p *

w
o

¥ *
» ¥

Comunita Europea
A.D. MCCXXIV Fondo Sociale Europeo

ON THE QUALITY OF FAULT INJECTION
FOR OFF-THE-SHELF COMPONENTS
IN SAFETY-CRITICAL SYSTEMS

ANNA LANZARO

Tesi di Dottorato di Ricerca

(XXVI Ciclo)

Marzo 2014
Il Tutore Il Coordinatore del Dottorato
Prof. Domenico Cotroneo Prof. Francesco Garofalo

Dipartimento di Ingegneria Elettrica
e delleTecnologie dell’'Informazione

= ViaClaudio, 21 - 80125 Napoli - &[+39] 081 76 83813 - £][+39] 081 76 83816

ON THE QUALITY OF FAULT INJECTION FOR OFF-THE-SHELF
COMPONENTS IN SAFETY-CRITICAL SYSTEMS

By

Anna Lanzaro

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II
VIA CLAUDIO 21, 80125, NAPLES, ITALY
MAY 2014

(© Copyright by Anna Lanzaro, 2014

Acknowledgements

First, I would like to thank my advisor prof. Domenico Cotroneo for his professional support,
for his constantly encouragement and, above all, for his trust in me.

A special thanks goes to Roberto Natella, who was a great co-advisor during my master
degree and he continued to patiently support me during these three years. I am really glad
and I feel honoured to work with him.

I also want to thank Antonio Pecchia, who gave me important and valuable advises
during my PhD. He is my colleague, but he is especially a good friend.

Concluding, I would thank both MOBILAB and CINI groups, including people who were
in our lab since the beginning of my experience and the ones who have just arrived. I wish

them all the best.

Anna

iii

Table of Contents

List of Tables vii
List of Figures viii
1 Introduction 1
1.1 Thesis contributions Lo 7

2 Off-The-Shelf Components in Safety-Critical Systems 12
2.1 Imtroduction 12
2.2 Off-The-Shelf Components: Definitions and Classification 13
2.3 OTS Components and Safety Standards 14
2.4 Testing OTS-based Systems 17
2.4.1 Dependability: Basic Concepts 18

2.4.2 Fault Injection Testing L 19

3 Achieving Accuracy in Binary Code Mutation 23
3.1 Imtroduction L 23
3.2 Background and Related Work L. 25
3.2.1 G-SWFIT 29

3.2.2 SAFE e 30

3.3 Experimental Evaluation of Binary Fault Injection 32
3.3.1 Fault Matching 35

3.3.2 Fault Sampling 37

v

3.33 CaseStudy

3.34 Results e
3.4 Systematic Testing of Binary Fault Injection
3.4.1 Test-suite Generation

3.4.2 Test-suite Execution, Comparison and Detection of Inaccuracies

3.4.3 The csXception™ suite
3.44 Test Planning L Lo
345 Results
3.5 Summary e

Achieving Representativeness in Interface Error Injection

4.1 Introduction

4.2 Background and Related Work oo

4.3 Propagation of Errors at Component Interfaces
4.3.1 Propagation analysis approach
4.3.2 Component fault injection
4.3.3 Results

4.4 SUmMmMAary

Software-Implemented Fault Injection in the Multicore Era

5.1 Imtroduction

5.2 Multicore in safety-critical systems

5.3 Background and Related Work
5.3.1 Software-implemented Error Injection for Multicore
5.3.2 CaseStudy
5.3.3 Campaign #1
5.3.4 Campaign #2

5.4 Emulating Hardware Errors in Virtualized Systems
54.1 Casestudy
54.2 Campaign 1
54.3 Campaign 2o

84
84
86
92
93
105
107
114

5.5 Summary

6 Conclusions and Future Work

Bibliography

vi

List of Tables

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2
9.3

Fault Types (see also [36]). 26
Classification of Fault Injection Tools 29
Description of OMFC Fault Type 30
Comparison of Average Software Complexity Metrics of Functions in RTEMS

and CDMS Code 48
Fault Types of G-SWFIT [36].. 55
Constraints of Fault Types in G-SWFIT [36] 56
Parameters of the Faultprog random program generator. 66
Test-suites generated by FaultProg 74
Fault types adopted in this study [36]. 106
Outcomes of experiments. 109
Distributions of return values in fault injection experiments. 113
Correlation between corruption rate and number of accesses. 114
Status Register [15:0] L 131
MCEs injector input 139
MCE example e 140

vil

List of Figures

21
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14

3.15
3.16
3.17
3.18
3.19

Component and Interface, 13
General fault injection framework L 20
Software Fault Injection Techniques 32
Overview of the Method for G-SWFIT Evaluation 35
Fault Matching Procedure L. 37
Examples of Spurious and Omitted Faults Due to C Preprocessor Macro . . . 39
Architecture of the Case Study 42
Distributions of Software Faults at both Binary and Source Code Level 43
Correctly Injected, Spurious, and Omitted Faults 45
Causes of Incorrect Fault Injection in the Case Study 46

Number of Faults (Correctly Injected, Spurious, and Omitted) in OS and

Application Code 46
Causes of Incorrect Fault Injection in OS and Application code 48
Spurious MFC Fault in CDMS. 51
Omitted MFC Fault in COMS 52
Omitted MIA Fault in CDMS. 53

Number of Faults (Correctly Injected, Spurious, and Omitted) when Fixing
Implementation Issues of the G-SWFIT Tool 54
Accuracy of G-SWFIT in the Context of an Embedded Space Software [29]. . 58

General Structure of a Synthetic Program 60
Proposed Approach 61
Example of a Synthetic Program for Testing MFC Fault Type 67
csXception™ architecture 72

3.20
3.21
3.22
3.23
3.24
3.25

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

4.13

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

Distributions of Faults Injected at Binary and Source Code Level 75

Distributions of Correctly Injected, Spurious and Omitted Faults. 75
Spurious injections. 78
Example of synthetic program causing a spurious injection. 79
Omitted injections. L 80
Example of synthetic program causing an omitted injection. 81
Relationship between component faults and interface errors. 90
Propagation through a library-allocated heap area. 91
Propagation through a user-allocated heap area. 92

Propagation through a library-allocated heap area, reached through a user-

allocated heap area. 93
Propagation through a user-allocated local variable. 94
Overview of error propagation analysis. 95
Example of reachability graph. 0000 98
Trace pre-processing. 100
Example of comparison between faulty and fault-free traces. 102
Software Fault Injection approach [28,80]. 106

Cumulative distribution (per library) of the number of corrupted bytes of
interface data. 111

Cumulative distribution (per fault type) of the number of corrupted bytes of

interface data. 112
Byte corruption rate and number of accesses for Libzml2. 115
Proposed Error Injection Framework 127
Intel Core i7 Architectural Block Diagram 129
Machine Check Architecture 130
MCE Description File and Severity Levels 132
SER_P=0: Recovery Actions Not Supported by the Processor 134
SER_P=1: Recovery Actions Supported by the Processor 134
Severity and Recovery Actions Grouped by Error Categories 136
Severity and Recovery Actions for Campaign #2 137

1X

5.9 Injection Framework for Virtualized Systems. 137

5.10 Architecture Framework for Xen 139
5.11 MCE Generator o o 141
5.12 Recovery Actions for Campaign #2 142
5.13 SER_P=1: Recovery Actions Implemented by Xen 143

Chapter 1

Introduction

Fault Injection (FI) is a family of techniques that emulates hardware and/or software faults
by deliberately inserting them into a system component in order to analyze system behavior
under faulty conditions, i.e. whether the system can tolerate faults. It is well recognized
that Fault Injection is a powerful means for dependability assessment, especially when the
system is composed by third-party components, which are often distributed as executables

(commercial Off-The-Shelf), being their source-code not available.

The integration of hardware and software OTS components is quite common in the
development of modern systems. Their adoption is driven by development costs, market
pressure, and performance reasons. Similar reasons are behind the adoption of OTS com-
ponents in safety-critical systems where standards e.g., ISO-26262 [56|, IEC-61508 [27], and
DO-178B [42] regulate their integration by requiring evidences that OTS components ful-

fil safety functions. Unfortunately, the lack of documentation and information about the

Chapter 1. Introduction 2

development life-cycle and different operational environments often lead to an improper inte-
gration of OTS components, rising the risk of failures [116]. As a consequence, dependability
assessment techniques and proper verification strategies are mandatory in order to evaluate

system behavior in presence of hardware and software faults.

Regarding the emulation of software faults, fault injection is able to operate at dif-
ferent system levels: at component-level by means of code mutation techniques; and at
interface-level through error injection techniques. Code mutation techniques emulate bugs
into a system by mutating the code of a program. Mutations represent software defects,
i.e. programming mistakes, to be introduced in the code in order to realistically emulate
a faulty software . In the case of OTS-based systems, the injection of programming errors
is performed at at binary-level and it presumes that programming constructs used in the
source code are identified by looking only at the binary code. Unfortunately, software fault
injection (SFI) at binary-level is a difficult and error-prone task due to the complexity of
programming languages and of modern compilers, which make difficult and in some cases
impossible to accurately recognize where to inject faults. The major concern when injecting
software faults at binary-level is to assure that binary-level mutations are accurately per-
formed to emulate programming mistakes, i.e. SFI has to correctly emulate software

faults to an acceptable degree of confidence that a fault injected in the binary

Chapter 1. Introduction 3

code correctly emulates a software defect in the source code. Inaccuracies in the in-
jection could negatively affect the results of fault injection campaigns leading to erroneously

considerations on dependability properties of the system.

Instead of injecting software faults, Interface Error Injection (IEI), which is often adopted
in the context of robustness testing, mimics the effects (i.e., errors) produced by faults
in a component, by injecting exceptional or invalid values at the component’s interface
[48,73,118|. Despite its popularity, the use of IEI for the representative emulation of com-
ponent faults (as required by dependability assessment strategies [62,78,115]) is questionable.
There are not evidences that the injection of interface errors can realistically emu-
late faults occurring in the system. Investigations on the representativeness of interface
errors is required in order to perform an effective and representative error injection into the

component’s interface.

Regarding the emulation of hardware faults, a great variety of fault injection techniques
exists. One of the most popular hardware fault injection techniques is known as software-
implemented fault injection, i.e. SWIFI. Based on bit stuck-at and bit-flip models, SWIFI
allows the emulation of hardware faults through software by reproducing possible effects of
real hardware errors without directly interfering with the system. Although these techniques
were successfully employed for the evaluation of system behavior against hardware errors,

they could result to be not effective in the case of advanced processors, such as multicore

Chapter 1. Introduction 4

ones. Multicore integrates more cores on the same die that, running in parallel, share many
resources (e.g. memory, caches, registers). The complexity of the architecture increases the
probability of hardware errors because of the great number of transistors on the same chip.
To make processors more reliable, designers and developers have devised many hardware-
implemented mechanisms such as error detection that are able to detect and, in some case,
to correct hardware errors. Detected errors are then reported to the upper software layer,
i.e. operating system. So that, the complexity is shifted to the software that has to correctly
interpret signaled hardware errors and to implement adequate software recovery mechanisms
to cope with them. Although SWIFI techniques can be applied also when system integrates
multicore processors, fault injection campaign could be very expensive and unfea-
sible due to the huge number of resources, i.e. possible locations where to inject errors.
In fact, the replication of cores means also replicated resources per-core. Moreover, two
aspects should be considered when adopting existing fault models. First, single or multi-
ple bit-flip could be automatically corrected by hardware mechanisms and masked to the
software affecting the effectiveness of SWIFI techniques. Second, new errors (that
were not a concern in single-core architectures) may occur, e.g. errors in the interconnection
links between cores make existing SWIFI techniques not representative enough for
modern systems. Effective fault injection techniques should evaluate the behavior of soft-

ware systems deployed on the top of multicore. This is very important also in safety-critical

Chapter 1. Introduction 5

systems where the increasing trend to integrate hardware Off-the-Shelf components is driven
by the need of deliver sophisticated and demanding functionalities by assuring innovative

solutions, high performance and reduced costs.

Software-based systems in the automotive domain are an example. Modern cars includes
many controllers, sensors and actuators connected by different bus for adaptive cruise control
with "stop and go" capabilities, stability control, brake assistance or park assistance, etc. To
meet the requirements of the modern functionalities, higher performance are demanded, but
building ad-hoc advanced hardware components could be very expensive. Exploiting existing
components and, above all, taking advantages from technological progress, the integration of
hardware Off-the-shelf components seem to be a good choice. Historically, critical embedded
systems have been developed using hardware components based on single-core processors,
but nowadays they cannot overlook the advances of the micro-controllers market from which
general purpose systems such as personal computers, smart-phones and tablet already have
beneficed: they have undergone a significant change by replacing single-core processors with
multi-core. The migration brings many benefits in terms of performance, power consumption
and energy efficiency although it is an awkward activity in critical domains that have to
accomplish some strict standards. To exploit the full potential of multi-core, some changes
in software are required: tasks should be executed in parallel, i.e. thread level parallelism,

to benefit from multi-core. In addition, software running on the top of multi-core has to

Chapter 1. Introduction 6

take into account architectural changes and improvements: more cores on board connected
by links, shared resources, several levels of cache, advanced error handling mechanisms.
Unfortunately, we are still far away from the use of parallel programming in critical domains
because of problems related to the non-determinism of the execution, to the synchronization

and the cooperation between tasks running in parallel.

Nevertheless, multi-core, in conjunction with virtualization [44], can support achieving
safety requirements imposed by standards. Virtualization makes it possible running inde-
pendent applications on each core to ensure properties such as, space and temporal isolation.
Furthermore, the inherent presence of replicated cores allows implementing fault-tolerant so-
lutions. Overall these features exacerbate the need for strategies to evaluate dependability

characteristics of multi-core systems.

In conclusion, fault injection is widely adopted in the verification and validation of OTS-
based systems. Effective FI techniques should guarantee a certain level of quality, i.e they
must guarantee representativeness and accuracy properties: FI techniques should inject
in an accurate way faults that are representative. If these features are not guaranteed,
analyses based on fault injection experiments can result to be wrong and, in worst cases,

they may contribute to dramatic accidents and economic loss.

Chapter 1. Introduction 7

1.1 Thesis contributions

Considering code mutation, interface error injection and software-implemented fault injec-

tion, the main research questions are:

e SFI: Are mutation at binary level accurate enough? How is it possible to validate the
correctness of the modifications into the binary code, being sure that injections are

correctly performed?

o [EIL: Are the existing error model representative? Is an error injected at component

interface representative for a real software bug in a component?

e SWIFI: How emulate hardware errors in multicore processors? Are the existing op-
erating systems and hypervisors able to correctly treat errors signalled by hardware

error detection and reporting mechanisms of modern processor such as multicore?

This dissertation contributes to the improvement of the quality, i.e. representativeness
and accuracy properties, of Fault Injection techniques employed in the evaluation of COTS-

based safety-critical systems by proposing:

1. A method for testing and improving the accuracy of BCM tools. Software
fault injection based on code mutation at binary level requires that programming
constructs used in the source code are identified by looking only at the binary code,

since the injection is performed at this level. The proposed method is based on the

Chapter 1. Introduction 8

automatic generation of synthetic programs that are given as inputs to a BCM tool in
order to evaluate its accuracy at performing binary mutations. First, several synthetic
programs are generated by encompassing different programming constructs in different
contexts (e.g., nested loops, control flow constructs and function calls). Then, the
BCM tool is applied on the binary code of the synthetic programs, and the mutations
produced by the BCM tool are compared against the source code of the synthetic
programs (the analysis of source code serves as a reference, as it does not suffer the
limitations of binary level mutation), in order to assess the ability of the BCM tool
to correctly recognize and mutate programming constructs at the binary
level, and to reveal its issues and limitations. In other words, the set of synthetic
programs acts as a test suite for evaluating and improving binary-level fault injection

and mutation testing tools.

