and Measures . 12
1.2.3 Means . 14

1.3 Event Logs . 15
1.4 Logging Mechanism . 19

1.4.1 Limitations . 22
1.5 Challenges to Log-Based Failure Analysis . 24

2 Log-based Failure Analysis: Methodology and Applications 28
2.1 Methodology Overview . 28

2.1.1 Collection . 30
2.1.2 Filtering . 32
2.1.3 Analysis . 35

2.2 Relevant Applications . 37
2.2.1 Error and Failure Classification . 38
2.2.2 Evaluation and Modeling of Dependability Attributes 40
2.2.3 Diagnosis and Correlation of Failures 42
2.2.4 Failure Prediction . 44

iii

2.2.5 Security Analysis . 45
2.2.6 Further Applications . 47

2.3 Related Research and Thesis Contributions 48

3 Accuracy Evaluation of the Logging Mechanism 57
3.1 Evaluation framework . 57

3.1.1 Software fault injection approach . 61
3.2 Accuracy Metrics . 63
3.3 Case Study 1: Apache Web Server . 66

3.3.1 Coverage and verbosity . 67
3.3.2 Recall and precision . 70

3.4 Case study 2: TAO Open DDS . 71
3.4.1 Coverage and verbosity . 72
3.4.2 Recall and precision . 75

3.5 Case study 3: MySQL DBMS . 76
3.5.1 Coverage and verbosity . 78
3.5.2 Recall and precision . 80

3.6 Discussion . 81

4 Improving Logs for the Analysis of System Failures 83
4.1 Implementation Pitfalls of the Logging Mechanism 83
4.2 Accurate Failure Detection: Rule-Based Logging 89

4.2.1 System Representation . 91
4.2.2 Entity Error Modes . 93
4.2.3 Logging Rules and Event Processing 97

4.3 Failure Data Production and Management: the Logbus Infrastructure 103
4.3.1 Collection of the Log Entries . 105
4.3.2 Logbus Daemon . 107
4.3.3 Processing Tools . 107

4.4 Correlating Failure Data in the Event Log . 109
4.4.1 Problem Statement . 111
4.4.2 Identification of Correlated Entries . 112
4.4.3 Lift-based Grouping Heuristic . 115

5 Experimental Results 118
5.1 Accuracy of the Rule-Based Logging Mechanism 118

5.1.1 Case Study 1: Apache Web Server . 120
5.1.2 Case Study 2: TAO Open DDS . 125
5.1.3 Performance Impact of the Logging Rules 131
5.1.4 Extent of the Improvement . 134

5.2 Logbus-Based Dependability Characterization 135

iv

5.2.1 Air Traffic Control Application . 136
5.2.2 Experimental Setup . 138
5.2.3 Analysis of the Traditional Log . 140
5.2.4 Analysis of the Rule-Based Log . 143

5.3 Correlation-Aware Failure Data Identification 148
5.3.1 Event Log of the Mercury Cluster . 148
5.3.2 Estimation of the Parameters of the Lift-Based Heuristic 152
5.3.3 Analysis of the system log . 156
5.3.4 Analysis of the individual error categories 160
5.3.5 Discussion . 163

Conclusion 165

Bibliography 169

v

List of Tables

1.1 Breakup of the logs generated by a Flight Data Plan Processor application

during the startup phase, by node and software layer. 17

3.1 Fault operators ([1]). 63

3.2 Apache Web Server: breakup of the experiments by fault operator and cov-

erage of the logging mechanism. 68

3.3 Apache Web Server: verbosity of the logging mechanism. 69

3.4 TAO Open DDS: breakup of the experiments by fault operator and coverage

of the logging mechanism. 72

3.5 TAO Open DDS: verbosity of the logging mechanism. 75

3.6 MySQL DBMS: breakup of the experiments by fault operator and coverage

of the logging mechanism. 77

3.7 MySQL DBMS: verbosity of the logging mechanism. 80

4.1 Software platforms and related statistics . 84

5.1 Apache Web Sever: system representation and breakup of the fault injection

(f.i.) experiments. 120

5.2 Apache Web Server: verbosity of the rule-based logging mechanism. 123

5.3 TAO Open DDS: system representation and breakup of the fault injection

(f.i.) experiments. 125

5.4 TAO Open DDS: verbosity of the rule-based logging mechanism. 129

5.5 Time To Failure (TTF) distributions . 139

5.6 Failures breakup by object . 140

5.7 Downtime and uptime estimates: statistics (TL log) 141

vi

5.8 Downtime and uptime estimates: statistics (RB log) 144

5.9 Kolmogorov-Smirnov test . 146

5.10 RB report at the end of the long-running experiment 147

5.11 Error categories and occurrence of the entries. 151

5.12 Sensitivity analysis of the tuple count and the MTBF obtained with T and

T+ with respect to W. 157

5.13 Analysis of the tuple count and the MTBF obtained with T and T+ for each

category of error. 161

vii

List of Figures

1.1 Dependability threats: fault, error, failure (adapted from [2]). 10

1.2 Dependability measures: TTF, TTR, TBF. 12

1.3 Example of entries in the event log. 15

1.4 General reference scenario. 16

1.5 Error logging mechanism: overview. 20

1.6 Coverage of the event log. 21

1.7 Examples of false positives entries in the log. 23

2.1 Log-based failure analysis: methodology overview. 29

2.2 Tuple heuristic: grouping algorithm (A); sensitivity analysis (B). 33

2.3 Applicability of the techniques proposed in the thesis. 55

3.1 Assessing the accuracy of the logging mechanism: the framework. 59

3.2 Software fault injection via the support tool. 62

3.3 Log classification . 65

3.4 Apache Web Server: experimental testbed. 67

3.5 Apache Web Server: coverage by failure type. 68

3.6 Apache Web Server: recall and precision. 70

3.7 TAO Open DDS: experimental testbed. 71

3.8 TAO Open DDS: coverage by failure type. 73

3.9 TAO Open DDS: recall and precision. 76

3.10 MySQL DBMS: experimental testbed. 77

3.11 MySQL DBMS: coverage by failure type . 78

3.12 MySQL DBMS: recall and precision. 80

viii

4.1 Instances of logging patterns. 85

4.2 Logging mechanisms: control structures . 86

4.3 Control flow of the “if" pattern . 87

4.4 Rule-based logging approach: overview . 90

4.5 Representation model based on the high-level architecture of Open DDS. . . . 91

4.6 Representation based on modules and interactions of the Apache Web Server. 92

4.7 General service view. 93

4.8 Instance of rule-based event log. 94

4.9 Rule-based placement of log invocations. 98

4.10 Rule-based logging and error detection . 100

4.11 Logbus infrastructure: conceptual view. 104

4.12 High-level view of the API (sender-side) and Logbus daemon. 106

4.13 Examples of currently available pluggable components. 108

4.14 Examples of entries in the log close in time. 110

4.15 Example of misgrouping of events in the log. 111

4.16 Sensitivity analysis of the lift parameter. 114

4.17 Lift-based grouping heuristic . 116

4.18 Example of grouping of the entries . 117

5.1 Apache Web Server: testbed and Logbus infrastructure. 121

5.2 Apache Web Server: coverage of the logging mechanism (T=Traditional;

R=Rule-Based). 122

5.3 Apache Web Server: recall/precision of the rule-based logging mechanism.

(T=Traditional; R=Rule-Based) . 124

5.4 TAO Open DDS: testbed and Logbus infrastructure. 126

5.5 Open DDS: coverage of the logging mechanisms (Tp(Ts) = Traditional at

PUB(SUB); R=Rule-Based). 128

5.6 TAOOpen DDS: recall/precision of the rule-based logging mechanisms (T=Traditional;

R=Rule-Based). 130

5.7 Apache Web Server: performance impact. 131

5.8 TAO Open DDS: performance impact. 133

5.9 Case study: FPL Processor. 136

ix

5.10 FPL Processor reboot sequence (TL log). 141

5.11 FPL Processor estimated TTF (TL log). 142

5.12 FPL Processor reboot sequence (RB log). 143

5.13 Estimated TTF distributions (RB log). 145

5.14 Generation rate of the error entries: (A) # entries per minute, and (B) #

nodes per minute . 150

5.15 Breakup of the entries by node and category. 152

5.16 Tuple count as a function of the size of the coalescence window. 153

5.17 Lift: sensitivity analysis. 155

5.18 Analysis of the system log: distribution of the interarrival times (A,B) and

length (C,D) of the tuples obtained with T . Number of collisions with respect

to the length of the tuples (E,F). 159

5.19 System reliability obtained with T and T+. 160

5.20 Analysis of the individual error categories: distribution of the interarrival

times (A,B,C,D) and length (E,F,G,H) of the tuples obtained with T . Number

of collisions with respect to the length of the tuples (I,L,M,N). 162

5.21 Reliability of DEV and I/O categories obtained with T and T+. 163

x

Acknowledgements

Ancora una volta mi appresto a scrivere i sospirati ringraziamenti: un nuovo traguardo
é stato oramai raggiunto. E cosí il mio pensiero va indietro di tre anni, quando decisi
di intraprendere questo percorso che finalmente volge al termine. Sono stati anni lunghi,
caratterizzati da momenti difficili, incomprensioni e tensioni ... ma tutto ció diventa un vago
ricordo quando penso alle tante soddisfazioni e alle piccole e grandi sfide vinte giorno per
giorno. É stata dura, ma costanza, tenacia, convinzione e tanta pazienza hanno pagato. E
nell’attesa di capire cosa mi riserveranno i prossimi anni, ringrazio chi ha condiviso con me
questo percorso.

In primo luogo un ringraziamento va a tutta la mia famiglia, in particolare a mia madre
e mio fratello. Mi avete incoraggiato giorno per giorno, sostenuto nei momenti di maggiore
difficoltá, compreso quando non ero di buonumore ... insomma, grazie di tutto. Il vostro
aiuto é stato fondamentale per concludere questo percorso nel migliore dei modi. Un pensiero
particolare va a mio padre e mio nonno, che sicuramente sarebbero stati orgogliosi di vedermi
raggiungere un obiettivo cosí importante.

Ringrazio i prof. Stefano Russo e Domenico Cotroneo. Grazie per avermi accordato la
vostra stima e fiducia, per avermi concesso la possibilitá di far parte di questo progetto.
Grazie per le idee e i consigli che, oltre ad essere stati fondamentali per il lavoro svolto, mi
hanno aiutato a crescere e, a dirla tutta, non solo professionalmente.

Come non ringraziare Roberto. Abbiamo affrontato questo percorso insieme e sei stato
punto di riferimento costante in questi tre anni di duro lavoro. Ci siamo tolti delle belle
soddisfazioni e raggiunto obiettivi importanti. Spero il futuro ti riservi tante altre novitá.
Ancora, Marcello, presenza costante e tutor sul campo. Grazie per l’aiuto e per aver lasciato
passare qualche piccola incomprensione.

Ed ora un grazie a tutti voi ... i “vecchi” Christian, Lelio, Roberto, a cui auguro il meglio
per il futuro professionale e non solo; i “nuovi” Alessandro, Anna, Antonio, Domenico, Flavio
a cui dico di essere pazienti e auguro di raggiungere presto questo mio stesso traguardo.
Ancora, grazie a tutti coloro che, almeno per un pó, hanno condiviso con me questo percorso,
in particolare Antonio, Carlo, Francesca, Gabriella, Generoso, Massimo, Luca e Stefania.

xi

xii

Ancora, ringrazio i prof. Ravi Iyer e Zbigniew Kalbarczyk con cui ho avuto la fortuna
di collaborare durante la mia attivitá di ricerca presso l’Universitá dell’Illinois. Ma, ancor
di piú, un ringraziamento va ad Akash, Cuong, Daniel, Frank, Guz, Prateek, Ray e a tutti
coloro che hanno reso la mia esperienza negli States un momento unico e irripetibile, anche
quando la mia famiglia e miei amici erano lontani miglia e miglia. Per finire, ringrazio
gli amici di sempre, di nuova e vecchia data. Alberto, Aniello, Carlo, Donato, Francesco,
Gianni, negli ultimi tempi sono stato un pó assente ma ci rifaremo.

Nella speranza di non aver dimenticato nessuno (se si, spero non la prendiate sul per-
sonale ... é stata un dimenticanza non voluta) mi appresto a concludere. Buona lettura.

Napoli, Italy Antonio
30 Novembre 2011

Introduction

Computer systems are the basis for daily human activities, and, even more importantly, they

play a key role in many critical domains. For example, ground and air transportation, power

supply, nuclear plants, and medical applications strongly rely on computer systems: failures

affecting these systems can lead to catastrophic consequences. For this reason, depend-

ability, i.e., “the ability of the system to avoid service failures that are more frequent and

more severe than is acceptable” [2], has been among the most relevant industry and research

concerns since early computer systems. Understanding dependability characteristics

of computer systems is crucial to engineers. For example, analyzing failures, identi-

fying architectural bottlenecks, measuring dependability attributes allow designing effective

failure recovery and mitigation means, reducing maintenance costs, and improving the ser-

vices provided by the system. Direct measurement and analysis of natural failures occurring

under real workload conditions is among the most accurate ways to assess dependability

characteristics [3].

Event logs represent a valuable source of data to conduct a failure analysis.

Event logs are files where computing entities (such as, operating system modules and dae-

mons, middleware supports, application components) register events related to regular and

anomalous activities occurred during the system operational phase. For this reason, logs

have been recognized among the few mechanisms for gaining visibility into the behavior of a

system [4]. Events logs have been extensively used in the context of a variety of application

1

2

domains. A non-exhaustive list includes, for example, operating systems [5, 6, 7], con-

trol systems and mobile devices [8, 9], supercomputers [4, 10], and large-scale applications

[11, 12]. It is worth noting that measurement studies based on event logs span over the past

three decades; however, computer systems have deeply changed over this timeframe [13].

For this reason, investigating the suitability of traditional assumptions and techniques un-

derlying log-based failure analysis, in spite of the changes occurred in the computer systems

industry, is of paramount importance.

Relevant industry trends that have been impacting dependability characteristics and

related research are shifting failure causes, and growing system complexity [13]. With respect

to the former trend, it has been recognized that software faults have become the major

responsible for system failures [13, 2, 14], because the hardware failure rate has been

decreasing over the years [15]. Furthermore, current software systems are often developed by

integrating home-made code with a variety of Off-The-Shelf and, more and more frequently,

open-source products [16]. Due to time constraints and technical limitations, it is not

possible to fully validate the correctness of the software solely by means of testing [17, 18]:

software might be released with residual faults that activate during operations. Recent

works have started recognizing that it might be difficult to analyze software failures solely

by looking at logs [6, 19, 20, 21]; however, the ability of current logging mechanisms

to detect the occurrence of software failures is still somewhat unknown.

Growing system complexity is the other industry trend impacting log-based failure anal-

ysis. Early studies adopting logs have been conducted in the context of centralized and

small-scale systems, e.g., [22, 23]. Nowadays, distributed computing is on a strong

growth path [13]. Many notable systems (e.g., web-based applications, networked infras-

tructures, cloud architectures, supercomputers) consist of a large number of entities that

interact to provide a variety of services. As a result, collected logs are often heterogeneous

and distributed across different locations: efficient infrastructures to collect logs play

3

a key role to support log-based failure analysis. Furthermore, errors affecting the

entities of a distributed system might propagate because of the natural interactions with

the other components, and cause redundant notifications in the event log. Recognizing

error propagation phenomena is crucial to the objective of obtaining accurate

dependability characterization [24, 25], because it allows identifying entries in the log

related to the manifestation of the same failure. Traditional analysis techniques, e.g., [4, 10],

are not aware of the correlation among entries in the log, thus they might underestimate

the number of failures and distort measurements.

Thesis Contributions

The level of trust on log-based dependability characterization of complex distributed sys-

tems, is biased by the ability at identifying failure data from event logs collected across

different locations, which is a challenging issue [26]. Several factors compromise the ability

at identifying failure data, such as the accuracy of the logging mechanism to detect occur-

ring errors, the effectiveness of the infrastructure that is adopted to manage failure data,

correlation phenomena among the entries in the log. The focus of the thesis is to eval-

uate the accuracy of current logging mechanisms at reporting failures, and to

develop novel techniques to make event logs effective to infer failure data. Tech-

niques involve production, collection, and correlation of the failure data in the log to support

accurate system dependability characterization. Despite the existence of a large number of

studies proposing dependability measurements and models starting from collected logs, e.g.,

[5, 9, 11, 12, 27, 28, 29, 30, 31], this is the first contribution that investigates and improves

the accuracy of data sources and procedures, which are commonly adopted to determine the

failure-related information used to conduct a dependability study. The thesis provides an

answer to each of the following fundamental research questions:

4

• Can analysts and practitioners trust event logs? Logs have been successfully

used to analyze hardware-induced failures; however, as mentioned, failures caused by

software faults have become predominant over the past decades. In this work it is

assessed the accuracy of current logging mechanisms at reporting software failures:

surprisingly, the analysis reveals that around 67% of failures caused by the activation

of software faults go completely unreported in the event log. Furthermore, around

40% of notifications provided by event logs represent false failure indications. These

limitations make current logs hard to be used to perform meaningful failure analysis.

Unreported failures lead to erroneous insights into the behavior of the system and re-

duce the effectiveness of corrective actions performed by system administrators. False

failure indications must be filtered out; however, filtering can heavily distort analy-

sis results if not supplemented by a very detailed knowledge of the system and its

components.

• Why current logging mechanisms have limitations? The analysis of the source

code of eight successful open-source and industrial projects, accounting for total around

3.5 million lines of code, demonstrates that, the scarce reporting ability observed for

the logs, is caused by a poorly implemented logging mechanism (i.e., the set of in-

structions in the program that allow the detection of errors occurring at runtime).

The implementation of current logging mechanisms lacks a systematic approach, it

is biased by the programming skills of individual developers and programmers, and

crucial decisions about logging are left at coding time: the analysis shows that cur-

rent logging techniques assume a too simplistic error model, with many errors going

undetected during the system operational phase.

• Is it possible to improve the logging mechanism? The implementation of current

logging mechanisms has at least two severe deficiencies (i) the lack of a comprehensive

5

error model for the log (ii) no awareness about the system architecture. A novel logging

mechanism, conceived at design time, is proposed to increase the accuracy of logs at

detecting failures: experiments show that the proposed approach is able to detect and

log around 92% of failures at almost no false indications. Furthermore, the event log

obtained with the proposed approach is around 160 times smaller than the traditional

one. Failures are notified with very few lines: the proposed approach makes it easy

to navigate and to interpret the content of the log, and provides a better support to

tasks, such as diagnosis and maintenance.

• Which are the capabilities an effective logging infrastructure should pro-

vide? The improvement of the failure detection ability is the key to make logs ef-

fective to infer failure data. However, current systems consist of many distributed

components, each equipped with its own logging technologies. An effective logging

infrastructure has to support interoperability among different platforms and masquer-

ade heterogeneity. Furthermore, it must be able to supplement the content of existing

event logs when failures occur. Such capabilities are partially, if not, addressed by

currently available infrastructures, which mainly provide log-centralization capabili-

ties: the thesis proposes a novel logging framework that integrates on-line monitoring

features and processing/analysis tools to manage event logs.

• How to identify correlated entries in the event log? Once logs have been col-

lected across multiple locations, it is crucial to identify correlated error notifications,

i.e., entries in the log that are the manifestation of the same problem: multiple notifi-

cations are caused by error propagation phenomena among the entities composing the

system. The analysis of the log produced by a large-scale supercomputing system (i.e.,

the Mercury cluster at the National Center for Supercomputing Applications (NCSA),

6

University of Illinois at Urbana-Champaign) revealed that neglecting propagation phe-

nomena distorts dependability measurements by more than 11%. An improved filtering

technique, which adopts statistical indicators to identify correlated error notifications

in the log, is proposed to improve the identification of the failure data.

The dissertation is organized as follows. Chapter 1 provides basic notions of dependability,

and clarifies the key role of event logs to analyze dependability characteristics of computer

systems. The nature of the logging mechanism, and the analysis of the challenges to log-

based failure analysis are also discussed.

Chapter 2 describes methodology and applications of log-based failure analysis, and ana-

lyzes related research, which makes it possible to highlight novelty aspects and contributions

of the thesis.

Chapter 3 evaluates the accuracy of current logging mechanisms. It is described the

framework that has been implemented to conduct experiments, and results observed for

three popular real-world systems: Apache Web Server, TAO Open Data Distribution Service,

MySQL DBMS.

Implementation pitfalls of current logging mechanisms are discussed in Chapter 4, which

describes the techniques that have been developed in the thesis to make logs effective to

infer failure data.

Chapter 5 provides the experimental evaluation of the proposed techniques, and discusses

the benefits that can be obtained by means of their adoption in the context of several case

studies. Concluding remarks are proposed at the end of the dissertation.

Ricordati che dietro ogni problema c’é
un’opportunitá.
Remember that behind any problem
there is chance.

Galileo Galilei

Chapter 1

Characterizing System Failures with
Event Logs

Characterizing dependability of operational systems is crucial to engineers. Characterization encom-
passes, for example, failure modes classification, identification of failure-prone components (often in-
dicated as dependability bottlenecks), measurement (e.g., Time-Between-Failures, Time-To-Repair).
Analysis is valuable in a variety of industrial sectors, because it provides strong insights into the
failure behavior of the target system, and allows determining the causes of failures, preventing their
occurrence, and improving the dependability of future system releases. Direct measurement and anal-
ysis of natural failures occurring under real workload conditions is among the most accurate ways
to characterize dependability [3]: for this reason, event logs, which contain information generated by
the system during the operational phase, represent a valuable source of failure data. This chapter
provides basic notions of dependability that will be used in the rest of the dissertation, and clari-
fies the role of event logs to analyze the system failure behavior. Then, it is described the logging
mechanism, which aims to detect and notify, i.e., in terms of entries in the event log, anomalous
events occurring during operations. The nature of the logging mechanism, along with the trends that
have been impacting computer industry over the past decades, allow achieving insights into issues
and threats affecting log-based failure analysis that motivate the study.

1.1 The Role of Event Logs

Computer systems are the basis of daily human activities, and, even more importantly, they

play a key role in a variety of business and safety critical domains, such as telecommunica-

tion systems, transportation, power supply, nuclear plants, and medical applications. For

example, the crash of several AT&T switches occurred on January 15, 1990, caused the loss

7

Chapter 1. Characterizing System Failures with Event Logs 8

of phone service for 60 thousands users in the United States. The failure of the software of

a medical device, which made therapeutic radiations to overcome the recommended dosage,

caused the death of eight patients. For this reason, dependability, i.e., “the ability of the

system to avoid service failures that are more frequent and more severe than is acceptable”

[2], has been among the most relevant industry concerns and research topics since early

computer systems.

Analyzing the nature of the failures occurred in the filed is crucial to engineers. Failure

analysis techniques are widely used in the context of several industrial sectors because they

allow determining the causes of failures, preventing their future occurrence, and improving

the dependability of the system in hands. Direct measurement and analysis of natural

failures occurring under real workload conditions is among the most accurate ways to assess

dependability characteristics [3]. For this reason, failure analysis is often conducted by

means of event logs, i.e., the set of files where computing entities (e.g., operating system

modules and daemons, middleware supports, application components) register events related

to regular and anomalous activities occurred during operations.

Event logs represent attractive sources of failure data. As a matter of fact,

logs have been recognized among the few mechanisms for gaining visibility into

the behavior of a system [4]. The importance of log-based failure analysis is well recog-

nized in the context of a variety of application domains. A non-exhaustive list includes, for

example, operating systems [5, 6, 7], control systems and mobile devices [8, 9], supercom-

puters [4, 10], and large-scale applications [11, 12]. These studies allowed achieving valuable

insights into the failure behavior of real production systems and improving their subsequent

Chapter 1. Characterizing System Failures with Event Logs 9

releases. In the following, are discussed basic notions of dependability and event logs. The

nature of the logging mechanism, along with the trends that have been impacting computer

industry over the past decades, allow achieving insights into the threats affecting log-based

failure analysis and motivate the study.

1.2 Basic Notions of Dependability

Dependability has been considered a fundamental attribute since early computer systems.

First efforts in the area of dependable computing date back to the 1960s, e.g., [32, 33].

Later on in 1971, the establishment of a technical conference on fault-tolerant computing,

i.e., the First International Symposium on Fault-Tolerant Computing (FTCS), represented

a milestone in the area of dependability [13]: this conference established a discussion forum

about novel practical and theoretical research contributions in the area of dependable com-

puting. The efforts of the joint committee on “Fundamental Concepts and Terminology”

founded in 1980, and composed by the TC on Fault-Tolerant Computing of the IEEE CS

and the IFIP WG 10.4 “Dependable Computing and Fault Tolerance”, have been crucial for

the formalization of dependability-related concepts.

Laprie reviewed the outcomes of such efforts in [34], and defined dependability as

the system “ability to deliver service that can justifiably be trusted”. A later work from

the same research community [2] defines dependability as the “the ability of the system

to avoid service failures that are more frequent and more severe than is acceptable”. The

latter is an alternative definition of dependability, which provides an operational criterion

for deciding if a system is dependable. Dependability threats, attributes, and means [2] are

Chapter 1. Characterizing System Failures with Event Logs 10

Figure 1.1: Dependability threats: fault, error, failure (adapted from [2]).

briefly described in the following1. The focus is on the concepts that are closely related to

the contents of the dissertation.

1.2.1 Fault, Error, Failure

The definition of dependability focuses on the concept of service, i.e., the behavior of the

system as perceived by its users. The portion of the boundary of the system where the

service is delivered is called service interface, i.e., Figure 1.1(A). Dependability threats

encompass causes and manifestations of incorrect services delivered at the interface.

A service failure, or simply, failure, occurs when the delivered service deviates from

the correct service. For example, a service might fail because it does not comply with the

functional specification. A failure is thus a transition from correct to incorrect service,

as shown in Figure 1.1(B). The period of delivery of incorrect service is called outage;

the transition from incorrect to correct service is the service restoration. The deviation
1The thesis follows the dependability-related notions proposed by the IFIP WG 10.4 “Dependable Com-

puting and Fault Tolerance”.

Chapter 1. Characterizing System Failures with Event Logs 11

from correct service assumes different forms, which are called failure modes. For example,

commonly observed failure modes are content and timing failures. The former encompasses

those scenarios where the content of the information delivered at the interface deviates from

implementing the system function; in the latter case the arrival time or the duration of the

information delivered at the interface deviates from implementing the system function. An

error is the part of the system state that might lead to its subsequent failure. A fault is

the adjudged or hypothesized cause of an error. Faults belong to three major categories:

• development faults including all internal faults originated during development;

• physical faults, i.e., all fault classes that affect hardware;

• interaction faults, which represent all external faults.

Faults, errors, and failures are related in the form of a chain that is partially shown in

Figure 1.1(A). A fault is active when it produces an error; dormant, otherwise. An error

is thus caused either by an internal fault that is activated or an external fault. A failure

occurs if the error propagates to the service interface. It is worth noting that many errors

do not reach the service interface: such errors are called latent. Let consider the so called

programming bugs, i.e., faulty instructions in a program (e.g., common mistakes, such as

missing variable initializations, or poorly-written logical clauses). A programming bug is a

dormant fault in the software. The fault is activated when an appropriate input pattern is

fed to the component where the faulty instruction resides, and an error is generated. The

error might propagate within the system and affect the delivered service: in this case a

failure has occurred.

Chapter 1. Characterizing System Failures with Event Logs 12

Figure 1.2: Dependability measures: TTF, TTR, TBF.

1.2.2 Attributes and Measures

As developed over the years, dependability has been an integrating concept encompassing

several attributes [2]. Attributes and measures that are closer to the content of the disser-

tation are briefly introduced in the following.

Reliability. Reliability measures the probability of correct service over a specific time

interval. According to [35], reliability is the conditional probability of delivering a correct

service in the interval [0, t], given that the service was in a correct status at the reference

time 0.

R(0, t) = P (no failures in [0, t] | the service is correct at 0) (1.1)

If F (t) denotes the cumulative distribution function of the Time To Failure (TTF) (each

TTF sample is the time interval between a service restoration and the subsequent failure,

as shown in Figure 1.2), reliability can be also written as

R(t) = 1− F (t) (1.2)

Chapter 1. Characterizing System Failures with Event Logs 13

Reliability has been among the only attributes of interest in case of early computer systems.

The failure rate, i.e., the frequency a system fails, and the Mean Time To Failure (MTTF)

are commonly used indicators of the system reliability [36, 37, 38].

Maintainability. Maintainability is the ability of the system to be easily repaired after the

occurrence of a failure. For this reason, a commonly adopted way to assess maintainability

is observing the Time To Recover (TTR), i.e., the time between the occurrence of a failure

and the subsequent service restoration, as reported in Figure 1.2. In this case, the Mean

Time To Recover (MTTR) is adopted as a single maintainability indicator.

Availability. Availability is the readiness for correct service, and it became relevant when

the popularity of time-sharing systems increased. A system is available at the time t, if it

provides a correct service at t. Let A(t) be a function defined as follows:

A(t) =
{

1 if the service is correct at t
0 otherwise (1.3)

Availability is the fraction of time where the system provides a correct service. As shown

in Figure 1.2, the time the system is able to provide a correct service depends on both the

number of failures and the TTR. In other words, availability can be computed as:

A =
MTTF

MTTR+MTTF
=
MTTF

MTBF
(1.4)

where the Mean Time Between Failures (MTBF, with MTBF=MTTR+MTTF) is the mean

time between two subsequent failures. For example, the shorter the time to repair the

system, the higher the service availability.

Chapter 1. Characterizing System Failures with Event Logs 14

1.2.3 Means

The need to ensure dependability properties during system operations has lead to the design

of a variety of dependability means over the last decades. Authors in [2] group such means

into four general categories:

• Fault prevention aims to prevent the occurrence or the introduction of faults in the

system. Prevention is enforced at development time and applies both to software, e.g.,

by forcing developers to make use of modularization, information-hiding techniques,

patterns, strongly-typed programming languages, and hardware, e.g., by means of

precise design rules.

• Fault tolerance embraces those means aiming to avoid service failures in case of faults

activated during operations. Fault tolerance is commonly achieved by introducing

temporal and/or spatial redundancy in the system. Temporal redundancy attempts

to re-execute the operation that caused the failure after the system has been restored

into an error-free state; spatial redundancy adopts multiple replicas of the same system

function. Spatial redundancy relies on the assumption that replicas are not affected by

the same faults: this is achieved via design diversity [39]. Furthermore, both temporal

and spatial redundancy adopt error detection and recovery approaches: once the error

is detected, a recovery action is initiated.

• Fault removal aims to reduce the number and severity (i.e., the measure of the

impact of the fault activation on the overall system) of faults. Fault removal is usually

conducted at verification and validation time via testing and fault-injection techniques

Chapter 1. Characterizing System Failures with Event Logs 15

1 [May−12−2011 0 9 : 3 0 : 1 1] Get manager reference from local daemon
2 [May−12−2011 0 9 : 3 0 : 1 1] Setup datastores
3 [May−12−2011 0 9 : 3 0 : 1 1] Supervision property change event notifier
4 [May−12−2011 0 9 : 3 0 : 1 2] Event notifier is running
5 ... omissis ...
6 [May−12−2011 0 9 : 3 0 : 2 2] Exception raised when creating managed process ’ P1 ’
7 [May−12−2011 0 9 : 3 0 : 2 2] Error : managed process ’ P1 ’ aborted
8 ... omissis ...
9 [May−12−2011 0 9 : 3 0 : 3 2] Created DS Sys_Converter

10 [May−12−2011 0 9 : 3 0 : 3 2] Created SystemAccessor

Figure 1.3: Example of entries in the event log.

[40]. During the operational phase, fault removal encompasses corrective and perfective

maintenance.

