UNIVERSITA DEGLI STUDI DI NAPOLI

. JFEDERICO I

eLECTRICALEeNGINEERING

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO Il

PH.D. THESIS

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEPENDABILITY ASSESSMENT OF ANDROID OS

ANTONIO KEN IANNILLO

TUTOR: PROF. DOMENICO COTRONEO

XXX CicLo

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’ INFORMAZIONE

(©2018 Antonio Ken Iannillo

UNIVERSITA DEGLI STUDI DI NAPOLI
FEDERICO II

DOCTORAL THESIS

Dependability Assessment of
Android OS

Author: Supervisor:
Antonio Ken IANNILLO Prof.Domenico COTRONEO

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information Technology and Electrical Engineering

Scuola Politecnica e delle Scienza di Base
Dipartimento di Ingegneria Elettrica e Tecnologie dell’'Informazione

http://www.unina.it
http://www.unina.it
http://akiannillo.github.io
http://wpage.unina.it/cotroneo/Domenico_Cotroneo/Home.html
http://dottorato-itee.dieti.unina.it/
http://www.scuolapsb.unina.it/
http://www.dieti.unina.it/

benedicat tibi Dominus et custodiat te
ostendat Dominus faciem suam tibi et misereatur tui
convertat Dominus vultum suum ad te et det tibi pacem

iii

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

Abstract

Scuola Politecnica e delle Scienza di Base
Dipartimento di Ingegneria Elettrica e Tecnologie dell'Informazione

Doctor of Philosophy

Dependability Assessment of Android OS
by Antonio Ken IANNILLO

In this brave new world of smartphone-dependent society, dependability
is a strong requirement and needs to be addressed properly. Assessing the
dependability of these mobile system is still an open issue, and companies
should have the tools to improve their devices and beat the competition
against other vendors.

The main objective of this dissertation is to provide the methods to assess
the dependability of mobile OS, fundamental for further improvements.

Mobile OS are threatened mainly by traditional residual faults (when
errors spread across components as failures), aging-related faults (when
errors accumulate over time), and misuses by users and applications. This
thesis faces these three aspects. First, it presents a qualitative method to
define the fault model of a mobile OS, and an exhaustive fault model for
Android. I designed and developed AndroFIT, a novel fault injection tool for
Android smartphone, and performed an extensive fault injection campaign
on three Android devices from different vendors to analyze the impact of
component failure on the mobile OS. Second, it presents an experimental
methodology to analyze the software aging phenomenon in mobile OS.
I performed a software aging analysis campaign on Android devices to
identify the impacting factors on performance degradation and resource
consumption. Third, it presents the design and implementation of a novel
fuzzing tool, namely Chizpurfle, able to automatically test Android vendor
customizations by leveraging code coverage information at run-time.

HTTP://WWW.UNINA.IT
http://www.scuolapsb.unina.it/
http://www.dieti.unina.it/

vii

Acknowledgements

I'd like to thank my advisor prof. Domenico Cotroneo.

I'd like to thank Luigi De Simone, Francesco Fucci, Anna Lanzaro,
Roberto Natella, prof. Cristina Nita-Rotaru, Roberto Pietrantuono, Ste-
fano Rosiello, prof. Stefano Russo, and all the colleagues and friends that
contributed to my doctoral course.

I'd like to thank my DESSERT labmates, the PhD students from itee XXX,
the employees of CRITIWARE, and all the colleagues and friends of the
Department of Electrical Engineering and Information Technology (DIETI)
at University of Naples Federico II.

I'd like to thank prof. Cristina Nita-Rotaru and all the colleagues and
friends of the College of Computer and Information Science (CCIS) at
Northeastern University.

I'd like to thank Ole André Vadla Ravnas and all the FAIDA community.

I'd like to thank my Bostonian family, my Franciscan fraternity, and my
family by blood.

I'd like to thank my true friends.

I'd like to thank my beloved one.

I'd like to thank Mum and Dad.

I'd like to thank you who are going to read my thesis.

X

Contents
Abstract v
Acknowledgements vii
1 Introduction 1
1.1 The Need for Dependable Smartphones 2
1.2 Dependability Threats and Assessment 3
1.3 Thesis Contributions 5
1.3.1 Fault Injection Testing 5
1.3.2 Software Aging Analysis 6
133 FuzzTesting 7
2 State of the Art in Mobile System Dependability 11
2.1 FaultInjection Testing 12
2.2 Software Aging and Rejuvenation 17
23 FuzzTesting 18
3 AndroFIT: A Software Fault Injection Approach for the Android
Mobile OS 23
31 OVeIVIEW o o e e e e e e e e 24
32 FaultModeling 26
321 Methodology 26
3.2.2 Android FaultModel 32
3.3 Android Fault Injection Tool (AndroFIT) 45
3.3.1 Fault Injection Techniques 45
3.3.2 Design and Implementation of AndroFIT 52
3.4 Experimental Evaluation 60
3.4.1 Fault Injection in the Phone Subsystem 61

3.4.2 Fault Injection in the Camera Subsystem 63

3.4.3 Fault Injection in the Sensors Subsystem 65

3.4.4 Fault Injection in the Activity Subsystem 68

3.4.5 Fault Injection in the Package Subsystem 71

3.4.6 Fault Injection in the Storage Subsystem 72

347 LessonsLearned 74

4 Software Aging Analysis of the Android Mobile OS 79
41 Overview 80
42 Experimental Methodology 81
421 User-Perceived Response Variable 82

422 System-Related Response Variables 84

423 FactorsandLevels 88

424 Experimentalplan 91

43 Results 94
43.1 Software aging across Android vendors 95
43.2 Software aging across Android versions 103

43.3 Analysis of process internals 105

5 Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Cus-

tomizations 111

51 OVervVIiew o i it e e 112
52 Chizpurfle o 113
521 Motivations 114

522 Design o oo 115

53 Experimental Evaluation 128
5.3.1 Bugsin Samsung Customizations 128

53.2 Comparison with Black-Box Fuzzing 132

6 Conclusion And Future Directions 137
6.1 FaultInjection Testing 137

6.2 Software Aging Analaysis 138

63 FuzzTesting 141

6.4 Further Discussion 142

A Android Insights 143
A.1 Android Architecture 143

A2 BinderIPC L 147

A.3 Service Manager
B Android Fault Model

References

xi

xiii

List of Figures

2.1

2.2
2.3

24

3.1
3.2
3.3
34
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

Fault Injection Testing General Schema (Figure 1 of Hsueh et

al. [1]) - o o o 13
PAIN architecture (Figure 1 of Winteretal. [2]) 14
Fault Injection Approach in modified QEMU architecture

(Figure 2 of Ferrarettoetal. [3]) 16
Intent Fuzzer Architecture (Figure 2 of Sasnauskas et al. [4]) 21
a Fault-Error-Failure Propagation Chain in Android 25
a Software Component Model View 28
Architecture of the Android Phone Subsystem 37
Architecture of the Android Camera Subsystem 39
Architecture of the Android Sensors Subsystem 41
Architecture of the Android Storage Subsystem 44
Binder IPC Hijacking Fault Injection Technique on Transac-

tionMessages oL 47
Binder IPC Hijacking Fault Injection Technique on Reply

Messages 48
Library Hooking Fault Injection Technique 49
System Call Hooking Fault Injection Technique 50
Unix Socket Hijacking Fault Injection Technique 51
Unix Signaling Fault Injection Technique 52
AndroFIT Architecture 53
Execution of the Fault Injection Experiments 56
Flow of a Fault Injection Experiment 57

Output Folder Structure and Files of the Experiment Launcher 58
Fault Injection Campaign Outcomes for the Phone Subsystem 62
Analysis of the Failure Scenario#1 63
Fault Injection Campaign Outcomes for the Camera Subsystem 64