2. A method for analysing error propagation at the interfaces of software
components. The method aims at automatically analyzing how software faults in
components’ code result in errors at components’ interfaces, in order to provide some
constructive evidence towards more representative IEI techniques. It identifies how
faults in software components manifest as interface errors. First, faults are injected in
the software component under analysis by using a fault injection technique. Then, it

instruments and executes the software component and identifies the effects of injected

Chapter 1. Introduction 9

faults on the program that uses the component, including the corruption of data
structures shared between the program and the component and erroneous return values

from function calls.

3. A prototype framework for injecting hardware errors in multicore-based
architecture The tool aims at injecting hardware errors by exploiting the error re-
porting architecture implemented in modern processors as multicore in order to asses
error handling mechanisms of existing operating systems. Fault injection campaigns
have been conducted to test the functionalities of the framework under the Linux OS
running on the top of the Intel i7 processor. Based on the same approach, a prototype
tool was also proposed to inject errors in virtualized system in order to validate the

error handler mechanisms implemented in the hypervisors.

This thesis includes materials from the following research papers, already published in

peer-reviewed conferences and journals or submitted for review:

e FExperimental Analysis of Binary-Level Software Fault Injection in Complex Software,
D. Cotroneo, A.Lanzaro, R. Natella,R. Barbosa, Proc. of 9th European Dependable
Computing Conference (EDCC), May 2012, Sibiu, Romania. (Best Presentation

Award)

Chapter 1. Introduction 10

o Multicore Systems: Challenges for creating a representative fault model for fault injec-
tion, N. Silva, R. Barbosa, A. Lanzaro, D. Cotroneo, J. Duraes, DASIA International

Space System Engineering Conference, 2012.

o Injecting Machine Check Errors to Explore Dependability Issues of Multicore Systems,
A. Lanzaro, A. Pecchia, M. Cinque, D. Cotroneo, N.Silva, R.Barbosa, Supplemental
Volume of the Proc. of 42nd International Conference on Dependable Systems and

Networks(DSN), 2012.

e A Preliminary Fault Injection Framework for Evaluating Multicore Systems, A. Lan-
zaro, A. Pecchia, M. Cinque, D. Cotroneo, R. Barbosa, and N. Silva, Supplemental
volume of Proc. of 32nd International Conference on Computer Safety, Reliability and

Security (SAFECOMP), 2012.

e Tools for Injecting Software Faults at the Binary and Source-Code Level A.Lanzaro,
R.Natella, R.Barbosa, Innovative Technologies for Dependable OTS-Based Critical

Systems - Challenges and Achievements of the CRITICAL STEP Project (2013)

e Leveraging Fault Injection Techniques in Critical Industrial Applications A.Pecchia,
A.Lanzaro, As’ad Salkham, M.Cinque, N.Silva, Innovative Technologies for Depend-
able OTS-Based Critical Systems - Challenges and Achievements of the CRITICAL

STEP Project (2013)

Chapter 1. Introduction 11

o An Empirical Study of Injected versus Actual Interface Errors, A. Lanzaro, R.Natella,
S.Winter, D.Cotroneo, N.Suri. Procs of International Symposium on Software Testing

and Analysis (ISSTA), 2014

Part of the activities were conducted in collaboration with Critical Software (Coimbra,
PT) in the context of the European Project Critical-step "Marie-Curie" Industry-Academia

Partnerships and Pathways (IAPP) FP7-PEOPLE-2008-IAPP [2].

Chapter 2

Off-The-Shelf Components in
Safety-Critical Systems

2.1 Introduction

Economical reasons along with technological advances influence the development of systems:
the main challenge for developers is to build complex and performing systems by having
reduced resources. Traditionally, software-based systems were developed from scratch, but
nowadays it is not thinkable because of the high number of functionalities demanded to soft-
ware. One of the strategy to reduce development costs/time and to exploit new technologies
is the integration of components developed by third-party, i.e Off-the-shelf components. In
literature, there are many studies that discuss issues related to the selection, integration,
maintenance and certification of OTS components in critical systems [69], but they out of
the scope of the thesis.

Instead, this dissertation is focused on dependability evaluation of OTS-based systems

through adequate and effective testing techniques once OTS components are selected and

12

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 13

integrated into safety-critical systems. In particular, this chapter describes the use of OTS
components in safety-critical systems by highlighting suggestions provided by the standards

about OTS components and testing techniques.

2.2 Off-The-Shelf Components: Definitions and Classification

A component is an independent and reusable unit whose integration in a system contributes
to its functioning. It communicates with the other parts of the system by means of one or
more interfaces. Interface is an access point by which components provide services that can
be required from clients, i.e. other components. For example, in Figure 2.1 component C1
provides the service S. Component C2 is the client that can require the service S by means
of its interface.

Service
<<component>> {l S <<component>> {l

Cc1 O 3 Cc2

Figure 2.1: Component and Interface

In hardware engineering, the concept of Off-the-shelf component is well understood (e.g.
RAM, CPU, etc.) and and its integration to build more complex systems is a common
practice, namely Intellectual property (IP) based development. Instead, for what concern

software, an OTS component is not well defined. In literature, there are many and confusing

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 14

definitions [107], [86], [113], [19], [16] and the terms Off-the-Shelf (OTS) and Commercial Off-
the-Shelf (COTS) are often improperly used. Moreover, depending on the domain, OTS com-
ponents are also called Government-Off-The-Shelf (GOTS), Military-Off-The-Shelf (MOTS)
and Non-Developmental Item (NDI) when components are not-commercially acquired; Open
Source Software (OSS) when the source code is available but not modifiable [76]; Software
of Unknown Pedigree (SOUP) [18] used in medical domain.

However, according with [107| and [86], we adopt following definitions:

e An OTS component is acquired by third-party and it is usually distributed as an
executable, so the source code is not available. The latter, when available, cannot be

modified.

e A COTS component is an OTS component that (i) is developed by a commercial
vendor; (ii) it is available to the general public; (iii) it can be bought (or leased, or

licensed) [86].

e An Open source software is an OTS component that uses open specifications for in-

terfaces, services, and supporting formats.

2.3 OTS Components and Safety Standards

The advantages provided by the OTS integration in critical domains were recognized since

1994 when the US Department of Defence observed that the technology used military systems

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 15

was 10 years old while new technology emerges every 18-24 months [86]. Since that moment,
military systems started the migration to software developed using COTS components. The
Department of Defense stated that "to meet future needs, the Department of Defense must
increase access to commercial state-of-the-art technology" and "moving to greater use of
performance and commercial specifications and standards is one of the most important
actions that DoD must take to ensure we are able to meet our military, economic, and

policy objectives in the future" [89].

Many recent standards 38| provide guidance on using both hardware and software COTS

components as discussed in |71]:

e IEC 61508 [27] is the standard for Electrical/Electronic/Programmable Electronic.
It states that the integration of OTS components can bring many advantages, but
adequate verification and validation process should provide evidences that components
meet safety requirement. Negative effects due to different operational environment,
functionalities not required in the new context but implemented in the component,
and internal operations of the OTS component not being fully understood should be
taken into account during V&V process. It suggests methods such as interface testing,
error guessing and seeding (i.e. fault/error injection), and functional testing under

environmental conditions.

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 16

e MIL-STD-882D (32| is the safety standard adopted in US military and defense do-
mains. It provides suggestions for software development and it requires a safety pro-
gram to identify hazards and prevent mishaps. Moreover, it recommends additional
hazard analyses in case of OTS components by using unit, integration and qualification

testing.

e Def Stan 00-55 and 00-56 [101] [102] are safety standards adopted for the de-
velopment of UK military and defense systems. They suggest system or component
evaluation to determine whether they satisfy the requirements. FMEA is used to per-
form process failure analysis. In particular, Def Stan 00-56 states: "Where COTS or
other existing complex electronic elements are used, the Safety Case should detail the
processes used for evaluation, validation and implementation of the complex electronic
element, the processes used for any bespoke software or hardware (such as software
wrappers or hardware interlocks) and any information from the complex electronic
element supplier about the development process (where available). In general, the
more onerous the safety integrity requirements, the more rigorous and compelling the
process evidence that should be provided. For a COTS or pre-existing element, the

rigour may have to be provided at the evaluation stage."

e DO-178B [42] is the standard for aerospace domain. It concerns software employed

in airborne systems. Both hardware and software components are considered and

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 17

studied during safety assessment and verification activities. It suggests the analysis
of historical data (e.g. data about the reliability) when adopting existing software in
new aircraft and software whose data does not satisfy the guidelines of the standard

in order to provide evidences and justify the integration.

2.4 Testing OTS-based Systems

Safety standards require evidences that systems are dependable even in presence of OTS/-
COTS components, i.e they should tolerate faults. In particular, they suggest the implemen-
tation of fault tolerant mechanisms in order to avoid system failures. To accomplish this,
these mechanisms have to detect faults and errors that occur during system functioning and
perform recovery actions to restore system state. Approach used are based of replication

and diversity: examples are Recovery blocks, N-versioning programming.

However, to asses the effectiveness of fault tolerant mechanisms, to evaluate error han-
dlers and error propagations among components, adequate and effective testing techniques

are required.

As discussed in 2.2, an OTS components is usually distributed as an executable, i.e.
the source code is not available. Due to the nature of OTS components, fault injection

techniques seems to be suitable for the aim.

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 18

2.4.1 Dependability: Basic Concepts

The fault-error-failure chain expresses the concept that the activation of a fault leads to an
error. An invalid state generated by the error may lead to another error or to a failure [14].

In particular:

e Fault is a defect in a system. It can affect software components, e.g. software bugs,

and hardware components, e.g. physical faults. If activated, it causes an error.

e Error is the deviation of the system states from a correct state that may lead to a
subsequent (service) failure. Errors are dormant if they do not cause service failure, it
they manifest at system or component interface, a failure occurs. Errors can propagate

from one component to another of the system through their interfaces.

e Failures or service failure is the deviation of the system from the correct implemen-
tation of the system function. A failure may occur because the system violates the
specification or because the specification is not adequate to describe the behavior of
the system. The failure of one or more services implementing system functions make

the system operate in a degraded mode.

A system that can avoid service failures that are more frequent and more severe than is

acceptable is called dependable system. Dependability encompass a set of attributes:

e Availability: readiness for correct service.

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 19

Reliability: continuity of correct service.

Safety: absence of catastrophic consequences on the user(s) and the environment.

Integrity: absence of improper system alterations.

Maintainability: ability to undergo modifications and repairs.

2.4.2 Fault Injection Testing

Fault Injection is a technique that emulates hardware and software faults by deliberately in-
serting defects into a system component in order to determine how the system behaves when
a component fails, i.e. whether the system can tolerate faults. Due to its ability of emulating
a malfunctioning in component of target system, FI is widely is considered a valuable de-
pendability assessment approach. It was successfully used for validating fault-tolerance
mechanisms by evaluating how a target behaves in presence of faulty components through
error detection and handling mechanisms (such as assertions and exception handlers) against
component faults [11,67,85]. In [53,78,114], FI techniques were adopted for aiding FME-
CAs (Failure Mode, Effects, and Criticality Analysis): Developers can quantify the
impact of a faulty component on the overall system (e.g., in terms of catastrophic sys-
tem failures), and mitigate risks by comprehensively testing the most critical components
and revising the system design. Moreover, FI can helps in the context of Dependability

benchmarking by providing support for developers to choose among alternative systems

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 20

or components the one that provides the best dependability and/or performance in the

presence of other, faulty, components [62].

Systgm_pnder

Experimental data

h

MONITOR
] workload

. target
workload

OTS Cmp

1
1

1

1

1

1

:

1

1
CONTROLLER > INJECTOR :
:

1

1

1

1

1

1

1

1

1

=
i

faultlopad @ 0--------------- !

Figure 2.2: General fault injection framework

Figure 2.2 depicts a general framework for fault injection. In the following list, key
elements are discussed highlighting the characteristics they should have in order to meet the

requirements for an effective, efficient and good quality fault injection.

e The target is the system under test that executes a workload, an operating system,
an application or a program. A workload should be representative for a real system

utilization.

e Faultload is the set of faults that will be injected in the target system during the
campaign; faults to be injected are defined by a fault model describes faults in terms of

their type (what to inject), location (where to inject) and trigger (when to inject). It

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 21

has to be representative, i.e. a fault has to represent a real defect. Representativeness
of faultloads is achieved by defining a realistic fault model, instead the accuracy is

achieved by reproducing this fault model when faults are injected.

e Injector is the component responsible of introducing fault into the target. The injector
should not distort the actual behaviour of the system under test. The isolation between

the injector and the target should be achieved to satisfy the not-intrusiveness property.

e Monitor is responsible for collecting data concerning the fault-injection outcomes.
Monitor should cope with data loss caused by experiments leading to critical system
failures, such as reboot or panic. Again, monitoring and data collection features should
not impact the behaviour of the target system. This contributes to controllability and

observability properties.

e Controller is the entity responsible for iterating fault injection experiments and coor-
dinating the described components. For each experiment it activates/deactivates the
injector module, and stores monitoring data. Moreover, controller should ensure that
the workload is actually running at the time injection is performed. It has to fulfil

controllability and repeatability properties.

This dissertation is focused on the quality of fault injection techniques represented by

representativeness and accuracy essential properties for meeting quality requirements. The

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 22

aim is to evaluate and to improve the quality of existing fault techniques for the assessment
of OTS-based systems in safety-critical contexts.

In origin, fault injection techniques were able to emulate hardware faults by physically
interfering with the target system through special and expensive devices. To overcome
limitations of such techniques, software-implemented fault injection techniques were pro-
posed. They injects hardware faults by emulating the effects of faults (e.g., CPU or memory
faults), i.e. corrupting the state of the software using bit-flipping or stuck-at techniques.
these techniques are also known as error injection. More recently, software injection tech-
niques emerged. At component level, injection is performed by mutating the source code or
the binary code of a component of the target system. Instead, at interface level, software

faults are inserted into the component interface of the target.

Chapter 3

Achieving Accuracy in Binary Code
Mutation

3.1 Introduction

Software Fault Injection aims at the realistic emulation of software faults (i.e., bugs!) in
a software component to assess the impact of these faults on the system behavior. SFI
is assuming an increasing relevance since software faults have been recognized as one of
the major causes of system failures [49,87|. It is used for the experimental validation and
improvement of fault tolerance mechanisms and algorithms [10, 85]; it makes possible to
analyze worst-case scenarios and the effects of faulty components [78,114]; it is used in
conjunction with dependability forecasting techniques, in order to populate dependability
models with measures obtained from experiments [54,64,90]; and to benchmark alternative
systems or design choices [62]. The realistic emulation of software faults is a key objective

to achieve accurate dependability measures and to investigate faulty scenarios that the

In this work, we follow the notion that a software fault is a development fault originated during the
coding phase [13, 36].

23

Chapter 3. Achieving Accuracy in Binary Code Mutation 24

system could face during operation. One of the most popular SFI technique is G-SWFIT
(Generic Software Fault Injection Technique), proposed by Duraes and Madeira [36]. G-
SWFIT injects software faults by mutating the binary executable code of a program. This
technique is attractive for practitioners, since it allows to perform Software Fault Injection
when the source code is not available, which is often the case when third-party software is
adopted. G-SWFIT defines which types of software defects have to be introduced in order to
realistically emulate a faulty software, based on recent field data studies that characterized

residual software faults in complex systems [25,36,105].

An important issue concerning the injection of software faults at binary level is the
accuracy of the injection campaign, that is, the degree of confidence that a fault injected in
the binary code correctly emulates a software defect in the source code. For instance, if we
aim to emulate the absence of a variable assignment in the source code, we could remove
a "move" instruction at binary level. But, if we consider the emulation of a bug in a C
preprocessor macro (i.e., a piece of source code that is replicated several times in the binary
code), the problem cannot be resolved by simply looking at the binary code. Therefore, it
is important to assess the accuracy of binary-level SFI in order to be effectively adopted in
real-world scenarios. Unfortunately, only a few studies evaluated the accuracy of binary-
level SFI, which were limited to small programs or to a small number of faults [34, 36, 60|,

and no previous work analyzed this problem comprehensively.