• Fault Forecasting allows estimating the current number, the future incidence, and

consequences of faults: this is done by evaluating the system behavior in face of

activated faults. Evaluation can be either qualitative, e.g., classification and analysis

of the failure modes, or quantitative, e.g., assessing the extent system attributes are

satisfied in terms of probabilities. Evaluation can be performed at different phases of

the life cycle of the system, such as design, prototype, operational [3].

1.3 Event Logs

Event logs, or simply logs, are system-generated files that report sequences of

events occurred during operations, in the form of text-entries. Figure 1.3 reports

example entries in an event log: entries usually provide a timestamp, i.e., the time the event

has been logged, and a text message providing contextual information about the event, such

as nature and type. An entry might encompass further information, e.g., the pid of the

process and the IP address of the node generating the entry, or the severity of the event.

Chapter 1. Characterizing System Failures with Event Logs 16

Figure 1.4: General reference scenario.

Entries are logged via a programming interface, according to developers’ needs. Well-known

examples of event logging subsystems are UNIX syslog [41] and Microsoft’s event logger

[42]. Entries range from regular to error events occurred during the system operational

phase [22]. Regular events report non-error conditions, e.g., disk mounts, network-status

reports, incoming user connections, ordinary system elaborations; error events report about

hardware or software problems, and unsuccessful operations (e.g., Figure 1.3, lines 6-7).

Log entries are produced by a variety of computing entities, e.g., operating

system modules and daemons, middleware supports, application components. In a more

general scenario, depicted in Figure 1.4, different instances of these entities are distributed

across the nodes composing a system and represent the layers of the software stack run by

the nodes. Logs collected across multiple locations, i.e., in terms of nodes and architectural

layers, are extremely valuable to engineers: as mentioned, they have been recognized among

Chapter 1. Characterizing System Failures with Event Logs 17

Table 1.1: Breakup of the logs generated by a Flight Data Plan Processor application during
the startup phase, by node and software layer.

node node 1 node 2 node 3 total
logs # entris # logs # entries # logs # entries # logs # entries

SW layer
application 8 1,359 6 669 7 1,078 21 3,106
middleware 4 945 4 304 2 67 10 1,316

OS 1 35 1 15 1 22 3 72
total 13 2,339 11 988 10 1,167 34 4,494

the few mechanisms for gaining visibility into the behavior of the system [4] and allow ini-

tiating proper recovery actions in case of failures occurred during operations. Nevertheless,

logs are a quite under-utilized resource, because navigating the large amount of collected

data to infer the knowledge about the system behavior is a challenging task [30, 26].

For the sake of clarity, it is discussed a real example concerning the logs produced

by a prototype Air Traffic Control application, i.e., a Flight Data PLan (FPL) Processor,

developed in the context of an academic-industrial collaboration2. Application components

of the FPL processor run atop a middleware layer consisting of CARDAMOM3 (a CORBA-

based platform designed to support the development of software architectures for safety

and mission critical systems) and an OMG-compliant Data Distribution Service4 (DDS)

implementation. Table 1.1 provides the breakup of all the logs produced by an instance of

the FPL processor (running on three nodes) by node and software layer: it is worth noting

that the logs referenced by Table 1.1 are produced during the sole startup phase of the FPL

processor. Total around 4,500 entries (reported in the last row of Table 1.1) are produced by
2A world leading company, SELEX-SI, FINMECCANICA Group, and academic partners have been

involved in the COSMIC Project, a three-year industrial research project aiming to create a public-private
laboratory for the development of a open source middleware platform for mission critical systems.

3http://forge.objectweb.org/projects/cardamom
4OMG specification for the Data Distribution Service.

Chapter 1. Characterizing System Failures with Event Logs 18

the FPL processor during the startup. The entries are stored into 34 distinct files produced

at different layers and distributed across several machines. Furthermore, the system adopts

a variety of logging technologies: (i) entries produced by the OS are generated via the UNIX

syslog interface and are stored in the /var/logs/messages system file, (ii) middleware logs

are collected by means of a specific CARDAMOM service called Trace Logging, finally,

(iii) application logs are collected both via the Trace service and regular text files. If the

startup of the FPL processor failed, understanding the causes of the failure would require

administrators to perform hard and time-consuming tasks to retrieve the information from

the node locations and to investigate the content of these heterogeneous data sources.

Only a fraction of the entries in the log is useful to conduct the failure analysis. As

discussed, entries might report about regular system operations indicating non error events:

these entries, which represent most of the content of the log, can be filtered out and excluded

from the failure analysis [22]. For example, the failure analysis of a supercomputing system,

which will be discussed later in the dissertation, focused on 377,197 out of around 200 million

entries contained in the initial event log, i.e., only 0.18% of the entire dataset. Filtering

non-error events is essentially a laborious task, but it does not represent an actual threat

to log-based failure analysis. Several techniques can be used to discriminate not useful

from useful entries in the log, accurately. For example, a preliminary manual inspection

of the log is valuable to identify the severity of the entries and error-specific keywords; de-

parameterization procedures [30, 43], which aim to remove variable fields from the entries

in the log, e.g., usernames, IP and memory addresses, folders, reduce the number of distinct

messages to scrutinize and allow a better interpretation of the messages in the log.

Chapter 1. Characterizing System Failures with Event Logs 19

The level of trust on log-based failure analysis is affected by the ability at inferring

meaningful failure data from the log. For example, as discussed in Section 1.2.2, widely-

used dependability indicators, such as availability and reliability, are inherently related to

the notion of failure. The accurate identification of the subset of entries in the log

representing the failure data is extremely challenging. To this objective, the logging

mechanism, which aims to detect anomalous events occurring during operations, plays a key

role: if a failure goes undetected by the logging mechanism (thus, unreported in the event

log), analysis results can be completely distorted in spite of the accuracy of the filtering

techniques that have been adopted to process the data before the analysis.

1.4 Logging Mechanism

The logging mechanism is the set of detectors, either hardware or software, that allows to

reveal the occurrence of error events during the system operational phase. Figure 1.5 shows

the causal relationship between faults and failures and clarifies the role of the detectors com-

posing the logging mechanism. Once a fault is activated by a trigger (i.e., a specific sequence

of inputs or condition of the execution environment that activates a fault) it generates one

or more errors. Errors propagate through the various layers and/or nodes of the system,

and might possibly fire the detectors. As a result, detectors will report the occurrence of the

event in the form of entries in the log (Figure 1.5, event log). As discussed in Section 1.2.1,

an error that reaches the service interface, causing a deviation from the correct service, is

called failure. In order to be suitable to perform a failure analysis, the logging mech-

anism should encompass only the errors that cause failures, i.e., Figure 1.5 (d).

Chapter 1. Characterizing System Failures with Event Logs 20

Figure 1.5: Error logging mechanism: overview.

However, many situations can prevent the accurate reporting of the failures, thus making

hard, if not impossible, to infer the information about their occurrence from the event log.

For example, failures can go unreported in the log either because (i) no detector is able to

catch the failure, i.e., Figure 1.5 (b), or (ii) even if the failure is detected, i.e., Figure 1.5

(a), there is no enough time to write an entry in the event log (e.g., in C/C++ programs,

bad pointer manipulations can originate a crash of the OS process before any useful infor-

mation is logged). Furthermore, event logs might report errors that did not cause a failure,

i.e., Figure 1.5 (c): some error notifications that can be commonly observed in the log

(e.g., unreleased files, pending sockets, null pointers) do not necessarily represent a failure

indication, and have to be discarded before the failure analysis is performed: this task, if

not supplemented by a detailed knowledge of the system, can distort analysis results.

Chapter 1. Characterizing System Failures with Event Logs 21

Figure 1.6: Coverage of the event log.

Figure 1.6 provides a pictorial representation of the described scenarios, by highlight-

ing the role of the event log at reporting failures. The ellipses represent the set of faults,

the subset of activated faults, i.e., errors, and the subset of errors causing failures, respec-

tively; the event log, represented by the ellipse with the dotted border, partially overlaps

failures. Through the rest of the dissertation, unreported failures will denote failures that

go undetected and/or unlogged by the logging mechanism, and thus escape the event log

(as indicated in Figure 1.6). These failures are false negatives, i.e., a problem has occurred

in the system but no trace can be found in the log; the failure is reported (or logged), oth-

erwise. Similarly, reported errors (as indicated in Figure 1.6) will denote improper states

of the system that do not cause a failure, but fire the logging mechanism by causing one

or more entries to be written in the log; errors are named unreported, otherwise. Reported

errors represent false positives to the failure analysis: even if they notify anomalous events

in the log, no actual failure has occurred in the system.

Chapter 1. Characterizing System Failures with Event Logs 22

1.4.1 Limitations

The implementation of the logging mechanism is currently a low-priority task that is left to

the late stages of the system life cycle (e.g., coding). Key decisions about log production

and management are taken by developers and programmers, each of them with his/her own

programming skills, and deciding what and where to log with no systematic approach: as

a result, entries in the log are often subjective [7] and unstructured [30]. In general, the

logging mechanism is not envisioned at system design time.

The nature of the logging mechanism has serious limitations that compromise the ef-

fective use of event logs for the failure analysis. Several works, such as [4, 7, 6], recognize

that logs might lack any useful information to perform the analysis: as discussed,

failures can go undetected by the logging mechanism. Unreported failures decrease the level

of trust on log-based failure analysis, because they cause the overestimation of dependabil-

ity attributes, e.g., availability, reduce the effectiveness of corrective actions performed by

administrators, and lead to wrong insights into the behavior of the system.

As mentioned, the logging mechanism might detect errors that do not cause

failures. Event logs are often conceived for debugging purposes rather than for failure

analysis. For this reason, they contain many error indications on unreleased files or sockets,

null pointers, and so on: these errors do not necessarily indicate that a failure has occurred.

Figure 1.7 shows some example entries representing false failure indications. Examples have

been extracted from the event log of Apache Web Server and TAO Open DDS, which will

be discussed later in the dissertation. In all the cases the entries seem to report critical

Chapter 1. Characterizing System Failures with Event Logs 23

1 - Example #1: Apache Web Server (ver 1.3.41) -
2
3 [Tue May 26 00 : 05 : 53 2009] [error] (9) Bad file descriptor : fcntl (420 , F_SETFD ,
4 FD_CLOEXEC) failed
5 [Tue May 26 00 : 05 : 53 2009] [warn] (9) Bad file descriptor : exec () may not be safe
6
7 - Example #2: Apache Web Server (ver 1.3.41) -
8
9 [Tue May 26 01 : 13 : 47 2009] [error] [client IP−ADDR] request failed : erroneous

10 characters after protocol string : ∗
11 [Tue May 26 01 : 13 : 49 2009] [error] [client IP−ADDR] request failed : erroneous
12 characters after protocol string : ∗
13 [Tue May 26 01 : 13 : 51 2009] [error] [client IP−ADDR] request failed : erroneous
14 characters after protocol string : ∗
15
16 - Example #3: TAO Open DDS (ver 0.9) -
17
18 (28570 |3077016496) ERROR Cached_Allocator_With_Overflow : : free b5d13f1c more deletes
19 1 than allocs 0 to the heap
20 (28570 |3077016496) ERROR Cached_Allocator_With_Overflow : : free 8166224 more deletes
21 1 than allocs 0 to the heap
22 (28570 |3077016496) ERROR Cached_Allocator_With_Overflow : : free b5d0beb4 more deletes
23 1 than allocs 0 to the heap

Figure 1.7: Examples of false positives entries in the log.

conditions preventing the correct execution of the program. Errors involve OS and applica-

tion data structures, e.g., files and buffers (Example #1 and #3, respectively), and client

requests (Example #2). In particular, in the second example taken from Apache, the mes-

sage in the log explicitly states that the HTTP request forwarded by the client has failed.

Nevertheless, it has been observed that, in all the cases, the systems were able to provide

correct service despite the notification in the log: in this cases, the information provided by

the event log leads to erroneous conclusions.

The detection ability of the logging mechanism is of paramount importance to analysts,

because, in most of cases, the event log is the only available source of data to achieve insights

into the failure behavior of the system: misleading information in the log, i.e., in terms of

missing or false failure notifications, can heavily distort the analysis and related results.

Chapter 1. Characterizing System Failures with Event Logs 24

False failure notifications must be filtered out before the analysis; however, this task is hard

when no further information, such as the ground truth (i.e., the knowledge of the actual

failure behavior of the system), is available to supplement the content of existing logs.

The logging mechanism might report a single failure with multiple notifica-

tions in the log. The nature of the workload and error propagation phenomena, due to

natural interactions among system components, cause one or more error detectors to be

fired many times and, in most of cases, over short time intervals during the operational

phase [4, 22]. For example, the analysis of a supercomputing system revealed that, an in-

put/output failure caused by a damaged disk sector affecting a storage node, lead to 142

“unknown partition table” entries in the event log: these entries spanned a timeframe of

28s. Similarly, it was observed a case where a single failure affecting MySQL DBMS caused

5,421,413 entries in the log.

1.5 Challenges to Log-Based Failure Analysis

Measurement studies based on event logs span over the past three decades; however, com-

puter systems have deeply changed over this timeframe [13]. The 1970s were characterized by

mainframe systems that could be operated only by highly trained personnel; today, a variety

of technologies, such as personal computers, laptops, mobile devices, PDAs, are available to

the mass market. Two relevant industry trends have been impacting dependabil-

ity characteristics and related research over the past decades [13]: shifting failure

causes, and growing system complexity. These trends threaten the validity of assumptions

on the data and processing technique used to conduct log-based failure analysis.

Chapter 1. Characterizing System Failures with Event Logs 25

Works, such as [13, 2, 14], recognize that software faults are currently among the

main responsible for system failures. System outages caused by hardware failures have

dropped by two order of magnitude in two decades, as shown by a study from IBM data

[15]. As opposite, software is becoming more and more complex, and it is often developed by

integrating a variety of home-made and third-party components. Testing activities might not

be able to fully validate the correctness of the software against every potential trigger [17, 18],

and a software component is likely to be released with residual faults that activate only

during operations. While event logs have been successfully used to characterized hardware

problems, it has been recognized that, analyzing software failures solely by looking at logs,

is a hard task [6, 19, 20, 21]. The activation of software faults may escape any low-level

check and go completely unreported in the log. As discussed, in C/C++ programs, bad

pointer manipulations can originate a process crash before any useful information is logged.

Similarly, infinite loops caused by bad variable management may lead to hangs, without

leaving any trace in the logs. Software faults are challenging and represent a serious threat

to the accuracy of event logs. In fact, the suitability of current logging mechanisms in face

of software failures is still somewhat unknown.

Inaccuracy is not the only threat to log-based analysis. Early studies adopting logs have

been conducted in the context of centralized and small-scale systems, e.g., [22, 23]. Nowa-

days, distributed computing is on a growth path [13]: many notable systems (e.g.,

web-based networked infrastructures, cloud architectures, supercomputers) consist of entities

that interact to provide a variety of services. The example ATC application, which has been

Chapter 1. Characterizing System Failures with Event Logs 26

discussed in Section 1.3, indicates that logs are heterogeneous and distributed across differ-

ent software layers and/or nodes. The growing system complexity, i.e., in terms of number

of components and interactions among them, highlights the need for novel infrastructures

to collect and to manage the logged information.

Furthermore, in case of distributed systems, errors might propagate because of the nat-

ural interactions among the components. Propagation results in multiple and apparently

uncorrelated entries in the log collected across different locations [44, 22], and represents

a further threat to log-based failure analysis. Recognizing error propagation phenomena

in the event logs allows understanding when to group events related to the same failure

manifestation, and to establish the actual number of unique failure data points: this is cru-

cial to the objective of obtaining accurate dependability characterization [24, 25]. A widely

adopted strategy to group entries, is using an one-fits-all timing window. However, this

approach is not aware of the actual correlation among log messages [4, 10]. The risk is to

classify correlated failures as uncorrelated, and vice versa, thus leading to unrealistic results.

The focus of the thesis is to evaluate the accuracy of current logging mecha-

nisms at reporting failures, and to develop novel techniques to make event logs

effective to infer failure data. Techniques involve production, collection, and correlation

of the failure data in the log to support accurate dependability characterization. Towards

this objective, the thesis moves from the evaluation of current logging mechanisms. Analysis

results show that current logs are inaccurate at reporting software failures, thus, an effective

Chapter 1. Characterizing System Failures with Event Logs 27

logging mechanism, which is based on the lessons learnt from the analysis of the implementa-

tion pitfalls of current ones, is proposed. A novel framework to manage event logs collected

in distributed environments is then presented. The framework provides a log-centralization

support and, more importantly, integrates monitoring features that allow supplementing the

content of existing logs when failures occur. Finally, it is discussed an approach to correlate

failure data in the collected log. The identification of correlated entries allows determining

the actual number of failures and obtaining more realistic measurements.

Il vero sapere é conoscere le cause.
The actual knowledge is knowing the
causes.

Aristotele

Chapter 2

Log-based Failure Analysis:
Methodology and Applications

Analysis of naturally occurring system failures allows assessing dependability characteristics. To-
wards this objective, event logs, which report events occurred during system operations under real
workload conditions, are a valuable source of failure data. So far, event logs have been successfully
used in a variety of application domains, ranging from operating systems to supercomputers and
large-scale applications: studies based on event logs pursue rather different analysis objectives. In
this chapter, it is discussed related work in the area of log-based failure analysis. Overall methodol-
ogy, tools and techniques supporting collection and filtering of event logs are presented beforehand. A
substantial body of literature analyzing failure data of operational systems is subsequently introduced.
Works are classified and discussed based on the major analysis objectives they pursue. Finally, re-
search efforts that are closer to the content of the thesis are presented, in order to highlight challenges
faced by the thesis. More in details, analysis of closely related literature makes it possible to under-
stand the novelty aspects of the techniques developed in the thesis. The techniques, supported by a
concept schema investigating their applicability, are summarized at the end of the chapter.

2.1 Methodology Overview

Failure analysis is valuable in a variety of industrial domains, because it allows evaluating

and improving dependability characteristics of computer systems. As already discussed,

analysis is usually based on the observation of natural failures occurred during the oper-

ational phase of the system under real workload conditions (i.e., failures are not induced

by means of fault/error injection techniques): analysis of naturally-occurring failures is

28

Chapter 2. Log-based Failure Analysis: Methodology and Applications 29

Figure 2.1: Log-based failure analysis: methodology overview.

among the most accurate ways to achieve insights into the failure behavior of the system

[3, 4]. Event logs have been a widely adopted source of failure data over the past three

decades. Analysis of failure data in the log provides valuable information on error/failure

classes, allows pinpointing dependability bottlenecks, quantifying dependability attributes,

and supporting the verification of assumptions made in system models. In the following, it is

described the methodology underlying log-based failure analysis. Methodology involves

three main steps, i.e., (i) collection, (ii) filtering, and (iii) analysis of entries

in the log, which are reported in Figure 2.1. The concept overview shown in the Figure

highlights the sequential relationship among them. In particular, once event logs have been

collected from a target system, filtering procedures make it possible to infer failure data

from the event log. Finally, failure data are analyzed to characterize properties of interest

of the system. Major state-of-the-art tools and techniques adopted to manipulate the data

at each step of the methodology are surveyed in the following.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 30

2.1.1 Collection

The logging mechanism allows detecting the occurrence of events of interest at runtime:

once an event is detected, one or more text entries are produced in the log. Entries might

be stored in a file available at the location hosting the component that detected the event.

However, this approach has a main drawback: event logs are distributed across many dif-

ferent locations, especially in the context of large-scale systems. It might take significant

effort to retrieve the data to analyze.

Logging protocols and supports have been developed to centralize entries

produced by distributed computing entities at a single location. A well-known

example is UNIX syslog [41, 45]. The syslog protocol defines a log format that has become

a de facto standard over the years. For example, a syslog entry is characterized by severity

and facility, that can be combined to define the priority of the message. Severity is related

to the criticality of the notification, i.e., in terms of importance of the logged event. It varies

in the interval {0, ..., 7}, with 0, i.e., the maximum severity, representing an emergency-level

entry, down to 7, reporting a debug entry. Facility provides an indication of the source of

the event, such as kernel, or the security subsystem. Other information might encompass

timestamp, hostname of the component generating the entry, application name, message

id. A configuration file, namely, /etc/syslog.conf, allows specifying how to manage the

events, e.g., based on the severity. Syslog is not just a reference format to log entries, but

it also defines a protocol, encompassing originator, relay and collector entities to centralize

the log. The originator is the source of the entries; the relay is used to forward entries

Chapter 2. Log-based Failure Analysis: Methodology and Applications 31

to monitoring/analysis clients, which are collectors. Typical syslog architectures are based

on the use of a relay process for each node of the system. Each relay forwards the events

collected from all local processes to a remote location.

Microsoft Event Log protocol is another example of log-collection system [42]. Each

Windows machine runs an Event Log provider that is accessible by means of specific system

calls. Once an entry is logged, it can be stored in a log file and/or forwarded to a remote

machine. Another popular framework is Apache Software Foundation’s log4xx [46] . The

framework is available for C++, PHP, Java and .NET applications, and it can be config-

ured in terms of syntax of log messages, e.g., to support automatic parsing of the entries,

and destination. Furthermore it adopts pluggable components to allow the storage and/or

transmission of the events in the local file system, databases, network, and email.

It is worth noting that a variety of logging and monitoring subsystems have been de-

veloped to supplement existing frameworks. In the following, are discussed some examples

coming both from academia and industry. Analyze NOW [47] consists of a set of tools to

support log-based failure analysis. In particular, it automates data collection in networks

of workstations, whose monitoring is challenging because of the frequent addition and re-

moval of components. Authors in [48] discuss the design of a logger application to collect

failure-related data of mobile phones. The logging support helped at gaining more detailed

knowledge of mobile phones failures. Another proposal is IBM Common Event Infrastructure

[49], introduced to save the time needed for root cause analysis. It offers a consistent, unified

set of APIs and infrastructure for the creation, transmission, persistence and distribution of

log entries, according to a well-defined format.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 32

2.1.2 Filtering

Given a large volume of data collected in real systems, a crucial step of each log-based

measurement study is inferring the failure data that will be used to perform the analysis.

Filtering encompasses two types of activity, i.e., (i) removing non-useful data, and, more

importantly, (ii) coalescing redundant failure data by grouping entries in the log that are

related to the manifestation of the same problem.

Only a fraction of the entries in the log is useful to conduct the failure

analysis: as discussed, many entries report non-error events and can be excluded from the

failure analysis [22]. Filtering non-error events is essentially a laborious and time-consuming

task; however, it does not represent a real threat to log-based failure analysis. A manual

inspection of the log is valuable to identify the severity of the entries and error-specific

keywords. Furthermore, manual inspection can be supported by de-parameterization proce-

dures. De-parameterization replaces variable fields within the text entries of the log (e.g.,

usernames, IP and memory addresses, folders) with a generic token. For example, the hypo-

thetical entries “incoming connection from 192.168.0.184” and “incoming connection

from 221.145.31.27” appear the same once IP addresses are replaced with the “IPAddr”

token. De-parameterization reduces the number of distinct messages templates to scruti-

nize. As shown by [43] around 200 million entries in the log of a supercomputing system

were generated by only 1,124 distinct messages. Where needed, de-parameterization can be

combined with statistical approaches to faster the identification of the content of interest.

For example, authors in [30] apply the Leveinshtein distance to cluster distinct messages.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 33

Figure 2.2: Tuple heuristic: grouping algorithm (A); sensitivity analysis (B).

Once non-error data has been filtered out, it still remains the problem of grouping the error

entries in the log representing the manifestation of the same problem. As discussed in Section

1.4.1, a fault can generate multiple errors that propagate within the system, causing a prob-

lem to be detected multiple times by the logging mechanism, and, consequently, reported

with multiple notifications in the event log. In order to obtain accurate dependability mea-

surements log entries related to same failure manifestation have to be clustered

into the same failure data point [24, 25]: this procedure also called coalescence.

The most adopted coalescence strategy is the tuple heuristic (or, simply, tupling) [22].

The intuition underlying this strategy is that two entries in the log, if related to the same

fault activation, are likely to occur near in time. Consequently, if the time distance of the

entries is smaller than a predetermined threshold, i.e., the coalescence window, they are

placed in the same group (called tuple). Figure 2.2(A) clarifies the concept. Let ei and

ei+1 be two subsequent entries in the log occurring at t(ei) and t(ei+1), respectively. If

Chapter 2. Log-based Failure Analysis: Methodology and Applications 34

the condition t(ei+1) − t(ei) < W is satisfied (with W denoting the mentioned coalescence

window), ei+1 is placed in the same tuple of ei. The coalescence window, determined via a

sensitivity analysis, is selected to group log entries into tuples. Sensitivity analysis assesses

how the tuple count varies when W varies. As a result of the grouping condition reported in

Figure 2.2(A), the longer the duration of the coalescence window, the smaller the number

of tuples. For this reason, the result of the analysis is a “L-shaped” curve representing the

tuple count, such as the one shown in Figure 2.2(B): the tuple count decreases when the

coalescence window increases.

A good choice for the coalescence window is the value right after the “knee” of the

curve, where the tuple count sharply flattens [22]. The choice of the coalescence window

is critical, because the tuples provide an approximation of the actual number of failures

that occurred during the time the log has been collected. When W is too small, the risk is

to put entries related to same problem into different tuples (truncation); viceversa, if W is

too large, entries related to different problem might be placed in the same tuple (collision).

The methodological improvement of the heuristic is represented by the concept of spatial

coalescence [10, 4]: errors can propagate among the nodes of the system, and notifications

related to the same fault manifestation might be spatially distributed as a result.

A rather different approach is content-based coalescence: in this case, events in the log

are grouped based on the content of the text entries. For example, the authors in [6] use

a complex perl algorithm, based on the sequential parsing of the messages in the log, to

identify OS reboots. The work [25] shows how to use the content of the entries to group the

events notified by the same entity.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 35

2.1.3 Analysis

Collection and filtering make it possible to infer the failure data from the event log; analysis

allows system engineers to achieve meaningful insights from the data. Early studies in the

area of log-based failure analysis, such as [50, 51, 52], demonstrated that logs are a valuable

mean to perform quantitative system assessment and to evaluate fault tolerance and recovery

mechanisms. So far, log-based failure analysis has been conducted in a variety of

application domains, ranging from operating systems to supercomputers and large-scale

applications, pursuing rather different objectives. Relevant application areas, that will be

extensively discussed in Section 2.2 along with some representative works, are:

• Error and Failure Classification. This type of analysis often represents the starting

point of a log-based measurement study. Entries in the log are classified according

to different criteria, e.g., severity and originating component. Classification allows

pinpoint the most errors/failures-prone components and, in general, the failure modes

of the system. Classification results can be used to drive finer-grain analysis.

• Evaluation and Modeling of Dependability Attributes. A substantial body of

literature on log-based failure analysis performs measurement studies to characterize

dependability attributes. For example, they measure figures, such as availability, re-

liability, Mean Time To Failure, or derive parameters that can be adopted to build

system models, such as finite state machines, Markov chains, Petri nets [53].

• Diagnosis and Correlation of Failures. Data analysis, supported by statistical

approaches, allows highlighting characteristics of operational failures that cannot be

Chapter 2. Log-based Failure Analysis: Methodology and Applications 36

observed solely by means of measurements. For example, it has been shown that there

exists a relationship between failures and workload, or that failures affecting system

components might be correlated. These works represented important achievements in

the area, and contributed to improve modeling and analysis of real systems.

• Failure Prediction. Failure data in the event log have been used to develop and

to validate failure prediction models. Failure prediction is a relevant application of

log-based analysis, because it allows triggering proactive corrective actions, and im-

proving dependability attributes, such as Time To Repair and availability. Prediction

is commonly achieved by observing the occurrence of event patterns in the log.

• Security Analysis. A quite recent application of event logs is the evaluation of

security-related characteristics, such as attacks classification, analysis of the progres-

sion of attacks, development of models and monitoring tools. Analysis is based on

traditional event logs, e.g., syslog, and information provided by the security infras-

tructures. Data collection is often conducted by means of honeypots; however, recent

works started using real attack data.

• Other applications. Event logs are usually available for any notable computer sys-

tem; other relevant works and recent contributions have been using logs to analyze

dependability features of embedded systems, industrial products, or special purpose

applications.

It is worth noting that log-based failure analysis is mainly a manual process that relies on

the adoption of ad-hoc algorithms and techniques to process the data. It thus emerged the

Chapter 2. Log-based Failure Analysis: Methodology and Applications 37

need for software packages, which integrate a wide range of the state-of-the-art techniques:

the tools ease, if not automate, the data analysis. MEADEP [54] consists of four software

modules, i.e., a data preprocessor for converting data in various formats to the MEADEP

format, a data analyzer for graphical data-presentation and parameter estimation, a graph-

ical modeling interface for building block diagrams, e.g., Weibull and k-out-of-n block, and

Markov reward chains, and a model-solution module for availability/reliability estimation

with graphical parametric analysis.

Analyze NOW [47] that, as mentioned, provides a support tool to collect log data in

networks of workstations, is a framework encompassing a wider set of features. Among the

others, it provides filtering and coalescence modules, a monitor of the state of the machines

belonging to the network, and dependency-table generator to pinpoint correlation among

machines, whenever a failure occurs. In [55, 56] a tool for on-line log analysis, i.e., Simple

Event Correlator (SEC), is presented. It defines a set of rules to model and to correlate log

events at runtime, leading to a faster recognition of problems based on the identification of

even patterns. Rules are encoded by analysts: for this reason, the definition of the rules

depends on the format and content of the log, and it might biased by the analyst’s skills.

2.2 Relevant Applications

Event logs have been used for decades to characterize dependability of operational systems.

In the following are discussed relevant efforts and reference works in the area of log-based

dependability characterization: works have been grouped based on the main analysis objec-

tives they pursue.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 38

2.2.1 Error and Failure Classification

A primary task to achieve insights into the meaning of collected failure data is classifica-

tion. Error and failure classification usually represent the starting point of a

log-based study and have several advantages. For examples, they allow determin-

ing the most-predominant failure classes, pinpointing system components that are prone to

generate error/failure data, and support the evaluation of the improvement between subse-

quent releases of the same product. This information is valuable to conduct quantitative

evaluations of the system, and allows a better interpretation of the measurement.

Authors in [27] present a measurement study of a UNIX machine, serving around 1,200

users and involved in a variety of applications, such as internet services and scientific pro-

gramming. Analysis is based on an event log spanning around 11 months. Data in the

log is classified and categorized to identify error trends leading to failures, and to support

MTBF and availability measurements. For examples, authors show that the input-output

subsystem is the most error-prone subsystem, and that many network problems observed

in the log were not caused by the system under study. It is worth noting that the cause of

some failures, i.e., around 9%, remained unknown.

The study proposed by [57] provides a characterization of operating system reboots of

Windows NT and 2K machines. The data source adopted in the study was collected over a

period of 36 months. The study focuses on unplanned reboots, representing the occurrence

of a failure, identified via a content-based coalescence approach. A classification study

performed on both the types of operating system demonstrates that the number of failures

Chapter 2. Log-based Failure Analysis: Methodology and Applications 39

caused by the operating system itself is smaller in Windows 2K when compared to NT

machines; however, the number of failures caused by application code is larger in Windows

2K. Furthermore, authors observe that more than a reboot was needed to restore proper

operations after a failure.

A similar classification study is conducted in [58], which analyzes crash and usage data

fromWindows XP SP1 machines. The study confirms that many failures observed during the

system operational phase are not caused by the operating system itself, but by applications

and third-party components: web browsers seemed to be the most failure-prone application

in the study. Authors conduct a detailed classification study to pinpoint the .dll and

executable files causing crashes.