Xiv

3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.1
4.2
4.3

44
4.5

4.6
4.7
4.8
49
4.10

5.1
52
53
54
55
5.6

Al
A2
A3

Analysis of the Failure Scenario#2 64
Analysis of the Failure Scenario#3 66
Fault Injection Campaign Outcomes for the Phone Subsystem 67
Analysis of the Failure Scenario#4 68

Fault Injection Campaign Outcomes for the Activity Subsystem 69
Fault Injection Campaign Outcomes for the Package Subsystem 71
Fault Injection Campaign Outcomes for the Storage Subsystem 73

The Experimental Android Testbed 94
Groups Activities Launch Time for EXP39 95
Distribution of the Launch Time Trends, with all vendors and

fixed to Android 6 (EXP13~EXP60) 96
PSS Trends Distributions: EXP13~EXP60 (Android 6) 102
Launch Time Trends Distributions: EXP49~EXP72 (Samsung

S6Edge) 104
Launch Time Trends Distributions: EXP1~EXP24 (Huawei P8)104
PSS Trends Distributions: EXP1~EXP24 (Huawei P8) 106
PSS Trends Distributions: EXP49~EXP72 (Samsung S6 Edge) 106
Occurrences of GC metric trend: EXP1~EXP72 108
Occurrences of task metric trend: EXP1~EXP72 110
AQOSP and Vendor services. 116
Overview of the Architecture of Chizpurfle 116
Chizpurfle Instrumentation and Tracing Mechanism 121
Performance Overhead of Chizpurfle. 133
Code Coverage Gain of Chizpurfle 134
Code Coverage Gain of Chizpurfle per Method 135
Android System Architecture 145
Binder IPC Iteration Between Two Android Processes 148

Android Services and Service Manager 149

XV

List of Tables

3.1 A Comparison of Failure Classifications [5] 29
3.2 Summary of the Android Fault Model 34
3.3 Fault Injection Techniques and Target Components Map . . 77
3.4 Summary of the Fault Injection Campaign Outcomes 78
4.1 Factors and Levels for Android Software Aging Analysis . . 90
42 Experimental plan of thecasestudy 92

4.3 Analysis of Variance w.r.t. Normality and Homoscedasticity =~ 98
4.4 Spearman Correlation Coefficients between All Activities LT

Trends and PSS Trends of Android System Processes 103
5.1 Vendors’ Smartphone Customizations on System Services . 115
5.2 Failures Detected by Chizpurfle 129
B.1 RILDFaultModel 153
B.2 Baseband Driver and Processor Fault Model 155
B.3 Camera Service FaultModel 157
B.4 Camera HAL FaultModel 167
B.5 Camera Driver and Hardware Fault Model 172
B.6 Sensor Service and HAL Fault Model 174
B.7 Sensors Drivers and Devices Fault Model 176
B.8 Activity Manager Service Fault Model 177
B.9 Package Manager Service Fault Model 180
B.10 SQLite Library FaultModel 182
B.11 Bionic Library Fault Model 183
B.12 Mount Service Fault Model 184
B.13 Volume Daemon FaultModel 185

B.14 Storage Drivers and Hardware Fault Model 188

List of Abbreviations

ADB
AFL
AIDL
AndroFIT
AOSP
API
app
ARB
ARM
ART
BYOD
CPU
CuUT
cfr.
DoE
e.g.,
FTMA
GC
GPS
HAL
HIDL
ie.,
I/0
IoT
ICC
IPC
KSM
LLVM
MIME

Android Debug Bridge

American Fuzzy Lop

Android Interface Description Language
Android Fault Injection Tool

Android Open Source Project
Application Programming Interface
(mobile) application

Aging Related Bug

Advanced RISC Machine

Android Run-Time

Bring Your Own Device

Central Processing Unit

Component Under Test

confronta (compare)

Design of Experiment

exempli gratia, (for example,)

Fault Tolerant Mechanisms (and) Algorithms
Garbage Collection

Global Positioning System

Hardware Abstraction Layer

HAL Interface Description Language
id est, (that is,)

Input/Output

Internet of Things

Inter-Component Communication
Inter-Process Communication

Kernel Samepage Merging

Low Level Virtual Machine
Multipurpose Internet Mail Extensions

XVii

Xviii

MK
MVDP
MuT
NFC
OEM
0S
PSS
RDS
RISC
SIR
SMS
SNMP
TTE
Ul

Mann-Kendall

Mobile Vulnerability Discovery Pipeline
Module under Test

Near Field Communication

Original Equipment Manufacturers
Operating System

Propotional Set Size

Radio Data System

Reduced Instruction Set Computing
Service Interfaces (and) Resources
Short Message Service

Simple Network Management Protocol
Time-To-Exhaustion

User Interface

to the Dreams

Xix

Chapter 1

Introduction

If you want to get someone’s attention, show you can help.
— John C. Maxwell

This thesis deals with the dependability assessment of Android-based mobile
systems. The main objective is to provide novel methods and experimental
procedures to assess the dependability of mobile OS, specifically Android OS,
fundamental for further improvements. The contributions of this thesis are:

a qualitative method to define the fault model of a mobile OS, and an
exhaustive fault model for Android;

the design and implementation of AndroFIT, a novel fault injection tool
for Android smartphones;

an extensive fault injection campaign on three Android devices from
different vendors to analyze the impact of component failures on the
mobile OS;

an experimental methodology to analyze the software aging phenomenon
in mobile OS;

a software aging analysis campaign on Android devices to identify the
impacting factors on performance degradation and resource consump-
tion;

the design and implementation of a novel fuzzing tool, namely Chizpur-
fle, able to automatically test Android vendor customizations by lever-
aging code coverage information at run-time.

2 Chapter 1. Introduction

1.1 The Need for Dependable Smartphones

The rapid and continuous evolution of information and communication
technologies brought modern society to constantly interact with personal
and portable computers. Gone are those days when mobile phones served
as a device to make calls and occasionally send text. Now, mobile phones
hold more of one’s life than computers do. Smartphones will be, and par-
tially already are, the most critical resource for the interaction among the
physical and digital world. They provide access, through apps, to every
kind of service: mail, data storage, telephony, information provisioning,
data sharing, e-commerce, banking, and social-networking are only few
examples. In the very next future, they will become digital wallets and
holders of digital identity. Companies are already surrounded by a comput-
ing ecosystems with mobile devices that earn access to sensitive services
and data, applying the so-called Bring Your Own Device (BYOD) paradigm.
Furthermore, mobile devices can also communicate with other networked
devices, playing a central role in the Internet of Things (IoT).

As mobile devices become more and more deeply embedded in business
and personal contexts, the most important challenge is ensuring that a user
can trust them. If users find that a device is unreliable or insecure, they will
refuse to use it. Furthermore, they may also refuse to buy or use products
from the same vendor, because they may believe that these products are also
likely to be unreliable or insecure. “Poor quality of software can result in
serious damage to the brand value of an organization and often incurs huge
repair costs” [6]. The World Quality Report 2017-2018 confirms that the 1660
executives in 32 countries, involved in the analysis, are becoming aware of
the importance of any failure experienced by end-users, who spread this
information in a viral way on social media and can cause financial loss.

Users cannot afford any failure that could potentially affect and damage
the way they relate to the world.

Companies cannot afford any failure that could certainly affect and
damage the financial capital they own.

Smartphones must be dependable.