Chapter 3. Achieving Accuracy in Binary Code Mutation 25

This chapter provides the state of the art on Software Fault Injection providing more
details about fault injection techniques based on code mutation. Then, a method for the
experimental evaluation of the accuracy of binary code mutation tool is presented. Then,
based on the obtained results, it is described a method developed for the automatic detection

of the inaccuracy at binary level.

3.2 Background and Related Work

In order to emulate software faults in fault injection experiments, a model of software faults
that can realistically occur in the system under test is required. This property, which is
referred to as representativeness, is desirable when dependability measures have to be quan-
titatively assessed, such as coverage factors of fault-tolerant systems [54,64|, which depend
on the probability distribution of faults and workloads [90]. Fault representativeness is also
important to stimulate the complex failure modes that can be exhibited by a software sys-
tem or component, which are potentially more subtle than simple process hangs or crashes
and are not necessarily known a priori [85,114]. Field data studies analyzed software faults
in complex software systems, and can be used to define software fault models. Sullivan and
Chillarege [105] analyzed a large set of software-related failure reports collected from the
MVS OS, and proposed a classification scheme for software faults, which are described in a
level of detail close to the programming level. That work was later extended in [24] where

the Orthogonal Defect Classification (ODC) and the notion of defect type are introduced.

Chapter 3. Achieving Accuracy in Binary Code Mutation 26

This notion points to a high-level classification of faults including Function, Checking, As-
signment, Algorithm and Interface faults. ODC was aimed at providing feedback during
development; the work presented in [36] extends this level of description and proposes a
classification scheme that was precise enough for automated fault emulation (e.g., for the
"assignment" class of faults, it specifies if the assignment is an initialization, and if an ex-
pression or constant is involved). It also presents a field data study where it is pointed out
that most of the software faults found in the field belong to the set of fault types shown in

Table 3.1, and that they tend to follow a generic fault distribution.

Table 3.1: Fault Types (see also [36]).

Fault Type Description

MFC Missing function call

MVIV Missing variable initialization using a value

MVAV Missing variable assignment using a value

MVAE Missing variable assignment with an expression

MIA Missing IF construct around statements

MIFS Missing IF construct + statements

MIEB Missing IF construct + statements + ELSE construct
MLAC Missing AND in expression used as branch condition
MLOC Missing OR in expression used as branch condition
MLPA Missing small and localized part of the algorithm
WVAV Wrong value assigned to variable

WPEFV Wrong variable used in parameter of function call
WAEP Wrong arithmetic expression in function call parameter

Another aspect affecting the effectiveness of Software Fault Injection is represented by

the method adopted to introduce software faults into a system. In fact, SFI requires more

Chapter 3. Achieving Accuracy in Binary Code Mutation 27

complex modifications of the program code/state than simply a bit-flip /stuck-at: the com-
parison between real software faults and faults injected by SWIFI tools [58, 72| revealed
that hardware fault models cannot accurately emulate software faults. The emulation of
software faults requires that what it is injected reproduces the intended fault model, i.e.the
accuracy), in order to correctly evaluate the effects of software faults on the system. Several
methods have been devised for emulating software faults, most of them based on rather
indirect approaches (i.e., emulating the possible effects of software faults instead of injecting

actual faults in the software code).

Past work on software fault injection can be divided in three categories, according to
what is actually injected: data errors, interface errors, and code changes (summarized in

Table 3.2).

Data errors. This approach consists of injecting errors in the data of the target program
(i.e., a deviation from the correct system state [13]). This is an indirect form of fault
injection, as what is being injected is not the fault itself but only a possible effect of the
fault. The representativeness of this type of injection is difficult to assert, as the relationship
between data corruption and its possible root-cause (i.e., faults) is difficult to establish.
However, data errors are an useful and practical means for inducing software failures and

debugging of fault-tolerance mechanisms [114].

Interface errors. This approach is in fact another form of error injection where the

Chapter 3. Achieving Accuracy in Binary Code Mutation 28

error is specifically injected at the interface between modules (e.g., system components,
or functional units within a program). This usually translates to parameter corruption in
functions and API, and it is considered a form of robustness testing. The errors injected
can take many forms: from simple data corruption to syntactically valid but semantically
incorrect information. As with data errors, the representativeness of the errors injected
at the interfaces is not clear and there is some empirical evidence that supports the idea
that injecting interface errors and changing the target code produces different effects in the
target [77]. This approach is complementary to the injection of actual software faults, and

it has proven to be useful to find interface weaknesses [67].

Code changes. Changing the code of the target component to introduce a fault is
naturally the closest thing to having the fault there in the first place. However, this is not
easily achieved as it requires to know exactly where in the target code one might apply such
change, and what instructions should be placed in the target code. Several works followed
this notion, although with some limitations: Ng and Chen [85] and the FINE [64] and DE-
FINE [63] tools use code changes (e.g., changing the destination address of an assignment),
although their fault model is very simple and its representativeness is not assured. Madeira
et al. [72| showed that SWIFI can be used to inject simple code changes in running processes
but cannot emulate more complex software faults. The G-SWFIT technique [36] was devel-

oped to address software fault representativeness, by injecting software faults according to

Chapter 3. Achieving Accuracy in Binary Code Mutation 29

the set of most common fault types (Table 3.1) observed in field data.

Table 3.2: Classification of Fault Injection Tools

Category Tools
Data errors FIAT [15], FERRARI [61], PSN [114], csXception [21], NFTAPE [103], GOOFI
18]

Interface errors BALLISTA [67], RIDDLE [47], MAFALDA [11], Jaca [74], csXception [62]
Code changes Ng and Chen [85], FINE [64], DEFINE [63], G-SWFIT [36]

3.2.1 G-SWFIT

G-SWFIT injects code changes at the executable (binary) level (Figure 3.1a). It consists of
a set of fault operators that define code patterns (i.e., a sequence of opcodes) in which faults
can be injected (e.g., an MIA fault can be injected wherever an IF construct is found), and
code changes to be introduced (e.g., the removal of instructions related to an IF construct)
to emulate software faults®>. The proposed fault operators inject valid faults in terms of
programming language (i.e., mutated code is syntactically correct) and provide a set of
constraints to exclude fault locations that are not realistic (e.g., to inject an MIA fault, the
IF construct must not be associated to an ELSE construct, and it must not include more
than five statements or loops). The description of a fault operator is provided in Table 3.3.

As discussed in the rest of this paper, it is not trivial to assure the accuracy of software

“Each fault operator is related to a specific fault type and is denoted with the "O" prefix (e.g., the OMIA
fault operator is related to the MIA fault type).

Chapter 3. Achieving Accuracy in Binary Code Mutation 30

fault injection at the binary level, due to the gap between software faults at source code
level (e.g., defects in a program) and their conversion to binary level (i.e., translation of the
faulty code in machine code). The implementation of G-SWFIT and the definition of fault
operators are dependent on the hardware architecture, the compiler of the target application,
and compiler optimizations, since the binary translation of a programming construct (e.g.,
an IF construct) varies with the compiler and the hardware platform in which the software
can be executed. G-SWFIT was originally implemented and applied on the i386 hardware
architecture and the Microsoft Windows environment [35]. The technique has then been
ported to inject faults in the bytecode of Java programs [96]. Analysing G-SWFIT, it was
considered C language with respect to the PowerPC hardware architecture and the GCC

compiler, which has been implemented in a R&D tool by Critical Software.

Table 3.3: Description of OMFC Fault Type

Example function(...);

Example with faults furection(—}

Code pattern CALL target-address

Code change CALL instruction removed

Contraints Return value of the function must not be used (C01)

Call must not be the only statement in the block (C02)

3.2.2 SAFE

An alternative approach to change the code of a program consists in mutating its source code,

and then to compile the faulty source code to obtain a faulty version (Figure 3.1b). This

Chapter 3. Achieving Accuracy in Binary Code Mutation 31

approach has been implemented in a fault injection tool developed by MOBILAB research
group [4], namely SAFE (SoftwAre Fault Emulation) tool. The tool adopts the same fault
types of G-SWFIT (Table 3.1), including code patterns and constraints, although faults are
introduced in the source code instead of the binary code. This tool has different objectives
than G-SWFIT, since it cannot perform fault injection when the source code is not available;
it is considered as a support to evaluate the accuracy of G-SWFIT. In order to use the SAFE
tool, a C preprocessor translates C macros in a source code file (e.g., inclusion of header
files) to produce a self-contained compilation unit. A C/C++ front-end then processes the
compilation unit, in order to produce an internal representation of the program (Abstract
Syntax Tree, AST). The tool searches for suitable fault locations in the AST and applies a
fault operator if all constraints are met, e.g., to inject a MIF'S fault, an IF construct should
not contain more than 5 statements. The tool produces a set of faulty source code files, each
containing a different software fault. The faulty version is obtained by replacing a source

code file with a faulty file and recompiling the program.

Compared to the binary level approach followed by the original G-SWFIT, the source
code level approach assures the accurate emulation of fault types, since full information
about programming constructs and variables is available (this information is missing and
has to be reconstructed when injecting faults at the binary level). Moreover, injection in the

source code is portable among all platforms in which the target program can be compiled,

Chapter 3. Achieving Accuracy in Binary Code Mutation 32

Target application Binary level

(executable code) mutated versions
01001101 Cod 0100XXXX 01001101
11101010 pat‘;efns Code 11101010 1110XXXX
01110000 ! changes 01110000 01110000
01011101 anHIVSIS 01011101 01011101

B a 01001101

) XXXX1010
Blnary level 01110000
fault operator library 01011101

(a) G-SWFIT.
Target application Source code level
(source code) mutated versions
if(a && b) if (a—&& b) if(a &&b)

{ Source code Program { {
c=1; analysis rewriting c=1; c=1;

} } }

@ @ if(a && b)
{
Source code level c=2;
fault operator library }

(b) SAFE.

Figure 3.1: Software Fault Injection Techniques

without any additional efforts to adapt the fault injection tool to different hardware or
compilers. The drawbacks of this approach are that it increases experiment time, since the
program needs to be compiled after the injection of a fault, and that the approach cannot

be adopted when the source code is missing.

3.3 Experimental Evaluation of Binary Fault Injection

The experimental evaluation is motivated by the fact that the accuracy of binary-level fault
injection is limited by the impossibility to correctly recognize some programming constructs
in a binary program. The evaluation of binary-level fault injection in a real-world system

contributes to understand the limitations and the accuracy of the results that can be obtained

Chapter 3. Achieving Accuracy in Binary Code Mutation 33

by a fault injection campaign.

An example of a wrongly injected fault is represented by a C program containing a
SWITCH construct with two branches; in some architectures and compilers (this is the
case of GNU GCC compiler for PowerPC architectures), the SWITCH may be translated
in binary code using the same opcode sequence of an IF-ELSE construct, since they both
consist of a logical condition (which is translated using an opcode that compares two values)
and two branches (which are translated using branch opcodes). Therefore, a MIEB (see
Table 3.1) fault could erroneously be injected in a code location in which there is not an
IF-ELSE construct. It may also happen that a code location suitable for fault injection
cannot be recognized in the binary code. For instance, a compiler may translate a function
call as inline code (i.e., the function call is replaced with the body of the called function);
in this case, a fault injection tool would not be able to recognize the function call, thus
omitting to inject an MFC fault in that location. The experimental validation aims to
assess the relative occurrence of this kind of problems in real-world complex software, in
order to evaluate whether G-SWFIT can achieve an acceptable degree of accuracy even in
the presence of these problems. Although some of these problems are already known, their

extent in large and complex software has not been investigated in previous studies.

The method also aims at pointing out issues that may arise when implementing G-

SWEFIT, by highlighting cases in which faults are not correctly injected. Binary-level fault

Chapter 3. Achieving Accuracy in Binary Code Mutation 34

injection tools are difficult to implement, since they have to encompass all potential ways in
which programming constructs are translated. This problem is further exacerbated if it is
considered the complexity of modern CPUs, programming languages and compilers (whose
inner working is usually unknown). Thus it is likely that developers may neglect some code
patterns, thus leading to design errors in the fault injection tool.

The proposed method evaluates the accuracy of G-SWFIT by comparing the faults it
generates with the ones injected in the source code. Indeed, since a software fault is a
defect in the code of a program, it is clear that fault injection at source code level is more
accurate. Based on this consideration, faults injected by the two techniques are compared

and classified faults in the following three categories:

1. Correctly Injected faults: correct faults generated by both techniques. The larger is

the set of common faults, the higher is the accuracy of G-SWFIT.

2. Omitted faults: faults injected only at source-code level. They correspond to program-
ming constructs in which a fault could exist, but which have not been identified in the

binary code.

3. Spurious faults: faults injected only by G-SWEFIT at binary level that do not match
any fault at source-code level. Therefore, they are not considered as representative

software faults.

Chapter 3. Achieving Accuracy in Binary Code Mutation 35

It is important to note that source-level faults can be used as a term of comparison
for binary-level faults because (i) the same fault types are adopted for both binary- and
source-level fault injection (shown in Table 3.1), and (ii) binary- and source-level faults are
injected in every potential location (i.e., fault injection campaigns are exhaustive). The
method (depicted in Figure 3.2) consists of two phases, namely (i) automatic matching of
binary-level and source-level faults (Section 3.3.1), in order to identify Correctly Injected
faults, and (ii) fault sampling and manual analysis (Section 3.3.2), in order to identify which
issues affect the accuracy of G-SWFIT. As a real-world case study, it is considered CDMS
(Command and Data Management System), a real-time embedded system developed by

Critical Software for the space domain (Section 3.3.3).

Source-
Fault |:‘I: level faults Fault |:: > Fault
Injection Binary- Matchmg Sampling
level faults
=)
1) Repeat until all source-level faults are fixed
2) Increase sample until significance level is 1)

reached

Figure 3.2: Overview of the Method for G-SWFIT Evaluation

3.3.1 Fault Matching

Fault Matching is based on the assumption that if both techniques inject the same fault type

in the same location (e.g., an assignment or function call is removed both in the source code

Chapter 3. Achieving Accuracy in Binary Code Mutation 36

and in the corresponding location in the machine code), then they are injecting the same
fault. It is reasonable to make this assumption since if a fault location is identified both
at the binary and source levels, then that fault location is valid and correctly handled. In
order to be sure that this assumption holds (and therefore the results are valid), a sample
of Correctly Injected faults using the Fault Sampling procedure (explained in the next sub-
section) manually analyzed. Following this observation, binary-level and source-level faults
are compared with respect to their fault types and their locations in the source code (i.e.,
the source file, the function and the line of code in which a fault is injected). A binary-level
fault matches a source-level fault if they have the same fault type and they are injected in

the same code location (compared using debug symbols in binary code).

The procedure shown in Figure 3.3 has been adopted to identify Correctly Injected
faults. If a binary-level fault matches a source-level fault, and only one binary-level fault
and only source-level fault exist for the code location under analysis, then the binary-level
fault is considered as Correctly Injected. In some cases (e.g., when there are more than
one statement in the same line of code), more than one binary-level fault (N), or more
than one source-level fault (M) may occur in the same code location. If there are more
binary-level faults than source-level faults in the same location (N > M), then there are M
Correctly Injected faults, and N — M Spurious faults. Similarly, if source-level faults are

more than binary level faults (M > N), then there are M — N Omitted faults. It follows

Chapter 3. Achieving Accuracy in Binary Code Mutation 37

that if a binary-level fault does not match any source-level fault, then it is considered a
Spurious fault, and that if a source-level fault does not match any binary-level fault, then
it is considered an Omitted fault. In the examples of Figure 3.3, the proposed procedure
identifies one Correctly Injected fault (location A-10), one Spurious fault (location A-20),

and one Omitted fault (location B-5).