Authors in [59] face a rather different application domain. In particular, they study

failure data collected from three large-scale Internet services, i.e., Online, Content, and

ReadMostly. They classify the major causes leading to user-perceivable failures and inves-

tigate the effectiveness of potential techniques to mitigate the failures. Results of the study

indicate that operator errors and network-related problems are the major failure contrib-

utors. Furthermore, authors show that the percentage of failures caused by the software

running in the front-end nodes is significant.

Understanding the distribution of the failure data among different classes can provide

a feedback about the quality of analysis results. A study conducted in the context of

supercomputing systems [43] demonstrates that the classes of failures that bias the content

of the log, i.e., the most entries-prone classes, can distort measurements.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 40

2.2.2 Evaluation and Modeling of Dependability Attributes

Several studies characterize the failure data in terms of well-known statistical

distributions. Authors in [60] use a hyper-exponential distribution, i.e.,
∑N

i=1 λie
−λitpi,

to fit the duration of failures. This type of distribution has been adopted in the mentioned

study because the authors observed the existence of multiple predominant failure dynamics

in the data: as a result, a two-stage hyper-exponential model was chosen. It is worth noting

that this type of scenarios cannot be modeled accurately by means of a unique exponential

distribution, because of the simplistic memoryless property. For example, the exponential

distribution has been adopted to model the Time To Failure of electronic components;

however, it cannot fit the failure data produced by a complex computer system.

Another relevant distribution is the lognormal. In [61] the author hypothesizes that the

failure rate of a complex system can be tough as a multiplicative process of independent

factors, e.g., activations of faults. The lognormal distribution arises when the value of a

variable can be determined by the multiplication of many random factors: for this reason, it

is adopted to model software failure rates. The work shows that the lognormal distribution

is a good model to fit empirical data. The lognormal distribution has been also used in the

context of high-performance computing systems [12].

Finally, the Weibull, i.e., e−(λt)α [62], is probably the most adopted function to model

the failure data. The specific value of the shape parameter α allows modeling decreasing

(α < 1), increasing (α > 1), and constant (α = 1), failure distribution rates. For this reason,

Weibull distributions have been used in many application domains, e.g., [7, 62, 60]. The

Chapter 2. Log-based Failure Analysis: Methodology and Applications 41

modeling of the failure data by means of statistical distribution, is usually supported by

goodness-of-fit test procedures, e.g., the Kolmogorov-Smirnov test, to establish whether the

chosen distribution is a good model to fit the data.

Dependability evaluation is also performed by means of modeling approaches

based on the failure data. Authors in [5] address the analysis of the MVS operating

system and, among the first contributions proposing this approach, they develop a semi-

markov model based on both the normal and error behavior. The data adopted in the study

is collected form the operating system’s event log and both temporal and content-based

coalescence have been adopted to filter the data. The analysis of the failure distribution

highlighted a significant incidence of software-induced failures, i.e., 36%. Other relevant

causes of failures were CPU, memory and I/O errors. The adoption of the model allowed

figuring out that exponential distributions were not able to properly fit the failure data.

Authors in [7] propose a finite state machine to model the error behavior of a LAN of

Windows NT machines. Results of the paper are (i) a classification of the causes of system

reboots starting from the analysis of the events in the log preceding the reboot, (ii) sugges-

tions to improve the usability of logs, e.g., the introduction of an explicit shutdown event to

support the identification of the causes of reboots, (iii) availability analysis. In particular,

the adoption of the finite state machine model showed that, even if the measured system

availability was around 99%, the user-perceived availability was significantly smaller, i.e.,

92%: in some cases, even if a machine of the LAN was up, it was not able to provide correct

service to the user.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 42

Analysis of the data in the event logs is a valuable support to validate assumptions

made in system models. Authors in [63] analyze the data collected from five VAXcluster

systems to validate availability Markov models previously derived for those machines. Sur-

prisingly, the analysis revealed that some modeling assumptions were not supported by the

real experimental data. For example, the model did not take into account depending failure

behaviors across the devices of the system; furthermore, the data showed that failures were

non-exponentially distributed, as opposite to the model assumption.

2.2.3 Diagnosis and Correlation of Failures

Log-based analysis allows achieving in-depth understanding of causes and correlation among

failures. This type of evidence cannot be achieved solely by means of measurements-based

approach, but it relies on the use of models, and statistic artifacts applied to the data.

Works in the area, dating back to the 1980s, demonstrated the existence of a relationship

between the failure behavior and the workload run by a system. A performance

study of a DEC system conducted in [64, 65], showed that the failure rate is not constant;

nevertheless, many system models at that date, relied on this simplistic assumption. The

same authors subsequently developed a doubly stochastic Poisson model highlighting the

relationship between the instantaneous failure rate of a resource and its usage.

A similar finding has been confirmed by authors in [66, 38]. More in details, they

evaluate the relationship between system load and failure behavior by means of empirical

data. Analysis of the failure data and performance counters from three IBM 370 mainframes

revealed the existence of strong correlation between workload and failures. An in-depth

Chapter 2. Log-based Failure Analysis: Methodology and Applications 43

research focusing on CPU failures demonstrated that around 17% of CPU failures were

permanent, and that such failures were correlated to the level and type of workload run by

the machine hosting the CPU. Furthermore, authors observed that the failure probability

was sensitive to changes in the interactive workload.

Several works suggest that failures observed in different components of a

computer system are correlated. The paper [67] proposes an approach to analyze event

logs from fault tolerant systems. The approach is illustrated using the data collected from

Tandem systems. Authors process the data log to identify errors, and adopt multivariate

techniques, i.e., factor analysis and cluster analysis, to pinpoint halts dependencies among

components and to figure out the actual halt patterns. Although the number of errors

observed during the system operations was relatively small, authors observed that multiple

processes were affected by the same problem, because of the presence of shared resources.

Authors in [68] perform a measurement study to assess the dependability of seven DEC

VAX machines. The analysis aimed to estimate the distributions of the Time Between

Errors and Time Between Failures, to analyze dependencies between errors and failures.

Again, shared resources turned out to be a relevant dependability bottleneck. Furthermore,

the analysis showed that errors and failures occur in bursts, and that, neglecting failure

correlation phenomena can significantly impact the quality of the measures.

Evaluation proposed by [69] uses statistical techniques to quantify the strength of the

relationship among entries in the log. In particular, authors analyzed the data from two

Cyber systems and an IBM 3081 multiprocessor system to develop and to validate on-line

diagnosis approaches. These techniques aim to recognize the occurrence of intermittent

Chapter 2. Log-based Failure Analysis: Methodology and Applications 44

failures, and to discriminate transient, permanent and intermittent failure manifestations

by means of the correlation between failure events. The analysis of real data demonstrated

that the proposed approach was able to diagnose some problems previously gone undetected.

2.2.4 Failure Prediction

Analysis of failure data in the log is the basis of interesting applications. Among the oth-

ers, several works have been developing techniques to predict failures, based on the

occurrence of specific event patterns in the log. Predicting failures is challenging;

however, it allows applying failure avoidance strategies, triggering corrective and recovery

actions, reducing the Time To Repair, enhancing system dependability.

Authors in [62] present the Dispersion Frame Technique (DFT), implemented as part

of a distributed on-line monitoring system. They analyzed the data collected from 13 file

servers running the VICE file system over a 22-month period. The principle underlying

the technique is recognizing recurring error trends leading to failures. DFT achieved 93.7%

success rate in failure prediction, by using a smaller number of data point, i.e., one fifth,

when compared to other statistical techniques.

The approach proposed by [70] focuses on the use of event-driven data sources, such as

error notifications in the log, to develop prediction models. In particular, authors develop a

Hidden Semi-Markov Models (HSMMs) and validate the effectiveness of such models by an-

alyzing the field data produced by a telecommunication system. For example, the proposed

model achieves precision of 0.85 and recall of 0.66 that, according to the data available in

the study, was a better result when compared to other prediction techniques.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 45

Failure prediction has gained increasing popularity in the area of large-scale systems.

Authors in [71] analyze event logs from a 350-node cluster system. Logs encompass reliabil-

ity, availability and serviceability (RAS) events, and system activity reports collected over

one year. Authors observed that data in the log were highly redundant: for this reason, they

apply filtering techniques to model the data into a set of primary and derived variables. The

prediction approach, based on a rule-based classification algorithm, was able to identify the

occurrence of critical events with up to 70% accuracy.

Prediction methods have been proposed for IBM BlueGene/L [10]. The approach pro-

posed in the paper was able to predict around 80% of memory and network failures and 47%

of I/O failures. Authors in [72] investigate the use of spatio-temporal event correlation to

develop a failure prediction framework for HPC systems.

2.2.5 Security Analysis

Event logs have been recently used to perform security analysis, starting from the data

collected during the progression of malicious activities and security attacks. A first cat-

egory of works characterize security properties by means of data collected via

honeypots, i.e., monitored computer environments placed on the Internet with the explicit

purpose of being attacked. Data produced by honeypot systems are analyzed to derive

measurements.

Authors in [73] use honeypots to validate vulnerability assumptions adopted in the design

of intrusion-tolerant systems. The honeypot was composed by three machines running three

different operating systems, i.e., Windows NT and 2K, and RedHat Linux; security data

Chapter 2. Log-based Failure Analysis: Methodology and Applications 46

have been collected over a period of 4 months. The analysis focuses on the sources of the

attacks and attacked ports. Authors observed that the types of attacks were similar across

the different machines. Furthermore, attackers were likely to target precise ports without

performing any preliminary scan activity.

A similar setup has been used by [74]. In this case the testbed was composed by two

Windows 2K machines and security data have been collected over a time period of 109 days

by means of the Ethereal tool. The objective of the study was to establish the characteristics

of the data that allowed separating different classes of attacks. This work, which shows how

to use field data to recognize attacks, established that features, such as, number of bytes

constituting the attack or mean distribution of the bytes across the packets, are valuable

metrics to separate attacks.

Recent works adopt real attack data to analyze security. The data consist of

the event logs produced by security tools available at the target infrastructures, and contain

alerts generated during the progression of security incidents.

For example, authors in [75] conduct an in-depth study of the forensic data (e.g., syslog,

Intrusion Detection System (IDS) logs) produced by the machine of a large-scale computing

organization. Attack data adopted in the study are collected over a timeframe of 5 years.

The analysis aims to achieve insights into the progression of attacks, to pinpoint the type

of alerts that are more likely to catch different types of attacks, and to investigate causes

of undetected incidents. Analysis results are valuable to model security attributes and to

develop monitoring tools.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 47

Similarly to the previous work, [76] uses real incident data to design an automated ap-

proach aiming to detect the progression of credential compromise attacks. In particular, the

work proposes a Bayesian network to correlate (i) data provided by different security tools

(e.g., IDS and netflows) and (ii) information related to the users’ profiles to identify compro-

mised users. Results demonstrate that the approach was effective in detecting compromised

users, while eliminating around 80% of false positives

2.2.6 Further Applications

Nowadays, failure data are available for any notable software system. Some other relevant

applications are discussed in the following. Authors in [77] characterize the dependability

of 13 mobile robots coming from 3 manufacturers based on the analysis of the failure data

collected during 673 hours of operations. Authors observed that, in the average, robot

reliability is quite low, with a MTBF of around 8 hours. Field robots have a smaller reliability

than indoor ones; problems affecting effectors and wireless communications links turned out

to be the most-likely causes of failures.

Another interesting application is the one proposed [8], where authors analyze the data

of around 11 years experience on safety critical software for nuclear reactors. Several lessons

could be derive from the study: the analysis of the data is relevant to improve development

processes; however, due to complexity of hardware/software interactions, and real time issues

it might be hard to develop realistic models that take into account real failure scenarios.

The Java Virtual Machine has been recently analyzed by means of failure data [19]. The

data source is represented by Bug Database, which is the only publicly available source of

Chapter 2. Log-based Failure Analysis: Methodology and Applications 48

failure data for the JVM. As it will be discussed later in the dissertation, authors observed

that many failures, i.e., 45.03%, are likely to go undetected by the exception-handling mech-

anism of the JVM; furthermore, a significant number of failures of the JVM were caused

by software-aging bugs [78, 79], which lead to the progressive degradation of the execution

environment. For this reasons, the JVM is not expected to achieve the same dependability

level across different physical platforms.

Finally, authors in [9] analyze the failure data of Bluetooth Personal Area networks

(PAN), and provide valuable insights into the failure behavior and recovery mechanisms.

They also suggest how to improve overall system dependability.

2.3 Related Research and Thesis Contributions

Literature proposing techniques and measurements based on the analysis of failure data in

the event logs, spans over the past three decades. However, as discussed in Section 1.5,

computer systems have deeply changed over this timeframe: new industry trends, such as

shifting failure causes and growing system complexity, are strongly impacting dependability

characteristics and related research, including log-based failure analysis [2]. For this reason,

it is important to investigate the suitability of assumptions and techniques underlying log-

based failure analysis, in spite of the changes occurred in the computer systems industry.

A crucial point is represented by the accuracy of event logs, which have been used to con-

duct studies in a variety of domains. Besides the limitations related to the nature of the

logging mechanism, several works have experienced inaccuracy of logs in-the-field. Relevant

examples are discussed in the following.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 49

A study on Unix workstations and servers [6] recognizes that logs may be incomplete

and ambiguous. For this reason, authors investigate the use of multiple sources to conduct

the analysis: the combination of the data provided by wtmpx and syslog log files helped

at achieving a more comprehensive understanding of the target system, and to obtain more

realistic measurements. In [80] authors provide evidence that logs can be affected by several

issues, e.g., missing events, inconsistent information, and bogus timestamps. They discuss

some recommendations to create better event logs, and to discriminate the presence of

different users that can in the system at the same time. More importantly, authors recognize

the importance of considering the handling of events as a core requirement of the system,

that should be part of its conception and design.

In [7], a study on a networked Windows NT system demonstrates that many OS reboots,

i.e., about 30%, do not show a specific reason. The authors were not able to establish whether

the events preceding the reboot were enough severe to be considered the cause of the reboot

itself. A positional study about the log produced by five supercomputing systems [4] shows

that logs may lack useful information for enabling effective failure detection and diagnosis.

It also suggests that it would be useful to include operational context information (i.e., the

time at which the log was produced, such as scheduled downtime, production time, and so

on) along with log entries, to better contextualize collected data, and drive more realistic

conclusions. As already mentioned, authors in [19] demonstrate that, even if the Java

Virtual Machine is equipped with a sophisticated exception handling mechanism, built-in

error detection mechanisms are not able to provide evidence of a considerable percentage of

failures (45.03%).

Chapter 2. Log-based Failure Analysis: Methodology and Applications 50

More importantly, current logs seem to be ineffective in case of software faults, which are

among the main responsible of system failures [2, 13, 14]. The work [21] uses a fault injection

approach to compare logging mechanisms with other failure detection techniques in the

context of web applications. Experiments show that although logs are able to detect failures

caused by resource exhaustion and environment conditions, they provide little coverage

with respect to emulated software failures (e.g., a deadlock). In the study preceding the

experimentation proposed in the thesis [81] it is shown that around 60% of failures caused by

the activation of software faults go undetected by current logging mechanisms. Experiments

demonstrate that the logging mechanism is able to log errors that affect operating system

resources; however the detection ability of errors affecting algorithms, e.g., the ones leading

to infinite loops or concurrency issues, is significantly smaller.

All these works recognize that logs might be often inaccurate; however, inaccuracy has

not been assessed yet in terms of a quantitative study. The first contributions of the

thesis are (i) the quantitative evaluation of the accuracy of current logging mech-

anisms, and (ii) the analysis of the suitability of the logging mechanism in face of

software faults. Quantitative analysis is crucial to understand the extent software faults

compromise the quality of collected logs. Furthermore, the analysis motivates the design of

novel techniques to make logs effective to infer failure data.

Recent works have been addressing inefficiency issues of logs. Authors in [82] introduce

a set of recommendations to improve the expressiveness of logs. Among the others, authors

suggest to incorporate numbering schemes and classes to categorize the information in the

log. Text entries should be organized as key/value pairs and make explicit the type of the

Chapter 2. Log-based Failure Analysis: Methodology and Applications 51

values in the entries. Furthermore, authors provide a metric to assess the information entropy

in the log. Similarly, [83] proposes to enhance the logging code by adding information, e.g.,

data values, to ease the diagnosis task in case of failures. Authors design a log-enhancer tool

to introduce such information at the logging points; the aim is to reduce the set of potential

root failure causes to support trouble-shooting of complex systems. An approach to visualize

console logs is proposed in [84]: the authors describe how to obtain a graph that can be used

to improve the logging mechanisms, e.g., by adding missing statements. This approach is

based on the assumption that the logs make extensive use of identifiers; however, this might

be not the case of many notable software systems. Finally, authors in [85] propose to extend

the syslog architecture by integrating a set of tools performing near real time analysis based

on the messages produced by the system. The tools can help monitoring and support the

task of system administrators.

These proposals are valuable to engineers, because they improve the expressiveness of

logs, and provide tools to support the analysis. Nevertheless, they have a limitation: the

improvement is based on the logging functions that already exist in the software platform.

The incompleteness of the logs cannot be solved acting solely on the existing functions:

developers might forget to log significant events, and, in many cases, errors escape the

existing logging points, because of the nature of current logging mechanisms. Differently

from these works that mainly focus on semantic and format issues of event logs, the thesis

aims to fill the gap in the knowledge about the use of current logging mechanisms

to report software failures, and to propose an approach, i.e., rule-based logging,

to improve their detection capabilities.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 52

The improvement of the detection capability of the logging mechanism is the key to

make logs effective to infer failure data. However, systems might be composed by a variety

of legacy supports, each equipped with its own logging technology. For this reason, the

thesis investigates further techniques that can be progressively adopted by engineers when

they cannot intervene on the original logging mechanisms, e.g., in the case only partial, if

not any, changes can be made into the system.

Firstly, the thesis proposes a failure data management infrastructure aiming

to increase the usability and effectiveness of logs. The infrastructure, called Logbus,

provides a log-centralization support. Centralizing multiple, heterogeneous, data sources

increases the chance to detect failures and provide detailed insights into the behavior of the

system [6, 81]. As discussed, there are several tools (presented in Section 2.1.1) supporting

the collection of log entries produced by different computer entities. Such tools are valuable

to engineers and analysts, because they allow saving the time needed to collect, parse, and

filter logs; however, they mainly address log format issues. Logbus proposes several novelty

aspects that are not, or only partially, addressed by current log-management infrastructures.

Among the others, Logbus provides an application programming interface (API) supporting

the interoperability of different logging platforms and masquerading the heterogeneity of the

information produced with different protocols and techniques. More importantly, Logbus

integrates on-line monitoring features supplement the content of existing event logs when

failures occur. Monitoring consists of a set of services that are embedded into the Logbus

infrastructure, such as operating system daemons, profiling tools, event-specific monitors,

which enhance failure detection.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 53

Centralization of the event log is the first step to infer failure data produce by a dis-

tributed system. However, once log entries have been collected, e.g., by means of an existing

or the Logbus infrastructure, grouping entries representing the manifestation of the same

failure, is even a more challenging task. Authors in [22] discuss the validity of the tuple

heuristic, that coalesces the entries in the log occurring close in time. Authors investigate

the collision phenomena and discuss the process of selecting a proper timing window to

group the entries. It is worth noting that, early studies adopting the tuple heuristic have

been conducted in the context of centralized and small-scale systems. For example, [22]

encompasses the log of a Tandem system consisting of four processors; authors in [23] point

out that the failure distributions of different machines are correlated by analyzing the log

of a VAXcluster system composed by 7 machines. Subsequently, the tuple heuristic has

been adopted to analyze the log of large-scale, networked systems. The methodological

improvement of the heuristic is represented by the concept of spatial coalescence. Authors

in [10] analyze the log collected from a BlueGene/L system by combining temporal and

spatial filtering. As discussed, they also develop failure predictions methods and show that

the methods are effective for predicting, for example, around 80% of memory and network

failures. The logs collected from five supercomputing systems are analyzed in [4]. Authors

provide an optimization of the filtering algorithm proposed in [10]; however, they recognize

that the proposed algorithm might remove independent alerts that, by coincidence, hap-

pen near the same time on different nodes. The thesis investigate the limitations of

time-based coalescence and proposes a novel grouping technique, based on the

adoption of statistical indicators.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 54

Several works, e.g., [69, 71, 72, 86, 87], use statistical approaches to identify temporal

and/or spatial relationships among the entries in the log. More closely related to the tech-

nique proposed in the thesis, [69] uses statistical techniques to quantify the strength of the

relationship among entries in the log, with the aim of recognizing intermittent failures. Au-

thors in [87] use the lift indicator in the context of a log-preprocessing technique aiming at

preserving error patterns to achieve a more accurate prediction of failures. In the thesis the

adoption of statistical indicators allows developing an improved version of the tuple heuris-

tic, which increases the accuracy of the grouping. The results obtained with the proposed

heuristic are compared with the results achievable with the tuple heuristic, as used in [10, 4].

These works adopt the heuristic to characterize the failure behavior of supercomputing sys-

tems. The comparison allows quantifying the distortion caused by incorrect grouping on

dependability measurements.

By concluding, the contributions of the thesis are the evaluation of the accuracy of the

logging mechanisms, and the development of novel techniques making logs effective to infer

failure data. Techniques target production, collection and filtering of the entries in the log of

complex distributed systems. Despite the existence of a large number of studies proposing

dependability measurements and modeling, this is the first contribution that investigates and

improves the accuracy of data sources and procedures, which are adopted to infer failure

data used in such studies. Engineers can adopt a subset if not, all, the proposed techniques

depending on different parameters, such as the type of analysis they aim to perform, the

accuracy of the results they want to achieve, the degree of intervention they can operate on

the system.

Chapter 2. Log-based Failure Analysis: Methodology and Applications 55

Figure 2.3: Applicability of the techniques proposed in the thesis.

Figure 2.3 clarifies the concept by providing a graphical representation of the contri-

butions: the representation highlights the applicability of each technique proposed in the

thesis. The x-axis indicates the degree of intervention it can be operated on the system,

i.e., the extent of the changes engineers have to make to the system in order to use the

techniques proposed in the thesis. The worst case is the black box : the system exists and no

change is possible at all. The best case is the white box : it is possible to apply any change to

the system, such as modifying the source code. Other types of intervention, e.g., changes to

the configuration files of the system or reboot of components, are classifiable in the middle

of the scale, i.e., grey box. The y-axis indicates the availability of the failure data in the

event log produced by the system. Each technique is represented by a box labelled with a

letter (meaning is reported in Figure 2.3).

Chapter 2. Log-based Failure Analysis: Methodology and Applications 56

There are several interpretations of Figure 2.3. As discussed, it indicates the applicability

of the techniques proposed in the thesis. For example, the Logbus infrastructure, that can be

integrated in the system by acting on the configuration files or by installing wrapper compo-

nents, can be used whenever the intervention degree is ≥ grey box.; correlation of failure data,

i.e., “C” box, might be adopted whenever some information is available. Alternatively, given

a system where the allowed degree of intervention is X, with black box ≤ X ≤ white box,

Figure 2.3 shows the tools analysts might expect to use (or to integrate in the system) to

conduct a log-based failure analysis. For example, if the system is able to generate failure

data, but it does not allow any change, it could be possible to improve the failure analysis by

correlating existing failure data with the approach proposed in the thesis. Again, the best

case is represented by the white box system: traditional event logs can be supplemented with

any of the tools proposed in the thesis. Figure 2.3 helps the reader to identify the portions

of the thesis he/she is interested in. For example, once the intervention degree on the system

and the target logging capability (i.e., production, collection, or filtering) are known, Figure

2.3 suggests the contributions of the thesis that are more suitable to the reader.

La conoscenza degli effetti e l’ignoranza
delle cause produsse l’astrologia.
The knowledge of effects and ignorance
of causes generated the astrology.

Giacomo Leopardi

Chapter 3

Accuracy Evaluation of the Logging
Mechanism

Event logs have been widely adopted to analyze the failure behavior of computer systems over the past
decades. However, systems have deeply changed over this timeframe: new industry trends threaten
the accuracy of current logging mechanisms at reporting failures. Accuracy is crucial to the validity of
log-based measurement studies. In this chapter it is assessed the accuracy of current logging mecha-
nisms in face of software faults, which are among the main responsible for system failures [2, 13, 14].
An automated framework, based on software fault injection experiments, has been designed to eval-
uate the logging mechanism. Evaluation encompasses metrics, such as number of reported failures
and reported errors (i.e., false negative and false positive rates, as discussed in Section 1.4), and
number of lines in the log notifying the occurrence of failures. The approach is applied to three
popular systems: Apache Web Server, TAO Open Data Distribution System, and MySQL Database
Management System. Analysis results show that logs are inaccurate at reporting software failures,
and suggest how to design better logging supports.

3.1 Evaluation framework

Software faults have become among the main responsible for system failures over the past

decades [2, 13, 14]; however, the suitability of current logging mechanisms in face of

software faults is somewhat unknown. Software faults are challenging, because they

might escape any low-level check and go completely undetected. For example, in C/C++

programs, bad pointer manipulations can originate a process crash before any useful infor-

mation is logged. An infinite loop caused by bad variable management may lead to a hang,

57

Chapter 3. Accuracy Evaluation of the Logging Mechanism 58

without leaving any trace in the logs. The logging mechanism of a software plat-

form is exercised by injecting software faults in the source code of the platform;

faults are subsequently triggered by exercising the platform with a workload. This approach

makes it possible to shorten the experimentation time, and to design a controlled analysis

framework. The framework that has been designed to assess the accuracy of the logging

mechanism is described in the following. The injection of a software fault consists of a

change in the source code of the target software: each change implements a programming

mistake, also known as bug. Software faults have been injected according to the real fault

distribution experienced in the field, which is discussed by a widely accepted reference work

in the area of software fault injection [88, 1]. Examples of programming mistakes are miss-

ing function call (MFC) or missing variable initialization using a value (MVIV). A support

tool, which will be presented in Section 3.1.1 along with the faults adopted in the study,

drives the injection process. The tool produces a list of locations within the source code

of the target software where the fault types will be introduced. The number of locations is

generally large: for example, the fault injection campaign conducted to analyze the accuracy

of the logging mechanism of MySQL DBMS encompasses 43,139 experiments.

Each experiment exercises a faulty-version of the software platform, i.e., containing one

software fault, against a workload. Due to the large number of experiments, a Test Man-

ager program has been designed to automate the execution of the campaign. Figure 3.1

shows the framework to assess the accuracy of the logging mechanism, and highlights the

key role of the Test Manager. For each experiment, one fault (among the ones identified

via the support tool) is injected into the source code of the software platform: the code

Chapter 3. Accuracy Evaluation of the Logging Mechanism 59

Figure 3.1: Assessing the accuracy of the logging mechanism: the framework.

is compiled and the obtained faulty-version of the software platform is initialized by the

Test Manager (step (1) experiment setup). The platform is then executed against a

workload with the aim of triggering the injected fault and generating a software

failure (step (2) workload startup). Once the workload is completed, the Test Manager (i)

collects, if any, the anomalous entries in the event log produced by the logging mechanism,

(ii) resumes the original fault-free code of the software before a new experiment is performed

(iii) restart the machines involved in the campaign (step (3) logs collection & exp. comple-

tion). Anomalous entries are the ones caused by the activation of the fault. They are

isolated by removing the entries that are normally produced during fault-free runs of the

target software, from the event log collected after the fault injection experiment.

The Test Manager is the oracle of the campaign: it detects and classifies, if any, the

failures that occur in the system because of the injected faults. Failures have been monitored

instead of errors, because an error might not necessarily cause a failure (Figure 1.5). The

Chapter 3. Accuracy Evaluation of the Logging Mechanism 60

detection ability of the logging mechanism is evaluated by checking the content of the log

against the failure indication, i.e., oracle view, provided the Test Manager. The Test

Manager has been tested by executing several fault-free and faulty runs of the system before

the campaign in order to achieve evidence of its deterministic behavior at determining the

occurrence of failures. Failure indications provided by the Test Manager (also denoted as

outcomes) assume the values described in the following. Failure types are based on [2], and

are detected by using information collected both at OS- and workload-level, as described:

• halt: unexpected termination of the system under-analysis. The system no longer

runs and no output is delivered; the OS generates at least one memory dump;

• silent: the system is still up, but no output is produced within a reasonable response

time, e.g., the system is hung or an expected message is not delivered. The response

time has been tuned before the execution of the campaign by means of several fault-free

runs of the platform under test;

• content: failure conditions that are not halt or silent, such as value failures, i.e., the

output delivered to the user is not the expected one;

• no_failure: the system keeps correctly running; the injected software fault is not

activated or it does not cause a failure.

The framework provides a testing environment to run the target system under a stressful

workload and to detect the occurrence of failures. The outcome and the log collected for

each fault injection experiment are used to assess the accuracy of the logging mechanism.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 61

Experiments have been conducted by running the target software under the Linux OS. The

machines of the testbed are Intel Pentium 4 3.2 GHz, 4GB RAM, 1,000 Mb/s Network

Interface equipped. An Ethernet LAN connects the nodes of the testbed.

3.1.1 Software fault injection approach

The technique that has been adopted to assess the accuracy of the logging mechanism is

derived from a past work in the field of Software Fault Injection: G-SWFIT, presented

in [1]. G-SWFIT defines a set of fault operators that are representative of residual faults

found in real-world operational systems (i.e., fixed after their release). Operators are based

on a large field data study encompassing 668 faults over 12 systems, and they account for

more than 50% of fault types occurring in the field. In the G-SWFIT technique, faults are

injected in the software by means of changes in the binary code: the change corresponds

to programming mistakes in the high-level source code. Although this approach is suitable

for off-the-shelf software, or if the source code of the program is not available, there can

be discrepancies between high-level software faults and binary changes. In [1], it has been

observed that, in the average, there are 9% more binary changes not corresponding to high-

level software faults, due to the usage of C macros in the target source code. Furthermore,

G-SWFIT requires additional efforts to be adapted to the system of interest, because of the

heterogeneity of hardware, OS and compiler technologies.

In this study, even if the fault types are the ones defined in [1], the injection approach is

different. Faults are introduced by means of modifications of the source code. This

Chapter 3. Accuracy Evaluation of the Logging Mechanism 62

C pre-
processor

C /C++
frontend

C/C++
Source files

Abstract
Syntax Tree

Fault
injector

Patch files
(faults)

int main() {
 if(a && b)
 c++;
}

Figure 3.2: Software fault injection via the support tool.

approach avoids the inaccuracies of injection performed at the binary level. Moreover, injec-

tion in the source code is portable among all platforms supported by the original program,

without any additional efforts. This approach leads to highly accurate results; however, as

discussed in Section 3.1, the source file has to be compiled after the fault is injected.

Injection is driven by a support tool1. A source code file is fed to the tool, which

produces a set of faulty source code files, each containing a different software fault. Each

faulty source code file is subsequently compiled. Figure 3.2 summarizes the steps followed

by the fault injection tool, with reference to C/C++ programs. First, a C preprocessor

translates the C macros contained in the source code (e.g., inclusion of header files, macros

for conditional compilation, constants), in order to produce a complete compilation unit. A

C/C++ front-end, i.e., the part of the compiler that builds the internal representation of a

program, processes the compilation unit, and it produces an Abstract Syntax Tree (AST),

which is a more suitable structure to be processed by the Fault Injector program. The

Fault Injector searches for all possible fault locations in the AST, and applies the operators

summarized in Table 3.1, when specific criteria are met. For example, the MIFS operator is

applied only if the IF construct contains at least 5 statements.
1The tool is currently available at http://www.mobilab.unina.it/SFI.htm

Chapter 3. Accuracy Evaluation of the Logging Mechanism 63

Table 3.1: Fault operators ([1]).