“The dependability of a system is the ability to avoid service failures
that are more frequent and more severe than is acceptable.” [7]

1.2. Dependability Threats and Assessment 3

The mobile operating system (mobile OS) plays a crucial role since it
allows smartphones, tablets and other mobile devices to run applications.
Mobile OS is responsible to manage physical resources and abstract them
for applications as every OS, but they also address the peculiarities of
mobile devices: limited memory and battery, small display and touchscreen,
and heterogeneous resources and protocols such as cellular, Bluetooth,
Wi-Fi, Global Position System (GPS) navigation, built-in cameras, Near
Field Communication (NFC), gyroscope, touch screens, and Radio Data
System (RDS) receivers. Managing all these sensors and actuators with the
constrains of an embedded device is not a trivial task and threatens the
dependability of mobile devices.

In this scenario, the most influential mobile OS providers are Google,
with Android, and Apple, with iOS. Android dominates the market with a
86.8% share, against the 12.5% of iOS [8]. While iOS is a closed-source mobile
OS delivered only in Apple iPhones, Android is an open-source project and
comes in different flavors, depending on which vendor is implementing
it. Nowadays, more than 20 original equipment manufacturers (OEMs),
including but not limited to Samsung, Huawei, OPPO, and LG, base their
devices on the Android Open Source Project (AOSP) [9]. One of the main
target of these companies is to provide a better device than their competitors,
and better means also more dependable in order to secure the customer loyalty
earned with value-added services. Unfortunately, the World Quality Report
2017-2018 [6] stated that most of the world-wide companies declared the
challenges in testing mobile applications, devices, and wearable includes
the lack of the right testing processes, methods and tools.

This thesis faces the dependability analysis of mobile OS, with a case
study based on the complex and fragmented Android ecosystem.

1.2 Dependability Threats and Assessment

The basic concepts of dependability are well-defined by Avizenis et al. [7],
formalizing the fault-error-failure chain and the fault tolerance.

There are mainly two categories of faults that need to be considered as
potential causes of mobile OS failures. They are

Residual faults of the mobile OS: they are hardware or software de-
fects within the components of the mobile OS (also known as internal

4 Chapter 1. Introduction

A failure is an event that occurs when a system does not deliver the service
as expected by its users (e.g., the mobile OS crashes and the device can not be
used);

An error is an erroneous internal state that propagates within the system and
eventually turns into a failure (e.g., a mobile OS internal service has a missing
event handler);

A fault is an attribute of the system that leads to an error (e.g., a missing event
handler initialization instruction in the mobile OS code);

Fault Tolerance is a mean to obtain a dependable system by avoiding service
failures in the presence of faults, carried out via Failure Tolerance Mecha-
nisms and Algorithms (FTMA) (e.g., an exception handler that shows an
error message to the user and keeps the mobile OS running with reduced
functionalities).

faults) that, under special conditions (i.e., triggers), leads to an inter-
nal error state. According to their propagation, they can be further
divided in

traditional faults, when the errors, not correctly handled by
FTMA, spread across other components in the mobile OS as
component failures; or

aging faults, when the errors accumulate over time causing per-
formance degradation and poor quality of service.

Misuses of the mobile OS: they are the misuses of the mobile device
system by users and applications. They are external faults, e.g., incon-
sistent inputs, that originate from the users of the system, including
human users that interact with the device and applications that inter-
act with the mobile OS framework.

These threats undermine the smartphone dependability as perceived by the
users. The impact of these faults may consist of unresponsiveness to user’s
input, not-working conditions, or unauthorized actions, among others.
Dependability assessment of a mobile OS must face these threats. It
should primarily test the FTMA, quantifying the impact of traditional faults
on the system. Nevertheless, dependability assessment should also test the
quality of service of a mobile OS, focusing on its performance during the

1.3. Thesis Contributions 5

long-lasting activity and analyzing the effect of the aging faults. Finally,
since the Android OS allows vendors to add custom interfaces, depend-
ability assessment should pay particular attention to them and test them
efficiently against misuses.

1.3 Thesis Contributions

This thesis revolves around three aspects: fault injection testing, aging
analysis, and fuzz testing. Regarding the first aspect, mobile OS could be
statically or dynamically analyzed to promote a comprehensive fault injec-
tion approach, which intentionally injects realistic faults into the mobile OS
components to understand how the FTMA and the whole system react to
them. With regards to the second aspect, since the performance degradation
or aging phenomenon of mobile OS is not a direct consequence of faults
that can be arbitrarily injected but the result of errors accumulation, an
approach to analyze the impact of long running operational periods on the
mobile OS performances is presented. Third and last, Android vendors
introduce closed-source software customizations on their products exposed
as interfaces, and a novel gray-box fuzzing approach can be used to analyze
their robustness by exploiting run-time information. These three aspects
are carefully developed in this thesis work to analyze the dependability of
mobile OS.

1.3.1 Fault Injection Testing

Testing is a software development phase of paramount importance, and it is
also the most costly one. Nevertheless, software comes with residual faults
that need to be tolerated by the system [10]. Failure tolerance mechanisms
and algorithms (FTMA) should satisfy the requirement to obtain a depend-
able system by avoiding service failure in presence of faults. Any failure
that is not handled by the system may undermine the user experience (UX),
and damage both the user and the vendor.

Fault injection is the process of introducing faults in a system, with the
goal of assessing the impact of faults on performance and on availability,
and the effectiveness of fault tolerance mechanisms. It is important to clearly
divide the mobile OS architectures in two sets of components, such as:

6 Chapter 1. Introduction

Fault injection targets: the components in which we expect that faults
occur;

Components under test: the components that should be able to handle
or tolerate faults.

The main challenge with fault injection is to define a fault model, i.e., a set
of realistic component failures that could be injected in the fault injection
targets and act as a fault for the mobile OS. In order to define a general
and exhaustive fault model, this thesis proposes a simple but effective
methodology (SIR methodology), that consists of:

1. analysis of the target architecture, identifying the services provided
by the component and the resources managed by the component;

2. application of defined failure modes to every service and resource;
3. assignment of fault persistence.

I performed this procedure on the Android OS to extract a comprehensive
fault model. Based on this model, I developed the Android Fault Injection
Tool (AndroFIT) and performed a fault injection campaign on three popular
Android smartphones to analyze how different vendor smartphones react
to faults. The campaign injected more than 700 faults related to 6 different
subsystems (i.e., phone, camera, sensors, activity, package, and storage
subsystems), executing 2196 experiments in total, where each experiment
lasts about 5 minutes. The results show the effectiveness of the fault injection
approach and how vendors still need to improve the dependability of their
devices, even if they react differently to the same failures.

1.3.2 Software Aging Analysis

With regard to the requested responsiveness of mobile devices, this thesis
faces the problem of the software aging phenomenon in mobile OS. Soft-
ware aging can cause the device to slowly degrade its performance and
to eventually fail, due to the accumulation of errors in the system state
and to the incremental consumption of resources, such as physical memory.
Software aging can be attributed to software faults that manifest themselves
as memory leakage and fragmentation, unreleased locks, stale threads, data

1.3. Thesis Contributions 7

corruption, and numerical error accumulation. Analyzing the public bug
repository of Android, there are evidence that these bugs affect the Android
OS, thus exposing commercial Android devices on the market to software
aging issues.

This thesis presents an experimental methodology to analyze software
aging issues in the Android OS, but it can be easily generalized to other
mobile OS. The procedure consists of statistical methods and techniques
to identify which factors (such as workloads and device configurations)
exacerbate performance degradation and resource consumption. Moreover,
it analyzes the correlation between software aging and resource utilization
metrics, in order to pinpoint which subsystems are affected by aging and to
support the design of software rejuvenation strategies.

I applied this procedure for an extensive empirical analysis of software
aging in 4 recent Android devices (i.e., Samsung Galaxy S6 Edge, Huawei
P8, HTC One M9, and LG Nexus) running Android 5 (Lollipop), Android
6 (Marshmallow), and Android 7 (Nougat). In details, the experimental
plans is based on 5 different factor, counting from 2 to 4 levels, resulting
in 72 experiment. Each experiment lasts about 6 hours, for a total of more
than 400 hours of testing time. The analysis of the experimental outcomes,
presented in this thesis, pointed out that Android devices are indeed affected
by software aging, among with other useful insights.