Source Binary

code code
Source-level Binary-level for each fault operator
fault injection fault injection for each fault location

M = Source-level Faults

N = Binary-level Faults
if M<N then
Correctly Injected Faults += M

File | Line no. # faults File | Line no. # faults

A |10 1 A |10 1 <aCorrectly Injected Spurious Faults += N-M
A |20 0 <:> A |20 1 {3Spurious if M>N then
B 5 1 B 5 0 @omitted Correctly Injected Faults += N
Omitted Faults += M-N
fault if M==N then
operators Correctly Injected Faults += M

Figure 3.3: Fault Matching Procedure

3.3.2 Fault Sampling

After the Fault Matching procedure, it is performed a detailed analysis of faults in order to
investigate the causes of Spurious and Omitted faults, and to verify that Correctly Injected
faults are actually correct. Moreover, the aim is to understand whether Omitted and Spu-
rious faults are due to inherent limitations of G-SWFIT or not. Indeed, these faults may
occur due to design issues in G-SWFIT as previously discussed; the identification of these

issues is useful to provide guidelines for improving G-SWFIT, and to obtain a more precise

Chapter 3. Achieving Accuracy in Binary Code Mutation 38

figure of merit of the G-SWFIT technique. For these reasons, a random sample of Omitted

and Spurious faults is analyzed and classified into the following categories:

1. C preprocessor macros. When the G-SWFIT technique was proposed, preprocessor
macros have been recognized as a frequent cause of Omitted and Spurious faults [36].
A preprocessor macro consists of a piece of code that is replicated for each time the
macro is referred within the program. Therefore, when a preprocessor macro has a
software fault, the faulty code is replicated several times in the binary code. Since
the binary code lacks information about macros, G-SWFIT cannot recognize that
macro code is replicated elsewhere within the program: therefore, a Spurious fault is
injected for each replica of the macro, and source-level faults that could be injected
into macro represent Omitted faults since G-SWFIT cannot correctly injected them

(see also Figure 3.4).

2. Inline functions. In a similar way to preprocessor macros, inline functions are repli-
cated each time the function is called within the program. Since G-SWFIT does not
recognize inline functions within binary code, they lead to Spurious and Omitted faults

as well.

3. Various causes. This category includes all the other causes of Spurious and Omitted

faults that are not related to macros or inline functions.

Chapter 3. Achieving Accuracy in Binary Code Mutation 39

4. Issues in the SAFE tool. Even if source-level fault injection can be considered accurate,
it is not excluded the possibility that the adopted source-level fault injection tool
could inject faults incorrectly. Therefore, during the manual analysis, it is also looked
for issues in the SAFE tool that caused faults to erroneously appear as Spurious or
Omitted faults. Since it is required to assure that source-level faults are correctly
injected, fixes were made in the SAFE tool when an issue is found and repeat the
whole analysis (including both Fault Matching and Fault Sampling) until this category

becomes empty.

Omitted
Fault

#define MACRO(x) ((x)+=1) #define MACRO(x) ((x)+=1)
. L f Spurious Fault #1
P?I?(.:Ro(a) ' D_M:\(_:Ro(a ; Spurious Fault #2
MACRO(b) ; MACRO (b4 ;
Source-level Fault Injection Binary-level Fault Injection

Figure 3.4: Examples of Spurious and Omitted Faults Due to C Preprocessor Macro

Because of the high number of the generated faults, the manual analysis is conducted on
a sample of faults and then conclusions are drawn about the whole set of faults. In order to
generalize the results from the sample, it was addressed the problem of choosing a sample of
appropriate size, such that it could be considered representative of a population with more

than two categories (i.e., a multinomial distribution, where it is defined 7; as the proportion

Chapter 3. Achieving Accuracy in Binary Code Mutation 40

of the ith category). The sample should be large enough to assure that all of the estimated

proportions 7; are within a given confidence interval with significance level 1 — a.
Assuming that the population and the sample are large enough to use the normal ap-

proximation, the probability «; that the proportion 7; lies outside an interval of width 2d;

is given by (see [110] for more details about sampling)

a; :Pr{]Zi\ zdi\/ﬁ/\/m(l—m)} (3.1)

where 1 < i < k and Z; is a standard normal random variable. By Bonferroni’s inequality
[110], the probability that one or more of the k estimates will fall outside its interval will be
less than or equal to Zf a;. Equation (3.1) allows to assess if the sample size is large enough
to achieve accurate results. If Zf a; > «, then a larger sample size is required, otherwise
the estimated proportions are considered accurate.

This method was applied to the populations of Omitted and Spurious faults by consid-
ering k = 4 categories (C preprocessor macros, inline functions, various causes, issues in the
SAFE tool), assuming a confidence interval of half-width d; = 0.05 and a significance level
1 — a = 0.9. This method was also applied to the population of Correctly Injected faults,
in order to analyze whether they are truly correct or not (k = 2 categories are considered).
For each population, a sample of 5% of faults it is extract and manually analyzed in order

to obtain an initial estimate of the proportions; the sample size is gradually increased and

Chapter 3. Achieving Accuracy in Binary Code Mutation 41

analyzed until the required significance level is reached.

3.3.3 Case Study

The case study is a satellite data handling system named Command and Data Management
System (CDMS). A satellite data handling system is responsible for managing all data
transactions (both scientific and satellite control) between ground system and a spacecraft
(Figure 3.5), based on the ECSS-E-70-41A standard [39] adopted by the European Space
Agency. In this system, a space telescope is being controlled and the data collected is sent
to a ground system. As shown in the Figure, the CDMS, which executes on the spacecraft
(on-board system), is composed by several subsystems: the TC Manager receives a series of
commands from the ground control requesting telemetry information; the TM Manager sends
back telemetry information for each command sent; the other modules (PC, PL, OBS, RM,
DHS) perform tasks for the data management and the telescope handling. The importance
of the accuracy of SFI in mission-critical systems like CDMS has been demonstrated in |78,
in which two OSs (RTLinux and RTEMS) were compared with respect to the risk of failures

of the CDMS due to OS faults, in order to select the most reliable OS for this scenario.

The CDMS application was developed in C and runs on top of an open-source, real-time
operating system, namely RTEMS?. The CDMS makes use of the RTEMS API for task

management, communication and synchronization, and for time management. This software

Shttp://www.rtems.org

Chapter 3. Achieving Accuracy in Binary Code Mutation 42

On Board System

CDMS

RTEMS RTOS

i

Ground System
lgl @

Figure 3.5: Architecture of the Case Study

system is compiled to run on a PowerPC hardware board by using the GCC compiler and
disabling compiler optimization settings, which is the setup currently supported by the G-
SWFIT tool.

The analysis is focus on faults injected in both the OS (i.e., RTEMS) and application
(i.e., CDMS) code. We only consider the code which is actually compiled and linked in
the executable running on the on-board system. A small part of the code (1.90%), which
is written in assembly language to provide board-specific support, is not targeted by our

source-level fault injection tool, but its influence on the results can be considered negligible.

3.3.4 Results

In this section, software faults injected at the binary and source-level in a complex case

study are analyzed using the method proposed in Section 3.3. Faults at the binary level

Chapter 3. Achieving Accuracy in Binary Code Mutation 43

were generated with the G-SWFIT technique, by using a R&D prototype tool provided by
Critical Software company. Faults at the source code level were generated using the SAFE
fault injection tool (described in Section 3.2.1). In total, 18,183 source-level faults and
12,380 binary-level faults were generated, respectively. Their distribution across fault types
is shown in Figure 3.6. The two distributions exhibit noticeable differences: more source-
level faults are injected with respect to some fault operators (such as OMLPA, OWVAV,
OWPFV, and OWAEP), whereas in other cases more binary-level faults are injected (such as

OMIEB and OMVA, where the latter groups together the OMVAV, OMVIV, and OMVAE

operators).

7000

6000
[2]
55000
8
45 4000)
- ¥ Binary level
£ 3000
[B Source level
22000

1000

0
MFC MVA MIA MIFS MIEB MLAC MLOC MLPA WVAV WPFV WAEP
Fault types

Figure 3.6: Distributions of Software Faults at both Binary and Source Code Level

The Fault Matching procedure (Section 3.3.1) identified the subset of Correctly Injected
faults (i.e., common to both techniques) that are analyzed in order to assure the correct-
ness of the method. Correctly Injected faults have been sampled (see Section 3.3.2), and

then compared by looking at i) the faulty binary-code generated by G-SWFIT, and ii) the

Chapter 3. Achieving Accuracy in Binary Code Mutation 44

one produced by faults injected in the corresponding source-code locations. This analysis
revealed that the binary-level faults match the source-level faults for each fault types and
for each sampled faults, except the OWPFV operator. It is found that 40.69% of OWPFEFV
faults at the binary level do not match OWPFV faults at the source-code level even if they
affect the same locations, since there are several functions parameters and possible replace-
ments for a given location. In order to take into account this aspect, results shown in Figure
3.7 have been updated by reducing the number of Correctly Injected faults for the OWPFV

operator and increasing the number of Omitted and Spurious faults by the same amount.

Correctly Injected faults turned out to be 5,927 (Figure 3.7). They represent 47.88% of
faults injected by G-SWFIT. The remaining faults injected by G-SWFIT (52.12%) in the
binary code do not match to a software fault in the source code, therefore most of G-SWFIT
faults are Spurious. Correctly injected faults represent 32.60% of faults injected in the source
code, so the remaining faults at the source level (67.40%) are not emulated by G-SWFIT
and they result as Omitted faults. The experimental campaign confirms that the accurate
injection at the binary level is a challenging task, at least when a complex software system

is considered.

The distribution of the causes of inaccuracies (for both Omitted and Spurious faults) are
presented in Figure 3.8. These distributions have been obtained by applying the sampling

procedure described in Section 3.3.2. Most of spurious faults (Figure 3.8b) are caused by C

Chapter 3. Achieving Accuracy in Binary Code Mutation 45

14000

12000

12256

10000

B000 H Correctly Injected

 Omitted

6000 5453 Spurious

Numberof faults

4000

2000

Figure 3.7: Correctly Injected, Spurious, and Omitted Faults

macros (56%) and inline functions (17%). In these cases, every time that a macro or inline
function has been replicated in the binary code, G-SWFIT generated an individual binary-
level fault; this led to a large number of Spurious faults (i.e., Spurious faults are repeated
for each replica of a macro or inline function). In a similar way, macros and inline functions
are a noticeable part of Omitted faults (27% and 1%, respectively); this percentage is low
when compared to Spurious faults, since one Omitted fault in a macro or inline function
leads to several Spurious faults, one for each replica of the code (see also Figure 3.4).

In order to gain more insights into the results, they are separately analyzed the faults
injected in the OS and application code, respectively. Figures 3.9 and 3.10 show from a
different perspective the data of Figures 3.7 and 3.8, by dividing the results between faults
in RTEMS (i.e., OS code) and in CDMS (i.e., application code). It can be noted that faults

follow a similar trend in OS and application code, since in both cases the number of spurious

Numberof faults

Chapter 3. Achieving Accuracy in Binary Code Mutation 46

Omi.tted Spurious
(Inline) (Inline)
1%

17%

Omitted
(Macro)
27%

Spurious
(various)
27%

Omitted Spurious
(various) (Macro)
72% 56%

(a) Omitted Faults (b) Spurious Faults

Figure 3.8: Causes of Incorrect Fault Injection in the Case Study

faults is close to the number of correctly injected faults, and the number of omitted faults

is predominant. Nevertheless, omitted faults seem to be much more in the case of CDMS

el A~ AN

6000 7000
5000 6000
5000
4000 | n
=
M Correctly E 4000 M Correctly Injected
-
3000 & Omitted -.E W Omitted
“ Spurious 5 3000 “ Spurious
=
2000 - z
2000
1000 1000 -
o - o -
(a) RTEMS Code (b) CDMS Code

Figure 3.9: Number of Faults (Correctly Injected, Spurious, and Omitted) in OS and Ap-
plication Code

Figure 3.10 shows that omitted and spurious faults due to various causes (i.e., not related

Chapter 3. Achieving Accuracy in Binary Code Mutation 47

to macro or inline functions) are more frequent in CDMS than in RTEMS. The constructs
not correctly recognized at the binary level (e.g., see the examples in Figures 3.12 and
3.13 discussed later in this section) likely occur more often in application code due to higher
complexity of that code, thus causing an higher number of omitted faults. Moreover, macros
and inline functions are more frequent for RTEMS; this is due to the fact that several RTEMS
functions are exported as macros and inline functions in order to be used by external code

(i.e., user and library code that is compiled and linked with RTEMS code).

Software complexity metrics collected from the case study code (see Table 3.4) confirm
that functions in the application code tend to be more complex than those in the OS code
(in term of size, cyclomatic complexity and input/output dependencies). This is a common
trend in embedded systems, in which the OS is kept as simple as possible in order to reduce
the overhead and the number of potential defects [92]. Moreover, the number of preprocessor
statements per function confirms that RTEMS makes a more extensive use of macros that
CDMS. Therefore, it is even more important to fix the implementation issues mentioned

above if a fault injection tool is intended to be used with complex software.

The "various causes" behind spurious and omitted faults are numerous and specific to
each fault operator. It is not possible to provide a precise estimate of the relative percentage
of each cause, since it would require to manually analyze an extremely large sample of

injected faults. Instead, it was identified which part of incorrectly injected faults are due

Chapter 3. Achieving Accuracy in Binary Code Mutation

48

Omitted
(Inline)
3%

Omitted
(Macro)
39%

Omitted
(various)
58%

(a) Omitted Faults in RTEMS

Omitted
Omitted (UE:QB)
(Macro)

17%

Omitted
(various)
83%

(¢) Omitted Faults in CDMS

Figure 3.10: Causes of Incorrect Fault Injection in OS and Application code

Spurious
(Inline)
23%

Spurious
(Macro)
53%
Spurious
{various)
24%
(b) Spurious Faults in RTEMS
Spurious
(Inline)
0%
Spurious
(various)
36%
|
Spurious
(Macro)
64%

(d) Spurious Faults in CDMS.

Table 3.4: Comparison of Average Software Complexity Metrics of Functions in RTEMS

and CDMS Code

Metric RTEMS CDMS
Lines of Code 17.30 30.71
Preprocessor Statements 0.64 0.15
Cyclomatic number 5.63 6.61
Number of inputs 5.50 7.38

Number of outputs 4.12 6.84

Chapter 3. Achieving Accuracy in Binary Code Mutation 49

to unavoidable limitations of G-SWFIT, and which of them can be avoided by improving
the G-SWFIT fault injection tool. To do so, it was excluded from the sample those faults
not related to macros or inline functions, and reason were diagnosed (with the support of
Critical Software developers) to understand why omitted faults were not injected, and why
spurious faults were erroneously injected. It was found that 26.02% of omitted and spurious
faults were due to causes that are impossible to avoid when injecting at the binary code

level, including:

e Low-level translation of C operators. Some C expressions (like sizeof and array and
struct accesses using - > and [/) are translated by introducing arithmetic operations and

constants in the binary code; these operations are recognized as arithmetic expressions

by fault operators such as OMVA, OWVAV, and OWAEP.

e Switch and goto constructs. These constructs are translated in a similar way to IF
constructs using branches in the binary code; therefore, IF constructs are not always

correctly identified by operators such as OMIA, OMIEB, and OMIFS.

e Forced function inlining. Some functions (e.g., memcpy, memset) are compiled as

inline functions, although they are not declared as inline.

Since the binary code lacks information about high-level constructs, the causes mentioned

above cannot be avoided. In practice, these inaccuracies have to be accepted as limitations

Chapter 3. Achieving Accuracy in Binary Code Mutation 50

of fault injection at binary level, and should be taken into account when conclusions are

drawn from fault injection experiments.

Nevertheless, during the manual analysis it is observed that several Omitted and Spurious
faults not related to intrinsic limitations of fault injection at binary level, but were due to
limitations of the fault injection tool; they represent the 73.98% of the analyzed sample.
These inaccuracies occurred since some checks have not been implemented yet in the tool,
and some fault operators diverge in some cases from the fault types encompassed by G-
SWEFIT due to choices that simplify the implementation. Therefore, part of the Omitted
and Spurious faults could be avoided by improving the implementation of binary-level fault

injection.