Acronym Explanation
MFC Missing function call
MVIV Missing variable initialization using a value
MVAV Missing variable assignment using a value
MVAE Missing variable assignment with an expression
MIA Missing IF construct around statements
MIFS Missing IF construct plus statements
MIEB Missing IF construct plus statements plus ELSE before statem.
MLAC Missing AND clause in expression used as branch condition
MLOC Missing OR clause in expression used as branch condition
MLPA Missing small and localized part of the algorithm
WVAV Wrong value assigned to variable
WPFV Wrong variable used in parameter of function call
WAEP Wrong arithmetic expression in parameter of a function call

3.2 Accuracy Metrics

The accuracy of the logging mechanism to detect the occurrence of software failures is

estimated by examining the presence of anomalous entries in the event log against the

outcome of each fault injection experiment. The reference metrics that have been adopted

in the study are described in the following.

Coverage. Given an experiment where a failure occurred i.e., the outcome of the ex-

periment provided by the Test Manager is not “no_failure”, it is assumed that the failure

has been logged by the logging mechanism if at least one anomalous entry is observed in

the log; the failure is unlogged, otherwise. The coverage of the logging mechanism is the

ratio between the number of logged failures and the total number of failures observed dur-

ing the campaign. Coverage is also broken down by failure type to obtain a more detailed

insight into the ability of the logging mechanism at reporting failures. Coverage provides

a big-picture of the detection capability of the logging mechanism; however, it does not

Chapter 3. Accuracy Evaluation of the Logging Mechanism 64

provide insights into false positives, which represent a key aspect concerning the accuracy

of the logging mechanism. For this reason, the analysis has been refined with the recall and

precision parameters, that will be clarified shortly.

Verbosity. Verbosity is the average number of anomalous entries observed in the log,

estimated across the experiments where (i) a failure occurred, and (ii) the failure has been

reported by the logging mechanism. This measure provides an indication of the effort that is

needed to preprocess the log before the analysis: the smaller the number of lines in the log,

the easier the interpretation and preprocessing of the log. As discussed, the entries in the

log representing the manifestation of the same failure, must be grouped before the analysis

to obtain accurate measurements. Similarly to the coverage parameter, verbosity is broken

down by failure type.

Recall and Precision. Recall (R) measures the false negative rate, e.g., unreported

failures, while, differently from the coverage, precision (P) provides insights into the number

of false failure indications, i.e., those experiments where no failure has occurred, but anoma-

lous entries are observed in the log. R and P are assessed as described in the following.

Each log produced during the campaign by the logging mechanism, is classified into one out

of four disjoint sets, i.e, true negative (TN), true positive (TP), false negative (FN), false

positive (FP); then, recall (R) and precision (P) are computed with Equations 3.1:

R =
|TP |

|TP |+ |FN |
P =

|TP |
|TP |+ |FP |

(3.1)

Log classification is performed by comparing the log view of the experiment, i.e., if, by look-

ing into the log, it can be concluded that an anomalous event occurred during the experiment,

Chapter 3. Accuracy Evaluation of the Logging Mechanism 65

Figure 3.3: Log classification

against the oracle view provided by the Test Manager (Figure 3.3 3)-classification). For ex-

ample, a FN occurs when no failure has been observed according to the log, but the outcome

provided by the Test Manager is not “no_failure”. Three distinct indexes, related to the

amount of information contained in a log li, have been used to establish the log view:

• bytes: returns the size in byte of the log file li. This index has been adopted because

a high rate of events in the log can be the symptom of some fault activations [89];

• lines: gives the number of lines in the log file. The intuition underlying this index

is the same as the bytes one. However, both the indexes have been considered in the

study because a single line can be many bytes long: the two indexes provide different

perspectives on the log mechanism;

• words: this index, used in the area of information retrieval [90], is related to the

presence of error keywords in the event log. A dictionary of error keywords, i.e., D, is

preliminary built by analyzing the logging statements in the source code of the system

under analysis. D contains words, such as unable, not found, unrecoverable, cannot,

Chapter 3. Accuracy Evaluation of the Logging Mechanism 66

and so on. Given a log file li, it is estimated the number of occurrences, i.e., nki , of

each keyword ki ∈ D in the log file. The words index is estimated as
√∑|D|

i=1(nki)2.

For each log li, the index functions return a value I(li) ≥ 0: the greater the index,

the higher the chance that the event log contain anomalous entries; if I(li) ≥ K (with K

representing a threshold parameter) it is concluded that an anomalous event occurred during

the experiment according to the log (Figure3.3 2)-check against the threshold K). After all

the logs have been classified, R and P are computed with Equations 3.1. For example,

the point (0.30; 0.65) in Figure 3.6, discussed later in the dissertation, indicates that the

traditional logging mechanism achieves 0.30 recall and 0.65 precision whenK = 1 (according

to the words index).

It can be noted that R and P vary when the classification parameter K varies. For

this reason, given an index function, (R,P) pairs obtained with different values of K in the

interval]0;Kmax] are assessed. Kmax has been set to 5,000, 100, and 50, for the bytes,

lines and and words index. The result of this sensitivity analysis is a plot reporting (R,P)

pairs. Again, Figure 3.6 shows an example of such a plot.

3.3 Case Study 1: Apache Web Server

Apache Web Server is a popular open-source project, which accounts for more than 50% of

installations in the world2. The wide adoption of Apache and its growing complexity are

increasing the importance of dependability and security issues caused by software faults.

Therefore, this is a relevant case study to assess the accuracy of the logging mechanism.
2http://www.netcraft.com/survey/

Chapter 3. Accuracy Evaluation of the Logging Mechanism 67

Figure 3.4: Apache Web Server: experimental testbed.

Figure 3.4 shows the testbed that has been designed to perform the campaign: Apache Web

Server version 1.3.41 is evaluated in this work. Node 1 hosts the httperf3 tool version

0.9.0, that generates HTTP requests for the Web Server. The workload makes use of the

main features offered by the Web Server (e.g., multiple methods and file extensions, cookies).

Node 2 hosts the faulty version of the Web Server and the Test Manager program.

For each fault injection experiment the Test Manager (1) initializes a faulty Web Server

version (2) starts the workload generator (3) stops the testbed components and collects

experiments data, once the workload terminates. Experiment data encompass the event log

and the outcome from the Test Manager for each experiment. The campaign consists of

8,200 software fault injection experiments. Table 3.2 reports the breakup of the experiments

by fault operator.

3.3.1 Coverage and verbosity

During the campaign 1,101 out of 8,200 fault injection experiments lead to a failure, i.e.,

616 halt, 104 silent, and 381 content. The logging mechanism implemented by Apache
3http://www.hpl.hp.com/research/linux/httperf/

Chapter 3. Accuracy Evaluation of the Logging Mechanism 68

Table 3.2: Apache Web Server: breakup of the experiments by fault operator and coverage
of the logging mechanism.

Fault # locations Fault # locations
MFC 831 MLAC 182
MVIV 68 MLOC 144
MVAV 223 MLPA 1,935
MVAE 1,166 WVAV 279
MIA 793 WPFV 1,179
MIFS 768 WAEP 361
MIEB 271
Total experiments 8,200
Number of failures 1,101
Logged failures (coverage) 377 (34.2%)

Figure 3.5: Apache Web Server: coverage by failure type.

detects 377 out of 1,101 failures: coverage is 34.2%. Figure 3.5 shows how the coverage varies

with respect to the failure types. Halt failures are mainly due to bad pointer manipulations.

In most cases (65%) no entry is observed in the log in case of halt failures. Logged halts

(35%) are due to the termination of one or more Web Server child processes, thus enabling

the parent process to notify their failure. Nevertheless, no significant information is provided

about failure locations or failure causes in the logs. Collected entries just suggest to inspect

memory dumps from the operating system, which might not be always available.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 69

Table 3.3: Apache Web Server: verbosity of the logging mechanism.

failure logged number of entries in the log
type failures average ±std-dev; (min-MAX)
halt (218) 18 ±16; (1-248)

silent (11) 814 ±475; (24-1,251)
content (148) 117 ±408; (1-1,732)

average 316

Unlogged silent failures (89%) are mainly due to algorithmic errors leading to infinite

loops. Logged silent failures (11%) involve OS resources (e.g., sockets, IPCs). The higher

coverage is observed in case of content failures, when 148 out of 381 failures are logged, i.e.,

39%. Logged content failures mainly correspond to errors with the HTTP protocol handling

(e.g., header corruption) or filesystem accesses (e.g., wrong resource path). However, a

significant number of content failures is unlogged (61%). Many unlogged content failures,

i.e, around 55.7%, occur during the system start-up phase, when the Web Server halts and

no logs are provided. This percentage is due to the presence of a significant amount of code

devoted to configuration management (encompassing 10.3% of source code and 10.4% of

faults). These faults are not excluded from the analysis because (i) the configuration code

appears to be complex and error-prone, (ii) faults in configuration management are not

necessarily discovered before release, and they could be triggered by a specific configuration

file in the field [91], (iii) logs in such a situation can help to fix configuration issues.

In the average (last row of Table 3.3), each detected failure leads to 316 entries in the

log. Halt failures results in the smaller number of entries, i.e., 18. On the other end of the

spectrum, the occurrence of a silent failure causes a significant number of entries in the

log: in the average, the logging mechanisms notifies such failure with 814 entries.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 70

Figure 3.6: Apache Web Server: recall and precision.

3.3.2 Recall and precision

The function indexes exhibit a similar trend when applied to the logging mechanism of

Apache. This can be observed in Figure 3.6. The maximum achievable recall is 0.26, 0.27,

and 0.30 with the lines, bytes, and words index, respectively. Such values have been

obtained for the minimum values of the index classification thresholds (reported in Figure

3.6). The low values assumed by the recall parameter (which encompasses false negative

experiments) can be explained by reminding that 65.8% of failures are unlogged by the

traditional mechanism. Furthermore, when the recall is maximum, precision is around the

lowest values. For example, the words index achieves 0.30 recall with 0.65 precision when

K=1. In other words, in order to not miss any failure, it has to be assumed that a failure has

occurred even if a single error keyword is observed in the event log; however, this cause a large

number of false positives, i.e., low precision. On the other end of the spectrum, a high value

of the precision parameter can be achieved only when K increases. For example, precision

Chapter 3. Accuracy Evaluation of the Logging Mechanism 71

Figure 3.7: TAO Open DDS: experimental testbed.

is 0.90 (among the greatest observed values) if K=98 with the lines index. Accordingly, to

achieve high precision when analyzing the event log, it should be concluded that a failure

occurred only when strong error evidence is observed.

3.4 Case study 2: TAO Open DDS

TAO OpenDDS4 is an open-source C++ implementation of the OMG’s v1.0 Data Distribu-

tion Service (DDS) specification. DDS, as part of the Event Driven Architectures (EDAs),

is emerging as new technology to design flexible applications by means of message-driven

processing [92, 93]. Its recent use in mission-critical scenarios, e.g., the Air Traffic Con-

trol domain (Coflight5 project), makes it useful to perform an in-depth evaluation of DDS

logging capabilities. The testbed shown in Figure 3.7 has been deployed to perform the

campaign. A test application, coming with the DDS software distribution, provides the

workload to exercise the middleware. The application consists of two processes. The pub-

lisher (PUB) process, deployed on node 1, sends DDS messages bounded to a topic. The
4http://download.ociweb.com/OpenDDS/
5http://www.coflight-efdp.com

Chapter 3. Accuracy Evaluation of the Logging Mechanism 72

Table 3.4: TAO Open DDS: breakup of the experiments by fault operator and coverage of
the logging mechanism.

Fault # locations Fault # locations
MFC 762 MLAC 144
MVIV 140 MLOC 87
MVAV 139 MLPA 1,105
MVAE 317 WVAV 125
MIA 345 WPFV 505
MIFS 304 WAEP 40
MIEB 110
Total experiments 4,123
Number of failures 1,023
Logged failures (coverage), PUB 346 (33.8%)
Logged failures (coverage), SUB 297 (29.0%)
Logged failures (coverage), joint 492 (48.1%)

subscriber (SUB) process (node 2) subscribes the topic of the publisher and then receives

the messages transmitted via the DDS middleware. Furthermore, node 2 hosts the Test

Manager program: for each experiment it (1) initializes the test application (2) starts the

publisher process, i.e., the workload generator, and (3) once the workload terminates, stops

the testbed components and collects experiments data. Table 3.4 reports the 4,123 experi-

ments composing the campaign broken down by fault operator: faults have been injected in

the library encapsulating the code of the DDS middleware.

3.4.1 Coverage and verbosity

Injected faults caused 1,023 failures out of total 4,123 experiments (356 halt, 597 silent,

and 70 content). The coverage of Open DDS is preliminary assessed at the publisher and

subscriber side, separately, because the DDS infrastructure does not provide a native support

to centralize the event log. Publisher and subscriber are usually deployed on different nodes

and it might not be possible to access the logs of both the components of the application.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 73

(a) Publisher. (b) Subscriber.

(c) Joint (i.e., Publisher or Subscriber).

Figure 3.8: TAO Open DDS: coverage by failure type.

The logging mechanisms reports 346 out of 1,023 failures at the publisher side: coverage

is around 33.8%. Figure 3.8a shows how the coverage varies with respect to the failure

types. Similarly to Apache, many halt failures, i.e., 73% do not leave any trace in the

log. Most of them are caused by (i) the DataWriterImpl and PublisherImpl DDS modules

(16.4%), due to the bad manipulation of DDS messages during the sending phase, and (ii)

Service_Participant DDS module (8.8%). Silent failures are logged in a relevant number

of cases (37%). The DDS library is able to log silent failures occurring (i) in the DDS lower

transport layer (12.5%), and (ii) in the DataWriterImpl (10%), which are mainly due to the

Chapter 3. Accuracy Evaluation of the Logging Mechanism 74

bad manipulation of the topic of the DDS message. Unlogged silent failures (63%) mainly

occur within (i) the lower DDS transport layer (18%), because of the bad manipulation of

the send buffer, and (ii) the Service_Participant DDS module (13%). Content failures

are mostly unlogged (61%). Corrupted messages are delivered to the subscriber side without

any notification in the log of the DDS-based application.

Coverage is around 29% at the subscriber side. Although the percentage is similar

to the publisher, the overall logging behavior is different, as described in the following.

In this case (as shown in Figure 3.8b), the coverage of halt failures, i.e., 40%, is higher

than the publisher: subscriber is able to log failures caused by a bad QoS setup within the

Service_Participant DDS module (7%), and a significant percentage of halt failures (18%)

that occurred at the publisher side, thus acting as an external failure detector. Unlogged

halt failures (60%) are mainly due to problems occurring in the Service_Participant

module (12%), which still remains a significant source of unlogged halt failures. A significant

percentage (77%) of silent failures is unlogged. Unlogged silent failures mainly occur (i) in

the DataReaderImpl module (13.5%) due to problems affecting the topic-subscription phase,

and (ii) algorithmic errors during the message delivery occurring in the DDS lower transport

layer (11%). Again, content failures are mostly unlogged (80%). A corrupted messaged is

delivered to the subscriber due to problems occurring in the DDS transport layer.

Furthermore, the coverage of the overall DDS (i.e., those failures logged by either the

publisher or the subscriber), is around 48.1% (Figure 3.8c), thus higher than the publisher

and subscriber: the logging mechanism might benefit of a log centralization support, in case

of distributed applications.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 75

Table 3.5: TAO Open DDS: verbosity of the logging mechanism.

failure logged number of entries in the log
type failures average ±std-dev; (min-MAX)

publisher
halt (96) 5 ±3; (1-17)

silent (223) 7 ±24; (1-139)
content (27) 7 ±3; (6-16)

subscriber
halt (145) 2,949 ±34,732; (1-409,492)

silent (138) 2 ±1; (1-4)
content (14) 7 ±2.5; (6-12)

average 496

Table 3.5 reports the average number of entries in the log notifying the occurrence of

a failure in case of TAO Open DDS. In the average (last row of Table 3.5), the logging

mechanism reports each failure with 496 entries in the log. The PUB process is less verbose

than the subscriber. The worst case is represented by halt failures logged at the subscriber

side: in the average, this type of failure cause 2,949 entries in the traditional log.

3.4.2 Recall and precision

Recall and precision analysis has been conducted for TAO Open DDS at the publisher and

subscriber sides: results, reported in Figure 3.9a and 3.9b, highlight a similar trend at both

the sides of the DDS application, thus the only publisher is discussed in the following. It can

be observed that the maximum achievable recall is 0.34, obtained for the bytes and lines

indexes when the classification parameter K is set at the minimum value (Figure 3.9a);

however, precision is only around 0.58. The highest precision, i.e., 0.96, is observed for the

words index when K = 6, but the recall parameter is just 0.07. As observed for the Apache

Web Server, achieving high recall conflicts with a good precision rate (and viceversa).

Chapter 3. Accuracy Evaluation of the Logging Mechanism 76

(a) Publisher. (b) Subscriber

Figure 3.9: TAO Open DDS: recall and precision.

3.5 Case study 3: MySQL DBMS

MySQL is a widely used open-source DBMS. It has a market share of about 30% according

to several market studies6. The experimental testbed is shown in Figure 3.10. It is composed

by a MySQL server and a client program that exercises the server. MySQL7 version 5.1.34

is evaluated in this study.

The client is a SQL testing tool, namely MySQL Test Run (MTR), shipped with the

MySQL source code. The workload is represented by a subset of test cases from the en-

tire MySQL test suite, which includes functional and regression tests actually used by the

MySQL developers. Total 73 test cases have been selected in such a way to cover most of

the MySQL features within a limited amount of time; all the selected test cases are sequen-

tially executed during an experiment. MySQL server is represented by the mysqld program,

which, in turn, is made up of several sub-components, such as the MySQL core and the
6http://www.mysql.com/why-mysql/marketshare/
7http://dev.mysql.com/downloads/mysql/5.1.html

Chapter 3. Accuracy Evaluation of the Logging Mechanism 77

Figure 3.10: MySQL DBMS: experimental testbed.

Table 3.6: MySQL DBMS: breakup of the experiments by fault operator and coverage of
the logging mechanism.

Fault # locations Fault # locations
MFC 3,932 MLAC 1,496
MVIV 682 MLOC 1,238
MVAV 1,823 MLPA 13,436
MVAE 5,880 WVAV 1,615
MIA 4,333 WPFV 3,328
MIFS 3,897 WAEP 723
MIEB 756
Total experiments 43,139
Number of failures 15,102
Logged failures (coverage) 5,376 (35.6%)

storage engines. The standard MySQL configuration also includes a further process, namely

mysqld_safe, which instantiates the mysqld process, and collects all error messages from

mysqld to store them in a log file.

MySQL core is the target of the fault injection experiments, because it is the largest

and most fundamental component of the DBMS; it is responsible for managing threads

and connections, and for SQL query parsing, optimization, and execution. The campaign

encompasses 43,139 fault locations that are broken down by fault operator in Table 3.6.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 78

Figure 3.11: MySQL DBMS: coverage by failure type

3.5.1 Coverage and verbosity

During the campaign have been observed 15,102 failures (i.e., 3,663 halt, 761 silent,

and 10,678 content) out of 43,139 total software fault injection experiments. The logging

mechanism reports 5,376 out of 15,102 failures: the coverage is 35.6%. Figure 3.11 shows

the coverage of MySQL logging mechanisms by failure type.

Figure 3.11 shows that almost all halt failures (97.9%) are detected by the mysqld_safe

process; it is the parent of the mysqld process and receives a notification of the child process

termination from the OS. It should be noted that, even if Apache has a similar architecture,

its coverage with respect to halts is lower (46.2%). It is reasonable that Apache parent

process performs active work, other than a pure monitoring task, thus failures in this pro-

cess might go undetected. Unlike mysqld_safe, the Apache parent process is not specifically

designed to collect error messages from child processes; hence logged data may not be as

effective as in the case of MySQL.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 79

A significant percentage of silent and content failures occurs without leaving any

message in the log. Logged silent failures (6.0%) include invalid operations on sockets, locks

or files (3.5%) as well as errors during thread creation or termination (1.5%). Unlogged

silent failures were due to omission faults related to concurrency (e.g., omitted call to lock

primitives (57.4%)), resource allocation or initialization (e.g., missing thread deallocation

(10.5%)), and operations on network connections (e.g., connection not opened (9.2%)). It

has been observed that even if the OS or external resources are involved, there can be a lack

of log messages due to the omission of an operation. In the remaining cases, silent failures

were related to infinite loops and corrupted data structures, e.g., linked lists (16.8%): it

would be useful enforcing the logging mechanism during the access to logical resources.

Logged content failures (19.4%) were due, among the others, to table corruption (1.6%),

wrong interactions with storage engines (1.4%), and incorrect management of files and sock-

ets (1.2%). Unlogged content failures were due to faults that affected system behavior in

a complex way, leading to a bad state (e.g., incorrectly initialized strings or flags), wrong

control flow (e.g., a missing if with a goto instruction), or wrong output (e.g., missing data

manipulation).

Verbosity of the logging mechanism is reported in Table 3.7. In the average, a failure

affecting the DBMS causes the production of 81,774 entries in the log: this result indicates

that the logging mechanism implemented by MySQL is significantly verbose. The worst

case is represented by silent failures. Such failures cause, in the average, 245,252 entries in

the log. During the campaign, it is been observed a silent failure reported with more than

5 million entries.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 80

Table 3.7: MySQL DBMS: verbosity of the logging mechanism.

failure logged number of entries in the log
type failures average ±std-dev; (min-MAX)
halt (3,573) 44 ±6; (1-100)

silent (46) 245,252 ±1,003,960; (1-5,421,413)
content (1,757) 36 ±41; (1-1,093)

average 81,774

Figure 3.12: MySQL DBMS: recall and precision.

3.5.2 Recall and precision

The analysis of recall and precision confirms the findings which have been observed for the

other case studies. Results are shown in Figure 3.12. It can be observed that the maximum

achievable recall is 0.37, obtained for the bytes index when the classification parameter K is

set at the minimum value (Figure 3.12); however, precision is only around 0.58. Precision is

higher for the other function indexes, e.g., 0.81 for the words index. Nevertheless, MySQL

achieves better precision without impacting recall. For example, when the classification

parameter K is 1,000, the bytes index achieves 0.34 recall and 0.97 precision, which is a

more reasonable tradeoff when compared to Apache and Open DDS.

Chapter 3. Accuracy Evaluation of the Logging Mechanism 81

3.6 Discussion

Experiments revealed that current logging mechanism are inaccurate at reporting failures

caused by software faults. This is a severe threat to the validity of log-based measurement

studies, because, as discussed, software faults have become among the main responsible for

system failures. The key findings of the analysis are summarized in the following:

• The coverage of current logging mechanisms, in the proposed case studies,

is around 33%. The percentage of logged failures ranges between a minimum of

29%, i.e., TAO OpenDDS (Subscriber side), and a maximum of 35.6%, i.e., Apache

Web Server. This result suggests that around 7 out of every 10 actual failures due to

software faults do not leave any trace in the log during the system operational phase:

unreported failures heavily distort analysis results.

• Failure-related information in the log is highly redundant, as indicated by

the verbosity parameter. For example, failures affecting MySQL DBMS, when

detected, are logged with 81,774 average lines in the log. This result highlights the

need for efficient algorithms to group the entries in the log that are related to the same

failure manifestation. This problem is exacerbated in case of distributed systems.

• Current logging mechanisms are likely to raise many false positives, i.e.,

40%, estimated across the proposed case studies. It has been observed that,

in order to maximize the recall, it should be concluded that a failure has actually

occurred even if a minor error evidence is observed in the log; however, this causes

Chapter 3. Accuracy Evaluation of the Logging Mechanism 82

many false positives. On the other hand, increasing the precision parameter leads to

many undetected failures. The analysis of the event logs calls for a trade-off between

the strength of the failure evidence in the log and recall/precision rates

• Software systems are most prone to log errors that occur with operating

system resources rather than algorithmic ones. Both Apache Web Server and

MySQL DBMS are able to log software faults resulting in bad sockets, files, memory

or IPCs management. Algorithmic errors leading, for example, to infinite loops, wrong

buffer management or concurrency issues are mainly unlogged.

• Architectural features influence the effectiveness of the logging mechanism.

The distributed architecture of the DDS increases the probability to log failures. The

use of the mysqld_safe process is an effective solution to log almost all halt failures.

• Designing specific logging support increases coverage. Experimental results

show that a distributed infrastructure for collecting/correlating logs at the publisher

and subscriber sides may increase the number of logged failures. The introduction

of a process, responsible for event collection, can also increase log coverage. These

approaches could provide further failure data to developers at the cost of the overhead

of log event transfer to a dedicated node or process.

Analysis exacerbates the inadequacy of current logging mechanisms at detecting software

failures, and provides useful hints to design better logging infrastructure. Results discussed

in this Chapter motivate the need to design novel techniques to make logs effective to infer

failure data.

Se hai un sistema migliore insegnalo,
altrimenti usa il mio.
If you have a better way teach it,
otherwise use mine.

Quinto Orazio Flacco

Chapter 4

Improving Logs for the Analysis of
System Failures

The analysis of the logging mechanism implemented by real-world systems revealed that event logs
are often inaccurate. Among the other findings, analysis demonstrates that around 67% of failures
caused by software faults go unreported in the log, and 40% of failure indications represent false pos-
itives. The inadequacy of the logging mechanism to cope with software faults is challenging, because
software faults are among the main responsible of system failures. However, this is not the only
threat to log-based failure analysis: distributed computing, that is currently on growth path, poses
new challenges in terms of heterogeneity of the data sources and redundancy of the information in
the log. In this Chapter are described novel techniques to make event logs effective to infer the failure
data. A rule-based logging mechanism is designed based on the lessons learnt from the analysis of
the implementation pitfalls of current ones. Then, it is discussed a management framework named
Logbus, which provides a log-centralization support and integrates monitoring features that allow
supplementing the content of existing logs when failures occur. Finally, it is discussed an algorithm
to correlate failure-related data in the event log produced by distributed systems.

4.1 Implementation Pitfalls of the Logging Mechanism

The logging mechanism, introduced in Section 1.4, is the set of detectors intended to re-

veal the occurrence of error events during the system operational phase. Nevertheless,

experiments conducted in the context of real-world systems, demonstrate that the logging

mechanism is inadequate to cope with software fault, that are among the most common

causes of system outages: around 67% of failures caused by software faults go undetected

83

Chapter 4. Improving Logs for the Analysis of System Failures 84

Table 4.1: Software platforms and related statistics

software # files # lines # log
platform ver. invoc. (ratio %)
apache 1.3.41 130 97,263 688 0.71
apache 2.0.64 378 211,247 1,297 0.61
opendds 0.9 146 33,076 524 1.58
mysql 5.1.34 963 734,977 1,141 0.16
ace 5.5.1 4,239 1,593,705 6,773 0.42
jacorb 2.2 5,219 597,824 340 0.06
minix 3.1.1 174 76,957 544 0.71
cardamom 3.1 958 300,454 879 0.29
average 1,526 455,688 1,523 0.57

in the log and 40% of notifications in the log represent false positives. The inaccuracy of

logs is a threat to validity of log-based studies, thus, the scarce ability of the

detectors composing the logging mechanism is worth to be investigated. The

implementation of several logging mechanisms, which are currently adopted in the field, is

analyzed in order to (i) pinpoint implementation pitfalls that make detectors ineffective,

and (ii) understand how to design a better logging strategy. The analysis encompasses

open-source and industrial software projects, which are reported in Table 4.1 (column 1)

and briefly surveyed in the following. Apache Web Server, TAO Open DDS, and MySQL

DBMS have been extensively described in the previous Chapter of the thesis. Ace is an

object-oriented C++ framework implementing core patterns for concurrent communication

software. Jacorb is a standard-compliant ORB (Object Request Broker) implementation

for Java applications. MINIX is a microkernel operating system targeting high-reliability

and security features. Finally, CARDAMOM is an industrial platform providing services

to support the development of safety critical systems. Selected software platforms cover a

Chapter 4. Improving Logs for the Analysis of System Failures 85

1 if (! reported && (active_threads==ap_threads_per_child)){
2 reported = 1 ;
3 ap_log_error(APLOG_MARK , APLOG_NOERRNO | APLOG_ERR ,
4 server_conf , "Server ran out of threads [omissis] "
5 "raising the ThreadsPerChild setting ") ;
6 }
7 (a) - Apache 1.3.41 (http_main.c, 6106-6111)
8
9 try{

10 knownReferences=
11 (Map) ObjectUtil . classForName (
12 hashTableClassName) . newInstance () ;
13 }
14 catch (Exception e){
15 logger.fatalError(" unable to create known ref . map " , e) ;
16 throw new INTERNAL (e . toString ()) ;
17 }
18 (b) - Jacorb 2.2 (ORB.java, 2078-2087)

Figure 4.1: Instances of logging patterns.

variety of features, such as, the criticality (business/safety critical systems), language (C,

C++, Java), paradigm (procedural and object oriented), and mission (standalone server,

middleware supports, operating system). The source code of the software accounts for total

around 3.5 million lines of code. Table 4.1 provides some statistics concerning the analyzed

platforms, such as the number of invocations of logging functions and the percentage ratio

of such invocations to the total lines of code of the software (column 4).

A code parser has been developed to support the analysis. The parser (i) identifies

the lines of code representing the invocation of a logging function, and (ii) extracts the

lines preceding each invocation to determine the control structure that activates the logging

function1. Figure 4.1a shows an example of logging function (line 3) activated by means of

the if construct; similarly, Figure 4.1b reports a logging function (line 15) triggered via a
1The code parser runs under the Linux OS and consists of a set bash scripts, which classify the control

structure that are used to implement the logging mechanism.

Chapter 4. Improving Logs for the Analysis of System Failures 86

Figure 4.2: Logging mechanisms: control structures

catch instruction. The code parser is run against the source files coming with the distribu-

tion of the selected software. Figure 4.2 summarizes analysis results. For each software, the

bar indicates the percentage use of the control structures that are used to implement the

logging mechanism. The most adopted pattern (73% of invocations of logging functions) is

“if(condition) then log_error();", as shown by the rightmost bar of Figure 4.2. The

condition consists of a single clause, i.e., if category, or a complex clause (multiple clauses

combined with and/or operators), i.e., if+ category, in 62% and 11% of cases, respectively.

Other control structures, e.g., else, catch, etc., account for total around 27% of cases.

The control flow of the if pattern, which is the predominant control structure, is ex-

emplified in Figure 4.3. Given a block of instructions, the detection of an occurring error

is performed in two steps. First, the values of one or more variables, which encapsulate the

state of the results of the instructions executed in the block, are gathered within the block

(Figure 4.3 A). Second, such values are checked against error flags (Figure 4.3 B): the logging

function is invoked if the check returns true. It is worth noting that other logging patterns,

Chapter 4. Improving Logs for the Analysis of System Failures 87

Figure 4.3: Control flow of the “if" pattern

such as else or catch, can be represented in a similar way. An occurring error (Figure

4.3) is logged if the two following conditions hold: (i) the control flow reaches the checking

instruction, and (ii) the check returns true. Let R and I denote the two conditions, respec-

tively. By following this notion, it is possible to formalize the logical equation representing a

false negative (FN), i.e., the error occurs but no log is produced, as FN = ¬R+R · ¬I: the

errors that meet such condition escape the logging mechanism and might lead to unreported

failures, which have been defined in Section 1.4.