1.3.3 Fuzz Testing

Companies does not include only new hardware on mobile devices, but
they realized that the difference they can make on the market is with new
software. The Nokia failure case study clearly shows how a huge phone
company, proficient at providing the best hardware, failed also because it
defers realizing the dramatic change of focus from hardware to software
[11]. However, Vendor software customizations introduce new software
defects, which are vendor-specific. Because they are proprietary, vendor
customizations are not integrated in the open-source Android and do not
benefit from the feedback loop of the whole ecosystem. Thus, they are
less scrutinized than the core AOSP codebase, and their vulnerabilities
take significantly more time to be patched. It is worth noting that vendors’
customizations are code running with special privileges, thus exacerbating

8 Chapter 1. Introduction

the security issues'. Misuses of these peculiar interfaces may lead to severe
failures and malicious attacks.

Fuzzing is a well-established and effective software testing technique
to identify weaknesses in fragile software interfaces by injecting invalid
and unexpected inputs. Fuzzing was initially conceived as a “black-box”
testing technique, using random or grammar-driven inputs. More recently,
“white-box” techniques have been leveraging information about the pro-
gram internals (such as the test coverage) to steer the generation of fuzz
inputs, either by instrumenting the source code or by running the target
code in a virtual machine. The visibility of the test coverage has dramat-
ically improved the effectiveness of fuzzing tools, as showed by the high
number of subtle vulnerabilities found in many large software systems. Un-
fortunately, these tools are not applicable to proprietary Android services,
since vendors are not willing to share their source code, and since virtual
machine environments (e.g., device emulators) do not support the execution
of these proprietary extensions.

Thus, I developed Chizpurfle, a tool to address the gap in the spectrum
of mobile fuzzers, and to improve the effectiveness of fuzzing on vendor
customizations. Similarly to recent white-box fuzz approaches, Chizpurfle
leverages test coverage information, while avoiding the need for recom-
piling the target code, or executing it in a special environment. The tool
has been designed to be deployed and to run on unmodified Android de-
vices, including any vendor customization to the Android OS. The tool
leverages a combination of dynamic binary instrumentation techniques
(such as software breakpoints and just-in-time code rewriting) to obtain
information about the block coverage. Moreover, Chizpurfle is able to guide
fuzz testing only on the vendor customizations, by automatically extracting
the list of vendor service interfaces on the Android device. The tool also
provides a platform for experimenting with fuzz testing techniques (such
as evolutionary algorithms) based on coverage-based feedback.

I validated the applicability and performance of the Chizpurfle tool by
conducting a fuzz testing campaign on the vendor customizations of the
Samsung Galaxy S6 Edge, running Android version 7. Chizpurfle detected
2,272 service methods from Samsung customizations and performed 34,645

For example, some devices based on Qualcomm chipsets suffer from a vulnerability in
the Qualcomm service API that allows privilege escalation and information disclosure [12].

1.3. Thesis Contributions 9

tests on these methods, with an average of 7 seconds per test. Chizpurfle
improves the depth of testing compared to the black-box approach, by in-
creasing the test coverage by 2.3 times on average and 7.9 times in the best
case, with a performance overhead that is comparable to existing dynamic
binary instrumentation frameworks. Moreover, we discuss some vulnera-
bilities found in privileged services during these evaluation experiments.

11

Chapter 2

State of the Art in Mobile
System Dependability

Those who cannot remember the past are condemned to repeat it.

— George Santayana

Since modern mobile systems showed up about ten years ago, current soft-
ware dependability studies on them are very few and still represent a niche
in the research community.

Fault injection studies focuses on either the lower layers of the mobile
systems [2, 3], or the Java applications [13, 14] that could be applied
to the Android Java layer (see Section A.1). No work deeply analyzes
the behavior of the whole mobile OS in presence of faults in one of its
components.

Software aging has been repeatedly reported both by scientific literature
and by software practitioners [15-29], and it has been recognized as a
chronic problem in many long-running software systems. Research on
software aging in mobile devices is still at an early stage, focusing only
on Android applications [30-34] and not on lower layers.

Fuzz testing has been extensively adopted for testing several software
systems as both black-box [35-38] and white-box [39,40] approaches,
in Android [4,41-46] and other mobile systems [47-49]. Nevertheless,
little work was done on the system service of the Android OS [50, 51].

12 Chapter 2. State of the Art in Mobile System Dependability

Most of the current software dependability analysis approaches are not
for mobile environments. Since modern mobile systems showed up about
ten years ago, dependability studies on them are few and still represent a
niche in the research community.

This chapter presents the state-of-the-art of the dependability of mobile
systems, according to the three main contributions of this dissertation: fault
injection testing, fuzz testing, and software aging.

2.1 Fault Injection Testing

Fault injection testing is a software testing technique that consists of deliber-
ately introducing faults in a system, with the goal of assessing the impact
of faults on performance and on availability, and the effectiveness of fault
tolerance mechanisms. A fault model formalizes those faults that will even-
tually affect the system during operation. Then, these faults are injected
into specific software components of the target system, while it is exercised
with a workload. Internal faults can be either hardware or software faults,
but they both can be emulated through software and referred as software
fault injection.

Several approaches and tools exist to emulate internal faults’, but all
of them fit in the same conceptual schema [1], as shown in Figure 2.1. The
system under analysis is usually named target. There are two entities that
stimulate the system, respectively the load generator and the injector. The
former exercises the target with inputs that will be processed during a fault
injection experiment, whereas the latter introduces a fault in the system.
The set of inputs and faults submitted to the system are respectively referred
to as workload and faultload, which are typically specified by the tester
through a library by enumerating inputs and faults or by specifying the rules
for generating them. A fault is injected by altering the state of the system
or the environment in which it executes. Fault injection usually involves
the execution of several experiments or runs, which form a fault injection
campaign, and only one or few faults from the faultload are injected during
each experiment. The monitor collects from the target raw data (readouts
or measurements) that are needed to evaluate the effects of injected faults.
The choice of readouts depends on the kind of system considered and

!Natella et al. [52] presented an exhaustive survey on software fault injection approaches.

2.1. Fault Injection Testing 13

Fault injection system

——| Controller

Fault Workload
library library

Workload
generator

H‘Eta collector
[* Data analyzer
Target system

FIGURE 2.1: Fault Injection Testing General Schema (Figure
1 of Hsueh et al. [1])

‘ Fault injector Monitor

on the properties that have to be evaluated. Measurement may include
the outputs of the target (e.g., messages sent to users or to other systems)
and the internal state of the target (e.g., the contents of a specific variable
in memory). Readouts are used to assess the outcome of the experiment
(e.g., the tester can check whether the injected fault has been tolerated, or
the severity of the system failure). In order to obtain information about the
outcome of an experiment, readouts are usually compared to the readouts
obtained from fault-free experiments (referred to as golden runs or fault-free
runs). All the described entities are orchestrated by the controller, which is
also responsible for iterating fault injection experiments forming the fault
injection campaign as well as for storing the results of each experiment to
be used for subsequent analysis.

Initially, in a fault injection test, the system is assumed to work in the
correct state. As soon as a fault is injected and a workload is applied, two
behaviors can be observed. First, the fault is not activated and it remains
latent. In this case, after a timeout the experiment terminates and no failure
is produced. Second, the fault is activated and it becomes an error. At
this stage, an error may propagate, by corrupting other parts of the system
state until the system exhibits a failure; can be latent in the system; or can
be masked by FTMA. On the basis on the collected readouts, the monitor
should be able to identify all these cases.