An example of Spurious fault is provided in Figure 3.11, which shows a fault location in
the source code (monospace font) along with its machine code translation (italic font). It is
a spurious MFC fault in CDMS that has been injected in a wrong location. In this example,
the function call should not be removed since it is the only statement within a block of
code, and a fault in that location would not be realistic. The OMFC operator imposes a
constraint (Table 3.3) to avoid fault injection in this kind of location [36]. Instead, the fault
has been injected by the tool since the block containing the function call is not recognized

(i.e., the constraint is not enforced by the tool).

Figure 3.12 and Figure 3.13 provide two examples of Omitted faults that were caused

Chapter 3. Achieving Accuracy in Binary Code Mutation 51

static void HousekeepingAction(TmPacket #STm) {
stwu rl,-24(r1)
mflr r0
stw r31,20(r1)
stw r0,28(r1)
mr r31,rl
stw r3,8(r31)

SendTmMsg (pbtBuffer,
TmGetPacketTotalLength(STm)); <« MFC fault location
Iwz r3,8(r31) (to be avoided)
bl 00006184 < TmGetPacketTotalLength>
mr r0,r3
lis r9,7
addi r3,r9,-21944
mr r4,r0
bl 0000a3b4 <Send TmMsg>

Iwz r11,0(r1)
Iwz r0,4(r11)
mtlr rO

Iwz r31,-4(r11)
mrrl,rll

blr

Figure 3.11: Spurious MFC Fault in CDMS.

by limitations in G-SWFIT implementation. In Figure 3.12, a function call which could be
removed by the OMFC fault operator is not identified. As confirmed by Critical Software
developers, the TcMakePacket function is not recognized as returning a value that is stored
and used later in the program. Therefore, a fault is not injected due to a constraint of the
OMFC operator requiring that the return value of a function should not be in use (Table

3.3).

In Figure 3.13, the fault location has been omitted for an even more subtle reason. In
this example, the return statement within the IF construct is translated with a branch to
the end of function, and the tool incorrectly believes that the IF construct includes all the

statements until the end of the current function. A fault is not injected since the IF construct

Chapter 3. Achieving Accuracy in Binary Code Mutation 52

TcMakePacket (pbtBuffer, &STc); < MFC fault location
addi r0,r31,24 (not identified)
lis r9,9
addi r3,r9,-21492
mr r4,r0
bl 000056b8 < TcMakePacket>

b0k = CheckAppIdTypeSubtype(&STc);
addi r0,r31,24
mr r3,r0
bl 00011a10 <CheckAppldTypeSubtype>
mr r0,r3
stw r0,20(r31)

Figure 3.12: Omitted MFC Fault in CDMS

should not contain more than 5 statements [36]. Although the tool is provided with checks
to avoid these mistakes, a check to avoid this specific case was not implemented. This kind
of issue seems to be more relevant for Omitted faults than for spurious faults given the high

number of omitted faults due to various causes, as depicted in Figures 3.7 and 3.8.

Other incorrect behaviors were also found in the prototype tool, which were due to the
incomplete implementation of constraints or the identification of code blocks and control
structures. In Figure 3.14, it is provided an evaluation of the results that can be obtained
by improving the mentioned aspects. The improvements prevent the occurrence of several
Omitted and Spurious faults: Correctly Injected faults represent the majority of faults
potentially injectable in the source code (i.e., only a minor part of faults is omitted), and
they also represent the majority of faults actually injected by G-SWFIT (i.e., only a minor
part of faults is spurious). It is possible to conclude that the evaluation of a binary-level fault

injection tool on real-world complex software is useful to identify implementation issues, and

Chapter 3. Achieving Accuracy in Binary Code Mutation

53

rtems_status_code sc;
n32Size = TcGetAppData(STc, &pbtData);

ScC

if

if

Iwz r3,120(r31)

lis r9,7

addi r4,r9,-23004

bl 00005934 <TcGetAppData>
mr r0,r3

lis r9,7

stw r0,-22992(r9)

= rtems_semaphore_obtain(rtems_mon_Mutex,
RTEMS_WAIT,

RTEMS_NO_TIMEQUT);

lis r9,7

Iwz r0,-22948(r9)

mr r3,r0

i r4,0

i r5,0

bl 0003d504 <rtems semaphore obtain>
mr r0,r3

stw r0,64(r31)

(sc !'= RTEMS_SUCCESSFUL) < MIA fault location
Iwz r0,64(r31) (not identified)
cmpwi cr7,r0,0
bne- cr7,0000c69c <AddMonitoringAction+0x97¢c>
return;

(n32Size >= 10) {
lis r9,7
Iwz r0,-22992(r9)
cmplwi cr7,r0,9
ble- cr7,0000c680 <AddMonitoringAction+0x960>

Figure 3.13: Omitted MIA Fault in CDMS.

Chapter 3. Achieving Accuracy in Binary Code Mutation 54

should be adopted to assure that a tool does not omit valid fault locations, and that spurious

faults are not generated.

14000

12000 12363

10000 ———

i Correctly Injected

8000
i Omitted
6000

Spurious

Numberof faults

5133
4000

2000

Figure 3.14: Number of Faults (Correctly Injected, Spurious, and Omitted) when Fixing
Implementation Issues of the G-SWFIT Tool

3.4 Systematic Testing of Binary Fault Injection

The experimental analysis proved that the implementation of G-SWFIT is tricky. Behind
issues related to its dependency on the compiler of the target software, compiler optimiza-
tions, and the hardware architecture, binary level code mutation is difficult because the
translation of programming constructs (such as loops and control flow constructs) varies
with these factors in subtle ways. Moreover, the fault types (see Table 3.5) to be injected
require the identification of complex high-level programming patterns, namely constraints.

Constraints (Table 3.6) are rules defined by G-SWFIT in order to better emulate the types

Chapter 3. Achieving Accuracy in Binary Code Mutation

55

Table 3.5: Fault Types of G-SWFIT [36].

Acronym Description Constraints
MFC Missing function call Co1, C02
MVIV Missing variable initializa- C02, CO03,
tion using a value C04, CO05,
C06
MVAV Missing variable assign- C02, CO03,
ment using a value C04, Coeo,
Cco7
MVAE Missing variable assign- C02, CO03,
ment with an expression C04, Coe6,
Cco7
MIA Missing IF construct C08, C09
around statements
MIFS Missing IF construct + C02, CO08,
statements C09
MIEB Missing IF construct + C08, C09
statements + ELSE con-
struct
MLAC Missing AND in expression
used as branch condition
MLOC Missing OR in expression
used as branch condition
MLPA Missing small and localized C02, C10
part of the algorithm
WVAV Wrong value assigned to C03, CO04,
variable C06
WPFV Wrong variable used in pa- C03, C11
rameter of function call
WAEP Wrong arithmetic expres-

sion in function call param-
eter

of fault found in the field [36]. For instance, the MFC fault type has a constraint (C01)

imposing that a function call should removed only if it does not return any value or the

return value is discarded. In fact, field data (and also intuition) suggest that removing a

Chapter 3. Achieving Accuracy in Binary Code Mutation 56

function call whose return value is used later in the program would not be representative of
real software faults made by programmers. Another example is the MLPA fault type, which
has a constraint (C10) that imposes to remove between two and five consecutive statements,
which should not be control or loop statements. These constraints are important for emu-
lating software faults in a representative way, which is a requirement for a correct evaluation

of fault tolerance and for dependability benchmarking [80].

Table 3.6: Constraints of Fault Types in G-SWFIT [36]

Id Description

C01 Return value of the function must not being used

C02 The construct must not be the only statement in
the block

C03 Variable must be local

C04 Must be the first assignment for that variable in
the module

C05 Assignment must not be inside a loop

C06 Assignment must not be part of a FOR construct

CO07 Must not be the first assignment for that variable
in the module

C08 The IF construct must not be associated to an
ELSE construct

C09 The block must not include more than five state-
ments and not include loops

C10 Statements are in the same block, do not include
more than 5 statements nor loops

C11 There must be at least two variables in this mod-
ule

The experimental evaluation of the accuracy of G-SWIFIT fault injection tool on a

complex software system from the space domain [29]. Faults were injected in both OS and

Chapter 3. Achieving Accuracy in Binary Code Mutation 57

application binary code, and binary mutations were compared with mutations performed
on the source code following the same rules of G-SWFIT. The comparison revealed several
cases in which G-SWFIT did not correctly mutate the binary code (Figure 3.15). The three
types of injections identified are: (i) correct injections, that is, binary injections that match
a source-code injection; (ii) omitted injections, that is, potential injections that were missed
at the binary level, and were only performed at the source-code level; and (iii) spurious

injections, that is, binary injections that do not match any valid source-code injections.

Moreover, omitted and spurious injections were divided in two groups: incorrect in-
jections due to intrinsic limitations of G-SWFIT (and of BCM in general), and incorrect
injections due to implementation issues of the BCM tool. Many omitted and spurious injec-
tions were caused by limitations of BCM that are impossible or very difficult to avoid: For
instance, an inline C function, which is replicated at each call site in the program, can mis-
lead a BCM tool to inject several spurious faults, that is, one distinct fault for each replica
(instead, a real fault in an inline C function would be present in every call site at the same
time). Nevertheless, several omitted and spurious faults were not related to limitations of
BCM, but were due to the incomplete or simplified implementation of G-SWFIT. In partic-
ular, issues were related to the implementation of fault constraints and to the identification
of code blocks and control structures. For instance, spurious faults were in some cases in-

correctly injected when the target instruction was the only statement within a block, and

Chapter 3. Achieving Accuracy in Binary Code Mutation 58

some faults were omitted when an IF construct included a return statement. These issues

are not due to G-SWFIT, and could be avoided by conducting a rigorous evaluation and

improvement of the BCM tool. When implementation issues are avoided, then omitted and

spurious faults represent the minority of cases.

14,000
12,000
10,000
8,000 M Original implementation of
G-SWFIT
6,000
B Improved implementation
4,000 of G-SWFIT (estimated)
2,000
0
Correct Omitted Spurious
injections injections injections

Figure 3.15: Accuracy of G-SWFIT in the Context of an Embedded Space Software [29].

These results motivated the development a systematic approach for testing and im-
proving BCM tools. The experimental methodology (see Section 3.3) [29] cannot be easily
adopted by developers of BCM tools, since this methodology is based on the analysis of a
large number of injected faults in a large software (tenths of thousands of faults in the exper-
iment), and on the manual analysis of omitted/spurious faults to identify implementation
issues. Analyzing even a sample of these faults requires considerable efforts, and provides
only a partial evaluation of the BCM tool, since the evaluation would be focused on the

code patterns adopted in a specific target program. Therefore, it is proposed an approach

Chapter 3. Achieving Accuracy in Binary Code Mutation 59

that generates, in a controlled and automated way, a (limited) set of small target programs,

in order to allow a more efficient evaluation and improvement of BCM tools.

The proposed approach automates the evaluation of BCM tools at injecting faults in bi-
nary code. To accomplish this goal, the approach uses synthetic programs, that is, programs
(in a high-level language, such as C) that are automatically and randomly generated with
the sole purpose to evaluate the ability of the BCM tool to inject faults into them. These
synthetic programs are then compiled in binary code, and fed to the BCM tool. Finally,

mutations obtained from the BCM tool are analyzed.

The key idea of this approach is to control the generation of synthetic program, in such
a way to expose the BCM tool to several different code patterns that could point out its
limitations. In particular, generated synthetic programs contain a target fault location in
their code, in which the BCM tool is expected to inject a fault. The target fault location is
generated to comply with the fault types and constraints for which the BCM tool is designed.
For instance, to evaluate the “missing assignment” fault type of G-SWFIT (see Table 3.1), a
target fault location containing an assignment instruction is generated. To comply with the
constraints of fault types of G-SWFIT (see Table 3.6), the target fault location consists of
an assignment made to a local variable, and this assignment is not the only instruction of its
block. If the tool is not able to inject a fault in the target fault location, then the synthetic

program exposes an issue of the fault injector, i.e., it exhibits an omitted injection.

Chapter 3. Achieving Accuracy in Binary Code Mutation 60

Moreover, the generation of synthetic programs also encompass programs in which the
fault constraints are not fully satisfied, and in which the fault injector should avoid to inject
faults. If the fault injector fails to recognize that the target fault location is not compliant
to the fault model, then the synthetic program exposes an issue of the BCM tool. This
situation represents a spurious injection.

To make the synthetic programs more realistic, and to evaluate the accuracy of the
BCM tool in the presence of complex code patterns, the target fault location is surrounded,
preceded and succeded by additional randomly-generated programming constructs, that
represent respectively the contezt, the preamble and the postamble of the target fault location

(Figure 3.16).

void func() {

stmty; L Random statements before
v the target (Preamble)

stmt,;

/ Context statement
Context stmt Y (None, Selection, Iteration)

+

Target stmt;_ | Target fault location,
depending on the fault model

stmt,; (assighnment, function call, ...)
stmt,; 4
™~ Random statements after
} the target (Postamble)
void main() {
entry_func();
checksum();
}

Figure 3.16: General Structure of a Synthetic Program

Chapter 3. Achieving Accuracy in Binary Code Mutation 61

Program
Generator

ﬂ Source
Mutation Tool
(oracle tool)

Mutated Execution
source code (R) results (O0)

Source code

test suite (75) W [

Binary
Mutation Tool

Binary code W‘ (tool under test)
i / l s | ¢ > [
test suite (75%) l 1C, >

Mutated Execution
binary code (R’) results (0’)

J
Sl
g

Figure 3.17: Proposed Approach
A program generator generates a test-suite (T'S) for a given fault operator. TS’ is generated
by compiling T'S. An oracle tool and the tool under test inject faults in the test-suite, and
their results are compared to evaluate the accuracy of the tool under test.

The proposed approach, depicted in Figure 3.17, consists of the following steps:

e Test-suites generation: The tool automatically generates synthetic programs. A
set of synthetic programs is generated for each fault type encompassed by the tool.
These programs are test-cases for the BCM tool. A synthetic program is a sequence
of randomly generated statements. A statement can be an expression, an assignment,
a function call, a selection or an iteration statement. As shown in Figure 3.16, only
one statement, named target, is considered the fault location, in which faults will
be injected. The target statement depends on the fault type and on the constraints
that are tested, and it is surrounded by iteration (a loop construct) or selection (a
conditional construct) statement, i.e., a context. Moreover, the complexity of each

synthetic program is controlled by a set of parameters, such as nesting level and

Chapter 3. Achieving Accuracy in Binary Code Mutation 62

type of expressions (e.g., constants, variables, arithmetic operations), as described in
Subsection 3.4.1. The set of synthetic programs obtained by varying these parameters
make a test-suite (75). A test-suite contains both walid test-cases (i.e., test-cases
satisfying all the constraints for the fault type), and invalid test-cases (i.e., test-cases
that do not satisfy one of the constraints). Programs in the test-suites are compiled

to binary code (7'S’) before the next phase.

e Test-suite execution: The test-suite 7'S’ (in binary form) is submitted as input to
the BCM tool that are tested (Tool Under Test). At the same time, the test-suite
TS (in source-code form) is fed to another fault injection tool (Oracle Tool) that
injects faults in source code rather than binary code. The Oracle Tool serves as a
term of comparison for evaluating the accuracy of the Tool Under Test. The Oracle
Tool adopts the same fault model of the Tool Under Test (e.g., the fault model in
Tables 3.1 and 3.6), and it works on source code, thus it avoids the issues encountered
by the BCM tool when working on binary code, and is much more easy to implement

and accurate than the Tool Under Test.

The Tool Under Test takes executables in TS’ as input, and produces faulty versions
of these executables (mutated test cases, MTC’) by changing their binary code. For
each test-case in TS’ it is collected the faulty executable MTC"; generated by the

Tool Under Test, and the output resulting from the execution of MTC’;. The same

Chapter 3. Achieving Accuracy in Binary Code Mutation 63

process is performed on the source-code test-suite T'S using the Oracle Tool.

e Comparison and detection of inaccuracies: An analysis is conducted by com-
paring the mutations that both tools have performed during the injection (R and R’),
and the executions of the mutated test cases (O and O’). The comparison between
R and R’ determines whether the BCM tool did spurious, omitted or incorrect injec-
tions. Given a synthetic program, an injection is correct when (i) the Tool Under Test
recognizes the target fault location in the synthetic program, and (ii) it mutates the
binary code in an equivalent way to the Oracle Tool (denoted by equivalent results

from the executions of mutated test cases).