Example errors escaping the observed pattern are timing errors, which can alter the

control flow of the program and prevent to reach the checking instruction (¬R is met). For

example, an infinite loop (e.g., caused by the bad management of the variable(s) controlling

a cycle) hangs the program and no information can be logged at all. The analysis of the

accuracy of the logging mechanism, revealed that halt and silent failures, which are the

result of timing errors that propagate to the system interface, represent the most challenging

Chapter 4. Improving Logs for the Analysis of System Failures 88

failure types to detect. Again, these failures distort the control flow of the program in a way

that no information can be logged at all by means of the if pattern. Even the errors that

do not alter the control flow of the program, e.g., content errors, might go unlogged if the

checking instruction returns false (R·¬I is met). This might happen when improper variables

are collected within the block of instructions or it is checked the wrong condition. A poorly-

written checking code might also cause a false failure indication, or false positive (FP), when

the logging function is invoked even if no failure occurs (causing a reported error, as discussed

in Section 1.4). FPs might also occur because of the nature of current logging mechanisms,

which are often conceived for debugging purposes rather than for failure analysis. As a

matter of fact, many errors do not necessarily cause a failure: examples have been proposed

in Figure 1.7. False failure indications are challenging: the analysis of the accuracy of

current logging mechanisms revealed that around 40% of anomalous notifications in the log

do no represent failures. As discussed, such entries have to be filtered in order to perform a

log-based failure analysis. Filtering requires a detailed knowledge of the application domain,

especially if the log is the only available source of information: inaccurate filtering misleads

the failure analysis.

For these reasons, it is crucial to develop a novel approach to logging, which addresses

both false negatives and false positives. Regarding false negatives, the analysis revealed

that the logging mechanism aims to detect errors affecting a block of instructions

by means of a single logging point. However, this is clearly ineffective against the errors

that distort the control flow, and thus escape such logging point. For this reason, it is defined

a precise error model that takes into more comprehensive scenarios that affect systems during

Chapter 4. Improving Logs for the Analysis of System Failures 89

the operational phase. Errors are detected by monitoring the changes in the control flow of

the program by means of the strategic placement of the logging instructions. As for false

positives, the logging mechanism should focus on the errors that propagate outside a block

of instructions and are able to reach the boundary of the system causing a failure: this is

achieved by making the logging mechanisms system-architecture aware.

4.2 Accurate Failure Detection: Rule-Based Logging

The effective placement of logging instructions, in terms of ability to detect control flow

changes and error propagation among blocks, requires knowledge about the structure of the

system. For this reason, a novel logging approach is proposed to face the inefficiency of

current mechanisms. The key aspect of the proposal is to conceive the placement

of logging instructions at design time, because it is possible to leverage the variety of

artifacts that are already available at this stage. This approach is different from the current

practice in the implementation of the logging mechanism. As a matter of fact, programmers

usually postpone the implementation of the logging mechanism to the last stages of the

development cycle (according to inefficient patterns and with no systematic strategy). Rule-

based logging drives the implementation of the logging mechanism with the knowledge of

the system structure by means of precise rules. The rules avoid the inaccuracy in the coding

of the logging instructions caused by the programming skills of individual developers.

High- and low- level design artifacts produced at design time (e.g., system conceptual

model, architectural model, and UML diagrams), are used to define a system representa-

tion model which identifies the main entities of the system and interactions among them.

Chapter 4. Improving Logs for the Analysis of System Failures 90

Figure 4.4: Rule-based logging approach: overview

Then, a set of logging rules drives the unambiguous placement of the logging instructions

within the entities. The rules are defined so to ensure that all the data needed to perform

the failure analysis (e.g., error notifications coming from system entities and propagation

traces) is provided by the event log.

The approach at-a-glance, denoted as rule-based logging, is shown in Figure 4.4,

where it is emphasized the use of design artifacts to obtain the system representation.

The representation is used to drive the placement of logging instructions in the source

code of the system, according to the logging rules. The idea of leveraging design artifacts

adds a novel flavor to logs, which become system structure-aware. Logs have been often

used to determine dependability bottlenecks, and error propagation traces: includinging the

system structure in the log increases the level of trust on this type of analysis. The use

of design artifacts provides generality to the approach, because such representations are

Chapter 4. Improving Logs for the Analysis of System Failures 91

Figure 4.5: Representation model based on the high-level architecture of Open DDS.

produced for any notable software system, at different levels of abstraction, and irrespective

of implementation choices, such as programming language and technologies. The adoption of

rules allows placing the logging instructions by means of code-parsing tools, or model-driven

approaches based on the system representation and with almost no human intervention.

In the following, the representation model, and the assumptions on the entity error modes

inspiring the logging rules are presented.

4.2.1 System Representation

The representation model identifies a set of entities, i.e., the portions of the system in

hands that designers wish to analyze via logging. The identification of the entities is based

on the variety of high- and low-level artifacts produced during the design phase of the

system [94]. For example, entities can encompass an entire software layer or smaller modules

within the same layer of a high-level architectural view of the system. Figure 4.5 reports

such an example with reference to the Open DDS middleware taken from the available

Chapter 4. Improving Logs for the Analysis of System Failures 92

Figure 4.6: Representation based on modules and interactions of the Apache Web Server.

documentation2. Even by adopting a basic architectural schema it has been possible to

select a set of entities. Similarly, the identification of the entities can be determined by

finer-grain views of the system, in terms of components, packages, or even single classes,

e.g., UML class diagrams [95]. Figure 4.6 shows the entities selected via a diagram of the

modules3 of the Apache Web Server.

It is worth nothing that the representation model can be supplemented by other types

of data. For example, in case of safety-critical domains, the results of a Failure Modes

and Effect Analysis (FMEA) might suggest the selection of the entities based on consider-

ations related to their criticality. Finally, if the design artifacts are not available, or the

logging mechanism has to be applied to the code of an existing system, a reverse engineering

technique can be used to isolate the entities of interest starting from the source code.
2Open DDS, TAO Developer’s Guide Excerpt, http://www.theaceorb.com/product/index.html
3http://www.voneicken.com/courses/ucsb-cs290i-wi02/papers/Concrete_Apache_Arch.htm

Chapter 4. Improving Logs for the Analysis of System Failures 93

1 out service (in){
2 entry; (entry point of the service)
3
4 //block of instructions (local elaborations, interactions)
5
6 dirty_exit;
7
8 //block of instructions (local elaborations, interactions)
9
10 clean_exit;
11 }

Figure 4.7: General service view.

The analysis of the entities in the representation allows determining the points in the

source code of the system where the logging rules have to be applied. Thus, the grain of

the representation (e.g., in terms of number of entities and coverage of the representation

with respect to the components of whole software system) influences the number of logging

instructions in the software: the finer the grain of the representation, the higher the number

of logging statements. Rule-based logging allows to detect the errors occurring in the entities

at runtime, as detailed in the following.

4.2.2 Entity Error Modes

Each entity provides a set of services invoked by external software items, such as other

entities or Off-The-Shelf components. Once invoked, the service initiates a variety of actions

(e.g., local elaborations or concurrent tasks within the entity) and, in many cases, it causes

the control flow to be transferred outside the entity when an external component in invoked,

i.e., interaction. For the sake of clarity, Figure 4.7 provides a general service view (e.g.,

function call or method invocation). The service accepts zero or more input parameters

and encapsulates a sequence of instructions to process the input. The computation can exit

Chapter 4. Improving Logs for the Analysis of System Failures 94

1 timestamp message entity
2
3 07/14/11 14 : 41 : 05 SUP [E8] //startup
4 07/14/11 14 : 41 : 15 SUP [E7]
5 . . .
6 07/14/11 16 : 32 : 40 SER : serA [E2] //service error
7 07/14/11 16 : 32 : 51 IER : intX [E7] //interaction error
8 07/14/11 16 : 32 : 51 IER : intY [E8]
9 . . .

10 07/14/11 18 : 12 : 10 CMP : serB [E4] //service complaint
11 . . .
12 07/14/11 19 : 24 : 31 CER [E2] //crash error
13 07/14/11 19 : 28 : 46 IER : intZ [E1]
14 . . .
15 07/14/11 22 : 15 : 35 SDW [E3] //shutdown

Figure 4.8: Instance of rule-based event log.

either in a clean or in a dirty way. In the former case, the output is returned to the caller; in

the latter, the service might return an error flag. It is worth noting that when a service exit

dirtily it can be reasonably stated that something went wrong during the service execution;

however, a service might return a bad output via a clean exit point.

The rule-based log, differently from current logging approaches, reports error

notifications according to a precise error model. Figure 4.8 shows an instance of such

log, where each entry in the log contains a timestamp, a message, and the entity originating

the error. In the context of this work, error modes are defined at the entity-interface level,

because the aim is to log only the errors that reach the border of the entity and, thus, able

to propagate to the system interface until they cause a failure (e.g., reported failures). The

error modes, described in the following, have been established based on a widely accepted

and reference taxonomy in the dependability area, proposed in [2]:

• Service Error (SER). Service errors are the ones preventing an invoked service to

reach any exit point, either clean or dirty. For example, timing errors belong to this

Chapter 4. Improving Logs for the Analysis of System Failures 95

category: experimental results described in Chapter 3 demonstrated that information

about their occurrence is often missed by traditional logs. A SER entry, in the form

“<timestamp> SER:serA [Ei]", is written in the event log when a service error is

detected for the service named serA provided by Ei. Figure 4.8 (line 6) reports an

instance of this entry.

• Service Complaint (CMP). A complaint error notifies that a service has terminated

via a dirty exit point. A CMP entry, in the form “<timestamp> CMP:serB [Ei]", is

written in the log when a complaint error is observed for the service serB provided

by Ei . Figure 4.8 (line 10) reports an instance of this entry. CMPs enable the

backward compatibility with the traditional logging mechanism, because log events

are commonly collected when the execution reaches a dirty exit point. Furthermore,

CMPs help at detecting if a bad value is the delivered to the caller of the service: bad

output values are usually returned via dirty exit points.

• Interaction Error (IER). The error notifies that an interaction started by an entity

does not terminate, e.g., the invoked software item (entity or OTS component, such as

a library or OS support) does not return the control to the entity. A IER entry, in the

form “<timestamp> IER:intX [Ei]", is written in the log when a failed interaction

started by Ei, i.e., intX, is detected. Figure 4.8 (lines 7, 8, 13) reports instances of

this entry type. Interaction errors allow figuring out whether a problem is local or

external to the entity, thus provide more contextual information about the originating

location of the error. Furthermore, this error type allows monitoring the status of

Chapter 4. Improving Logs for the Analysis of System Failures 96

interactions with system components that do not belong to the representation model,

thus increasing the probability to detect failures.

• Crash Error (CER). Services are not the only mechanism to trigger the computation

within an entity. As discussed, an entity might execute concurrent tasks, such as

internal threads or the main() loop of the program, independently from the invocation

of any service. A crash error (Figure 4.8, line 12) denotes the unexpected stop of the

entity (e.g., the OS process encapsulating the entity crashes) and, given an entity Ei,

it is notified via a “<timestamp> CER [Ei]" entry in the event log.

Again, it must be noted that errors are defined at the entity-interface level to make

the event log suitable to conduct a failure analysis; however, whenever other objectives

are pursued, e.g., debugging, further error modes can be added to the model. In order

to allow the precise estimation of some dependability figures, such as availability, start-up,

and shutdown entries are introduced in the event log. Let Ei be an entity of the system.

The start-up entry, in the form “<timestamp> SUP [Ei]", e.g., Figure 4.8 (lines 1,2), is

produced when Ei starts to run. Similarly, the shutdown entry, in the form “<timestamp>

SDW [Ei]", e.g., Figure 4.8 (lines 15), is logged when the execution of Ei ends. SUP and

SDW allow computing up- and down-time intervals at entity-grain level, and discriminating

clean from dirty reboots, as proposed by studies on operating systems [7, 96] (e.g., two

consecutive SUP can be assumed as evidence of a dirty reboot). This approach allow estimate

dependability attributes both at component and system level.

Chapter 4. Improving Logs for the Analysis of System Failures 97

The described entries allow establishing the occurrence of anomalous events and discrim-

inating services from interaction errors: this makes it possible to achieve strong insights into

the error propagation traces in case of failures. Propagation traces augment the semantic

of the logging mechanism with determination capabilities (i.e., the ability to detect prob-

lems and isolating their root causes [97, 98]) and allows monitoring the interactions towards

the software that do not belong to representation. Overall this information significantly

enhances log-based failure analysis.

4.2.3 Logging Rules and Event Processing

A mechanism consisting of precise rules that regulate the implementation of the logging

instructions, has been designed to detect the described errors. Each rule defines what to

log, i.e., in terms of log events, and where to log, i.e., points in the source code of the

entity where the events have to be introduced. Log events allow monitoring the control

flow of the program. For this reason, differently from the traditional approaches, events

are not immediately written in a log file, but are processed at a higher level. Processing

is performed on-the-fly by a framework named Logbus, which is in charge to produce rule-

based logs, such as the one shown in Figure 4.8. Logbus has been developed in the context of

an academic-industrial collaboration, in the framework of the mentioned COSMIC project

(Section 1.3). The Logbus infrastructure will be presented in Section 4.3. Let rb_log(),

e.g., Figure 4.9b - line 4, be the support function delivering a log event to the Logbus: the

placement of log events with reference to C++ code, and how the events are processed to

detect the described entity errors is discussed in the following.

Chapter 4. Improving Logs for the Analysis of System Failures 98

1 (a) General view (b) Reference example
2
3 out service (in){ int serA (int∗ ptr){
4 entry; <- - - - - - - - - - - -> rb_log(SST, serA) ; //LR-1
5
6 //block of instructions if (∗ptr<0){
7 rb_log(CMP, serA) ; //LR-3
8 dirty_exit; <- - - - - - - - - - - -> return -1;
9 }
10 //block of instructions
11 rb_log(IST, intX) ; //LR-4
12 //interaction <- - - - - - - - - - - -> int x=b . intX (∗ ptr) ;
13 rb_log(IEN,intX) ; //LR-5
14 //block of instructions
15 rb_log(SEN, serA) ; //LR-2
16 clean_exit; <- - - - - - - - - - - -> return x;
17 } }

Figure 4.9: Rule-based placement of log invocations.

Service Events

These events detect service-related errors, i.e., service errors and service complaints. The

following pair of logging rules (LR), and associated events, are defined to allow the generation

of a SER entry in the event log:

• LR-1. "Service STart” (SST): the SST event has to be logged as first instruction of

the service (Figure 4.9b - line 4). The event, if logged, provides the evidence that the

entity initiated the execution of the service, i.e., the control flow has been transferred

to the entity.

• LR-2. "Service ENd” (SEN): the SEN event notifying the termination of the service

has to be logged immediately before each clean exit point of the service (Figure 4.9b -

line 15). The event, once logged, provides the evidence that the entity completed the

execution of the service.

Chapter 4. Improving Logs for the Analysis of System Failures 99

The use of the (SST,SEN) pair overcomes the implementation pitfall of the logging

mechanism discussed in Section 4.1, which aims to log an error by means of a single

logging point. The described pair of events detect errors as follows. The SST event is logged

once the service has been invoked; however, if an error, e.g., timing, occurs during the

execution of the service (e.g., the triggering of an infinite loop), the control flow is altered

in a way that the SEN event cannot be reached. Differently from the traditional logging

mechanism, the change in the control flow of the program is detected by means of the lack

of the SEN event, which is the symptom that the service error, i.e., SER, has occurred.

Service errors are detected via a timeout-based approach described in the following.

This technique is implemented by the on-agent tool coming with the Logbus infrastructure.

The timestamps of the SST and SEN event, logged at each error-free invocation of the service,

allow to profiling the expected duration, i.e., ∆, of the service. The ∆ parameter is computed

with the following equation

∆ = (1− α)∆ + α∆l (4.1)

where ∆l is the last duration estimate (obtained by subtracting the timestamp of the SST

from the one of the SEN event at the last service invocation), and the α parameter is small

to take into account the history in the changing tendency of ∆. It is worth nothing that

such technique is used by several scheduling algorithms to estimate the execution time of OS

processes [99]. Figure 4.10b shows how the Equation 4.1 is used to estimate the expected

duration, i.e., ∆serA, of an example service named serA. A service error is detected, and

notified with a SER entry in the event log, if the SEN event is not observed within nS · ∆

Chapter 4. Improving Logs for the Analysis of System Failures 100

(a) Log event flow
of an entity.

(b) Log event processing via the
Logbus infrastructure.

Figure 4.10: Rule-based logging and error detection

(with nS > 1) time units since the related SST. As for service complaint, the following

rule has been defined:

• LR-3. "service CoMPlaint” (CMP): the CMP event has to be logged immediately before

each dirty exit point of the service (Figure 4.9b - line 7).

CMP events are introduced in the points of the source code, such as “return -1" or “catch"

blocks, representing dirty exit points. The Logbus infrastructure appends the CMP entry to

the event log if such event is observed in the flow of the entity, without further processing.

The CMP event notifies the termination of the service (even if erroneous) thus no SER entry

is written in the event log.

Interaction Events

Interaction events has been designed to detect interaction errors, i.e., IER (discussed in

Section 4.2.2), and encompass the following pair of rules:

Chapter 4. Improving Logs for the Analysis of System Failures 101

• LR-4. “Interaction STart” (IST): the IST event has to be logged immediately before

an interaction (Figure 4.9b - line 11). The event, if logged, provides the evidence that

the interaction has been invoked by the entity, i.e., the control flow of the entity has

reached the invocation point of the interaction.

• LR-5. “Interaction ENd” (IEN): the IEN event has to be logged immediately after an

interaction (Figure 4.9b - line 13). The event, if logged, provides evidence that the

control is returned to the entity.

No other instruction, if not the interaction, is allowed within the triple (IST,interaction,IEN).

These rules allow detecting errors affecting interactions as follows. The IST event is logged

once the interaction is invoked. If the interaction halts during the execution, e.g., an error

occurs within the invoked piece of code, the IEN event might not be observed. For example,

let intX be an interaction started during the execution of the service serA (Figure 4.9b, line

12). If intX is a blocking call that never returns the control, serA halts; furthermore, the

expected EIE event is not logged, thus helping the diagnosis of the problem.

Interaction errors are detected via the timeout-based approach described above; in

this case, ∆ (Equation 4.1) is the expected duration of an interaction, and it is profiled

by observing the timestamp of the IST and IEN events at each error-free execution of the

interaction (e.g., ∆intX - Figure 4.10b). An interaction error entry, again, IER, is written in

the event log by the Logbus infrastructure when the interaction exceeds nI ·∆ (with nI > 1)

time units the expected duration.

Chapter 4. Improving Logs for the Analysis of System Failures 102

Life-cycle Events

An entity can execute concurrent tasks, independently from the invocation of services and

interactions. Such tasks might cause errors, which are addressed by the following life-cycle

rule category:

• LR-6. “Start UP” (SUP): the SUP event has to be logged as first instruction executed

by an entity, i.e., at startup-time. The event allows establishing the time the entity

started its execution.

• LR-7. “HearTBeat” (HTB): the logging rule forces the entity to periodically log a

heartbeat event, independently from the services execution.

• LR-8. “Shut DoWn” (SDW): the SDW event has to be logged as last instruction exe-

cuted by an entity, i.e., at shutdown-time. The event allows establishing the time the

entity halted.

Similarly to the CMP event, the Logbus infrastructure appends a SUP or SDW entry to the

event log with no further processing, when such events are observed in the flow of the entity.

The heartbeat rule makes it possible to detect crash errors, i.e., CER. The expected duration

of the heartbeat period is profiled by the Logbus via the timestamps of two subsequent HTB

events (e.g., Figure 4.10b). A CER entry is written in the log if no HTB message is received

within nH ·∆ (with nH > 1) time units since the last HTB.

Chapter 4. Improving Logs for the Analysis of System Failures 103

4.3 Failure Data Production and Management: the Logbus
Infrastructure

Accurate failure detection is crucial to log-based analysis. Nevertheless, the detection abil-

ity, even if important, is not the only aspect concerning the effective use of event logs. Once

the logging mechanism detects an event, entries notifying the event must be made available

to engineers. The common practice is to store the entries in a file available at the location

hosting the component that detected the event. Since distributed computing is on a growing

path, files might be at different locations. For example, the startup of the ATC applica-

tion discussed in Section 1.3, encompasses 34 log files produced by application components,

middleware support, operating system. Centralizing the entries collected by multiple com-

ponents at a single location is important, because, as shown by the analysis of the coverage

of TAO Open DDS (discussed in Section 3.4.1), it increases the chance to detect the

occurrence of a failure. Furthermore, it avoids the manual retrieving of the data sources,

thus making the analysis of the log easier. For this reason, there exist a variety of protocols

supporting the collection of the log at different locations and providing permanent storage

capabilities. It is worth noting that, due to the large scale of current systems, heterogeneous

logging technologies might be adopted at the same time.

Logbus has been designed to manage log entries produced by the components of complex

distributed systems. They encompass (i) legacy entries, i.e., the variety of entries produced

by the traditional logging mechanisms adopted by the system at different layers and across

different nodes, and (ii) rule-based entries, i.e., the ones produced by the logging mechanism

described in Section 4.2. Logbus provides a log-centralization support, which masquerades

Chapter 4. Improving Logs for the Analysis of System Failures 104

Figure 4.11: Logbus infrastructure: conceptual view.

the heterogeneity of the information produced with different protocols and techniques, and,

differently from current infrastructures discussed in Section 2.1.1, integrates on-line mon-

itoring features that allow supplementing the content of existing event logs when

failures occur. As shown in Section 3.5.1 the introduction of a monitoring process can in-

crease the coverage of the log produced by MySQL DBMS. Figure 4.11 provides a concept

view of the proposed infrastructure. The Logbus transport layer accepts entries produced

by different logging mechanisms via an API.

In the following are presented the key elements of the framework, i.e., the collection API,

the Logbus daemon, and processing tools coming with the infrastructure. Description does

not focus on implementation details, but aims to highlight the novelty aspects which have

been introduced with the framework, such as monitoring capabilities, facilities provided by

the transport layer and event filtering. As discussed, these characteristics are not, or just

Chapter 4. Improving Logs for the Analysis of System Failures 105

partially, addressed by current log-management infrastructures. Logbus has been conceived

as a natural support allowing the runtime processing of rule-based event flows. As discussed

in Section 4.2.3, rule-based events allow monitoring the control flow of the program and are

processed on-the-fly by the Logbus infrastructure. Nevertheless, a subset of the features

provided by the proposed infrastructure, can be used to enhance the failure analysis of sys-

tems allowing some changes (e.g., access to the configuration files, reboot of the components,

deploy of additional processes) that make it possible to integrate the framework. The Log-

bus core infrastructure has been made publicly available4, and it is based on the prototype

implementations described in [100, 101].

4.3.1 Collection of the Log Entries

Entries are collected by means of a Logbus API that exposes the functions to access the

infrastructure. Rule-based entities, which natively include Logbus-compliant code, adopt

the mentioned rb_log() function to send an event over the transport layer. This is shown

in Figure 4.12. However, as above mentioned, Logbus collects entries produced by a variety

of traditional logging mechanisms and protocols. Different solutions might be adopted to

allow legacy components to use the Logbus infrastructure, without applying any change to

the code of the component. For example, it can be designed a component-specific wrapper,

as reported in Figure 4.12 (component C1), that translates the legacy logging code into

a Logbus-compliant version based on the API: this is the solution that has been adopted

to manage the entries produced by the Trace Logging service of the CARDAMOM plat-

form (introduced in Section 1.3). Alternatively, if the legacy logging mechanism already
4http://sourceforge.net/projects/logbus-ng/

Chapter 4. Improving Logs for the Analysis of System Failures 106

Figure 4.12: High-level view of the API (sender-side) and Logbus daemon.

supports the syslog protocol, such as log4net, it is sufficient to modify the configuration

files to redirect events over the Logbus transport layer, without the need to develop further

components. This scenario is indicated by Figure 4.12 (component C2). All the entries

collected by means of the Logbus API are made syslog-compliant. Each entry is

marked with further information (e.g., the pid of the OS process that encapsulates the code

of the component, the IP address of the node hosting the component, the name of the ap-

plication) that differentiates the event flows within the transport layer, and allows analysis

component to filter only the events of interest. The Logbus API is in charge of starting

monitoring threads and processes. For example, it attaches a heartbeat thread to each

rule-based entity, once the SUP event has been logged: this thread generates the HTB event

defined by LR-7 (Section 4.2.3); a monitoring thread/process is attached by the API to the

legacy components that do not support the Logbus natively. A further daemon, allowing to

detect network-related problems, is started for each node of the system by the Logbus API.

Chapter 4. Improving Logs for the Analysis of System Failures 107

4.3.2 Logbus Daemon

The LogBus library underlying the API transmits the events to a centralized Logbus daemon

that abstracts a transport layer between the components producing the events

and the analysis tools presented in the next Section. The daemon is shown in Figure 4.12.

It is not a mere repository/forwarder. As a matter of fact, the daemon encapsulates a variety

of support services, each implemented as a plugin component, such as permanent event

storage, ping mechanisms, load profile information, that allow supplementing the content of

existing logs and improving the overall analysis. The Logbus daemon generates new events

starting from the one received by the system components. In other words, it generates

additional knowledge about the behavior of the system. For example, the Logbus produces

a crash message if no more HTBs are received for the monitored component, but the

node where the component is located replies to ping messages sent by the Logbus daemon;

similarly, the unreachable message is produced if no HTBs are received, and the hosting

node does not reply to ping messages.

4.3.3 Processing Tools

A variety of components can be implemented to receive events from the Logbus daemon and

to perform different types of log-based analysis. Components can subscribe only the classes

of entries they are interested in, by means of a filtering mechanism that is provided by the

Logbus API (at the receiver-side). Filtering supports boolean and regular expressions. This

approach makes it possible to design specific tools, just doing a part of the whole FFDA

analysis but doing it in an effective way; output coming from different components can be

Chapter 4. Improving Logs for the Analysis of System Failures 108

Figure 4.13: Examples of currently available pluggable components.

combined to produce value-added information. Furthermore, the adoption of a common

syslog-based message format makes it possible to reuse analysis tools. Some of the currently

available analysis tools, that are reported in Figure 4.13, are described in the following. It

is worth noting that they represent a subset of potential tools, because Logbus is an open

platform, which makes it possible to connect components provided by third-party.

On-agent (ONline Alerts GENeraTor) generates the rule-based error entries. It consists

of a set of monitors and a logger component. Each monitor subscribes rule-based events

coming from a unique entity of the system and implements the timeout-based detection

approach (described in Section 4.2.3) to pinpoint errors affecting entities. In order to tolerate

events loss caused by network issues, e.g., congestion, each monitor queries the Logbus

permanent storage service (i.e., to figure out whether the event has been actually logged or

dropped by the network) prior a timeout-based error is produced.

Chapter 4. Improving Logs for the Analysis of System Failures 109

The logger component is the one in charge of maintaining a log file, i.e., the Rule-

Based (RB) log, conceived to perform dependability analyses. Error entries (i.e., service,

interaction and crash errors), startup, shutdown and complaint events are written in this

centralized event log of the system. An example log produced by the logger component

has been shown in Figure 4.8.

Statistics manages a set of variables, that are updated when some events are observed,

e.g., life-cycle and errors events. This information allows estimating (i) uptime, downtime

(i.e., the time between a SDW and a SUP), and failtime (i.e., the time between a SER

(or CMP) and a SUP when no SDW event has been experienced between them) (ii) SUP,

SDW and error counts and, (iii) availability for each entity. Statistics provides a snapshot

for the overall system, which evolves at runtime when new events occur. The recovery

component uses Logbus-generated events to initiate recovery actions at process/node level.

For example, it can restart a failed process when the crash event is notified by the Logbus.

4.4 Correlating Failure Data in the Event Log

Collection infrastructures (e.g., the syslog protocol or the proposed Logbus framework)

allow centralizing log entries at a unique location. As discussed, this approach increases the

chance to detect failures and reduces, if not eliminate, the time it takes to retrieve the data

from individual locations. As a result of the centralization, entries produced by a variety

of computing entities (e.g., processes, application components, nodes) interleave

in the collected system log. This characteristic is exacerbated in the context of current

systems, because distributed computing has been on a growing path over the past decades

Chapter 4. Improving Logs for the Analysis of System Failures 110

1 timestamp node message
2
3 1177454190 tg−c407 + Mem Error Detail : Physical Address : ∗ Mask : ∗
4 Node : ∗ Card : ∗ Module : ∗ Bank : ∗ Device : ∗
5 Row : ∗ Column : ∗
6
7 1177454208 tg−c401 +BEGIN HARDWARE ERROR STATE AT CPE

Figure 4.14: Examples of entries in the log close in time.

[13]. Internet applications, large-scale computer infrastructures, supercomputers, which

are commonly targeted by log-based failure analysis studies, are composed by hundreds or

thousands of entities that interact to provide complex services: an error affecting an entity

might propagate within the system and generate multiple notifications in the log [22, 4]

and, in many cases, over short time intervals. For the sake of clarity, Figure 4.14 reports

example entries taken from the log of a supercomputing system that is discussed later in

dissertation. The entries are generated by two distinct computing entities of the system,

i.e., the nodes called tg-c407 and tg-c401, and the temporal distance between the entries

is just 18s. This configuration of the entries might be the result of an error propagation

phenomenon. However, there is no discernible relationship between the two entries: they

might be close just by coincidence and report about two independent problems.

The correct identification of correlated notifications in the log is of paramount

importance, because it allows establishing the failure data points and inferring a

more realistic knowledge about the failures. As a result, it makes it possible to achieve

better insights into the behavior of the system, and leads to more accurate dependability

characterization. A technique to support the discrimination of correlated from independent

error notifications in the log, is discussed in the following.

Chapter 4. Improving Logs for the Analysis of System Failures 111

Figure 4.15: Example of misgrouping of events in the log.

4.4.1 Problem Statement

The tuple heuristic, that has been extensively discussed in Section 2.1.2, is the most

adopted strategy to group the entries in the log that are likely to represent the manifestation

of the same failure. As discussed, the intuition underlying the heuristic is that two entries in

the log, if related to the same fault activation, are likely to occur near in time. Consequently,

if their time distance is below a predetermined threshold, i.e., the coalescence window, they

are placed in the same group (called tuple). This approach has been originally developed

and validated in the context of centralized and small-sized systems, such as Tandem [102].

In these studies, the coalescence window, determined via a sensitivity analysis, is selected to

group log entries into tuples. The tuples provide a reasonable approximation of the number

of failures that occur during the time the log has been collected.

However, an incorrectly selected coalescence window (either too narrow or too wide) for

generating tuples can lead to inaccurate failure analysis. The identification of a proper coa-

lescence window becomes particularly difficult when analyzing the log of systems composed

by hundreds or thousands of computing entities. For example, let N1 and N3 be two distinct

Chapter 4. Improving Logs for the Analysis of System Failures 112

entities logging the events e1, e2, e3, and e4, e5, respectively, as depicted in Figure 4.15. It

can be noted that the entries interleave in the system log and, for the coalescence window W,

they would be grouped in the same tuple T1. There might be two cases that lead to the same

configuration of the entries, i.e., the entries are triggered by (i) one fault, whose effects prop-

agate between the entities, (ii) two independent faults, which just occur coincidentally, i.e.,

they are triggered near the same time. The latter case is referred as collision5 and represents

an example of incorrect grouping. Collisions are challenging in case of systems composed

by many distributed entities, as the chance of independent faults occurring coincidentally is

not negligible. Furthermore, it is difficult in practice to differentiate between collisions and

propagated errors solely by means of the temporal information of the entries in the event

log. Even by resorting to finer-grain failure analysis, collisions might still impact results [4].

Furthermore, this strategy provides a more detailed view of the system and makes it hard

to characterize the dependencies among the entities.

4.4.2 Identification of Correlated Entries

The intuition underlying the grouping strategy proposed in the thesis is that two subsequent

entries in the log (generated by different entities of the system) should be placed in the same

tuple if both following conditions hold: (i) the two entries are close in time, and (ii) they

exhibit a certain degree of correlation. This approach improves the traditional grouping

heuristic, which is based on a purely-temporal criteria, by introducing a statistical indicator

aiming to pinpoint correlated entries in the log.
5The technique focuses on the collisions among the entities. As shown by [22], the tuple heuristic is a

good strategy to group the entries produced by a single entity.