PAIN [2] is a framework for the parallel execution of fault injection
experiments, in order to reduce the time required for fault injection test-
ing. PAIN has been applied to perform fault injection in Android. The
system is executed within the Android emulator [53]. Several instances of

14 Chapter 2. State of the Art in Mobile System Dependability

Target System Experiment Controller

—

l:' Failure
User Workloads Monitor Detection
space -) i

Kernel A
Experiment

#¢ | | OS kernel | Control

Driver ; Ly Ly :
interface . : Y
Drivers & Monitor
Faultloads |

FIGURE 2.2: PAIN architecture (Figure 1 of Winter et al. [2])

the emulator are spawn, and a different fault injection test is executed on
each instance. The study showed that parallel experiments can achieve a
significant speed-up, and at the same time, it can guarantee accurate results.
PAIN has adopted the SAFE fault injection tool [54]. The SAFE tool injects
bugs into a software component, by mutating its source code. The SAFE
tool supports the injection of the most typical software faults that have been
defined using bug data from both commercial and open-source software.
In particular, the tool has been used to inject bugs into device drivers of
the Linux kernel (such as the driver of the SSD storage). The experimental
setup of the PAIN framework (Figure 2.2) is based on the Android emulator,
which executes the Android OS (including device drivers) and a workload.
The workload runs the Roy Longbottom’s Android benchmarks apps [55]
to stimulate the Android OS. Moreover, there are failure monitoring agents,
that run both inside and outside the Android emulator. These agents moni-
tor the Android emulator and analyze the effect of the fault on the Android
system, detecting failures such as system crashes, system errors, workload
failures, system initialization hangs, system execution hangs, and workload
hangs. For each experiment, a fault is injected into the device driver, by mu-
tating its code using the SAFE tool, and by uploading the faulty driver on
the Android emulator. The Android emulator is rebooted, and the workload
and the failure monitors are executed. When the failure monitors detect a
failure, this information is recorded into a database for later analysis.
Ferraretto et al. [3] presented a QEMU-based fault injection approach
in order to assess the tolerance of embedded software against faults in CPU

2.1. Fault Injection Testing 15

registers. The injection emulates faults into CPU components (e.g., the ALU
and the bus). The stressed CPUs are ARM and x86 architectures, and most
of the smart devices have an ARM processor in their system-on-chip boards.
This approach can be slightly modified and applied to these architectures
as well. The approach emulates faults by corrupting the contents of CPU
registers. The CPU registers injected with faults are: the instruction register
(IR), the program status register (PSR), and the general purpose registers
(GPRs). The authors use three well-known fault models in order to corrupt
the state of the registers, that are:

stuck-at fault model: it consists of permanent faults where a bit of a
register can stuck at the logic value 0 (stuck-at-0) or at the logic value
1 (stuck-at-1);

transition fault model: a fault in this category is persistent and it may
cause a delay in the switching activity of the affected bit such that the
transition of the bit cannot be completed in time to guarantee the next
instruction read its updated value. There is a slow-to-rise (slow-to-fall)
fault when a bit have to pass from logic value 0 (1) to logic value 1 (0);

bit flip fault model: this model can switch a bit in a register in a either
intermittent or transient flavour.

The whole approach is based on a modified QEMU environment, as shown
in Figure 2.3, to pursue the emulation of faults into the CPU registers. In
order to inject faults in the IR, the authors modified the fetching mechanism
of QEMU to map a different instruction on the instruction sequence for the
host machine. For the PSR and GPRs, a particular data structure in QEMU
(namely CPUState), used to describe the target CPU at execution time, needs
to be modified.

On the other hand, Android relies on Java technologies to provide
developers a complete environment for managing shared resources, com-
municating with lower layers, and providing the so-called Android frame-
work. Moreover, Android application run in a specific Java virtual machine,
known as Android Run Time (ART) (see Section A.1). Therefore, the rest of
this section presents two fault injection approaches for Java applications.

Jaca [13] is a software fault injection tool for the robustness evaluation
of Java programs. The tool’s architecture is based on the Fault Injection

16 Chapter 2. State of the Art in Mobile System Dependability

Fault injection on GPRs and

Fault injection on IR program status register

(Permanent, transient, and
intermittent fault activation)

Dynamic binaryV
translation

|y

Ta_rgeF Tiny code
application generator
binaries

7

(Permanent, transient, and
intermittent fault activation)

Retrieve TB
from cache
8
|:(> cache

/

Lgf’_‘e_'a_“f"__l TB is saved in the TB cache

If it is affected only by
permanent faults

No, PC Yes
already

Intermediate

|
|
l
I
i
Each TB block is i

composed of only
one instruction

FIGURE 2.3: Fault Injection Approach in modified QEMU
architecture (Figure 2 of Ferraretto et al. [3])

Pattern System, created by the same authors. Jaca and its documentation
can be found on the official web page [56].

The fault load is defined by the user through the fault specification file.
Every line of this file describes an injection, indicating the fault location (e.g,
attributes, method return values or parameters), the fault type (i.e., how to
corrupt the value), and the fault trigger (i.e., every time, after or for a fixed
number of invocations).

In my Master’s thesis [14], I presented a fault injector for Java programs.
It can inject various types of faults into a java software and assist software
engineers to analyze the impact of such faults on the runtime behavior of
the application.

The tool gets as input the code of a Java software component, and it
can emulates two kinds of fault: internal faults (code defects) and external
faults (Java exceptions). The injection of code changes for emulating the
effects of real software faults is based on the empirical observation that code
changes produce errors and failures that are similar to the ones produced
by real software faults [57]. The faults are injected at the bytecode level,
consistently with the Java language such as it worked with the source code.

2.2. Software Aging and Rejuvenation 17

2.2 Software Aging and Rejuvenation

This section reviews the most relevant results and techniques for the em-
pirical analysis of software aging [58] . Software aging has been repeatedly
reported both by scientific literature and by software practitioners [15], and
it has been recognized as a chronic problem in many long-running software
systems.

Garg et al. [16] presented an early study on software aging issues from
systems in operation, by monitoring a network of UNIX workstations over
a period of 53 days. This study adopted SNMP to collect data on resource
consumption and OS activity, including memory, swap space, file, and pro-
cess utilization metrics. The analysis found that the 33% of reported outages
were related to resource exhaustion, and in particular to memory utiliza-
tion (which exhibited the lowest time-to-exhaustion among the monitored
resources).

Garg et al. [16], and later Grottke et al. [17], adopted statistical hypothesis
testing and regression to identify degradation trends in resource consumption
measurements (i.e., if random fluctuations are excluded, the time series
exhibits a gradual increase or decrease over time). The Mann-Kendall test
and the seasonal Kendall test were adopted to confirm the presence of trends,
respectively without and with periodic cycles, and the Sen’s procedure and
autoregressive models to forecast the time-to-exhaustion.

Silva et al. [18] and Matias et al. [19] studied software aging in SOA and
web server environments by performing stress tests. They showed that
aging can lead to gradual performance degradation in terms of throughput,
latency, and success rate of web-service requests. A similar effect was
observed by Carrozza et al. [59] on a CORBA-based middleware, in which
the performance degradation of remote object invocations was attributed to
memory leak issues, reducing the performance of memory allocators and
bloating internal data structures.

Subsequent studies found that software aging issues can also affect
the lower layers of the software stack, such as the Sun’s Java Virtual Ma-
chine [20], the Linux kernel [21], and cloud management software [22]. In
particular, the study on the JVM revealed that performance degradation
trends were exacerbated by the inefficiency of the garbage collector.