3.4.1 Test-suite Generation

The proposed approach generates synthetic programs using a random program generator
tool. It is extended the use of random programs, that were adopted in past studies for
testing compilers, to test binary code mutations tools. Program generators adopted in
past studies generate programs as a sequence of statements that includes global and local
variables declarations, functions, assignment, expressions, selection and iteration statements.
The inputs of these programs are constants produced during the random generation process.
The output of these programs is a checksum of the global variables of the program, which

is computed just before the termination of the program.

Chapter 3. Achieving Accuracy in Binary Code Mutation 64

For the sake of example, it is implemented a random program generator for the C lan-
guage, Faultprog, which is based on the Randprog tool developed by Bryan Turner for testing
C compilers [20]. It is extended Randprog to support the automatic evaluation of BCM tools.
In particular, Faultprog produces C programs, called synthetic programs, by following rules

that depend on the fault model with respect to which the BCM tool is tested.

A synthetic program is a sequence of randomly generated statements. A statement can be
an expression, an assignment, a function call, a selection or an iteration statement. The ran-
dom generator bases the program generation on a stochastic grammar of the language [75].
A stochastic grammar associates probabilities to each grammar rule describing a language.
Each rule consists of a left side and a right side, where the left side is a non-terminal sym-
bol, and the right side contains one or more sequences of symbols (either terminal and
non-terminal). A statement is generated by concatenating terminal (e.g., operators like “+”
and “->", or keywords like “for”) and non-terminal symbols in the sequence. Beginning from a
“start” rule, the program generator replaces each non-terminal symbol through the recursive
application of other rules in the grammar, until there are no more non-terminal symbols.
When the right side contains more than one sequence, the stochastic grammar associates
a probability to each sequence, and the program generator randomly selects a sequence on

the basis of its probability.

In our approach, we control the random program generation to follow the structure

Chapter 3. Achieving Accuracy in Binary Code Mutation 65

showed in Figure 3.16, by appropriately tuning probabilities in the stochastic grammar
in the process. The random program should contain a statement, named target, that is
the location for injecting faults according to the fault model. The elements in the target

fault location are selected randomly, according to the following parameters (summarized in

Table 3.7):

o Fault type that has to be tested. For instance, when testing the MVAE fault type
in G-SWFIT, the target fault location consists of a local variable assignment with an

expression, such as an arithmetic expression.

e Fault constraint to be violated (if any). For instance, when testing the MFC fault
type in G-SWFIT, we can generate valid programs that comply to both constraints
C01 and C02, and invalid programs that violate one of these two constraints (e.g., the

target statement is function call whose return value is used in the rest of the program).

e Contert in which the target statement has to be inserted. It can be a selection (e.g.,

if-then-else statement) or an iteration statement (e.g., while- or for-loop).

e Nesting depth of the context, such as the number of nested loops in which the target

statement should be contained.

e Llementary operand type (EOT) to use in expressions of the target statement. They

can be constants, global or local variables, or function calls.

Chapter 3. Achieving Accuracy in Binary Code Mutation 66

o Complexity of expressions in the target statement. According to this parameter, the

target statement contains expressions that are obtained by different combinations of

one or more EOTs, random sub-expressions and random operators.

Table 3.7: Parameters of the Faultprog random program generator.

Parameter Description Options
Fault type Type of target MFC;
statement accord- ...
ing to the fault WAEP
model.
Fault con- Constraint to be vi- all satisfied;
straint olated (if any) in COl not satisfied,;
the target.
Context The statement sur- none;
rounding the target while;
statement. for;
if-target;
if-target-then-else;
if-then-else-target
Nesting The nesting depth 0; 1; 2
of the context
statement.
Elementary The type of constant;
operand operands in ex- local variable;
type pressions of the global variable;
(EOT) target. function call
Complexity Complexity of asimple EOT;
expressions in the expr. with two
target statement. EOTs;

NOTE: Expres-
sions are obtained
by combining one

expr. with three
EOTs;

expr. with an EOTs
and a random sub-

or more EOTs, expr.;
random sub- expr. with an
expressions and EOTs and two ran-

random operators.

dom sub-exprs.

Figure 3.18 shows an example of random (valid) program, in which the MFC fault type

Chapter 3. Achieving Accuracy in Binary Code Mutation 67

is selected and all constraints are satisfied, a function call is nested in two loops, and the
complexity of the expression of the target (in this case, the parameter of the function call)

is the sum of two local variables.

Synthetic program Faultprog parameters
inta=2; Fault type = MFC
int b=3; Constraint = all satisfied
int ¢=0; Context = while
while { Nesting = 2
while { Type = local variable
stmt_1; Complexity = expr OP expr.
stmt_2;
//start target
func_2(a+b);
//end target
stmt_n;
}
}

Figure 3.18: Example of a Synthetic Program for Testing MFC Fault Type

To obtain test-suites, Faultprog automated program generator generates several random
programs. Programs are based on different combinations of parameters (Table 3.7), and all

combinations of parameters that apply for each specific fault type are considered.

3.4.2 Test-suite Execution, Comparison and Detection of Inaccuracies

Once test-suites are generated (both in source-code form, TS, and in binary-code form,
TS7), it is possible to run them over the Oracle Tool and the Tool Under Test and, for each
synthetic program, to store faulty executables produced by the tools, which populate the

sets R and R’.

Chapter 3. Achieving Accuracy in Binary Code Mutation 68

For each binary executable T'C";, the analysis focuses on the binary instructions corre-
sponding to the target fault location of the synthetic program. These instructions can be
identified using a-priori knowledge about the generated program, and debugging information
that can be introduced into executables by means of the compiler [46]. The executables from
both the Oracle Tool and the Tool Under Test are compared to identify omitted or spurious
injections by the Tool Under Test. This matching is based on the observation that both
tools should ideally inject the same fault types in the same locations (e.g., an assignment or
function call is removed both in the source code and in the corresponding move or branch
instructions in the binary code).

More precisely, the Tool Under Test behaves correctly (i.e., it passed a test-case) in two

cases:

e The generated program is valid, i.e., it contains a target statement that satisfies all
the constraints imposed by the fault type being tested. Both tools identify the target
statement as a valid location where to inject a fault. The injection is performed by

both tools, where MTC; and MTC"; are equivalent.

e The generated program is invalid, i.e., it contains a target statement that not satisfies
one of the constraints imposed by the fault type being tested. Both tools identify the
target statement as an invalid location where not to inject a fault. The injection is

not performed by both tools, so MTC; and MTC’ are not produced.

Chapter 3. Achieving Accuracy in Binary Code Mutation 69

On the contrary, a test-case fails when:

e The generated program is valid. The Oracle Tool injects a fault in the target fault
location, while the Tool Under Test does not inject a fault in the corresponding binary

instructions. The syntactic program detected an omission of the Tool Under Test.

e The generated program is invalid. The Oracle Tool does not inject a fault, while the
Tool Under Test injects a fault in the binary instructions of the target location. The

syntactic program detected a spurious injection of the Tool Under Test.

e The generated program is valid. Both tools inject a fault, but the result of executions

of the two faulty executables are different.

In some scenarios, in which the target fault location is a complex statement, more than
one fault could be potentially injected in that location. For instance, this is the case of
the “missing arithmetic expression in function parameter”’, when the target fault location
contains several parameters. In that case, the number of faulty versions generated by the
two tools is compared, and omitted or spurious injections are identified if the Tool Under
Test generated, respectively, less or more injections than the Oracle Tool. This situation
highlights the importance of comparing the Tool Under Test with an Oracle Tool at the
source-code level: since synthetic programs are generated in a random way, it is needed to

compute the number of faults potentially injectable in the target location, by using a static

Chapter 3. Achieving Accuracy in Binary Code Mutation 70

analysis of the code that, in the proposed approach, is offered by the Oracle Tool.

Finally, when both the Tool Under Test and the Oracle Tool inject the same fault type
in the target fault location, the two faulty versions are executed (i.e., the one obtained from
the Tool Under Test, and the one from the Oracle Tool), and their outputs are compared.
Given that the two tools should inject the same fault type, it is expected that they inject
faults that have the same effects on the target program, in terms of impact on the control
flow of the execution and on the state of the program. Differences are detected in the two
executions by computing a checksum of all global variables just before their termination,
and by comparing these two checksums. Since the synthetic programs make extensive use
of global variables, both in the function with the target location, and in other functions
preceding or succeeding that function, then analyzing the state of global variables at the
end of an execution is likely to reveal discrepancies between the tools. For instance, if the
fault affects a local variable that is later used in a control flow condition, then an “incorrectly
injected” fault in the binary code would turn in a different control flow than the fault in the
source code; in turn, the different control flows would impact on the global variables of the

program, thus revealing that the fault in the binary code has been incorrectly injected.

Of course, this approach (or any other approach) cannot prove that two faults are equiv-
alent, since this problem is undecidable: it is the same problem of detecting equivalent

mutants in mutation testing [59]. Nevertheless, the focus is different than mutation testing,

Chapter 3. Achieving Accuracy in Binary Code Mutation 71

since each mutant is not going to be executed several times with several test cases, but
to be execute only a subset of faults (i.e., only those faults that are neither omitted nor
spurious injections) with few inputs in order to detect the most relevant differences between
the Oracle Tool and the Tool Under Test. Thus, the use of checksums is an acceptable and
practical solution to this problem.

After performing the comparison of the faulty versions from the Oracle Tool and the Tool
Under Test, results are examined to identify the causes of inaccuracies in the Tool Under
Test. To give feedback to developers of the Tool Under Test, it is performed an analysis of
the distributions of failed test-cases with respect to several factors, to identify which factor
leads to the highest number of failed test-cases, for instance the fault types, the constraints,
or the type of context that causes a significant number of omitted or spurious injections.
This information enables developers to pinpoint the causes of inaccuracies, by looking at
specific areas of the Tool Under Test. Moreover, after fixing the Tool Under Test, developers
can apply again the test-cases in order to validate the fix, i.e., to check whether the fix was

able to significantly reduce the number of inaccuracies.

3.4.3 The csXception™ suite

csXception™ is a fault injection tool developed by Critical Software© for supporting the

validation activities of safety- and mission-critical systems. It includes several plugins for

software-implemented and software fault injection as shown in Figure 3.19. csXception™

Chapter 3. Achieving Accuracy in Binary Code Mutation 72

was originally designed to perform hardware fault injection by exploiting CPU debugging

and performance monitoring features available in modern microprocessors.

More recent is the development of the G-SWFIT based R&D plug-in, i.e. the component

M core is the

that enables injection of software faults based on binary mutations. csXceptionT
Experiment Management Environment (EME), responsible for controlling, monitoring, and
storing results of the experiments. It exchanges data with plug-in that, instead, represents
the injector. The plug-in includes algorithms for the individuation of fault locations based
on fault types and constraints discussed in Section 3.4. The injection consists of parsing the
target binary code to individuate assembly instruction sequences corresponding to program-
ming constructs, i.e. function calls, assignments and selection statements. Once patterns

are recognized, modifications are applied by substituting assembly instructions with a nop

instructions, performing statement removal.

csXception

=
|

SWIFI G-SWFI
plug-in plug-in

I I

oL

Target Program
Processor Executable

—

Figure 3.19: csXception™ architecture

Chapter 3. Achieving Accuracy in Binary Code Mutation 73

3.4.4 Test Planning

In this section, technical details about test-suites generated by FaultProg are discussed.
As shown in 3.7, the generator takes several input parameters that determine the number
and the content of synthetic programs. In total, 4,855 synthetic programs were generated
considering both respected (that are 1,984) and violated constraints (that are 2871). 3.8
reports the number of generated programs divided by fault types. It can be noticed that,
for each combination of fault-type/constraints, the number of programs changes among the
fault types. In fact, some inputs combinations are not valid and programs are not generated.
For instance, for MLAC fault type that removes an AND in the expression of if-condition,
it does not make sense to generate a program in which the if-condition contains a simple
variable or a function call. These considerations contributes to lower the number of tests to

perform in order to individuate inaccuracies.

3.4.5 Results

In total, 3,429 source-level faults and 1,562 binary-level faults were generated, respectively.
Their distribution across fault types is shown in Figure 3.20. The two distributions exhibit
that more source-level faults are injected with respect to the majority of fault types, whereas
in other cases more binary-level faults are injected (such as MFC and MIEB). The compar-
isons between source-level and binary level faults generates Correctly Injected, Spurious and

Omitted faults as shown in Figure 3.21. Causes of spurious and omitted faults are then

Chapter 3. Achieving Accuracy in Binary Code Mutation

Table 3.8: Test-suites generated by FaultProg

Fault Type Programs per Constraint
MFC C00 240
Co1 80
C02 240
MVA C00 10
C02 135
C03 150
C04 150
C05 90
C06 45
Cco7 150
MIA C00 240
C08 240
C09 240
MIFS C00 240
C02 225
C08 240
C09 240
MIEB C00 240
C09 240
MLAC C00 192
MLOC C00 192
MLPA C00 240
Co1 240
C02 240
WVAV C00 16
C03 16
C04 16
C06 3
WPFV C00 32
Co1 10
C03 32

WAEP C00 192

Chapter 3. Achieving Accuracy in Binary Code Mutation 75

analysed.

1000

900

800

700

600

M Source code

500

M Binary code

400

of faults

300

200

100

0
MFC MVA MIA MIFS MIEB MLAC MLOC MLPA WVAV WPFV WAEP
Fault type

Figure 3.20: Distributions of Faults Injected at Binary and Source Code Level

e
8
8

k0
8
B8

o
B
g

g

m Correctly Injected

= Omitted

Nrof Faults

= spurious

o

OMFC omvA omiA OMIFS. OMIEB OMLAC omLec OMLPA owvAY OWPFY OWAEP

Figure 3.21: Distributions of Correctly Injected, Spurious and Omitted Faults.

Plots in Figure 3.22 show the percentage of programs, grouped by fault type, for which

Chapter 3. Achieving Accuracy in Binary Code Mutation 76

csXception produces spurious faults. Then, programs containing a spurious fault are grouped
by specific parameters such as constraints (Figure 3.22a), type of context that surrounds the
target fault location (Figure 3.22b) Firstly, it emerges that the higher number of spurious
faults is obtained for MIEB, MFC, MLAC, MLOC fault types. Looking at Figure 3.22a,
most of the MIEB and MFC spurious faults is obtained when in synthetic programw where
constraints C09 and C02 are violated. This highlights that the implementation of these
constraints could be improved. An example of spurious fault is depicted in Figure 3.23.
The function call func_7() is the only instruction in a while block violating the constraint
C02: according to Table 3.6 the injection should not be performed. The reason of the wrong
injection is probably due to the complexity of the input expression of func_7() that was
erroneously interpreted as additional statements of the while block. An improvement to
the algorithm that counts the number of statements in a block could avoid these spurious
injections. For instance, in the example of Figure 3.23, the tool should recognize that
the result of two expression is the input parameter of the function. We found a similar
problem for the MIEB fault type, since the tool does not correctly computes the number of
statements within an if block, thus leading to spurious injections when an if block contains
a loop or more than 5 statements. As for MLAC and MLOC, spurious injections cannot be

attributed to the erroneous implementation of the constraints since they are not associate

Chapter 3. Achieving Accuracy in Binary Code Mutation 77

to any constraints. Instead, they depend on the complexity of the target location (only non-
black bands appear in the bars of MLAC and MLOC) as it is observed in Figure 3.22e. So
that, an hypothesis can be formulated: the complexity of boolean condition influences the
presence of spurious injections. Analyzing some of these violations confirmed the hypothesis:
we found that the tool injects a spurious MLAC/MLOC when the if construct contains a

boolean condition with three or more logical clauses.