Chapter 4. Improving Logs for the Analysis of System Failures 113

The former condition, i.e., “entries are close in time” is based on the tuple heuristic.

More in details, it is performed a sensitivity analysis of the log to identify the coalescence

window W. The entries are assumed to be close enough in time if their distance is shorter

than W. The latter condition, i.e., “entries exhibit a certain degree of correlation” represents

the novelty aspect of the proposed grouping technique. In the following, it is discussed how

to evaluate the degree of correlation between two entries and how this information can be

combined with the basic tuple heuristic to improve event grouping.

Evaluating the Degree of Correlation

The grouping achieved with the tuple heuristic for a reasonable value of the coalescence

window is used as a basis to evaluate the degree of correlation between two entries. For the

sake of brevity, given an entry ei in the log, t(ei), h(ei), and m(ei), denote the timestamp,

the originating entity and the message of the entry, respectively.

The lift indicator [103], used in the context of data mining analysis, provides a

suitable metric to assess the degree of correlation. More specifically, given a database

of transactions, each of them consisting of a sequence of items, the lift measures how many

times two item-sets occur together more often than expected as if they were statistically

independent. The same concept can be easily mapped in the context of this problem: each

tuple is assumed to be a transaction and the entries they contain to be items. Let ei and ej

be two entries in the log, with h(ei) 6= h(ej). It is hypothesized that if a correlation degree

exists between the entries ei and ej , i.e., the entries share a common fault origin, it is likely

that a significant (in statistical terms) number of tuples will contain both the entries. For

Chapter 4. Improving Logs for the Analysis of System Failures 114

Figure 4.16: Sensitivity analysis of the lift parameter.

this reason the algorithm is based on the estimation of the quantities Ni, Nj , Ni,j , i.e., the

number of tuples containing (i) m(ei) generated by h(ei), (ii) m(ej) generated by h(ej), (iii)

both the entries. GivenN the total number of tuples, the following probabilities are assessed,

i.e., P (ei) = Ni
N , P (ej) = Nj

N and P (ei, ej) = Ni,j
N . Lift is estimated as l = P (e1,e2)

P (e1)·P (e2) . This

indicator has been already used in the area of log-based failure analysis, e.g., [69], [87].

Lift can assume any value greater than 0. The greater the lift, the higher the probability

for the entries of being correlated. A sensitivity analysis is performed to understand how the

values of the lift vary with respect to the available datasets. In particular, it is estimated

the lift for each pair of subsequent entries in the log produced by different entities. Section

4.4.3 will show that, since the log is parsed sequentially when applying the heuristic, these

values of the lift are used to group the entries. Figure 5.17 provides a concept example

plot (adapted from the real data log discussed later in the presentation) showing how the

number of pairs of entries (y-axis) exhibiting a specific value of the lift (x-axis) is likely

to vary. The plot reported in Figure 5.17 shows that most of the pairs exhibit low values

Chapter 4. Improving Logs for the Analysis of System Failures 115

of the lift, i.e., the values in the left part of each plot. These finding indicates how to

select a lift value representing a suitable correlation threshold, i.e., L in the following, to

discriminate between related and unrelated entries; given a pair of entries, if the value of

the lift is greater than L, the entries are assumed to be correlated. As discussed, the left

part of the plot reporting the sensitivity analysis consists of pairs of unrelated entries. The

correlation threshold represents a border value between this part of the plot (where

most of the pairs converge), and the one containing the pairs exhibiting increasing values

of the lift. According to the distribution reported in Figure 5.17, L=30 would be a suitable

threshold value.

4.4.3 Lift-based Grouping Heuristic

The adoption of the lift indicator is integrated into the basic tuple heuristic. Figure 4.17

presents the proposed algorithm in a C-like pseudocode. In addition to the notation intro-

duced in Section 4.4.2, “←” indicates the introduction of an entry in a tuple, and last(t),

with t denoting a tuple, returns the last entry of the tuple t. Inputs to the algorithm (lines

2-4 in Figure 4.17) consist of: (i) the set of the entries to be grouped, (ii) the coalescence

window W estimated via the curve “knee” rule, (iii) the correlation threshold L determined

via the sensitivity analysis conducted as described in Section 4.4.2. The grouping of the

entries established with the basic tuple heuristic is available during the execution of the

proposed algorithm; as discussed, it is used to estimate the lift between a pair of entries

in the log (line 15). The set of the entries to be grouped, E, is parsed sequentially as

in the basic heuristic (line 9). Each time an entry ei is processed, it is identied the set of

Chapter 4. Improving Logs for the Analysis of System Failures 116

1 input:
2 1.) E = {e1, e2, ..., eN} − entries to be grouped
3 2.) W − coalescence window
4 3.) L − association threshold
5
6 id = 1, grouped = false;
7 tupleid ← e1;
8
9 for i = 2...|E| {

10 grouped = false;
11 X = {set of tuples x : t(ei)− t(last(x)) < W}
12
13 if(|X|! = 0){
14 for j = 1...|X| {
15 l = lift(ei, last(xj));
16
17 if(h(ei) == h(last(xj))){
18 xj ← ei; grouped = true;
19 }
20 if(h(ei)! = h(last(xj)) && l ≥ L){
21 xj ← ei; grouped = true;
22 }
23 }
24 }
25
26 if(grouped == false){
27 id = id+ 1; tupleid ← ei;
28 }
29 }

Figure 4.17: Lift-based grouping heuristic

tuples, X, created until that instant of the execution, which satisfy the temporal criteria

based on the use of the coalescence window (line 11). Each tuple in X (line 14) is analyzed

and ei is added to the first tuple in X that satisfies one of the criteria shown in line 17 and

20. More specifically, if (i) the same entity generates the entries, the ei is assigned to the

tuple by relying solely on the timing information (recall that, as stated in Section 4.4.1, it is

assumed that the tuple heuristic is enough in case of a single entity), (ii) two distinct entities

generate the entries the lift is compared with L. If no criteria is matched for any tuple in X,

Chapter 4. Improving Logs for the Analysis of System Failures 117

A

t1

(1)

t1 t2

(2)

T1
A B

X={T1}
lift(B,A) < L
T2 is created

T1

T2

t1 t2 t3

(3)

T1
A B A

X={T1, T2}
lift(A,B) < L
A is grouped with T1

T2
initial state

W

Figure 4.18: Example of grouping of the entries

a new tuple is created (line 26). An example in Figure 4.18 is used to illustrate the need for

creating a set X, rather than just trying to add an entry to the last created tuple. Let A

and B be entries in the log generated by two different entities. A and B have a low degree of

correlation, i.e., lower than L, but are close in time (their time difference is lower than that

of the coalescence window W reported in the figure). Figure 4.18 (1) represents the initial

state of the algorithm. When the event B, occurring at t2, is processed (Figure 4.18 (2)),

since the lift with A is low, the new tuple T2 is created. Let A occur again at t3 (Figure

4.18 (3)). The set X (which includes all the tuples to which A could be potentially added

solely relying on W) contains T1 and T2. Since A and B are not related, and both the events

A are generated by the same entity, A is assigned to T1.

The proposed algorithm to group entries in the log allows differentiating mul-

tiple interleaving failure dynamics, and to infer a more realistic knowledge about the

failures. This significantly improves the failure analysis leading to more accurate measure-

ments and allowing a precise diagnosis and identification of failing system components.

Tutto il nostro sapere ha origine dalle
nostre percezioni.
Overall our knowledge comes from our
perceptions.

Leonardo da Vinci

Chapter 5

Experimental Results

Techniques proposed in the thesis have been designed to make event logs effective to infer failure data:
the benefits that can be achieved by adopting the techniques are shown here by means of experiments
conducted in the context of real-world, complex distributed systems. First of all, it is demonstrated
that rule-based logging is a strongly accurate at detecting failures. Software faults injected into the
Apache Web Server and TAO Open DDS show that, as opposite to traditional logging mechanisms,
the proposed approach logs around 92% of failures at almost no false positives. Improvement is
significant, because rule-based logs detect around 60% more failures when compared to traditional
ones. The proposed logging approach is combined with the Logbus framework to characterize de-
pendability attributes of a distributed system in a long-running experiment. The framework allows
gaining in-depth visibility of the dependability behavior of the system and its individual components:
this information would have been hard to be inferred solely from traditional event logs. Further-
more, experiments demonstrate that inferring the failure data by taking into account the correlation
among the entries in the log, allows achieving better measurement. The use of the lift-based grouping
heuristic to pinpoint the occurrence of failures in the log of a supercomputing system, reveals that
traditional approaches underestimate the actual number of failures and distort measurements, such
as the MTBF, by more that 11.5%.

5.1 Accuracy of the Rule-Based Logging Mechanism

Accuracy of rule-based logs at reporting failures, e.g., in terms of coverage, or precision

parameter (as discussed in Section 3.2), is assessed by means of software fault injection ex-

periments. The evaluation framework has been described in Section 3.1: software faults aim

to introduce a failure behavior in the platform under-test in order to exercise the logging

mechanism. The objective of the analysis is (i) to evaluate the detection ability that can

118

Chapter 5. Experimental Results 119

be achieved by means of the proposed rule-based logging approach and (ii) to compare ob-

tained results with the ones observed for the traditional logging mechanism, which has been

extensively discussed in Chapter 3. Comparison between traditional and rule-based logging

mechanism is performed in the context of two software platforms: Apache Web Server and

TAO Open DDS. These systems differ in terms of (i) mission, i.e., a standalone server and

a distributed middleware platform enabling the development of message-based distributed

applications, (ii) programming language/styles, i.e., procedural C code and object-oriented

C++ code, (iii) OS-level architecture, i.e., a standalone server application and a shared mid-

dleware library that is linked to the developer-provided code. The different features of the

software allow achieving a more comprehensive picture of the logging mechanism.

The original source code of each software platform has been augmented with the logging

rules described in Section 4.2.3. Then, the same set of faults that has been used to evaluate

the traditional logging mechanism implemented by each platform (the breakup of the exper-

iments by fault operator is reported in Table 3.2 and 3.4, for Apache Web Server and TAO

Open DDS, respectively) is injected in the rules-enhanced code. The Logbus infrastructure

processes the rule-based log events produced during each fault injection experiment: the

error detection parameters have been set to nS = nI = nH = 3, which are large enough to

take into account the event transmission delay caused by the network, and α is set to 0.2,

to spread out the averaging of the expected duration parameter (∆ in Equation 4.1) over

the eight most recent observations [99]. Experiments have been conducted by running the

software under the Linux OS. The machines of the testbed are Intel Pentium 4 3.2 GHz,

4GB RAM, 1,000 Mb/s Network Interface equipped. An Ethernet LAN connects the nodes.

Chapter 5. Experimental Results 120

Table 5.1: Apache Web Sever: system representation and breakup of the fault injection (f.i.)
experiments.

entity SER INT CMP #f.i.
id file(s) exp.
E0 http_protocol, rfc1413 20 48 57 1,164
E1 http_main 9 52 3 1,450
E2 http_config 15 28 9 710
E3 http_request 5 47 12 488
E4 http_core 14 66 18 950
E5 http_vhost 4 16 3 273
files not included in the representation
alloc, buff, http_log, ... 3,165
total 67 247 102 8,200

5.1.1 Case Study 1: Apache Web Server

Apache Web Server has been instrumented with the logging rules beforehand. To this aim,

it has been adopted the system representation model shown in Figure 4.6. The representa-

tion encompasses the configuration and http-request handling code of the Web Server that

represent critical portions of the system. Table 5.1 (column 1) summarizes the entities of

the representation, and indicates the files of the software distribution implementing them.

For each entity, the number of services, interactions and complaints (i.e., dirty service exit

points) is reported. The campaign encompasses total 8,200 fault injection experiments. The

rightmost column of Table 5.1 reports an alternative view of the faults injected in the Web

Server when compared to Table 3.2: in this case the total number of faults is broken down

by entity and code that has not been included in the representation. It can be noted that

a fine-grain model has been adopted in the case study, i.e., each entity has been related to

almost one source file. Furthermore, faults have been injected in all the code of the Web

Chapter 5. Experimental Results 121

Figure 5.1: Apache Web Server: testbed and Logbus infrastructure.

Server, despite the representation model (and, thus, the extent of the logging rules) does

not cover all the files of the distribution. Experiments show that the rule-based mechanism

provides entries in the log even if the fault that caused the failure is located in a piece of a

code that does not belong to the representation.

The components that have been deployed to evaluate the rule-based logging mechanism

are shown in Figure 5.1. Again, the workload generator, i.e., httperf tool, and Apache Web

Server are deployed on node 1 and 2, respectively. Furthermore, the testbed encompasses

the components of the Logbus framework: events produced by Apache Web Server during

the experiments of the campaign are forwarded to the on-agent tool (producing the final

rule-based log) via the Logbus transport layer. For each fault injection experiment the Test

Manager (1) initializes a faulty Web Server version (2) starts the workload generator (3)

once the workload terminates, stops all the components of the testbed and collects experi-

ments data: the rule-based log and the experiment outcome.

Chapter 5. Experimental Results 122

(a) Rule-based. (b) Comparison.

Figure 5.2: Apache Web Server: coverage of the logging mechanism (T=Traditional;
R=Rule-Based).

Coverage and Verbosity

As already mentioned in Section 3.3.1, 1,101 out of 8,200 injected faults caused a failure

outcome during the campaign, i.e., 616 halt, 104 silent, and 381 content. The coverage of

the rule-based logging mechanism is 94.2% (1,037 logged failures out of 1,101 failures). The

coverage obtained with the rule-based mechanism is thus significantly higher

than the traditional one, which was around 34.2%: 60% more failures are detected by

introducing the rule-based strategy.

Figure 5.2a reports the coverage by failure type. It can be observed that 97.2% and

98.1% of halt and silent failures are detected and logged. Again, the rule-based approach

increases the detection capability of timing failures when compared to traditional logs, which

were able to cover only 35.4% and 10.6% of halt and silent failures, respectively. As

opposite to traditional logs (where halt and silent failures distort the control flow of the

program in a way that no information can be logged at all) the introduction of start/end

Chapter 5. Experimental Results 123

Table 5.2: Apache Web Server: verbosity of the rule-based logging mechanism.

failure logged number of entries in the log
type failures average ±std-dev; (min-MAX)
halt (599) 4 ±3; (1-18)

silent (102) 31 ±51; (1-128)
content (336) 14 ±12; (1-42)

average 16

pairs in the source code of the program enhances the detection of timing errors. The rule-

based approach detects 88.2% content failures via complaint events logged at dirty exit

points. Nevertheless, a small number of these failures, i.e., 11.8%, go undetected: in such

cases bad values propagate within the system without causing any perceivable effect. Bad

values can be detected with application-dependent checks and logged as complaints; however,

the use of such checks cannot be formalized in terms of general rules.

Figure 5.2b provides a more detailed comparison between rule-based (RB) and traditional

(T) logging mechanism. All the failures observed during the campaign are divided into 4

classes: those (i) logged by T and RB, (ii) not logged by T but logged by RB, (iii) logged by

T but not logged by RB, (iv) not logged by any of the mechanisms. Let T ∧R, !T ∧R, T∧!R,

and !T∧!R (reported in Figure 5.2b) be such categories. Many of the observed failures (384

halt, 92 silent, and 189 content) can be logged only with the introduction of the rule-

based mechanism. Surprisingly, only total 5 failures are detected solely by the traditional

logging approach (Figure 5.2b, T∧!R class).

In the average (last row of Table 5.2), each failure detected with the rule-based logging

mechanism leads to 16 entries in the log. Again, halt failures results in the smaller number

of entries, i.e., 4. The occurrence of a silent failure causes more entries in the log, i.e.,

Chapter 5. Experimental Results 124

Figure 5.3: Apache Web Server: recall/precision of the rule-based logging mechanism.
(T=Traditional; R=Rule-Based)

31, in the average. The traditional logging mechanism implemented by Apache logged each

failure with average 316 entries in the log (as indicated in Table 3.3): the log generated

with the proposed rules is around 19.7 times smaller.

Recall and Precision

Recall conflicts with the precision parameter in case of the traditional log. For example,

the series lines (T), bytes (T), and words (T) (representing recall and precision in case

of traditional logs, as discussed in Section 3.3.2) indicated that, in order to achieve high

precision, it should be concluded that a failure occurred only when strong error evidence is

observed in the log; however, this lead to many false negatives, i.e., small recall. The event

log produced by the rule-based mechanism overcomes this limitation, as it can be observed

in Figure 5.3 (recall and precision of the words index have been not estimated because rule-

based entries do not come with text messages). The maximum observed value of both the

Chapter 5. Experimental Results 125

Table 5.3: TAO Open DDS: system representation and breakup of the fault injection (f.i.)
experiments.

entity SER INT CMP #f.i.
id example class(es) exp.
E0 Service_Participant, 3 27 3 674

DomainParticipantImpl, ...
E1 PublisherImpl, DataWriterImpl 11 16 3 505
E2 SubscriberImpl, DataReaderImpl 10 29 9 522
E3 TransportImpl, 2 20 0 412

TransportImplFactory, ...
E4 DataLink, DataLinkSet, 6 24 5 210

DataLinkSetMap
E5 SimpleTCPDataLink, 10 10 5 99

SimpleTCPTransport
files not included in the representation
Qos_Helper, TopicImpl, Serializer, TypeSupportImpl, ... 1,721
total 42 126 25 4,123

recall and precision parameter is 0.94 when the threshold K is minimum: differently from

the traditional logging mechanism, the presence of minor evidence in the event log, e.g., just

1 anomalous entry line, is enough to conclude that a failure actually occurred in the system

(high recall). Furthermore, there are only few cases when, despite the presence of an error

entry in the log, no failure had actually occurred in the system (high precision). This result

highlights that the rule-based approach is close to the perfect detector of software failures,

i.e., no false positives and negatives - (1,1) point in Figure 5.3.

5.1.2 Case Study 2: TAO Open DDS

Experiments conducted in the context of TAO Open DDS confirm the findings observed

for Apache Web Server. TAO Open DDS has been instrumented with the logging rules.

Instrumentation is based on the representation shown in Figure 4.5, which focuses on the

Chapter 5. Experimental Results 126

Figure 5.4: TAO Open DDS: testbed and Logbus infrastructure.

architectural components of the DDS implementing the publisher, subscriber, and transport-

layer. Table 5.3 (column 1) shows the entities composing the representation model and, for

each entity, the number of services, interactions and complaints. Differently from Apache

Web Server, entities are composed by a set of classes in this case study: entities are logical

units that represent pieces of the system irrespectively of the implementation details, such

as programming language and/or paradigm. The rightmost column of Table 5.3 reports the

breakup of the 4,123 fault injection experiments by entity and classes that do not belong

to the representation. This is an alternate view of the same set of experiments reported in

Table 3.4. Again, rule-based logs involve a fraction of the source code (around 20 out of

total 80 source files); nevertheless, faults have been injected in all the code.

The testbed shown in Figure 5.4 has been deployed to perform the campaign. Again,

it includes the test DDS application composed by a publisher (PUB) and subscriber (SUB)

process, deployed on node 1 and 2, respectively. Furthermore, the testbed integrates the

components of the Logbus infrastructure. Both the processes of the DDS-based application

Chapter 5. Experimental Results 127

produce rule-based events that are centralized at the node 1 of the testbed by means of

the Logbus. Events are processed on-the-fly by the on-agent tool that implements the

timeout-based error detection. The error entries produced by on-agent are stored in a single

rule-based event log for the entire DDS application. For each experiment the Test Manager,

that runs on node 2, (1) initializes the test application (2) starts the publisher process, i.e.,

the workload generator, and (3) once the workload terminates, stops the testbed components

and collects experiments data: the rule-based event log and the outcome.

Coverage and Verbosity

During the campaign 1,023 out of total 4,123 fault injection experiments caused a failure

outcome (i.e., 356 halt, 597 silent, and 70 content, as discussed in Section 3.4.1). The

rule-based approach logs 911 out of 1,023, failures: the coverage of the logging mechanisms

is thus around 89%. The coverage of the traditional logging mechanism observed for TAO

Open DDS was significantly smaller. As a matter of fact, experiments conducted in Sec-

tion 3.4.1 revealed that the traditional logging approach logs around 33.8% and 29% of

total failures at the publisher and subscriber side, respectively. As a result, the rule-base

approach increases the coverage at the PUB and SUB sides of the DDS appli-

cation by 55.2% and 60%. Furthermore, the coverage of the rule-based mechanism is

higher than the coverage of all the DDS (i.e., the failures logged by either the publisher or

the subscriber), which was around 48.1% (shown in Figure 3.8c): even with a log centraliza-

tion support, the traditional approach would not be able to improve over the rule-based one.

Chapter 5. Experimental Results 128

(a) Rule-based.

(b) Comparison (PUB). (c) Comparison (SUB).

Figure 5.5: Open DDS: coverage of the logging mechanisms (Tp(Ts) = Traditional at
PUB(SUB); R=Rule-Based).

Figure 5.5a reports the breakup of the coverage by failure mode. Most of halt and

silent failures, i.e., 93.8% and 86.9%, respectively, are logged with the proposed rule-based

mechanism: again, the introduction of start/end pairs in the source code of the program

increases the chance to detect timing errors. The coverage of content failures is 82.9%:

in some cases it is not possible to detect the failures that corrupt the messages delivered

to the subscriber. Again, this type of failure might be detected only by introducing very

application-specific checks, that can not be generalized in terms of platform independent

rules. These result confirms the trend observed for the Apache Web Server.

Chapter 5. Experimental Results 129

Table 5.4: TAO Open DDS: verbosity of the rule-based logging mechanism.

failure logged number of entries in the log
type failures average ±std-dev; (min-MAX)
halt (334) 3 ±2; (1-8)

silent (519) 1 ±1; (1-12)
content (58) 1 ±0.4; (1-2)

average 1.6

The comparison between traditional (T) and rule-based (RB) logs is performed by di-

viding all the failures observed for TAO Open DDS into four classes, i.e., the failures (i)

logged by T and RB, (ii) not logged by T but logged by RB, (iii) logged by T but not

logged by RB, (iv) not logged by any of the mechanisms. Figure 5.5b and 5.5c report the

number of failures belonging to each of the mentioned classes, observed at the publisher

and subscriber side of the DDS, respectively. For example, it can be noted that 243 halt,

308 silent, and 36 content failures, can be logged at the publisher side only by means of

the rule-based mechanism (Figure 5.5b, !Tp ∧R). Only total 22 experiments (Figure 5.5b,

Tp∧!R) are logged exclusively by the traditional logging mechanism. As for the subscriber

side, it can be noted that (i) 195 halt, 394 silent, and 46 content failures (i.e., Figure

5.5c, !Ts∧R) have ben logged only by means of the rule-based approach, and (ii) only total

21 experiments (Figure 5.5c, Ts∧!R) are logged exclusively by the traditional approach.

Table 5.4 reports the average number of entries in the rule-based log notifying the occur-

rence of a failure. In the average (last row of Table 5.4), the rule-based log notifies a failure

with 1.6 entries. Verbosity of the traditional logging mechanism was significantly higher in

TAO Open DDS (Section 3.4.1): a logged failure, in the average, caused the generation of

496 entries, thus, the rule-based log is around 310 times smaller.

Chapter 5. Experimental Results 130

(a) Publisher. (b) Subscriber

Figure 5.6: TAO Open DDS: recall/precision of the rule-based logging mechanisms
(T=Traditional; R=Rule-Based).

Recall and Precision

As observed for Apache Web Server, recall conflicts with the precision parameter in case

of the traditional log. For example, the series lines (T), bytes (T), and words (T) (dis-

cussed in Section 3.4.2, and representing recall and precision in case of traditional logs)

indicate that, in order to achieve high precision, it should be concluded that a failure has

actually occurred only when strong evidence is observed in the log (Figure 5.6).

The rule-based mechanism overcomes this limitation, as shown by the bytes/lines

(R) series in Figure 5.6. Recall and precision are both around 0.9: these values have been

observed when the classification threshold K is minimum, thus confirming the finding that

even a minor evidence in the event log is enough to conclude that a failure has occurred;

nevertheless, this approach does not cause many false positives. Again, the result highlights

that the rule-based logging mechanism is close to the perfect detector in case of failures due

to software faults (Figure 5.6, (1,1) point).

Chapter 5. Experimental Results 131

Figure 5.7: Apache Web Server: performance impact.

5.1.3 Performance Impact of the Logging Rules

As with any technique adding further instructions to the source code of a program, perfor-

mance impact might be experienced because of the introduction of the logging rules. To

assess such impact, the performance of the original version of the software is compared to

the performance of the software adopting the rules. Experiments have been conducted for

Apache Web Server and TAO Open DDS. The focus of the evaluation is the response time

of the software, which is recognized as an effective metrics for performance analysis [104].

Key findings are summarized in the following.

The adopted performance indicator for Apache Web Server is the reply time for a

HTTP request. The reply time has been measured by means of the httperf tool, which is

the workload generator. The reply time has been measured under different load conditions,

i.e., number of HTTP requests / second server by the Web Server. A preliminary test has

been conducted to determine the maximum load it can be applied to the Web Server, i.e.,

the capacity of the server. To this aim the Web Server, when no logging rules are introduced,

Chapter 5. Experimental Results 132

has been exercised with increasing values of the load. Figure 5.7 (No Rules (NR) series)

shows how the reply time varies when the load increases. It can be observed that the reply

time increases sharply when the load reaches 5,000 HttpReq / sec, with the server running

on the testbed machines: this load condition is the upper bound of the experiments.

The reply time of the original and instrumented version of the Web Server is thus assessed

with the load varying in the interval [10; 5,000] HttpReq / sec. As shown in Figure 5.7 (With

Rules (WR) series), the software adopting the logging rules does not show a significant

performance decay with low/medium loads, i.e., ≤500 r/s. A higher impact is observed when

the load is >500 r/s; however, as above discussed, such values of the load approach the server

capacity. Nevertheless, the impact observed with a high load condition is still acceptable. As

a matter of fact, studies on multi-layer workflows (e.g., web searches, content composition,

advertisement selection), state that the target delay of the components implementing the

workflow, such as web servers, should be in the order of 10-100ms [105]. This delay range

is indicated by the dotted lines in Figure 5.7: the software adopting the logging rules meets

the target delay even in the worst case scenario.

The performance impact caused by the logging rules in case of TAO Open DDS has

been assessed by taking into account the load specification of a real Air Traffic Control

application1, where the DDS is used as support middleware. In this application, the DDS

has to transmit an average of 100 messages / sec. In order to achieve a more comprehensive

evaluation of the performance impact introduced by the logging rules in case of TAO Open

DDS, the transmission time of a DDS message (i.e., the time the message takes to be
1Coflight project: http://www.coflight-efdp.com.

Chapter 5. Experimental Results 133

Figure 5.8: TAO Open DDS: performance impact.

transferred from the publisher to the subscriber process) is assessed when the load varies

in the interval [1; 1,000] messages / sec. Figure 5.8 summarizes obtained results: No Rules

(NR) reports the transmission time measured for the original version of the DDS middleware,

while With Rules (WR) indicates the transmission time observed with the version of the

DDS adopting the rules. As shown in Figure 5.8 rules do not affect performance significantly,

because, when compared to Apache, the representation model adopted for DDS leads to the

introduction of a smaller number of logging instructions.

The analysis of the performance impact revealed that in some cases, e.g., Apache Web

Server, the logging rules might impact performance when the load is particularly high. This

is especially true when the software is instrumented at a fine grain of detail. However, it

is possible to reduce the performance impact by introducing a smaller number of logging

statements in the system, as in the case of TAO DDS, without impacting the detection

ability of the logging mechanism. In other terms, there is a trade-off between the

instrumentation grain and the coverage of the logging mechanism, as expected.

Chapter 5. Experimental Results 134

The right compromise has to be found case-by-case, taking into account the non-functional

and performance requirements of the target system.

5.1.4 Extent of the Improvement

Case studies revealed that the rule-based logging mechanism significantly improves the ac-

curacy of event logs: this is a key factor to increase the level of trust on log-based failure

analysis. Main findings of the analysis are summarized in the following:

• Rule-based logging improves the detection of software failures: in the average

(estimated across the case studies) around 92% of failures are reported in the log by

the proposed mechanism: the proposed strategy logs around 60% more failures when

compared to the traditional logging mechanism.

• The rule-based mechanism achieves a high compression rate: in the average,

the rule-based log is around 160 times smaller than the traditional one, as indicated

by the verbosity parameter. Failures are notified with few lines, thus easing the inter-

pretation of the log and tasks, such as diagnosis and maintenance.

• Rule-based logs cause a small number of false positives, i.e., 8%, estimated

across the case studies. The proposed strategy leads to around 32% less false failure

indications when compared to the traditional logging mechanism.

It is worth noting that the applicability of the rule-based approach is restricted by

the availability of design artifacts. Nevertheless, it is possible to use reverse engineering

techniques or to apply post-release patches, to introduce the logging code.

Chapter 5. Experimental Results 135

5.2 Logbus-Based Dependability Characterization

Experimental evaluation demonstrates that the rule-based logging mechanism is an accurate

technique to detect the occurrence of failures. For this reason, the rules and the components

of the Logbus infrastructure have been deployed into a real-world critical software system,

i.e., a Flight Data Plan (FPL) Processor, developed in the framework of the mentioned COS-

MIC project (Section 1.3). Differently from the fault injection-based experiments, which aim

to validate the detection capability of the rule-based logging mechanism by means of star-

and-stop experiments, the experimentation that has been conducted here, allows to compare

the effectiveness of traditional and rule-based event logs to characterize dependability at-

tributes of a system. For this reason, a known failure behavior is emulated in the FPL

Processor application over 32 days: logs collected with both the mechanisms over this period

are analyzed to assess some dependability measures.

The case study exemplifies the use of the Logbus infrastructure in a real system that

adopts replication techniques to increase long-term availability. Furthermore, experiments

demonstrate that the use of an accurate detection and monitoring infrastructure

significantly improves final results, while reducing analysis efforts. The proposed

framework makes it possible to gain in-depth visibility of the dependability behavior of

the system and its individual components. Such information has been made available to

engineers by means of the entity-grain level representation of the system, and it is hard to

be inferred from traditional event logs.

Chapter 5. Experimental Results 136

Server 3

Tester Facade

Server 1

Server 2

FPL Processor

LogBus + Pluggable Components

Trace Logging (TL)

Facade (R)
 LB

DDS

 FPL
interaction
 FDP
LogBus API
 FDP
TL API

Trace Admin
trace
collector trace

collector trace
collector

 Log file/
report

./start.sh

re
bo

ot

Figure 5.9: Case study: FPL Processor.

5.2.1 Air Traffic Control Application

The reference application consists of a real-world software system in the field of the Air

Traffic Control domain. A Flight Data Plan (FPL) Processor has been considered

in the context of this study. FPLs provide information such as a flight expected route, its

current trajectory, vehicle-related information, and meteorological data. The FPL Processor

is developed on the top of an open-source middleware platform named CARDAMOM, which

provides services intended to ease the development of critical software systems. For example,

these include Load Balancer (LB), Replication (R), and Trace Logging (TL) services, used

by the application in hand. The FPL Processor uses a DDS implementation to disseminate

FPLs among the system components.

Chapter 5. Experimental Results 137

Figure 5.9 shows the FPL Processor. It is a CORBA-based distributed object system.