Some empirical studies focused on the analysis of bugs behind software
aging issues (i.e., aging-related bugs), both in several open-source software

18 Chapter 2. State of the Art in Mobile System Dependability

projects for the LAMP stack [23, 24] and cloud computing [25], and in
embedded software used for space missions [26]. These studies provided
insights on the nature of aging-related bugs: they represent a minor share of
all software defects but are quite subtle to identify and to fix; most of them
affect memory consumption and, in many cases, application-specific logical
resources (such as thread pools and I/O connections).

Recent research has been focused on monitoring techniques to detect
software aging in deployed systems, which is especially challenging due
to varying workload conditions and configuration. They include machine
learning techniques [27], such as decision trees and robust time series anal-
ysis techniques [28,29], e.g., the Cox-Stuart test and the Hodrick-Prescott
filter.

Research on software aging in mobile devices is still at an early stage.
Araujo et al. [30] designed a testbed for stress testing of Android applications,
and found software aging issues in the Foursquare Android app. However,
their approach was not meant to study aging issues inside the Android
OS, and their tests did not point out any software aging symptom at the
lower layers of the Android OS. Other studies were focused on preventing
performance degradation of mobile applications through off-loading of
tasks to the cloud and local application restarts [31, 32], debugging apps
for performance bugs [33], and on forecasting Android device failures with
time series analysis techniques [34].

A preliminary study on the aging phenomenon in Android OS has
already been published [60]. This study was the base for the extensive
analysis presented in this thesis.

2.3 Fuzz Testing

This section gives an overview of previous work in the general area of
fuzzing.

Since its initial years, fuzz testing has been extensively adopted for test-
ing systems software, such as network servers, shell applications, libraries,
and OS kernels. The early study by Miller et al. [35] on fuzzing UNIX system
utilities, by injecting random inputs through their command line interface
and standard input stream, found a surprisingly high number of targets that
experienced crashes, leaks and deadlocks, even when exposed to apparently

2.3. Fuzz Testing 19

trivial (but invalid) inputs. Other approaches for OS robustness testing,
such as BALLISTA [36], MAFALDA [61], and the DBench project [37] in-
jected invalid inputs by bit-flipping them or replacing them with “difficult”
inputs, or forced the failure of kernel APIs and device drivers [62,63].

As an example, Ballista [36] is a famous testing system built to evaluate
the handling of exceptional input parameter values of POSIX functions
and system calls. This approach emulates misuses of the kernel from the
user space. The authors define the faultload based on the parameters data
types of the POSIX calls, by defining a set of test values for every data
type in the standard (e.g., file handle or memory buffer). The test values
are (valid and invalid) values both suggested from testing literature and
chosen by the authors” experience. For instance, these values are selected
by considering: zero, negative one, maximum /minimum values, pointers
to nonexistent memory, lengths near virtual memory page size, pointers
to heap-allocated memory, files open for combinations of read /write with
and without exceptional permission settings, and files/data structures that
had been released before the test itself was executed. The Ballista approach
is based on combinatorial testing using both valid and invalid parameter
values. Every test case consists of a Module under Test (MuT) and the test
values. After each test is executed, the approach classifies the results into *:

Catastrophic: the OS is corrupted and/or the machine crashes and
reboots;

Restart: a call to a MuT never returns and the task requires to be
terminated and restarted;

Abort: the task results in abnormal termination.

The same approach of Ballista can be partially used to evaluate the robust-
ness of the Android Linux Kernel, that complies in large part the POSIX
specification.

Among the most modern and mature fuzzing tools, American Fuzzy
Lop (AFL) is well-known for having found notable vulnerabilities in dozens
of popular libraries and applications [38]. AFL is an instrumentation-guided
genetic fuzzer, which modifies the target program at compile-time in order to
efficiently profile the branch coverage during the execution of the tests, and

2These categorization is a subset of the "C.R.A.S.H." severity scale [64]

20 Chapter 2. State of the Art in Mobile System Dependability

to communicate with the main AFL process. Based on coverage measure-
ments, AFL iteratively improves the quality of fuzz inputs, by mutating the
previous inputs that discovered new paths. AFL has also been extended to
avoid compile-time instrumentation, by using the QEMU virtual machine to
trace the instructions executed by the target (at the cost of higher run-time
overhead and of the additional dependency on a virtual machine emulator).
Another example of coverage-guided fuzzer is syzkaller [65], which also uses
QEMU and compile-time instrumentation to fuzz the whole Linux kernel
through its system call interface.

Another significant advance has been represented by white-box fuzzing
techniques that leverage symbolic execution. The most well-known is
KLEE [39], a virtual machine environment, based on the LLVM compiler
infrastructure, with a symbolic state for every memory location (i.e., boolean
conditions that must hold at a given point of the execution) that is updated
as code is executed by an interpreter. When KLEE encounters a branch
condition, it forks in two execution flows, each with a different constraint
on the variables involved in the branch condition. When a failure path
is found, a constraint solver is used to find an input that fulfills all the
conditions on that path. SAGE [40] is another well-known fuzzing tool
by Microsoft: starting from some tentative concrete input, the tool traces
the program execution using a record&replay framework [66] to identify
the path constraints for the input; then, it negates one of these constraints,
and uses a constraint solver to generate inputs to cover the new conditions.
It is important to note that white-box fuzzing is extremely powerful, but
very resource-consuming due to the overhead of constraint solving and to
the exponential explosion of program paths. Thus, these techniques are
best applied in combination with black-box fuzzing: Bounimova et al. [67]
report a split of 66%-33% of bugs found respectively by black- and white-
box fuzzing during the development of Microsoft’s Windows 7. Moreover,
white-box fuzzing can only be applied when the target is executed in an
environment (such as a virtual machine) able to trace and to fork symbolic
states.

In Android-related research, fuzzing has been extensively used to attack
network and inter-process interfaces. For example, Mulliner and Miller
[41] found severe vulnerabilities in the SMS protocol. Droidfuzzer [42]
is a fuzzing tool that targets Android activities that accept MIME data

2.3. Fuzz Testing 21

| Static Dynamic

Component |
APP @ “extraction | Empty Fuzzed
@ Intent ! Intents @ Data Intents Intent
Generation H Fuzzing Execution

@ Static Analysis

FIGURE 2.4: Intent Fuzzer Architecture (Figure 2 of Sas-
nauskas et al. [4])

through Intents (a higher-level IPC mechanism based on Binder IPC [68])
Sasnauskas et al. [4] developed a more generic Intent fuzzer that can mutate
arbitrary fields of Intent objects. The aim is to balance the tension between
generating intents that applications expect, permitting deep penetration
into application logic, and generating intents that trigger interesting bugs
that have not been previously uncovered. Fault load is based on intents and
their structure. Faulty intents are created populating an empty intent with
totally random values, using QuickCheck [69] as generator. The overview of
the intent fuzzer is depicted in Figure 2.4. For each target app, the fuzzing
work flow consists of:

component extraction to identify the exported components and their
actions;

static analysis to obtain the structure of the expected intents;
intent generation to create well-formed intents that trigger the actions;
data fuzzing to randomly fuzz the intent data.

Component extraction is performed thanks to the information in the mani-
fest file of the app, particularly intent filters information that allow to create
intents for the fuzzing phase. Static analysis retrieves the structure of the
intents that is processed during the execution of the advertised actions.
Each new instance of an intent with fuzzed data is generated and explicitly
sent to the target component for execution. Upon delivery, the component
is first restarted and does not depend on previous executions. During intent
execution, the tool monitors both code coverage (open-source apps only)
and crashes.

Furthermore, Mahmood et al. [43] adopted the white-box fuzzing ap-
proach by decompiling Android apps to identify interesting inputs and

22 Chapter 2. State of the Art in Mobile System Dependability

running them on Android emulator instances on the cloud. However, these
and similar tools [44—46] focus on the robustness of Android apps, and can
not be directly applied to fuzz Android system services.