A similar issue was found for WAEP fault type: when an input parameter of the function
call is a complex expression, the tool performs a number of injections greater than it would

be allowed by the fault type definition.

Regarding omitted faults Figure3.24, the percentage of omitted faults is very high for
most of fault type, i.e all the synthetic programs lead to at least one omitted injection in
the target fault location. The great number of omitted faults confirms the results of the
experimental evaluation of binary fault injection (see Section 3.3) that demonstrated the
omitted injections are very frequent. Because of the high number of the omitted faults for
each fault type, it is not possible to find Analyzing Figure 3.24, it emerges that the nesting,
the operands and the complexity of the expressions do not influence significantly the omitted
injections, i.e. there is not a specific value of nesting, operands, or complexity that causes
omitted injections: the bands in the bars of Figure 3.24a, Figure 3.24b Figure 3.24c have

similar widths in almost all cases, so it is unlikely that omitted injections are caused by

Chapter 3. Achieving Accuracy in Binary Code Mutation

78

Percentage of spurious injections

100% T T T

|

60%

40%

20%

100%
@
§
£ 80% [
2
g
2
2 60%.
3
&
&
S 4% [
@
=3
£
£
g
2 20%
&
0%

e 7

Yo, %, ", %, "
@ 0 e Yy

Fault Operator

Cl1 violated
C10 violated
C09 violated
C08 violated
C07 violated
C06 violated
C05 violated
C04 violated
C03 violated
€02 violated
C01 violated
All satisfied

EOONEDODNEEN

(a) Split by constraint.

IF | target } ELSE {}
IF {} ELSE | target |
IF { target }

FOR | target }
WHILE {target}
target (no context)

EOOEED

100%

Percentage of spurious injections

Fault Operator

(b) Split by context.

O Function Calls
[Variables
M Constants

0%

Y, Ty g ', ey e T

AN

%

Fault Operator

(d) Split by type of operand.

Figure 3.22:

20% [~ E R M BN EEEEEE TR
0% = - E H
£ %,

© 7,

Percentage of spurious injections

Percentage of spurious injections

100%

80%

60%

40%

20%

0%

[3-levels nesting

[2-levels nesting

B 1-level nesting
100% T T T T

60%

40%

20%

0% 11//) X

S 4@] RN 47/@& 474,(\% 4@«] "en 2, g,

%

Fault Operator

(c) Split by nesting.

[l Basic op. OP random expr. OP random expr.
B Basic op. OP random expr.

[Basic op. OP basic op. OP basic op.

O Basic op. OP basic op.

B Basic operand

%O @pq %, 4%& 4% 4@047{00

Fault Operator

(e) Split by complexity of expressions.

Spurious injections.

Chapter 3. Achieving Accuracy in Binary Code Mutation 79

void func(void) {

while ((1_.6 & func_7(g_139))) {

// start target fault location
func_ 7((0x34552768L && func_13((g_4 % mod_rhs(0x7790L)), (g_4 % mod_rhs(1L)))));
// end target fault location

Figure 3.23: Example of synthetic program causing a spurious injection.

specific value of these parameters. Instead, from Figure 3.24a it seems that omitted injections
tend to occur when the target fault location is included within a “context” construct, such
as a for/while loop or an if construct. Thus, omitted injections can occur because the tool
does not correctly discriminate between the target statement and the context construct. For
instance, Figure 3.25 depicts part of a synthetic program in which MFIS fault is omitted,
i.e. the fault is not injected even if the target fault location is a valid injection point.

In cases like this, it seems that the tool is confused by programs with complex con-
trol flows, and is not able to analyze statements that are nested within some conditional

construct.

3.5 Summary

In this chapter, it is evaluated the accuracy of a binary software fault injection technique
(G-SWFIT) that injects faults in the binary code of a program. The accuracy of faults

injected at binary level has been assessed by comparing the faults injected in the source

Chapter 3. Achieving Accuracy in Binary Code Mutation 80

O IF { target } ELSE {}
I IF) FLSE | target |
W IF | target |
[FOR {target | [3-levels nesting
[WHILE {target} [2-levels nesting
W target (no context) B 1-level nesting
100% 100%
2 2
£ 80% £ 80%
g 2
£ E
T 6% T 0%
E| g
& &
S a0% 5 o
0 80
g g
g g
5 20% 5 20%
£ £
~ ~
0% 0%
Y Tty My Yy Y Ty Y Y, % o 0 Yy Yy Yy % % %, b, %
O A R A T X o h R Y G % T, T,
Fault Operator Fault Operator
(a) Split by context. (b) Split by nesting.
[Basic op. OP random expr. OP random expr.
B Basic op. OP random expr.
[Function Calls [Basic op. OP basic op. OP basic op.
[Variables [Basic op. OP basic op.
M Constants M Basic operand
100% 100% T T
g 2
£ s0% £ 80% e
g g
2, 2
£ g
B 60% B 60% f
£ £
£ £
c 40% c 40% -
i ¥
£ E
$ o s o i
E 20% E 20%
0% 0%
Yy Ay by by by by A, Ay k4, Yy Yy by Ay A Ay Ay Ay 4, 4
w ", %, " %, e T, %y %, Ty Y Y 7, % 2, e T,
o A R G G % % T, T e, C T TR R e e Yy e T
Fault Operator Fault Operator
(c) Split by type of operand. (d) Split by complexity of expressions.

Figure 3.24: Omitted injections.

Chapter 3. Achieving Accuracy in Binary Code Mutation 81

while (g_101) {
int8_t 1_.146 = 0x6FL;

while ((func_46(g_109, lshift_s_s(g_78, func_56(1_144, g_145, g_127, g_83, g_112)))
& (((1.146 % mod_rhs(g_81)) || (g_147 | g_127)) == g_131))) {

uint32_t 1_150 = 0xD765C340L;
int8_t 1_155 = OL;

while ((g_148 & func_56(func_44(g_89), 1_149, (g_82 — g_99), (g_130 & g_101))){
int8_t 1_.153 = —1L;

g_51 = 1_150;
int8_t 1_152

0xF3L;

// start target fault location
if ((rshift_s_s(g_ 80 g 4)|(g_78"0L))){
g ldar=g¢
func 3((g _105 + g_113));
g 58 = (g_109 <=g_90);
T17 =g 151;
func_3(l__152);

// end target fault location

Figure 3.25: Example of synthetic program causing an omitted injection.

code by using the same fault injection rules. The analysis pointed out improvements to

both tools involved in the comparison. Results can be summarized as follows:

e The accurate injection of software faults in the binary code is challenging in complex
software systems. A large number of omitted and spurious faults was observed in the
first analysis: for each injected fault there is about 1 omitted fault that has not been
injected, and about half of the injected faults were spurious. Moreover, the problem is

more significant where the code complexity is greater, as in the case of application-level

Chapter 3. Achieving Accuracy in Binary Code Mutation 82

code in the case study.

e Several omitted and spurious faults are due to the lack of high-level information in the
binary code, and most of them are due to macros and inline functions. These inaccu-
racies have to be accepted as limitations of fault injection at binary level, and should
be taken into account when conclusions are drawn from fault injection experiments.
In some cases, such limitations can be considered acceptable: for instance, when the
aim of fault injection is a coarse-grained analysis of failure modes (e.g., the relative
percentage of crashes or stalls of the system), the results can be adequately estimated
even in the presence of inaccurate injected faults [36,60]. Instead, fault injection at
the source level is advisable when the source code is available and a more fine-grained

analysis of the effects of injected faults on the system is needed.

e Several omitted and spurious faults are not related to limitations of fault injection
at binary level, but they are due to the incomplete or simplified implementation of
G-SWFIT. In particular, issues are related to the implementation of fault type con-
straints and to the identification of code blocks and control structures. These issues
are not due to the G-SWEFIT technique, and they can be avoided if an experimental
evaluation of the fault injection tool is performed to improve the implementation. If
these aspects are improved, then omitted and spurious faults represent the minority

of cases. A future research work consists in extending the proposed method in order

Chapter 3. Achieving Accuracy in Binary Code Mutation 83

to support the development of SFI tools at binary level, since such tools need to be
re-engineered or developed from scratch when fault injection is performed in a new
hardware architecture or in a system adopting a different compiler. In this context,
faults injected at the source code level can be potentially exploited to understand how
software faults are translated in binary code and how fault operators can be imple-

mented.

Chapter 4

Achieving Representativeness in
Interface Error Injection

4.1 Introduction

The integration of OTS components plays a key role in the development of software sys-
tems. Unfortunately, component-based software development imposes significant risks for
dependability [37,115,116]: When a component is reused in a new context, the system may
use parts of the component that were previously seldom used and only lightly tested, or may
interact with the component in unforeseen ways, thus exposing residual software faults in

the component that had not been discovered before.

Despite the extensive development of various approaches, SFI remains a complex pro-
cess, and technical limitations affect the feasibility and the quality of SFI experiments. As
discussed in the previous chapter, the mutation of components’ code requires the ability to
mutate the binary code of the OTS component. This was has proven very difficult: In some

cases it is impossible to correctly recognize and mutate high-level programming constructs

84

Chapter 4. Achieving Representativeness in Interface Error Injection 85

in binary code [29]. Another issue with CM is efficiency, in terms of number of experiments
that actually exhibit a component error, since injected faults may be difficult to activate
and not produce any perceived error during the experiments [25|. Interface error injection
(IEI) is an alternative SFI approach that overcomes these limitations of CM. The represen-
tativeness of interface errors is less of an issue for traditional testing, where invalid values
are useful at exposing inputs that lead to software failures. Nevertheless, the use of IEI for
the representative emulation of component faults (as required by dependability assessment
strategies [62,78,115]) is questionable, as there is a lack of evidence that IEI can realistically

emulate software faults.

This chapter aims at analysing how software faults in components’ code result in errors
at components’ interfaces, in order to provide some constructive evidence towards more

representative IEI techniques.

The chapter is structured as follows. After a discussion of related work on the relation
between software component faults and interface errors in Section 4.2, Section 4.3 introduces
our system model and identifies possible locations for inter-component error propagation.
4.3.1 shows how this information can be exploited to design an approach for the analysis
of inter-component error propagation. In Section 4.3.2, it is discussed the general intra-
component FI process, the details of the experimental setup, and the obtained results.

Then, it is discussed the implications of our findings for the construction of representative

Chapter 4. Achieving Representativeness in Interface Error Injection 86

interface error models in 4.4.

4.2 Background and Related Work

The representativeness of faults is a key property for the quantitative assessment of de-
pendability properties through fault injection. In [84], Ng and Chen designed a write-back
file cache with the requirement to be as reliable as a write-through file cache. To validate
this requirement, software faults are injected in the OS to estimate the probability of data
loss. Using fault injection experiments, the authors identified weak points of their file cache
and iteratively improved its design until its reliability was comparable to a write-through
cache. In [23], fault injection was adopted to evaluate whether the PostgreSQL DBMS ex-
hibits fail-stop behavior in the presence of software faults, and to measure its fault detection
latency. The study found that the transaction mechanism is effective at preventing fail-
stop violations, reducing them from 7% to 2%. Kao et al. [64] performed a Markov reward
analysis, based on fault injection experiments, to quantify the expected impact of faults on
performance and availability. Tang and Hetch [109] proposed an approach for accelerating
the probabilistic evaluation of high-reliability systems (e.g., with a failure rate in the order
of 107%) that adopts fault injection to force the occurrence of rare events. In [114], Voas
et al. inject errors within a program to identify where to place assertions and to avoid
error propagation. The accuracy of these measures and the confidence on fault tolerance

mechanisms is based on the assumption that the injected faults are representative of real

Chapter 4. Achieving Representativeness in Interface Error Injection 87

software faults. In [112], Vieira and Madeira proposed a dependability benchmark to eval-
uate different DBMS configurations with respect to operator and software faults in order
to aid system administrators; in this case, a representative set of faults is required to make

systems comparable and to identify the best configuration.

The representativeness of error injection techniques with respect to software faults was
investigated in many studies. In order to accelerate the consequences of software fault
injection experiments through error injection, Christmansson and Chillarege [25] proposed
a methodology to derive a set of representative errors that match the effects of residual
software faults of a system, by analyzing failure data at the users’ site. They proposed to
inject errors through bit-flipping, which corrupts program data at run-time by changing the
contents of individual bits or bytes on heap, global, and stack areas, and mechanisms that
were originally developed for emulating the effects of hardware faults [15,61]. The error
types were derived as the immediate effect of fault activations on internal program data and
classified according to the type of data corrupted by the fault (e.g., corruption of address
vs. data words). Christmansson et al. [26] observed the benefits of such error injections over
fault injections for evaluating the fault-tolerance of an embedded real-time system in terms
of experiment setup and execution time. Their experimental analysis also showed that the

lack of error representativeness has a noticeable impact on experimental results.

It must be noted that the approach of [25] can emulate the effects of software faults only

Chapter 4. Achieving Representativeness in Interface Error Injection 88

to a limited extent, as Madeira et al. [72] showed that bit-flipping is not suitable for mimick-
ing faults that involve several statements and complex data structures. Instead, Daran and
Thévenod-Fosse [30] showed that code mutations are effective at emulating software faults,
by observing an overlap of the error propagation of 12 known real faults and 24 mutations
in a small safety-critical program. Nevertheless, their analysis focused on internal errors

rather than interface errors.

To analyse how faulty components can affect other components, the focus is on error
manifestations at component interfaces, rather than immediate effects on internal data of
the targeted component as in [25,30]. Moraes et al. [77] and Jarboui et al. [58] investigated
the representativeness of error injections at component interfaces, by comparing the failure
distributions obtained from IEI and from CM, respectively. From a series of comparative
experiments between fault injection based on representative code changes [36] and data-type-
based interface errors commonly adopted in robustness testing (encompassing parameter

231

corruptions through bit-flipping, boundary values such as —2°", and invalid values such as

NULL pointers [67,118]), they concluded that IEI and CM produce failures.

A limitation of previous analyses on error propagation [30,58, 77| was that they were
manually performed on a very small number of faults and on single programs, due to the
lack of an automated tool for analyzing interface error propagation. Our study thus proposes

an automated approach able to analyze arbitrary memory corruptions of component interface

Chapter 4. Achieving Representativeness in Interface Error Injection 89

data, focusing on data exchanged via inter-component interfaces. Unlike previous tools for
error propagation analysis by Kao et al. [64] and by Chandra and Chen [23], our method
is able to precisely distinguish between the corruption of internal component data and of

interface data.

The experimental analysis aims at identifying how software faults in a software com-
ponent turn into interface errors that affect other components and the system as a whole.
Figure 4.1 depicts the relationship between faults and errors: When a component service of
the target component is requested through the component interface (e.g., through an API
function call) by a wuser component, the target processes input data from the user, and
provides results, by manipulating interface parameters provided by and returned to the user
(e.g., data structures exchanged through input/output parameters and through the return
value of a function invocation). During the execution of a component service, the activation
of residual software faults in the component results in an internal error, e.g., the corruption
of internal data or a change of the control flow. When the component service terminates,
the interface parameters exchanged between the target and the user components can be
corrupted as an effect of such internal errors, thus producing interface errors. In such cases,

errors propagate from the target component to other components.

Software components are considered in the form of libraries (i.e., collections of functions

Chapter 4. Achieving Representativeness in Interface Error Injection 90

Interface CPmponent Interface
parameters interface error
Target

component

User

Internal component

error

[= - -~
componen L g 1T]

Figure 4.1: Relationship between component faults and interface errors.

and classes) linked to a C/C++4 main program at compile- or at run-time, as these lan-
guages are predominant in safety-critical control systems and systems software. However,
the general approach applies for any type of software composition where components ex-
change data through shared data structures. Figure 4.2 to Figure 4.5 show the resulting
error propagation paths for data errors in the case of library functions invoked from a (main)

program.

The first scenario (Figure 4.2) consists in the corruption of a data structure that is
dynamically allocated on the heap by the library , where the corrupted data structure
survives the component invocation and is returned to the main program through a pointer
return value (either on the stack or in a register, depending on calling conventions), which
represents an erroneous interface parameter.