It is composed by a replicated Facade object and a set of processing Servers managed by

the LB. Facade accepts FPL processing requests (i.e., insert, delete, update) supplied by an

external Tester and guarantees data consistency by means of mutual exclusion among re-

quests accessing the same FPL instance. Facade subsequently redirects each allowed request

to 1 out of the 3 processing Server, according to the round robin service policy. The se-

lected server (i) retrieves the specified FPL instance from the DDS middleware (ii) executes

request-related computation, and (iii) returns the updated FPL instance to the Facade ob-

ject. Facade publishes the updated FPL instance and finalizes the request by acknowledging

the Tester component.

Tester object invokes Facade services with a frequency of 1 request per second. Under

this workload condition a request takes about 10 ms to be completed. The Tester object

has been instrumented in order to detect request failures. A timeout-based approach is

adopted to this aim. A time of 15 ms is assumed to be an upper bound for a request to

be completed. Consequently, if a request is not acknowledged within a 50 ms timeout, it

is considered as failed. Due to the replicated nature of both Facade and Server objects,

one request failure does not imply that the mission of the FPL Processor is definitively

compromised. The system may be in a degraded state, but still able to satisfy further

requests. For this reason the mission of the system is assumed to have been definitively

compromised only if 3 consequent requests fail. In this case the Tester object triggers the

FPL Processor reboot via the start.sh bash script. The application reboot time varies

between 300 s and 400 s.

Chapter 5. Experimental Results 138

Machines composing the application testbed (Intel Pentium 4 3.2 GHz, 4 GB RAM,

1,000 Mb/s Network Interface equipped) run a RedHat Linux Enterprise 4. A dedicated

Ethernet LAN interconnects these machines. About 4,000 FPLs instances, each of them of

77,812 bytes, are shared with the DDS. FPL Processor uses the Trace Logging (TL) service

to collect log messages produced by applicative components (Figure 5.9). TL provides a

hierarchical mechanism to collect data. A trace collector daemon is responsible to store

messages coming form processes deployed on the same node. A trace admin process collects

per-node log entries and store these data in a file. Each log entry contains information such

as a timestamp, 1 out of 5 severity levels (i.e., DEBUG, INFO, WARN, ERROR, FATAL), source-

related data (e.g., process/thread id), and a free text message. Data collected via the TL

service are assumed to be an example of traditional logs.

The application code has been instrumented to produce rule-based events and to in-

tegrate the Logbus infrastructure (Figure 5.9). The representation model that has been

adopted in the study consists of entities associated to each FPL object (i.e., Facade and

Serves). Interactions consist of both CORBA-based remote methods invocations and DDS

read/write facilities.

5.2.2 Experimental Setup

The FPL Processor run for about 32 days. During this period a known failure is emulated

into the system. The aim of the experiments is to evaluate if/how traditional and rule-based

logs allow to reconstruct this known dependability behavior. More in details, availability

and failure analyses by using both logs have been performed.

Chapter 5. Experimental Results 139

Table 5.5: Time To Failure (TTF) distributions
Object Distribution
Facade F (t) = 1− e−(0.000001t)0.92

Server S(t) = 1− e−(0.000005t)0.92

FPL Processor objects (i.e., Facade and Servers) have been instrumented to trigger

failures according to the Time To Failure (TTF) distributions shown in Table 5.5 (time

measured in centiseconds). The Weibull distribution is a proper choice because it has shown

to be one of the most used distributions in failure analysis [62]. However, any other reliability

function clearly fits the aim of the experiment. Different scale parameters ensure that Facade

and Servers fail with different rates. When an object failure has to be triggered according

to the current TTF estimate either a crash or a hang has been injected with the same

probability. A faulty piece of code, i.e., a bad pointer manipulation and an infinite wait on

a locked semaphore, is executed to emulate, crashes and hangs failures, respectively. Jointly

with the execution of the faulty code it is recorded the type of the emulated failure, i.e., crash

or hang, as well as the component executing it. An object failure always results in a system

failure in our case study, as the current FPL request does not correctly succeed. Furthermore

an object is not immediately resumed after a crash failure. This is the reason why subsequent

crashes lead progressively to the reboot signal. In this case the FPL Processor as a whole

is restarted. It has been observed that during the 32 days period the FPL Processor is

rebooted 400 times and 2,502 object failures are triggered. Table 5.6 reports the failures

breakup by object. Logs and/or reports produced both by the TL service and pluggable

components are collected to perform the analysis.

Chapter 5. Experimental Results 140

Table 5.6: Failures breakup by object
Object Failures
Facade 260
Server 1 732
Server 2 772
Server 3 738
Total 2,502

5.2.3 Analysis of the Traditional Log

TL log collected during the long-running experiment is about 2.2 MB. The availability of the

FPL Processor is conducted by estimating uptimes and downtimes intervals, as described

in previous works in the area of log-based failure analysis (e.g., [7, 96]). To this aim, for

each reboot occurred during the experiment, are identified the timestamp of (i) the event

notifying the end of the reboot, and (ii) the event immediately preceding the reboot. A

downtime estimate is the difference between the timestamps of the two events. An uptime

estimate is the time interval between two successive downtimes. Uptime and downtime

estimates are used to evaluate system availability by means of Equation 5.1.

A =
∑

i uptimei∑
i uptimei +

∑
i downtimei

· 100% (5.1)

The described approach requires the identification of application reboots from logs. To

this aim TL log is directly inspected in order to identify sequences of log events triggered

by application reboots. Figure 5.10 depicts a simplified version of such a reboot sequence.

The “Startup complete” event identifies the end of the reboot. The event preceding the

“CDMW Finalize” event is assumed to be the one preceding the reboot. An ad-hoc algorithm

automatically extracts (i) reboot events, and (ii) uptime and downtime estimates from TL

Chapter 5. Experimental Results 141

1 2010/26/09 14 : 41 : 05 INFO CDMW Finalize
2 2010/26/09 14 : 41 : 20 INFO Parsing XML Finalize FDPSystem
3 2010/26/09 14 : 41 : 47 INFO FDP Server
4 2010/26/09 14 : 43 : 54 INFO Finalize APP1/Server process
5 . . .
6 [omissis]
7 . . .
8 2010/26/09 14 : 43 : 13 INFO CDMW Init
9 2010/26/09 14 : 43 : 23 INFO Parsing XML Init file FDPSystem
10 2010/26/09 14 : 43 : 27 INFO FDP Server
11 2010/26/09 14 : 43 : 30 INFO Initialize APP1/Server process
12 with XML File
13 2010/26/09 14 : 43 : 40 INFO CDMW init ongoing for APP1/Server
14 2010/26/09 14 : 44 : 10 INFO Acknowledge creation of process
15 APPL1/Server
16 . . .
17 [omissis]
18 . . .
19 2010/26/09 14 : 46 : 44 INFO Acknowledge creation of process
20 APPL4/Facade
21 2010/26/09 14 : 46 : 48 INFO Startup complete

Figure 5.10: FPL Processor reboot sequence (TL log).

Table 5.7: Downtime and uptime estimates: statistics (TL log)
Downtime Uptime

Value 350.2 (±23.6) s 6,740.6 (±4,399.6) s
Minimum 300.1 s 843.4 s
Maximum 400.2 s 32,518.6 s

log. Table 5.7 provides statistics characterizing the estimates. Downtime estimates are close

to the expected reboot time. FPL Processor availability has been estimated according to

Equation 5.1. Equation 5.2 provides AT , i.e., availability based on TL log.

AT =
2, 689, 487.9 s

2, 689, 487.9 s+ 143, 736.5 s
· 100 ≈ 94.9% (5.2)

AT is about 94.9%. Overall downtime is 143,736.5 s. Since a reboot of the FPL Processor

takes about 350.2 s (Table 5.7) and considering that 400 reboots occurred, an overall down-

time estimate is 400 · 350.2s = 140, 080s, which is close to the measured one.

Chapter 5. Experimental Results 142

0	

0,2	

0,4	

0,6	

0,8	

1	

0	 200000	 400000	 600000	 800000	 1000000	

p	

#me	 (cs)	

s_TL(t)	

Figure 5.11: FPL Processor estimated TTF (TL log).

TL log is investigated to characterize failure related data. The analysis reveals that

error conditions and propagations phenomena usually result in the higher severity levels, i.e.,

WARN, ERROR, and FATAL, provided by the TL logging mechanism. An algorithm to extract

failure-related entries from TL log by means of the severity information has been developed:

around 14% of the amount of the collected information, is used to perform failure analysis.

Furthermore, since a component failure might lead to multiple log entries over short time

interval, the entries that are close in time (i.e., less than 5s in the case study) are treated

as the same failure manifestation. The time window have been selected by performing a

sensitivity analysis on the tuple count, and is accurate enough for this system; it is worth

noting that the same assumption might heavily impact results in case of systems composed

by hundreds or thousands computing entities. By using this approach, 1,289 failure data

points have been identified in the log. It should be noted that only 1,289 out of the 2,502

actually emulated failures result from the analysis. An in depth analysis reveals that only

crashes are logged while hangs do not leave any trace in TL log.

Chapter 5. Experimental Results 143

1 2010/27/08 18 : 21 : 15 SDW [Facade]
2 2010/27/08 18 : 22 : 35 SUP [Server1]
3 2010/27/08 18 : 23 : 10 SUP [Server2]
4 2010/27/08 18 : 25 : 05 SUP [Server3]
5 2010/27/08 18 : 26 : 30 SUP [Facade]

Figure 5.12: FPL Processor reboot sequence (RB log).

The TTF distribution for the FPL Processor, named s_TL(t) is estimated by using the

timestamp information of both the tuples and the events notifying the end of a reboot.

Figure 5.11 depicts the analysis finding. Mean Time To Failure (MTTF) is approximately

34 minutes. This is greater than the expected since only 1,289 out of the 2,502 actual

emulated failures result from the analysis. Regardless of the quality of the achieved finding,

s_TL(t) is a characterization of the failure behavior of the system under study. Anyway, it

is not clear how this finding could be actually exploited by developers, e.g., to drive specific

dependability improvements where needed. In the proposed case study, among multiple

notifications reported by the TL log, it has not been possible to pinpoint the object that

firstly signaled a problem, thus preventing and in-depth system characterization.

5.2.4 Analysis of the Rule-Based Log

During the 32 days long-running experiment about 30 millions of rule-based events are

sent over the Logbus. Resulting RB log, provided by the logger pluggable component, is

about 128 KB and contains 4,500 lines. It should be noted that the size of RB log is

about 5.7% when compared to TL log. The amount of information actually needed for the

analysis phase has been significantly reduced with the proposed strategy. The availability

of the FPL processor is estimated by means of the approach adopted in Section 5.2.3.

Chapter 5. Experimental Results 144

Table 5.8: Downtime and uptime estimates: statistics (RB log)
Downtime Uptime

Value 350.2 (±23.6) s 6,740.6 (±4,399.6) s
Minimum 300.1 s 843.4 s
Maximum 400.2 s 32,518.6 s

In this case, application reboots are identified by SDWs-SUPs sequences. Figure 5.12 is

provided as an example. Facade SUP identifies the end of a reboot. The event preceding

the first SDW of a reboot sequence is assumed to be the one preceding the reboot itself.

Table 5.8 provides statistics characterizing uptime and downtime estimates. FPL Processor

availability is estimated according to Equation 5.1. Equation 5.3 provides ARB, i.e., the

availability estimate resulting from RB log. ARB is close to AT . The proposed framework

allows to estimate system availability as well as a traditional logging approach, however the

introduction of SUP and SDW events significantly reduces analysis efforts. Furthermore, as

discussed later in this Section, it is possible to perform a detailed availability analysis for

each system entity.

ARB =
2, 689, 488.1 s

2, 689, 488.1 s+ 143, 736.3 s
· 100 ≈ 94.9% = AT (5.3)

Rule-based log is used to gain insights of the FPL Processor failure behavior. As for the

traditional log, the entries that are close than 5s are clustered. RB log allows identifying

2,502 failure. It should be noted that this is the amount of the actually emulated failures,

as shown in Table 5.6. It is preliminary conducted a TTF analysis for the FPL Processor

as a whole, i.e., by jointly considering the failures from all system entities. Figure 5.13a

shows both s_TL(t) and s_RB(t), i.e., the application TTF estimated by analyzing RB

log. Resulting MTTF is approximately 17 minutes, thus shorter if compared to s_TL(t).

Chapter 5. Experimental Results 145

0	

0,2	

0,4	

0,6	

0,8	

1	

0	 200000	 400000	 600000	 800000	 1000000	

p	

#me	 (cs)	

s_RB(t)	

s_TL(t)	

(a) FPL Processor estimated TTF.

0 

0,2 

0,4 

0,6 

0,8 

1 

0  200000  400000  600000  800000  1000000 

p 

#me (cs) 

S(t) 

s(t) 

(b) Server 2 estimated TTF.

0 

0,2 

0,4 

0,6 

0,8 

1 

0  500000  1000000  1500000 

p 

#me (cs) 

f(t) 

F(t) 

S(t) 

(c) Facade estimated TTF.

Figure 5.13: Estimated TTF distributions (RB log).

This finding highlights deficiency of TL log at providing evidence of all the failures occurred

during the experimentation time. Information provided by the rule-based log makes it

possible to achieve further insights about the dependability behavior of the proposed case

study. As a matter of fact, the information about the originating entity provided by the

logger component is used to figure out TTF distributions for each entity of the system.

Figure 5.13b depicts the estimated TTF, named s(t), when compared to S(t), for Server

2 (a similar finding comes out for the two remaining Servers). The experienced distribution

is close to the one emulated during the long running experiment. The Kolmogorov-Smirnov

test is performed to evaluate if s(t) is a statistically good S(t) estimate. Let (i) D be

the maximum distance between the analytical and the estimated distributions and (ii) L be

Chapter 5. Experimental Results 146

Table 5.9: Kolmogorov-Smirnov test
Process Samples D L
Server 1 732 0.0410 0.80<L<0.90
Server 2 772 0.0325 L<0.80
Server 3 738 0.0253 L<0.80

the resulting significance level of the test. Table 5.9 reports results obtained for the all the

Servers. The low value of L assures that the collected samples are consistent with the actual

failure distributions. The same distribution analysis has been conducted for the Facade

object. Figure 5.13c shows f(t), i.e., the TTF estimate. It is trivial to figure out that f(t)

is different form the emulated F(t), but lower than S(t). This is a realistic finding, which

depends on the recovery strategy adopted in the case study. In our long-running experiment

Servers exhibit a failure rate higher than the Facade (Table 5.5). This makes it very likely

that all Servers have crashed while the Facade is still properly working. In this case the

Tester object triggers the FPL Processor reboot, thus preventing the Facade object from

exhibiting its actual behavior. The proposed strategy enables an in-depth characterization

of the FPL Processor dependability behavior. The comparison between the estimated TTF

distributions, i.e., f(t) and s(t), makes it possible to identify the actual most failure-prone

entity within the system. This information can be used, for example, to reduce the Mean

Time To Repair [97] or to apply proper recovery actions only when needed [106].

The statistics component discussed in Section 4.3.3, provides a snapshot of the current

states of the system entities during the operational phase. This information is not available

with the TL logging subsystem and it is the result of the proposed strategy. Table 5.10

shows the snapshot observed at the end of the long running experiment. In the following,

Chapter 5. Experimental Results 147

Table 5.10: RB report at the end of the long-running experiment
Uptime Downtime Failtime SUP SDW SER IER Avail.

Fac. 2,700,740 s 129,111 s 4,863 s 400 385 260 2,242 95.0%
Ser. 1 1,479,900 s 770 s 1,354,250 s 400 7 732 0 52.2%
Ser. 2 1,591,580 s 1,470 s 1,240,200 s 400 7 772 0 56.1%
Ser. 3 1,522,890 s 1,860 s 1,308,500 s 400 6 738 0 53.8%

the resulting findings are discussed to figure out if they are consistent with respect to the

emulated failure behavior. Facade availability is 95%, thus close to the one estimated for the

system as a whole (Equation 5.3). As a matter of fact when the Facade is unavailable, the

FPL Processor is rebooted, since FPL requests cannot be satisfied anymore. Consequently,

the Facade object is not allowed to remain in a failed state for a long time (i.e., a low

failtime). On the other hand, Servers availability is around 54%. Due to the adoption of

the LB policy, even if a Server crashes, the two remaining ones make it possible to execute

subsequent FPL request. It may take a long time before the application is rebooted and a

crashed Server is resumed.

Facade SDWs are mainly clear, i.e. the SUP count is close the SDW one. This is

a realistic finding, since the Facade object has a failure rate lower than the Servers. As

discussed, it is very likely that it is still able to correctly handle FPL requests when the

reboot signal is triggered. Not the same for the Server objects. In this case most of the

reboots are dirty. Adopted logging rules, make it possible to understand if a problem with

an entity is caused by a propagating error and thus to prevent erroneous findings. Table

5.10 reports service errors (SER) and interaction errors (IER) counts, which allow to break

the total amount of outages for each system entity by local, i.e. SER, and interaction, i.e.,

Chapter 5. Experimental Results 148

IER. Servers exhibit only SERs, as they do not start interactions with any other entity

within the system. It should be noted that the SER count is equal to the actual emulated

failure count for each Server (Table 5.6). This finding demonstrates the effectiveness of the

proposed error identification strategy with respect to the case study. On the other hand,

errors shown by the Facade object are mainly due to interactions.

5.3 Correlation-Aware Failure Data Identification

Inferring failure data from the log produced by a system composed by hundreds or thousands

of computing entities is challenging, because of the presence of collisions and propagation

phenomena (discussed in Section 4.4.1). The tuple heuristic might fail to group the entries

in the log related to the same problem: incorrect grouping impacts the actual number

of failures inferred from the log and distorts analysis results. The tuple and the

proposed lift-based heuristic (denoted as T and T+, in the following) are used to group

the error entries produced by a large-scale system. Analysis quantifies the extent of the

distortion caused by incorrect grouping, and highlights the improvement of the measure

that can be obtained with the lift-based heuristic. The event log used in this study is

produced by the Mercury cluster at the National Center for Supercomputing Applications

(NCSA)2: the entities of the system are represented by the nodes of the cluster.

5.3.1 Event Log of the Mercury Cluster

The analysis encompasses the log of the Mercury cluster at the NCSA. The log has been

collected during a period of about 6 months (from Jan-1-2007 to Jul-2-2007). Mercury is
2www.ncsa.uiuc.edu - University of Illinois at Urbana-Champaign

Chapter 5. Experimental Results 149

composed by 987 IBM nodes (256 dual 1.3 GHz Intel Itanium2 processors and 731 dual 1.5

GHz Intel Itanium2 processors). Myricom’s Myrinet interconnects the nodes. Each node

runs a Red Hat 9.0 operating system. Mercury has a three-layer architecture consisting of

login, computation, and storage nodes. These nodes are indicated as tg-loginN, tg-cN,

and tg-sN, respectively, with N denoting an integer number. A dedicated node, named

tg-master, provides supervision and managing capabilities, such as running the daemon

responsible for the IBM General Parallel File System (GPFS). Entries in the log are collected

via the syslog daemon. Each entry reports, among the others, a timestamp (resolution

of 1 second), the name of the node that generated it, and a text-free message providing

specific descriptive content. Entries account for a large number of operational conditions

resulting from both normal and abnormal activities. The operating system kernel and

components, application processes, and daemons generate the events. During the above-

mentioned period, about 200 million entries were collected; the size of the log is about

10GB. Not all the entries are actually useful for performing the failure analysis, as many of

them just report informational statements. For this reason, the text-free message of each

entry is de-parameterized (similarly to [30]) in order to identify the relevant content. In

other words, variable fields, such as user names, IP or memory addresses, folders, and so on,

are replaced with the * wildcard. As a result, 1,124 distinct messages are identified. Next

a manual analysis is conducted to identify those messages reporting severe error conditions,

e.g., the messages reporting the events that caused the corruption of one or more jobs run in

the cluster. To this aim, available manuals and, when needed, direct support of the system

management team at the NCSA have been used to establish the meaning of the messages.

Chapter 5. Experimental Results 150

Figure 5.14: Generation rate of the error entries: (A) # entries per minute, and (B) # nodes
per minute

A total of 76 unique error messages (out of 1,124) are found, which generated 377,197

entries in the log. The number of failures occurred in the system is inferred by grouping these

377,197 entries both with the tuple and the proposed lift-based heuristic.

Figure 5.14A shows how the generation rate of the error entries, i.e., entries per minute,

varies during the period the log has been collected. Figure 5.14B reports the number of

distinct nodes producing the entries each minute. It can be noted that usually only a single

node is responsible for the entries in the log; however, in some cases, up to 6 different

nodes generating the entries within the time window of 1 minute are observed. In these

cases, it is possible to experience collisions. The overall dataset is split into 2 subsets of

3 months. In the following Sections, they will be indicated as dataset #1 and dataset

#2. The same set of analyses has been repeated for both the datasets and, when needed,

obtained results are compared. The two datasets have different features in terms of total

Chapter 5. Experimental Results 151

Table 5.11: Error categories and occurrence of the entries.

Category Description dataset dataset
(acronym) #1 #2
Device errors related to peripherals 57,248 244,301
(DEV) and PCI cards
Memory memory-related non 12,819 49,491
(MEM) correctable errors
Network communication issue raised 3,702 973
(NET) by a machine
Input/Output problems, such as SCSI disk 5,547 1,091
(I/O) errors, damaged sectors
Processor processor exceptions, 1,504 326
(PRO) machine check issues
Other other errors (not attributed 34 161
(OTH) to a specific category)
total 377,197 80,854 296,343

number of entries, and distribution of the entries among different error categories: repeating

the analyses over the datasets helped at achieving a better understanding of the collision

phenomena. Error messages are classified into 6 categories, as described in the two leftmost

columns of Table 5.11 along with the acronyms used in the rest of the dissertation. The two

rightmost columns of Table 5.11 report the breakup of the entries in the log by category

and dataset. Figure 5.15 reports, for each dataset, the breakup of the entries by node and

category. Only the 10 nodes with largest number of generated entries are reported in each

plot. Nodes belonging to the same architectural layer of the cluster exhibit a similar failure

behavior. For example, computation nodes are mostly prone to DEV and MEM errors. Storage

nodes exhibit a significant number of I/O errors. The tg-master node exhibits many NET

errors, mainly due to communication issues with other nodes. As noted by other studies in

the area, e.g., [38], there is a correlation between a node and its workload.

Chapter 5. Experimental Results 152

(a) Dataset #1.

(b) Dataset #2.

Figure 5.15: Breakup of the entries by node and category.

5.3.2 Estimation of the Parameters of the Lift-Based Heuristic

The tuple heuristic is applied to each dataset to provide evidence of the collision phenomena

in case of multi-node systems. To this aim, a sensitivity analysis is conducted to assess

a suitable value for the coalescence window W. Figure 5.16 shows the tuple count as a

function of the size of the coalescence window3. According to [22], a reasonable choice for the

coalescence window is the value after the “knee” of the curve, where the tuple count sharply

flattens. A coalescence window of 240s is thus suitable for both the datasets. For the selected

window 476 and 1,206 tuples have been observed for dataset #1 and #2, respectively. These

values represent an approximation of the actual number of failures that have occurred in the

system. A similar coalescence window has also been adopted in other works in the area of
3For reasons of readability, Figure 5.16 does not report the tuple count for W=1s. In this case are observed

11,792 and 31,503 tuples for each dataset, respectively.

Chapter 5. Experimental Results 153

Figure 5.16: Tuple count as a function of the size of the coalescence window.

log analysis of supercomputing systems, e.g., [10]. This value of W has been used to conduct

a preliminary analysis, which is reported in this section. A detailed study is discussed

later in Section 5.3.3. As discussed, even when the coalescence window is carefully chosen,

the chance of experiencing distinct faults triggered coincidentally is not negligible in case

of multi-node systems: log entries reporting distinct problems can be erroneously grouped

together thus distorting the actual number of failures inferred from the log. The problem

stated in Section 4.4.1 is illustrated via examples encountered in the analyzed datasets.

Example 1. When applying the tuple heuristic to the dataset #1, it can be observed that

the following two entries are placed in the same tuple:
1 (A) 1174245458 tg−master NET
2 stream_eof connection to ∗ is bad remote service may be down message may be
3 corrupt or connection may have been dropped remotely . Node state to down
4 (B) 1174245678 tg−c324 PRO
5 +BEGIN HARDWARE ERROR STATE AT CMC

The temporal distance between (A) and (B) is 220s, i.e., smaller than the chosen window of

240s. As discussed in Section 4.4.1, this might be the result of a propagation phenomenon

or just an accidental collision. It should be noted that there is no discernible relationship

Chapter 5. Experimental Results 154

between the two entries: they belong to different error categories and are logged by different

nodes. Nevertheless, due to the lack of ground truth, i.e., the knowledge of the actual failure

behavior, it is not possible to determine directly which is the correct option. As a matter of

fact, the event log is the only available data source to achieve insights regarding the failure

behavior of the system: no additional information is available to supplement the content of

existing logs. As described in Section 4.4.3, it has been observed that entry (A), i.e., the

NET event raised by tg-master, appears in 46 tuples. Entry (B), i.e., the PRO event raised

by tg-c324, appears in 30 tuple, but just one tuple contains both the entries. This finding

allows stating that it is reasonable to assume that the tuple likely represents a collision.

Another example, reported for the sake of illustration, is obtained by applying the tuple

heuristic to the dataset #2.

Example 2. Two DEV errors, raised by tg-s176 and tg-c407, respectively, are grouped

in the same tuple because their time difference is 125s, thus shorter than 240s. Individual

and joint counts have been assessed. (A) and (B) occur in 680 and 91 tuples, respectively;

however, only 6 tuples contain both the events. It is reasonable to assume that these entries

were triggered coincidentally rather than because of a propagating error. This example also

shows that it is possible to experience collisions between entries in the log belonging to the

same error category.

1 (A) 1181258107 tg−s176 DEV
2 + PCI Component Error Detail : Component Info : Vendor Id =∗ Device Id =∗ Class
3 Code =∗ Seg/Bus/Dev/Func =∗
4 (B) 1181258232 tg−c407 DEV
5 +BEGIN HARDWARE ERROR STATE AT CPE

Chapter 5. Experimental Results 155

lift

lift

lift

lift

lift

lift

pa

irs

pa

irs

pa

irs

pa

irs

pa

irs

pa

irs

Figure 5.17: Lift: sensitivity analysis.

Figure 5.17 shows the plots summarizing the sensitivity analysis that has been conducted

to estimate the correlation threshold of the lift-based grouping heuristic, as described in

Section 4.4.2. Plots show that most of the pairs exhibit low values of the lift, thus represent-

ing uncorrelated entries. The analysis has been repeated for the values of the coalescence

window in the interval [120, 360]s, i.e., a set of reasonable values for W as shown in Figure

5.16. Results show that the values of the lift are rather insensitive to the underlying group-

ing. Plots for the values of W={120, 240, 360}s are reported. According to the distribution

reported in Figure 5.17, L is assumed to be 30 when analyzing the system log.

Chapter 5. Experimental Results 156

5.3.3 Analysis of the system log

Mean Time Between Failures (MTBF) and reliability have been adopted as reference metrics

to assess how T+ is able to infer a more realistic number of failures from the event log, and

to improve measurements. MTBF and reliability have been widely used in log-based failure

analysis studies, e.g., [38, 37], to characterize the behavior of an operational system. Such

measurements, estimated by considering both the overall system log and individual error

categories, provided further insights into the collision phenomenon. To this end, analysis

results produced by both T and T+ are compared when a proper coalescence window W

is selected. As discussed, 240s is a reasonable choice for W. Nevertheless, in order to drive

more general considerations, besides 240s, the analysis is repeated for a subset of values of

W in the interval [120,360]s (with a step of 30s), which are in the stable part of the curve

reporting the tuple count (Figure 5.16).

Results are summarized in Table 5.12. Column 1 shows the values of the coalescence

window. According to Figure 5.17, L, i.e, the correlation threshold, is assumed to be 30 for

all the values of W in the considered interval of coalescence windows. Recall that the value

of L is relatively insensitive to the underlying grouping of the entries. Column 5 reports the

number of collisions c, i.e., the difference between the tuple counts, namely, the number of

failures inferred from the system log, obtained with both the heuristics (reported in columns

4 and 2, respectively). It can be observed that the number of collisions increases as W in-

creases. In other words, the longer W the higher the chance, when using T , to include in the

same tuple entries related to independent faults triggered near the same time.

Chapter 5. Experimental Results 157

Table 5.12: Sensitivity analysis of the tuple count and the MTBF obtained with T and T+
with respect to W.

W T MTBF T+ MTBF ∆C ∆M

(L=30) count (h) count c (h) % %
dataset #1

120 725 2.80 773 48 2.63 6.62 6.63
150 613 3.32 663 50 3.07 8.16 8.17
180 556 3.66 609 53 3.34 9.53 9.55
210 497 4.09 551 54 3.69 10.87 10.89
240 476 4.27 531 55 3.83 11.55 11.58
270 462 4.40 518 56 3.93 12.12 12.15
300 453 4.49 509 56 3.99 12.36 12.39
330 444 4.58 501 57 4.06 12.84 12.87
360 440 4.62 497 57 4.09 12.95 12.98

dataset #2
120 1,374 1.52 1,396 22 1.49 1.60 1.60
150 1,338 1.56 1,365 27 1.53 2.02 2.02
180 1,297 1.61 1,328 31 1.57 2.39 2.39
210 1,266 1.65 1,303 37 1.60 2.92 2.92
240 1,206 1.73 1,244 38 1.68 3.15 3.15
270 1,161 1.80 1,200 39 1.74 3.36 3.36
300 1,124 1.85 1,163 39 1.79 3.47 3.47
330 1,098 1.90 1,138 40 1.83 3.64 3.65
360 1,068 1.95 1,108 40 1.88 3.75 3.75

The distortion of the produced measurements is assessed as follows. Let vT and vT+ be

the values of a specific measure, e.g., the tuple count or the MTBF, obtained with T and T+,

respectively. The percentage difference of the values, i.e., ∆v = |vT−vT+|
min(vT ,vT+) ·100%, quantifies

the distortion introduced on the value of the measure due to unaccounted collisions. As

shown in column 5 of Table 5.12, the number of collisions is almost in the same order for

both the datasets. Nevertheless, the distortion of produced measurements is different, since

the final number of tuples is around 530 and 1,200, for each dataset, respectively. For

instance, in the case of the reference coalescence window of 240s, the number of collisions

Chapter 5. Experimental Results 158

is 55 and 38, respectively; however, the distortion introduced on the MTBF, i.e., ∆M , is

around 11.5% and 3.15%, respectively (similar percentages can be observed for the distortion

of the tuple count ∆C). In other words, in the first dataset, for a value of the MTBF of

about 4h and 15min, the difference of the measure due to unaccounted collisions is about

30min. Difference is small in the second dataset. It has to be noted that the MTBF is the

average value of the time intervals between the starting points of two subsequent tuples. As

described in Section 4.4.3, T+ introduces additional tuples in case of collisions. This results

in a greater number of tuples with respect to T within the same observation period of 3

months, thus, the obtained MTBF is shorter with respect to T .

The groupings obtained with T and T+ differ in terms of length and interarrival times

of the tuples. This difference alters reliability, i.e., the probability that the system provides

continuity of correct service over a certain amount of time. Figure 5.18A and 5.18B report

the distribution of the interarrival times of the tuples, obtained with T in case of the reference

coalescence window W=240s, for each dataset, respectively. The x-axis reports the duration

of the interarrival times (min), and the y-axis the probability of experiencing interarrivals

of that specific duration. The two datasets exhibit similar distributions. For example, the

probability of the interarrivals to be ≥10min is 0.86 and 0.76 for the dataset #1 and #2,

respectively. It should be noted that, when using T , it is not possible to obtain interarrivals

shorter than the coalescence window. In other words, the first four bins of the plots 5.18A

and 5.18B, i.e., 0, 1, 2, and 3min, do not have any samples: T+ overcomes this limitation

because it introduce tuples even if the time difference of the entries in the log is shorter than

W. Figure 5.18C, 5.18D, 5.18E, and 5.18F will be discussed later in the dissertation.

Chapter 5. Experimental Results 159

Figure 5.18: Analysis of the system log: distribution of the interarrival times (A,B) and
length (C,D) of the tuples obtained with T . Number of collisions with respect to the length
of the tuples (E,F).