Other work was done on different mobile OS. Miller et al. [47] presented
and adopted a fuzzing tool, namely zzuf, for fuzzing iOS applications. It
intercepts input files and applies random mutation. The authors found zzuf
particularly efficient on targets such as media players, image viewers, and
web browser, because of the quantity and complexity of files they take as
input. Lee et al. [48] designed the Mobile Vulnerability Discovery Pipeline
(MVDP), an approach that generates random, invalid input files to crash
mobile apps, either Android or iOS, by exploiting the smartphone farms.
Liang et al. [49] introduced Caiipa, a cloud service for testing Windows
mobile apps. The apps are stressed with random GUI events under several
contexts or conditions (e.g., network connectivity and availability of sensors),
distributing the tests among both emulators and actual devices.

To the best of our knowledge, the few notable studies on fuzzing An-
droid system services are the ones by Cao et al. [50] and Feng et al. [51].
Cao et al. [50] focus on the input validation of Android system services.
Their tool, Buzzer, sends crafted parcels (i.e., the basic messages on the
Binder) to invoke AOSP system services with fuzzed arguments. Since
Buzzer was an early tool of its kind, it relied on manual efforts for several
tasks, such as to identify the arguments of service methods, to avoid fuzzing
on methods that could not be invoked by third-party apps anyways (due
to limited permissions). Feng et al. [51] developed BinderCracker, a more
sophisticated parameter-aware fuzzer that can automatically understand
the format of Binder messages and that supports more complex communi-
cation patterns over the Binder (such as callback objects returned by system
services). However, both these tools are purely black-box approaches and
do not gather any information about the internal coverage of the tested
services, thus missing the opportunity to improve the efficiency of fuzzing.
This problem has only been partially addressed by Luo et al. [70], which
recently developed a successor of Buzzer that exploits symbolic execution.
However, this tool is not applicable to vendor customizations, since it is
designed to run outside the Android system and requires the availability of
the target source code.

23

Chapter 3

AndroFIT: A Software Fault
Injection Approach for the
Android Mobile OS

As engineers, we were going to be in a position to change the world - not
just study it.

— Henry Petroski

Fault injection testing deliberately inserts a software threat into the system to
assess whether the emulated fault in one of the software components affects
all the other components or not. Android fault injection wants to analyze the
Android OS behavior, when any of its component is faulty. The contribution
of this work is three-fold:

a novel methodology and methods to extract a fault model from a
mobile OS architecture, and its application on the Android 5 (Lollipop),
6 (Marshmallow), and 7 (Nougat), extracting 871 faults from 14 compo-
nents in 6 subsystems;

a fault injection tool, namely AndroFIT, to support a fault injection cam-
paign of an Android device, including all the fault injection techniques
necessary to emulate the fault in the Android fault model;

an experimental evaluation campaign for AndroFIT on 3 Android
smartphones (i.e., Samsung S6 Edge, HTC One M9, and Huawei P8),
performing 2334 fault injection experiments, analyzing the propagation
chains and suggesting reliability improvements.

24 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

3.1 Overview

This chapter presents the first aspect of this thesis: fault injection testing.
Android and the other mobile systems consist of several components at
different layers, that communicates each others to provide services to the
final users'. Fault injection testing is the approach to assess whether a fault
in one of these components (the fault injection target or target) affects all the
other components (the component under test or CUT) or not. Indeed, a fault
in a component may lead an error in that component and be propagated
to other components in the system, through the Inter Component Commu-
nication (ICC) channels. This is the so-called fault-error-failure propagation
chain.

Figure 3.1 shows an example of propagation chain in Android OS. **A
hardware sensor, such as the front camera of an Android smartphone, may

break down because of a faulty connection. %The fault results into an
erroneous state of the device driver, which is perceived as failure by upper

components in the Android stack. #This failure represents a fault for the
camera service of the Android OS, which is in charge of mediating accesses
from applications to the camera. When an app tries to use the camera, it
asks to the CameraManager, but the device driver’s fault will cause the
Camera Manager to throw an exception, that is, a failure of the Camera

Manager. #Again, the exception represents a fault for the application: if
the application does not properly handle this exception, it will experience a
failure (i.e., a crash of the application). This propagation chain can be applied
to every hardware or software component in the Android OS. Summarizing;:
A fault can cause an internal error state of a component, and when the
error surfaces to the delivered service of the component, a failure occurs.
A failure from a component is a fault for other components in the system.
Recursively, a fault produces an error, which is likely to propagate and
create new errors; when the failure reaches the user, he/she experiences the
failure of the Android system.

This chapter introduces a novel methodology and methods to extract a
fault model from a mobile OS architecture. We analyzed the whole Android
architecture and applied it to 14 components in 6 subsystems, extracting

1 Android architecture and mechanisms are presented in Appendix A

3.1. Overview

25

Application Layer
AP| =

Javal ~yer

Framework

wer activity [package]
sensor [mount][Z]

Native Layer

Android RunTime

services

[low rpemory J[ashmem J drivers
killer

androidisms

Hardware

i

FIGURE 3.1: a Fault-Error-Failure Propagation Chain in
Android

26 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

871 faults for Android 5 (Lollipop), 6 (Marshmallow), and 7 (Nougat). Fur-
thermore, we designed and developed a fault injection tool suite, namely
AndroFIT, to enable the fault injection testing in an Android system. We per-
formed an experimental evaluation campaign on 3 Android smarpthones:
Samsung Galaxy S6 Edge, HTC One M9, and Huawei P8. They run An-
droid 6 (Marshmallow). AndroFIT injected 780 faults within controlled
experiments, gathering several system information (e.g., the Logcat logs).
We analyzed the test outcomes, revealing strengths and weaknesses of the
three devices. Moreover, we performed and presented an in-depth analysis
of some failures to further understand the error propagation in the Android
OS, also suggesting some potential reliability improvements.

3.2 Fault Modeling

This section includes the Service Interfaces and Resources (SIR) methodol-
ogy for the definition of a mobile OS fault model, that is applied to define
the fault model of the Android OS, presented in 3.2.2.

3.2.1 Methodology

A fault model (i.e., a formal definition of how to change the code or state
of the software to emulate faults [71]) is the basic element for any fault
injection experiment. However, defining a fault model for software is also
a problematic aspect, since software faults (bugs) involve the human fac-
tor (e.g., mistakes by developers during the development lifecycle) that is
difficult to understand and to characterize.

Previous studies on software fault injection addressed this aspect by
following two approaches. The first approach has been to define corruption
patterns based on past software faults, by analyzing either the buggy code
(e.., by inspecting the bug-fixes of the faults) or the erroneous software
states or outputs caused by the fault (e.g., by inspecting problem descriptions
reported by users or developers); and to emulate these corruptions by
modifying either the code (similarly to mutating operators) [72], or the
software state and outputs (e.g., replacing them with random noise) [73,74].
The second approach has been to define exceptions and error codes to be
returned on API calls. These exceptions and error codes are identified by

3.2. Fault Modeling 27

analyzing definitions of the API interface, and are injected by throwing the
exception or error code [75,76].

However, there is still a lack of a widely-agreed consensus on which
approach is the most appropriate for fault modeling. The first one (corrup-
tion patterns) is quite onerous to apply, since it entails to manually look
at a significant number of previous faults to get statistical confidence on
the corruption patterns; it may even be inapplicable if there is little data
about past faults. The second approach (exceptions/error codes) is more
straightforward and is applicable to black-box software, but it is limited to
a narrow class of software faults: previous work [77] highlighted that this
approach does not account for a significant percentage of software faults,
which are not signaled by any exception or error code.