Figure 4.3 depicts a similar case, in which a data structure is allocated by the main
program , passed to the library through a pointer interface parameter, and corrupted during

the library invocation

Chapter 4. Achieving Representativeness in Interface Error Injection 91

struct test {
int val; MAIN
. CODE
+;
LIBRARY
struct test x library_function() { CODE
can .
struct test *x p = new struct test;
Fault
p->val = ;zg;f? “ HEAP <
\.
return p;
1 e
int main() { STACK<
. . \.
@ p = library_function();
} e Library data and code

—

($5&] Program data and code

Figure 4.2: Propagation through a library-allocated heap area.

Even if interface parameters are not directly corrupted, error propagation can still indi-

rectly affect the main program by corrupting data that is pointed to by an interface parame-

ter, such as in the case of complex data structures like trees and linked lists. This is the case

in Figure 4.4, where a user-allocated data structure is linked to a library-allocated string

that can get corrupted. A corruption of the linked string can be considered an interface

error, as this area is reachable by the main program. This applies in general to any memory

area reachable from an interface parameter through an arbitrary number of pointers.

Chapter 4. Achieving Representativeness in Interface Error Injection 92

struct test { MAIN SEEZIEK

int val; CODE e
b LIBRARY{
void library_function CODE

(struct test * p) { ,
;Fault

@ p—>val = 123; HEAP{
b \.
int main() { (

(@ struct test p = new struct test; STACK <

library_function(p);

Library data and code

% Program data and code

Figure 4.3: Propagation through a user-allocated heap area.

4.3 Propagation of Errors at Component Interfaces

Finally, error propagation is not limited to heap areas, as in the case of Figure 4.5, in which
an array is allocated as a local variable by the main program , a pointer to the array is passed
to the library through an interface parameter, and the array’s contents gets corrupted by
the library It is important to note that the analysis do not involves internal errors that are
not visible to the main program (i.e., memory areas not reachable outside the component).
This is the case, for instance, of local variables allocated by the library, and of heap memory

areas not reachable (neither directly through interface parameters, nor indirectly) by the

Chapter 4. Achieving Representativeness in Interface Error Injection 93

struct test {
char % string; MAIN oo
CODE 555
+;
LIBRARY
void library_function CODE

(struct test % p) {

@ p->string = new char[20];

1
1 =
Fault HEAP < © bl '
@) strepy(p->string, “helle”)4 -

o \ JSM
s

int main() {

@struct test * p = new struct test;

library_function(p);

Library data and code
Program data and code

Figure 4.4: Propagation through a library-allocated heap area, reached through a user-
allocated heap area.

main program.

4.3.1 Propagation analysis approach

The proposed method enables the automated analysis of errors occurring at the interfaces of
C/C-++ software components, according to the workflow of Figure 4.6. First, the library is
linked to a main program (which represents the workload of the experiment) and executed,
collecting information about (i) memory stores made by the library, (ii) dynamic memory
allocations of both library and main program, and (iii) library invocations performed by the

program during the execution. The raw execution trace is pre-processed, in order to identify

Chapter 4. Achieving Representativeness in Interface Error Injection 94

void library_function
(int vector[], int size) { MAIN §§§
CODE LKL
o 7 Faut LIBRARY
@ vector[3] = 123; CODE
-
¥
HEAP <
int main() {
\.
@ int vector [10]; p
library_function(vector, 10);
STACK <
¥
\.

N .
Library data and code
Program data and code

Figure 4.5: Propagation through a user-allocated local variable.

library memory stores that affect memory areas actually visible to the main program (such
as the cases considered in Figure 4.2 to Figure 4.5). The same steps are performed a second
time, with a software fault deliberately injected into the library. Due to the injected fault,
the library can generate different memory stores to interface parameter data, which leads
to interface errors. To identify such interface errors, two execution traces are compared and
differences are pointed out in terms of memory stores that write incorrect data (i.e., values
differing from the fault-free execution), memory stores omitted by the faulty library, and

superfluous memory stores that are only performed in the faulty execution.

To trace memory accesses performed by the target library, we perform a dynamic binary

Chapter 4. Achieving Representativeness in Interface Error Injection 95

::ﬁ ﬁ Trace pre- ﬁ
ﬁ @ processing 3
Tracing environment | Raw execution trace @ i ﬁ
/l Fault Injection ﬁ
g S R - -
. . List of missing
Trace pre- Side-by-side
Eﬁ processing comparison or corrupted

memory writes
Tracing environment Raw execution trace

Figure 4.6: Overview of error propagation analysis.

instrumentation (DBI) of the executable program [83]. In general, DBI techniques instru-
ment a program during its execution by adding analysis code that collects data about the
state of the execution. Uses of DBI range from simple analyses, such as profiling of function
calls and code coverage, to more complex analyses, such as undefinedness of program vari-
ables. In particular, we adopt the disassemble-and-resynthesise DBI approach [83], which
translates the original program (native code) into an intermediate representation (IR), in-
struments the IR, and translates the IR back to native code, which is then executed on
the native system. The IR code consists of architecture-independent, RISC-like instructions
that perform individual operations such as memory stores (in contrast to a native CISC-like
code instruction, such as x86 instructions, that can have several side effects). DBI takes ad-
vantage of conventional compiler optimizations, such as code caching, in order to accelerate
the process of instrumentation. Analysis code is mixed with the original IR code to obtain

an instrumented IR code: for instance, to track memory modifications, the DBI can add one

Chapter 4. Achieving Representativeness in Interface Error Injection 96

or more IR instructions after each IR store instruction, to record the accessed address and
the value written to that address. This approach allows to analyze memory accesses made

by a program at a fine grain, which is the objective of the analysis of this study.

We developed a DBI analysis tool for tracing library code on top of the Valgrind program

analysis framework [83]. Our tool inserts the following analysis code at run-time:

e After each instruction, we insert code to check the instruction address to detect
whether the control flow moved from the main program to the code of the target
library (i.e., the program enters in library context). In a similar way, we check whether
the control flow returns from the library to the main program. We record the name of
the invoked library function (which is obtained from the symbol table included in the

library), and the return value of the library invocation.

e When library context is entered, we record the current value of the stack register, which
marks the end of the stack frame of the main program (containing local variables of
the main program) and the beginning of the stack frame of the library (containing
local variables of the library). While the execution is in library context, we record
changes to the stack register, in order to trace the growth of the library stack frame
and, ultimately, to identify writes to local variables of the main program (which are

stored on the stack) and to discard writes to local variables allocated by the library.

Chapter 4. Achieving Representativeness in Interface Error Injection 97

e While in library context, after each IR store instruction, we insert code for recording
the address of the instruction that writes to memory, the address and the size of the
area being written, and the new contents of the memory area. The DBI tool records
memory accesses to heap and global data (e.g., Figure 4.2, 4.3, 4.4), and to data in

the stack frame of the main program (e.g., Figure 4.5).

Moreover, the tool wraps and intercepts the invocation of the following functions of the

C library:

e Invocations of mmap(), which is invoked at run-time by the loader to link a shared
library to the address space of the process: We record the addresses of memory areas

in which library code and data are mapped.

e Invocations of memory allocation functions (e.g., new, malloc()), both in library con-
text and in the main program: We record the address and the size of each allocated
and freed memory area, and the code location that allocated that memory area. This
information is used later in the analysis for identifying memory areas reachable by the

main program.

As a result, the execution trace obtained from the DBI tool provides (i) all invocations of
and returns from library functions (LIB_ INVOCATION and LIB__RETURN events), and their

return value, (ii) all memory writes made by the library outside its local variables (STORE

Chapter 4. Achieving Representativeness in Interface Error Injection 98

events), and (iii) all memory allocations and deallocations (ALLOCATION and FREE events).

The trace is then processed (Figure 4.6) to identify memory stores that write data ac-
cessible by the main program, that is, interface parameter data. These data are identified by
building a graph where nodes represent memory areas (i.e., a range of contiguous memory
addresses, such as an array of bytes allocated on the heap), and edges represent pointer-
pointee relationship between memory areas (i.e., a memory area contains a pointer variable,
pointing to another memory area). A memory area is reachable by a program using the
library if there is a path in the graph between that memory area and any variable of the
user program, i.e., a variable in the user heap (represented by the UH node), in the user
stack (US node) or an output value from the library function call (O node). Figure 4.7

shows an example.

struct test { char x s; };

int main() { user- library-
. allocated allocated
int v [10];
struct test % p = new struct test; areas areas
char * c = library_function(p, v); struct . / char
} / test 1/ [20]
)) UH &—>0———@
char x library_function '
(struct test x p, int v[]) { Voint
char % tmp = new charl3]; \ [10] a
us - o
delete [] tmp;
char
p—>s = new char[20]; N [5] ;
O @ >0

return new charl[5];

}

Figure 4.7: Example of reachability graph.

4.8 provides the detailed algorithm for building and analyzing the graph. The trace is

Chapter 4. Achieving Representativeness in Interface Error Injection 99

analyzed in three passes. Each pass processes events of the trace in sequential order, by
invoking for each event a function according to the type of event (e.g., when a STORE event

is encountered while scanning the trace, it is processed by invoking HANDLE STORE).

Pass 1. This pass (Figure 4.8a) identifies heap memory areas that are allocated and
de-allocated within the same library invocation (i.e., “temporary” memory areas used during
an individual library invocation, such as “tmp” in Figure 4.7), and removes them from the
analysis (Fig. 4.8a, line 20), since these areas cannot be accessed by the user program (they
do not “survive” a library invocation). The remaining heap areas can still potentially be
accessed by the main program. The address ranges [start,end) of remaining heap areas
are arranged in an interval tree, the Allocs set (Fig.4.8a, line 8), which is a data structure
that allows to search for ranges containing a given value: We use this feature in subsequent
passes to find, for a given address in the trace, the heap area to which that address belongs.
Address ranges of global data structures of the library (obtained from the library symbol

table) are also inserted in the interval tree at the beginning of the pass (Fig. 4.8a, line 1

Pass 2. This pass (Figure 4.8b) constructs a directed graph (F, V') representing pointer-
pointee relationships between li- brary-allocated memory areas, and between these areas and
memory areas of the user program. Node A of the graph (representing a memory area A) is
connected to node B if the area A contains a pointer with an address to the memory area B

(i.e., B is “reachable” by A). The graph includes a node for each library-allocated memory

Chapter 4. Achieving Representativeness in Interface Error Injection 100

(a) Pass 1: Collection of memory allocations.

: E < GET_LIBRARY ALLOCATED AREAS(Allocs) U{UH,US,O}
V<0

[N

function HANDLE STORE(store)
pointed _area < INTERVALSEARCH(Allocs, store.value)

5: if pointed area # 0 A (1s_LIB_HEAP AREA(pointed area) V1S _LIB__GLOBAL _AREA(pointed area)) then

6: accessed__area < INTERVALSEARCH(Allocs, store.address)
7 if accessed area # () then

8: if 1s_ USER__HEAP_ AREA(accessed_area) then

9: V + V U (pointed _area,UH)

10: else

11: V « V U (pointed _area, accessed__area)

12: end if

13: else if 1S USER_ STACK _DATA(store.address) then
14: V + V U (pointed _area,US)

15: end if

16: end if

17: end function

18: function HANDLE _LIB_ RETURN(returned_value)

19: pointed _area < INTERVALSEARCH(Allocs, returned_value)
20: if pointed _area # § then

21: V « V U (pointed _area, O)

22: end if

23: end function

(b) Pass 2: Generation of the reachability graph.
1: Trace + 0

2: function HANDLE _STORE(store)

3 area < INTERVALSEARCH(Allocs, store.address)

4 address < store.address

5: if 1Is LIB__HEAP AREA(area) VIS _LIB_GLOBAL_ AREA(area) then
6 if 1Is_ REACHABLE _BY_USER(V, E, address) then

7 Trace < Trace U {store}

8

: end if
9: else if 1S USER _HEAP AREA(area) VIS _USER_STACK DATA(address) then
10: Trace < Trace U {store}
11: end if

12: end function

(c) Pass 3: Event filtering.

Figure 4.8: Trace pre-processing.

area. Moreover, we introduce in the graph the UH, US, and O nodes (Fig. 4.8b, line 1): if

a node A is connected to any of these nodes, then the memory area A is directly reachable

Chapter 4. Achieving Representativeness in Interface Error Injection 101

through user-allocated heap memory, user stack memory, or an output value of a function
call, respectively. To identify pointer-pointee relationships, we check the value written by
store operations (store.value) and see whether that value represents an address within one
of the memory areas in Allocs: if this is the case, then the written value represents a pointer,
and the two areas (i.e., the one containing the pointer, and the one with the pointed address)
are connected in the graph (Fig. 4.8b, line 11). If a library-allocated heap/global area is
pointed to by user heap areas, the user stack, or values returned by library invocations, that
library-allocated area is connected to UH, US, or O, respectively (Fig. 4.8b, lines 9, 14, 21)
. This pass uses an interval tree search in Allocs (Fig. 4.8b, line 4) to identify pointers and

the areas they point to.

Pass 3. It identifies memory stores to areas that are reachable by the main program
(Figure 4.8c¢). If the address of the store (store.address) belongs to a library-allocated area,
the algorithm inspects the graph using the IS REACHABLE BY _USER function (Fig. 4.8c,
line 6) to find whether the area is reachable outside the library, and only adds the store
to the final trace if there exists a path in the graph between the memory area and one of
the US, UH, or O nodes (i.e., the area is reachable by the user). Stores on user-allocated

memory are also included in the trace (Fig. 4.8¢, line 10).

After the execution of an experiment and of pre-processing, we obtain a trace consisting

Chapter 4. Achieving Representativeness in Interface Error Injection 102

Fault-free trace Faulty trace
Instruction Address Size Value Instruction Address Size Value
buf.c:613, HEAP-buf.c:158+20, 8, 0000000000000004 buf.c:613, HEAP-buf.c:158+20, 8, 0000000000000004
buf.c:614, HEAP-buf.c:158+c, 4, 00002002 | buf.c:614, HEAP-buf.c:158+c, 4, 00004004
buf.c:614, HEAP-buf.c:158+8, 4, 00000004 buf.c:614, HEAP-buf.c:158+8, 4, 00000004
buf.c:616, HEAP-buf.c:171+4, 1, 00 > missing store

Figure 4.9: Example of comparison between faulty and fault-free traces.

of a sequence of tuples, each representing a memory store performed by the library on user-
reachable memory. A tuple is defined as: <instruction address, memory address, store size,
stored value>. A “faulty” execution trace is then compared with a “fault-free” execution
trace. Given that execution traces are always identical when the target software is executed
without faults (effects of non-determinism must be factored out, as discussed below), any
differences between the faulty and the fault-free traces are actually due to injected faults.
Traces are compared by searching for the longest common subsequences, using the algorithm
described in [55]: it aligns two sequences such that two tuples at the same position in the
aligned sequences will have the same values, by comparing, respectively, the instruction, the
address, the size and the value of memory stores. In the example of Figure 4.9, the first and
the third stores of both sequences are aligned; the stores at the second position are performed
by the same instruction on the same memory area (a heap area allocated at buf.c:158), but
a wrong value is written in the faulty execution; the fourth store is only performed in the
fault-free execution, while it is omitted in the faulty one. In this example, 4 bytes are

corrupted by writing a wrong value at the second position, and another byte is corrupted

Chapter 4. Achieving Representativeness in Interface Error Injection 103

since its initialization is omitted at the fourth position. We also detect corruptions due to
spurious stores not performed in the fault-free execution. In a similar way, we compare

return values of library invocations.

It is important to note that, when comparing faulty and fault-free traces, we focus
on memory stores and return values produced by the first library function invocation that
exhibits differences from fault-free executions. We do so since differences exhibited by sub-
sequent invocations of library functions may not be due to the injected fault, but due an
incorrect behavior by the main program, caused by the effects of the first “faulty” library
invocation. Focusing on the first faulty library invocation avoids confusion between effects

and provides a more prec