The different distribution of the interarrivals obtained with T and T+ alters reliability

measurements. This can be observed in Figure 5.19. More in details, Figure 5.19a and 5.19b

provide the reliability plots obtained with the two heuristics for each dataset, respectively.

Furthermore, it is shown the difference between them (d series). The x-axis reports time in

hours. The y-axis reports the probability that system does not exhibit any failure, i.e., of

any type, such as, DEV, I/O, etc., and from any node, during that interval of time. It can

be observed that the probability that the system does not experience any failure, after an

operational time of 24 hours, is very low. As for the MTBF, distortion is more significant in

the dataset #1. For example, after 2 hours of operations, reliability in dataset #1 is around

Chapter 5. Experimental Results 160

(a) Dataset #1. (b) Dataset #2.

Figure 5.19: System reliability obtained with T and T+.

0.457 and 0.413, when applying T and T+, respectively. The distortion ∆r, is around 10%.

Again, distortion is smaller in dataset #2; the higher number of tuples experienced in this

dataset keeps down distortion even if the number of collisions is almost the same.

5.3.4 Analysis of the individual error categories

The content of both datasets is analyzed by considering each category of error individually.

This type of analysis is useful for pointing out the most failure-prone subsystems, and it

shows that T+ can improve the process of inferring the failures from the log. In the following,

the main findings of the analysis are presented. Results show that even when resorting

to fine-grain analysis, dependability measurements can be distorted by collisions between

failures belonging to the same category. Results are summarized in Table 5.13. Because of

space limitations, the tuple count and the MTBF, achieved with both the heuristics and

for each dataset is reported for a single value of the coalescence window. In particular,

for each category, performing the sensitivity analyses described in the previous sections has

identified a suitable combination (W-L); this combination is used to coalesce the entries of

Chapter 5. Experimental Results 161

Table 5.13: Analysis of the tuple count and the MTBF obtained with T and T+ for each
category of error.

CTG T MTBF T+ MTBF ∆C ∆M

W-L count (h) count c (h) % %
DEV 312 6.50 333 21 6.09 6.73 6.75

240-30 958 2.11 976 18 2.07 1.88 1.88
I/O 93 21.43 102 9 19.52 9.68 9.78

240-40 60 32.04 64 4 30.00 6.66 6.78
MEM 68 29.12 70 2 28.28 2.94 2.99

360-20 87 17.95 90 3 17.35 3.45 3.49
NET 66 31.13 68 2 30.20 3.03 3.08

240-20 87 23.53 87 0 23.53 0 0
PRO 71 27.90 71 0 27.90 0 0

120-20 62 32.32 62 0 32.32 0 0
OTH 13 163.97 13 0 163.97 0 0

360-30 66 29.10 67 1 28.66 1.52 1.54

that category in both the datasets. Column 1 reports these values. Each category has its

own pair (W,L). Given the row related to a category of error (Table 5.13), the upper row

reports results obtained for the dataset #1; for the lower one, the results obtained are for

the dataset #2.

The number of collisions varies with respect to the specific category of error (Table 5.13,

column 5). The DEV and I/O ones exhibit a relevant number of collisions. On the other

hand, this phenomenon is almost negligible for NET or PRO errors. Given a specific category,

the number of collisions is similar for each dataset, e.g., 21 and 18 for DEV, 9 and 4 for I/O,

and so on; however, the distortion introduced on the value of the produced measure, i.e.,

∆C and ∆M , is significantly different. For example, 21 and 18 collisions are observed for the

DEV category. Nevertheless, the distortion of the MTBF is about 6.75% and 1.88%, for each

dataset, respectively, thus negligible in dataset #2. On the contrary, collisions significantly

distort measurements achieved for both the dataset in case of the I/O category.

Chapter 5. Experimental Results 162

time (min) time (min) time (min) time (min)

time (min) time (min) time (min) time (min)

time (min) time (min) time (min) time (min)

Figure 5.20: Analysis of the individual error categories: distribution of the interarrival times
(A,B,C,D) and length (E,F,G,H) of the tuples obtained with T . Number of collisions with
respect to the length of the tuples (I,L,M,N).

Figure 5.20A, 5.20B, 5.20C, and 5.20D report the distributions of the interarrival times

of the tuples obtained when applying T to each category of error. Due to space limitations,

for the same category of error samples coming from both the datasets are aggregated in the

same plot. Again, it can be noted that interarrivals shorter than the coalescence window are

not allowed with T ; this, in turn, alters reliability measurements. For example, Figure 5.21a

reports the reliability plots obtained for the DEV category, in the dataset #1, and obtained

with T and T+, respectively. Reliability after 1 hour is about 0.56 and 0.53 according to

T and T+, respectively; as a result ∆r is around 5.6%. Similar considerations hold for the

I/O category (Figure 5.21b). In this case, the distortion is around 9.5%.

Chapter 5. Experimental Results 163

(a) DEV - dataset #1. (b) I/O - dataset #1.

Figure 5.21: Reliability of DEV and I/O categories obtained with T and T+.

5.3.5 Discussion

The analysis of the log of the Mercury cluster, reveals that the grouping technique

impacts the ability at inferring the failure-related data from the system log.

As a result of this deficiency, measurements obtained by means of log-based

failure analysis are overestimated. The overestimation occurs both for the system log

(Section 5.3.3) and individual error categories (Section 5.3.4). The distortion introduced on

dependability figures of the system is not negligible: for example, the MTBF is altered by

11.5% with the basic tuple heuristic. Furthermore, reducing the granularity of the analysis,

i.e., by considering individual categories of error separately, leads to a smaller distortion, e.g.,

9.78% in the worst case (I/O failures, dataset #1); however, it does not seem to improve

the quality of obtained results.

Analyzed data do not highlight the existence of a particular relationship between colli-

sions and characteristics of the produced tuples, such as the distribution of the interarrivals

Chapter 5. Experimental Results 164

or their length. or example, similar interarrival distributions result in a different vulnera-

bility to the collision phenomenon. As reported in Figure 5.20A and 5.20B, DEV and MEM

exhibit a similar trend, e.g., in both the cases the percentage of interarrivals ≤60min is

around 61% and 62%, respectively; however the number of collisions is almost negligible for

the MEM category. A similar finding has been observed for the I/O and NET categories (Figure

5.20C and 5.20D).

The length of the tuples does not seem to affect the chance of experiencing a collision,

despite one might think that the longer the tuple the higher the probability of having

a collision. Figure 5.18C, 5.18D and 5.20E, 5.20F, 5.20G, 5.20H report the distribution

of length of the tuples for the system log and individual categories of error, respectively.

More specifically, the x-axis reports the length of the tuples in min, and the y-axis the

probability of experiencing a tuple of that specific length. Similarly, Figure 5.18E, 5.18F

and 5.20I, 5.20L, 5.20M, 5.20N show the number of collision tuples (y-axis), i.e., the tuples

that according to T+ contain a collision, as a function of the length. In other words, given

all the tuples that exhibit a specific length, the y-axis reports how many of them resulted in

collisions. The plots indicate a higher number of collisions for short durations of the tuples;

however, this is due to the fact that the probability of experiencing short tuples is higher.

In practice, collisions can be observed also for a longer duration of the tuples.

Conclusion

The thesis faced issues and challenges concerning the use of event logs for the analysis of

system failures. Event logs, which report events of interest occurring during operations,

are valuable to achieve insights into dependability characteristics of computer systems and

to improve their subsequent releases. The thesis discussed a substantial body of literature

using event logs: discussion highlighted that, the analysis of failure data in the log, is

extremely useful in a variety of application domains. For example, it makes it possible

to classify errors and failures, evaluating dependability properties, validating assumptions

made in system models, or predicting failures. Nevertheless, novel industry trends, that

have been impacting dependability-related research over the past decades, are threatening

the effectiveness of logs.

Among the first contributions on this topic, the thesis demonstrated that, the shifting of

the failure causes from hardware to software, has made logs strongly inaccurate. Software

fault injection campaigns allowed estimating that around 67% of software failures go unde-

tected by the logging mechanism: in other words, around 7 out of every 10 actual failures

are unreported in the log. Furthermore, experiments demonstrated that event logs (i) re-

port many false positives, i.e., failure notifications that do not correspond to actual failures,

165

Chapter 5. Experimental Results 166

and (ii) are highly verbose. These results show that the level of trust on log-based failure

analysis is strongly biased by inaccuracy of logs. The research prompted the investigation

of implementation pitfalls of current logging mechanisms. The analysis of the source code of

eight successful open-source and industrial projects, accounting for total around 3.5 million

lines of code, revealed that the scarce detection ability of current logging mechanisms is

caused by the assumption of a too simplistic error model.

Based on the lessons learnt from the analysis, novel techniques, which aim to make logs

effective to infer failure data, are proposed. Techniques involve production, collection, and

correlation of the failure data in the log to support accurate dependability characterization.

Engineers can adopt a subset if not, all, the proposed techniques depending on different

parameters, such as the type of analysis they aim to perform, the accuracy of the results

they want to achieve, the degree of intervention they can operate on the system. The rule-

based logging mechanism exploits design artifacts and proposes a set of precise rules to

drive the effective placement of logging instructions within the source code of systems. For

example, the approach improves the detection of timing failures by means of the introduction

of multiple logging points to monitor the progression of the control flow of the program.

Logbus provides not only a mere a log-centralization support, but integrates integrates on-

line monitoring features that allow supplementing the content of existing event logs when

failures occur. Finally, the lift-based grouping heuristic allows pinpointing failure data in the

log that are related to the manifestation of the same problem. Experimentation described

in the thesis highlights the benefits of the techniques. Among the others, they

Chapter 5. Experimental Results 167

• Reduce, if not eliminate, preprocessing effort to analyze the data log. Tra-

ditional logs require significant manual efforts and ad-hoc procedures to identify and

extract events of interest from the log (e.g., occurrences of system reboots and failures).

The Logbus infrastructure and tools, such as on-agent, produce a system architecture-

aware log, which is based on a precise error model: the log can be used to directly

derive dependability measurements.

• Preserve the findings of traditional event logs. The evidence provided by tra-

ditional event logs is only a subset of the one achievable by means of proposed tech-

niques. For example, most of the failures detected by means of rule-based logging

can not detected via traditional approaches; Logbus infrastructure can generate fur-

ther knowledge about the behavior of the system by means of monitoring artifacts

integrated in the logging framework.

• Significantly improve accuracy of traditional techniques to infer the failure

data from the log. Rule-based logging improves detection of software failures by

more than 60% when compared to the traditional logging mechanism. The proposed

lift-based grouping heuristic allows discriminating multiple failure dynamics in com-

plex distributed systems, and demonstrates that, neglecting correlation among failure

entries in the log, distort measurement by more that 11.5%.

• Reduce the amount of information actually needed to perform the failure

analysis. Rule-based log is around 160 times smaller than the traditional one, as

indicated by the verbosity parameter; furthermore, it has been observed that the size

Chapter 5. Experimental Results 168

of the log produced by the Logbus infrastructure over a long running experiment, is

less that 5.7% when compared to traditional ones. Improvement does not introduce

information loss to failure analysis.

Techniques proposed in the thesis contributed to improve the evaluation of real, complex

distributed systems. As a matter of fact, experimentation has ranged from commodity

software, such as web servers and middleware supports, to supercomputing systems and

critical application domains as the Air Traffic Control. Some of the algorithms and artifacts

described in thesis have been the basis to develop tool suites that are currently available on

the web.

Bibliography

[1] J.A. Duraes and H.S. Madeira. Emulation of Software Faults: A Field Data Study and a
Practical Approach. IEEE Transactions on Software Engineering, 32(11):849–867, 2006.

[2] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Computing,
1:11–33, January 2004.

[3] R. K. Iyer, Z. Kalbarczyk, and M. Kalyanakrishnan. Measurement-Based Analysis of Net-
worked System Availability. Performance Evaluation: Origins and Directions, pages 161–199,
2000.

[4] A. J. Oliner and J. Stearley. What Supercomputers Say: A Study of Five System Logs.
In Proceedings of the International Conference on Dependable Systems and Networks (DSN),
pages 575–584. IEEE Computer Society, 2007.

[5] M. C. Hsueh, R. K. Iyer, and K. S. Trivedi. Performance Modeling Based on Real Data: A
Case Study. IEEE Transactions on Computers, 37:478–484, April 1988.

[6] C. Simache and M. Kaâniche. Availability Assessment of SunOS/Solaris Unix Systems Based
on syslogd and wtmpx Log Files: A Case Study. In Pacific Rim International Symposium on
Dependable Computing (PRDC), pages 49–56. IEEE Computer Society, 2005.

[7] M. Kalyanakrishnam, Z. Kalbarczyk, and R. K. Iyer. Failure Data Analysis of a LAN of
Windows NT based Computers. In Proceedings of the International Symposium on Reliable
Distributed Systems (SRDS), pages 178–187. IEEE Computer Society, October 1999.

[8] J.C. Laplace and M. Brun. Critical Software for Nuclear Reactors: 11 Years of Field Experience
Analysis. In Proceedings of the International Symposium on Software Reliability Engineering
(ISSRE), pages 364–368, Paderborn, Germany, nov 1999. IEEE Computer Society.

[9] M. Cinque, D. Cotroneo, and S. Russo. Collecting and Analyzing Failure Data of Bluetooth
Personal Area Networks. In Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN), pages 313–322. IEEE Computer Society, June 2006.

[10] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. K. Sahoo. BlueGene/L Failure
Analysis and Prediction Models. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN), pages 425–434. IEEE Computer Society, June 2006.

[11] D. L. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why Do Internet Services Fail, and
What Can Be Done About It? In USENIX Symposium on Internet Technologies and Systems,
2003.

169

Bibliography 170

[12] B. Schroeder and G. A. Gibson. A Large-Scale Study of Failures in High-Performance Com-
puting Systems. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN), pages 249–258. IEEE Computer Society, 2006.

[13] D. P. Siewiorek, R. Chillarege, and Z. T. Kalbarczyk. Reflections on Industry Trends and
Experimental Research in Dependability. IEEE Transactions on Dependable and Secure Com-
puting, 1:109–127, April 2004.

[14] J. Gray. Why Do Computers Stop and What Can Be Done about It? In International
Symposium on Reliability in Distributed Software and Database Systems, 1986.

[15] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5 Fault Tolerance: a
Historical Perspective. IBM J. Res. Dev., 43:863–873, September 1999.

[16] Gartner and Affiliates. Highlights Key Predictions for IT Organisations and Users in 2008 and
Beyond. http://www.gartner.com/it/page.jsp?id=593207.

[17] E.J. Weyuker. Testing Component-Based Software: A Cautionary Tale. IEEE Software,
15(5):54–59, 1998.

[18] R. Moraes, J. Durães, R. Barbosa, E. Martins, and H. Madeira. Experimental Risk Assessment
and Comparison Using Software Fault Injection. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN), pages 512–521. IEEE Computer Society, 2007.

[19] D. Cotroneo, S. Orlando, and S. Russo. Failure Classification and Analysis of the Java Virtual
Machine. In Proceedings of 26th International Conference on Distributed Computing Systems
(ICDCS), 2006.

[20] J. Xu, Z. Kalbarczyk, and R.K. Iyer. Networked Windows NT System Field Failure Data
Analysis. In Proceedings Pacific Rim International Symposium on Dependable Computing
(PRDC). IEEE Computer Society, 1999.

[21] L.M. Silva. Comparing Error Detection Techniques for Web Applications: An Experimental
Study. 7th IEEE International Symposium on Network Computing and Applications, pages
144–151, 2008.

[22] J. P. Hansen and D. P. Siewiorek. Models for Time Coalescence in Event Logs. In Proceedings
of the International Symposium on Fault-Tolerant Computing (FTCS), pages 221–227. IEEE
Computer Society, 1992.

[23] D. Tang and R.K. Iyer. Impact of Correlated Failures on Dependability in a VAXcluster
System. In Proceedings of the IFIP Working Conference on Dependable Computing for Critical
Applications, 1991.

[24] R. K. Iyer, L. T. Young, and V. Sridhar. Recognition of Error Symptoms in Large Systems.
In Proceedings of 1986 ACM Fall joint computer conference, ACM ’86, pages 797–806, Los
Alamitos, CA, USA, 1986. IEEE Computer Society Press.

[25] M.F. Buckley and D.P. Siewiorek. A Comparative Analysis of Event Tupling Schemes. In
Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS), pages 294–
303. IEEE Computer Society, 1996.

[26] R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of Failure Rate in Widely Dis-
tributed Software. In Proceedings of the International Symposium on Fault-Tolerant Comput-
ing (FTCS). IEEE Computer Society.

Bibliography 171

[27] R. Lal and G. Choi. Error and Failure Analysis of a UNIX Server. In IEEE International
Symposium on High-Assurance Systems Engineering, page 232, Los Alamitos, CA, USA, 1998.
IEEE Computer Society.

[28] B. Murphy and B. Levidow. Windows 2000 Dependability. In MSR-TR-2000-56 Technical
Report, Redmond, WA, June 2000.

[29] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo. Bluegene/L Failure Analysis
and Prediction Models. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pages 425–434. IEEE Computer Society, 2006.

[30] C. Lim, N. Singh, and S. Yajnik. A Log Mining Approach to Failure Analysis of Enterprise
Telephony Systems. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN), Anchorage, Alaska, June 2008. IEEE Computer Society.

[31] S. Fu and C.Z. Xu. Exploring Event Correlation for Failure Prediction in Coalitions of Clusters.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, 2007.

[32] A. Avižienis. Design of Fault-Tolerant Computers. In Proceedings of the November 14-16,
1967, fall joint computer conference, AFIPS ’67 (Fall), pages 733–743, New York, NY, USA,
1967. ACM.

[33] F. Sellers, M. Hsiao, and L. Bearnson. Error Detecting Login for Digital Computers. McGraw-
Hill, 1968.

[34] J.C. Laprie. Dependable Computing and Fault Tolerance: Concepts and Terminology. In
Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS), pages 2–
11. IEEE Computer Society, June, 1985.

[35] R.S. Swarz and D.P. Siewiorek. Reliable Computer Systems: Design and Evaluation. Third
Edition, A.K. Peters, 1998.

[36] B. Parhami. From Defect to Failures: a View of Dependable Computing. In ACM SIGARCH
Computer Architecture News, pages 16(4):157–168, 1998.

[37] T. Heath, R.P. Martin, and T.D. Nguyen. Improving Cluster Availability Using Workstation
Validation. In ACM SIGMETRICS, 2002.

[38] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and Modeling of Computer Reli-
ability as Affected by System Activity. ACM Transactions on Computer Systems, 4:214–237,
August 1986.

[39] A. Avizienis and J.P.J Kelly. Fault Tolerance by Design Diversity: Concepts and Experiments.
IEEE Computer, pages 17(8):67–80, August 1984.

[40] D. Avresky, J. Arlat, J.C. Laprie, and Crouzet Y. Fault Injection for Formal Testing of Fault
Tolerance. IEEE Transactions on Reliability, pages 45(3):443–455, September 1996.

[41] C. Lonvick. The BSD Syslog Protocol. Request for Comments 3164, The Internet Society,
Network Working Group, RFC3164, August 2001.

[42] Microsoft Corporation. Windows Event Log. http://msdn.microsoft.com/en-
us/library/aa385780(v=VS.85).aspx.

Bibliography 172

[43] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer. Improving Log-Based Field Failure
Data Analysis of Multi-Node Computing Systems. In Proceedings of the International Con-
ference on Dependable Systems and Networks (DSN), pages 97–108. IEEE Computer Society,
2011.

[44] Michael M. Tsao and Daniel. P. Siewiorek. Trend Analysis on System Error Files. In Thir-
teenth Annual International Symposium on Fault Tolerant Computing, IEEE Computer Soci-
ety, pages 116–119, 1983.

[45] R. Gerhards. The Syslog Protocol, Internet Engineering Task Force. IETF RFC 5424.
http://tools.ietf.org/html/rfc5424.

[46] The Apache Software Foundation. Logging services project. http://logging.apache.org/.

[47] A. Thakur and R. K. Iyer. Analyze-NOW - An Environment for Collection and Analysis of
Failures in a Networked of Workstations. IEEE Transactions on Reliability, pages Vol. 45, no.
4,560–570, 1996.

[48] P. Ascione, M. Cinque, and D. Cotroneo. Automated Logging of Mobile Phones Failures Data.
In International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC),
pages 520–530, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[49] IBM. Common Event Infrastructure . http://www-01.ibm.com/software/tivoli/features/cei.

[50] W. Lynch, W. Wagner, and Schwartz M. Reliability Experience with Chi/OS. IEEE Trans-
actions on Software Engineering, pages 253–257, 1975.

[51] Keller T. CRAY-1 Evaluation Final Report. In LA-6456.MS, Los Alamos Scientific Laboratory,
CA, pages 253–257, 1976.

[52] Velardi P. and R. K. Iyer. A Study of Software Failures and Recovery in the MVS Operating
System. IEEE Transactions on Computers, pages 564–568.

[53] K.S. Trivedi. Probability and Statistic with Reliability, Queuing and Computer Science Appli-
cations. John Wiley and Sons, 2002.

[54] D. Tang, M. Hecht, M. Miller, and J. Handal. MEADEP: A Dependability Evaluation Tool
for Engineers. IEEE Transactions on Relaibility, 47:443–450.

[55] R. Vaarandi. SEC - A Lightweight Event Correlation Tool. In Proceedings of 2002 IEEE
Workshop on IP Operations and Management (IPOM), 2002.

[56] J. P. Rouillard. Real-time Log File Analysis Using the Simple Event Correlator (SEC). In
Proceedings of the 14th USENIX Systems Administration Conference (LISA).

[57] C. Simache, M. Kaaniche, and A. Saidane. Event Log based Dependability Analysis of Win-
dows NT and 2K Systems. In Pacific Rim International Symposium on Dependable Computing
(PRDC), page 311. IEEE Computer Society, 2002.

[58] A. Ganapathi and D. A. Patterson. Crash Data Collection: A Windows Case Study. In
Proceedings of the International Conference on Dependable Systems and Networks (DSN).
IEEE Computer Society, 2005.

[59] D. Oppenheimer and D. A. Patterson. Studying and Using Failure Data from Large-Scale
Internet Services. In Proceedings of the 10th workshop on ACM SIGOPS European workshop,
pages 255–258. ACM, 2002.

Bibliography 173

[60] S.M. Matz, L.G Votta, and M. Makawi. Analysis of Failure Recovery Rates in a Wireless
Telecommunication System. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN). IEEE Computer Society, 2002.

[61] R. Mullen. The Lognormal Distribution of Software Failure Rates: Origin and Evidence.
In Proceedings of the International Symposium on Software Reliability Engineering (ISSRE).
IEEE Computer Society, 1998.

[62] T.-T.Y. Lin and D.P. Siewiorek. Error Log Analysis: Statistical Modeling and Heuristic Trend
analysis. IEEE Transactions on Reliability, pages 419–432, 1990.

[63] A.S. Wein and A. Sathaye. Validating Complex Computer System Availability Models. IEEE
Transactions on Reliability, (4):468 –479, 1990.

[64] X. Castillo and D.P. Siewiorek. A Performace-Reliability Model for Computing Systems.
In Proceeding of the International Symposium on Fault-Tolerant Computing (FTCS). IEEE
Computer Society, 1980.

[65] X. Castillo and D.P. Siewiorek. Workload, Performance, and Reliability of Digital Computing
Systems. In Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS).
IEEE Computer Society, 1981.

[66] R.K. Iyer, S. Butner, and E. McCluskey. A Statistical Failure/Load Relationship: Results of
a Multicomputer Study. IEEE Transactions on Computers, pages 697–706.

[67] I. Lee, R.K. Iyer, and D. Tang. Error/Failure Analysis Using Event Logs from Fault Tolerant
Systems. In Proceedings of the International Symposium on Fault-Tolerant Computing (FTCS).
IEEE Computer Society, 1991.

[68] Tang D. and R. K. Iyer. Dependability Measurement and Modeling of a Multicomputer System.
IEEE Transactions on Computers, pages 62–75.

[69] R.K. Iyer, L.T. Young, and P.V.K. Iyer. Automatic Recognition of Intermittent Failures: An
Experimental Study of Field Data. IEEE Transactions on Computers, 39:525–537, 1990.

[70] F. Salfner and M. Malek. Using Hidden Semi-Markov Models for Effective Online Failure
Prediction. In Proceedings of the International Symposium on Reliable Distributed Systems
(SRDS), October 2007.

[71] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta, and A. Siva-
subramaniam. Critical Event Prediction for Proactive Management in Large-Scale Computer
Clusters. In Proceedings International Conference on Knowledge Discovery and Data Mining,
pages 426–435. ACM, 2003.

[72] S. Fu and C.Z. Xu. Quantifying Temporal and Spatial Correlation of Failure Events for
Proactive Management. In Proceedings of the International Symposium on Reliable Distributed
Systems (SRDS), pages 175 –184. IEEE Computer Society, 2007.

[73] M. Dacier, F. Pouget, and H. Debar. Honeypots: Practical Means to Validate Malicious Fault
Assumptions. In Pacific Rim International Symposium on Dependable Computing (PRDC),
pages 383–388. IEEE Computer Society, 2004.

[74] M. Cukier, R. Berthier, S. Panjwani, and S. Tan. A Statistical Analysis of Attack Data to
Separate Attacks. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN), pages 383–392. IEEE Computer Society, 2006.

Bibliography 174

[75] A. Sharma, Z. Kalbarczyk, J. Barlow, and R.K. Iyer. Analysis of Security Data from a Large-
Scale Organization. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pages 506–517. IEEE Computer Society, 2011.

[76] A. Pecchia, A. Sharma, Z. Kalbarczyk, D. Cotroneo, and R. K. Iyer. Identifying compromised
users in shared computing infrastructures: A data-driven bayesian network approach. In
Proceedings of the International Symposium on Reliable Distributed Systems (SRDS), pages
127–136. IEEE Computer Society, 2011.

[77] J. Carlson and R. Murphy. Reliability Analysis of Mobile Robots. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 274–281, 2003.

[78] S. Garg, A.V. Moorsel, K. Vaidyanathan, and K.S. Trivedi. A Methodology for Detection and
Estimation of Software Aging. In Proceedings of the International Symposium on Software
Reliability Engineering (ISSRE). IEEE Computer Society, 1998.

[79] M. Grottke, L. Li, K. Vaidyanathan, and K.S. Trivedi. Analysis of Software Aging in a Web
Server. IEEE Transactions on Reliability, pages 480–491, 2006.

[80] M. F. Buckley and D. P. Siewiorek. VAX/VMS Event Monitoring and Analysis. In Proceedings
of the International Symposium on Fault-Tolerant Computing (FTCS), pages 414–423. IEEE
Computer Society, 1995.

[81] M. Cinque, D. Cotroneo, R. Natella, and A. Pecchia. Assessing and Improving the Effectiveness
of Logs for the Analysis of Software Faults. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN), pages 457–466. IEEE Computer Society, 2010.

[82] F. Salfner, S. Tschirpke, and M. Malek. Comprehensive Logfiles for Autonomic Systems .
Proceedings of the IEEE Parallel and Distributed Processing Symposium, 2004, April 2004.

[83] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving Software Diagnosability via
Log Enhancement. In Proceedings of the International Conference on Architectural support
for programming languages and operating systems (ASPLOS), pages 3–14.

[84] A. Rabkin, W. Xu, A. Wildani, A. Fox, D. Patterson, and R. Katz. A Graphical Representation
for Identifier Structure in Logs. In Proceedings Workshop on Managing systems via log analysis
and machine learning techniques (SLAML), 2010.

[85] M. Bing and C. Erickson. Extending UNIX System Logging with SHARP. In Proceedings of
the 14th USENIX Systems Administration Conference (LISA), 2004.

[86] W. Xu, L. Huang, A. Fox, D. Patterson, and M.I. Jordan. Detecting Large-Scale System
Problems by Mining Console Logs. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating Systems Principles (SOSP), 2009.

[87] Z. Zheng, Z. Lan, B.H. Park, and A. Geist. System Log Pre-processing to Improve Failure Pre-
diction. In Proceedings of the International Conference on Dependable Systems and Networks
(DSN). IEEE Computer Society, 2009.

[88] J. Durães and H. Madeira. Generic Faultloads Based on Software Faults for Dependability
Benchmarking. In In Proceedings of the International Conference on Dependable Systems and
Networks (DSN). IEEE Computer Society, 2004.

[89] J. Stearley and A. J. Oliner. Bad Words: Finding Faults in Spirit’s Syslogs. In IEEE Inter-
national Symposium on Cluster Computing and the Grid, pages 765–770, Los Alamitos, CA,
USA, 2008. IEEE Computer Society.

Bibliography 175

[90] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, Vector Spaces, and Information Retrieval.
SIAM Rev., 41:335–362, June 1999.

[91] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A Tool for Assessing Resilience to Hu-
man Configuration Errors. In International Conference on Dependable Systems and Networks
(DSN). IEEE Computer Society, 2008.

[92] G. Pardo-Castellote. OMG Data-Distribution Service: Architectural Overview. In ICDCS
Workshops, pages 200–206. IEEE Computer Society, 2003.

[93] Gartner and Affiliates. Hype Cycle for Application Development. (29-June-2007). ID Number
G00147982.

[94] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2003.

[95] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide, The (2nd
Edition). Addison-Wesley Professional, 2005.

[96] C. Simache and M. Kaâniche. Measurement-based Availability Analysis of Unix Systems
in a Distributed Environment. In Proceedings of the International Symposium on Software
Reliability Engineering (ISSRE). IEEE Computer Society.

[97] G. Khanna, I. Laguna, F.A. Arshad, and S. Bagchi. Distributed Diagnosis of Failures in a
Three Tier E-Commerce System. In Proceedings of the International Symposium on Reliable
Distributed Systems (SRDS), pages 185–198, Oct 10-12, 2007. IEEE Computer Society.

[98] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem Determina-
tion in Large, Dynamic Internet Services. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN), pages 595–604. IEEE Computer Society, 2002.

[99] W. Stallings. Operating Systems, Internals and Design Principles, 6th ed. Prentice Hall, 2008.

[100] M. Cinque, D. Cotroneo, and A. Pecchia. Towards a Framework for Field Data Production
and Management. In Proceedings of the Int’l Workshop on Sharing Field Data and Experiment
Measurements on Resilience of Distributed Computing Systems (SRDS 2008), pages 34–39.

[101] M. Cinque, D. Cotroneo, and A. Pecchia. Enabling Effective Dependability Evaluation of
Complex Systems via a Rule-Based Logging Framework. International Journal on Advances
in Software, 2:323–336, 2009.

[102] Jim Gray. A Census of Tandem System Availability. IEEE Transactions on Reliability, pages
40–9, 1990.

[103] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic Itemset Counting and Implication
Rules for Market Basket Data. pages 255–264. ACM Press, 1997.

[104] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons New York,
1991.

[105] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan. Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM, SIGCOMM ’10, pages 63–74, New York, NY, USA, 2010. ACM.

[106] I. Rouvellou and G. W. Hart. Automatic Alarm Correlation for Fault Identification. In Proceed-
ings of the Fourteenth Annual Joint Conference of the IEEE Computer and Communication
Societies, page 553, Washington, DC, USA, 1995. IEEE Computer Society.