We defined a fault modeling methodology oriented towards ease of use
and applicability to the Android OS. We aimed to keep low the human
effort to define the fault model, and to achieve a fault model that is enough
comprehensive and credible to be accepted by engineers. To this goal, we
introduced the Service Interfaces and Resources (SIR) methodology. SIR
is a lightweight approach that only relies on the architectural analysis of the
target system, driven by a set of checklists. It follows the seconds approach
mentioned above (exceptions/error codes) to avoid the extensive analysis
of internals and of past faults, which would not be affordable for complex
software systems, such as the Android OS. However, in order to get a more
realistic and comprehensive fault model, we extend the fault model beyond
exceptions/error codes.

To define the fault model for the Android mobile OS, we started from
the observation that it is a service-oriented system [78], as shown Figure 3.2,
where its software components have two fundamental roles: they are
providers of services that are consumed through well-defined interfaces
exposed by remote procedure calls, libraries, sockets, system calls, and
other communication mechanisms; and they are managers and users of
resources (both logical and physical), such as memory, threads/processes,
communication channels, and hardware devices. The interactions between
a component and the rest of the system (other OS component, the user, the
apps, the physical phone) must necessarily pass through service interfaces
and resources.

The outcome of the SIR methodology is a set of failure modes for each

28 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

< Requests |
| Results >

FIGURE 3.2: a Software Component Model View

N J

component of the OS. With reference to the taxonomy of Avizienis et al. [7],
a failure mode is an incorrect behavior of a component that is perceived by
other components (e.g., through service interfaces), and that results from
an incorrect state of the component (error), which is in turn caused by a
fault inside the component. This fault-error-failure chain repeats again as the
failure propagates to another component of the OS (the failure represents a
fault for this other component), until it surfaces to the end-user as a system
failure. In our approach, we position fault injection at the interfaces of a
component: we inject failure modes of a component to emulate faults for the
other components, and look for cascading failures (a what-if analysis). This
approach aids us at defining the fault model by starting from the analysis
of component’s interfaces; moreover, injecting at component’s interfaces is
technically easier to implement in a reliable way, as it avoids to modify the
component internals (i.e., its source- or binary-code) [79,80].
The SIR methodology consists of three phases:

analysis of the target architecture: for each component, the services
provided by the component (e.g., an API function exposed by the com-
ponent), and the resources managed by the component (e.g., memory
or sockets) are identified.

application of the failure modes: the failure modes are applied to
every identified resource and service of the mobile OS to construct
system faults.

assignment of fault persistence: one or more fault persistence attribute
is assigned to each fault, providing the final fault model of the mobile
Os.

3.2. Fault Modeling 29

TABLE 3.1: A Comparison of Failure Classifications [5]

Barton [82] Cristian [83] Suh [84]
Response too late Timing (early/late) Timeout (late response)
Invalid Output Response (value/state) Failure (incorrect answer)
Crash Crash (partial/total Crash
Task stop (process amnesia, pause, halt) Abort (crash with error
crash) message)

Definition of Failure Modes

Powell et al. [81] proposes a general approach to describe failures in com-
puter systems, and this section extends it for fault modeling of mobile OS.
The authors define a service as a tuple < vs, ts >. The vs is the value pro-
duced by the service, which can be a numerical result, an object, a data
block, a message, or other types of output. The ts is the time at which the
service response is observed.

The service is correct when vs is a correct value, and ts is short enough,
according to the specification of the service (e.g., user requirements). The
service is faulty and produces a failure:

in the value domain, when a fault affects the value produced by the
component, i.e., vs is incorrect (e.g., the component may produce an
out-of-range value, garbled data blocks, and out-of-sequence event or
message);

in the time domain, when a fault affects the timing of services de-
livered by the component, i.e., ts is incorrect (e.g., a component may
response after a very long delay, or may not respond at all).

The SIR methodology considers four general classes of failure modes.
These classes are broad and are derived from failure classifications from
previous studies, as shown in Table 3.1 from Mukherjee and Siewiorek
[5], which shows how the same failure modes were labeled with different
terminologies [82-84].

Our failure modes considers that

the component fails in the value domain and

30 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

saturates, exhausts, or disables the resources that is uses or man-
ages (resource management failure);

produces a wrong service result, by returning incorrect data to
its user (output value failure);

or
the component fails in the time domain and

refuses to provide a service to its user, by returning an exception
or error (availability failure);

provides a service response only after a long delay, or no response
at all (timeliness failure).

Analysis of the Target Architecture

In this phase, for each component in the mobile OS, we extract a list all the
service interfaces implemented by the component, and all the resources used
by the component. This information should be obtained from architectural
documentation, for the inspection of the source code (if available), and from
run-time and reverse engineering analysis of the mobile OS.

Application of the Failure Modes

In this phase, we need to apply the failure modes on service interfaces
and resources extracted by the previous phase to obtain potential and
realistic faults for the mobile OS. We developed the SIR2F (Service Interfaces
and Resources to Faults) method to fulfill, where the faults are built by
construction based on the four failure modes. The SIR2ZFM method is a
lightweight method that consists of going through predefined checklists.

The first checklist focuses on components’ services. The checklist has a
series of questions to identify which of the four generic failure modes can
happen for each service interface. A fault is added to the final fault model if
the scenario is plausible according to the checklist:

1. Does the service interface declare exceptions, or erroneous return
codes? If yes, add an availability failure for the service.

3.2. Fault Modeling 31

Can the service lose a request or response (e.g., due to service queue
overflow, or omit to respond), without performing any operation?
This possibility should be considered when the component is multi-
threaded or event-driven. If yes, add a timeliness failure for the service.

Can the service experience a long delay? This possibility should
be considered if the component performs complex processing on
data (which may lead to performance bottlenecks) or performs high-
volume I/O activity. If yes, add a timeliness failure for the service.

. Can the service return a result (e.g., , a numerical computation or a

data structure) that may be incorrect due to a bug? This possibility
should be considered if the service implements complex processing
algorithms, or if it is responsible to generate complex data structures.
If yes, add an output value failure for the service.

In a similar way, the second checklist focuses on components’ resources:

1.

Can the hosting process&threads crash (i.e., killed by the OS), or
terminate prematurely, or be stalled (e.g., because of a deadlock),
before replying? This possibility should be considered when the
component is relatively large (several thousands of lines of code) and
include native code. If yes, add an resource management failure for the
use of processes or threads.

. Is the resource protected by permissions, and can it become inac-

cessible due to lack of permission? For example, this is the case of
inter-process shared resources in UNIX systems. If yes, add a resource
management failure for the resource.

Can the component leak the resource (e.g., memory and file descriptors
that are frequently allocated /deallocated), thus preventing further
allocations of the resource? If yes, add a resource management failure
for the resource.

Does the component allocate new processes or threads? These may
terminate prematurely, or the component may hit hard system limits
when allocating them (e.g., ulimit in UNIX systems). If yes, add a
resource management failure for the use of processes or threads.

32 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

5. Does the component manages persistent files (e.g., a database file or a
configuration file) that may be corrupted when reading or writing it?
If yes, add a resource management failure for the corruption of the file.

Assignment of Fault Persistence

In this final phase, the SIR methodology adds information on the persis-
tence of the faults [7]. The fault persistence indicates the behavior of the
injected fault over time, i.e., whether it is permanent (the fault persists for a
long period of time), transient (the fault occurs only in a specific moment
of the execution), or intermittent (the fault appears periodically during the
execution). The fault is flagged as permanent if the fault’s effects are per-
sistent unless explicitly recovered or cleaned (for example, a resource leak
or a crash); as transient, if the hypothesized fault is triggered by a rare
environmental condition (such as an exception); or as intermittent if the
hypothesized fault is triggered by specific inputs to the service (for example,
a data corruption caused by a corner case of an algorithm). A single item
could be assigned to multiple persistences: in this case, we duplicate the
item and generate a properly flagged fault for each assigned persistence.

When the SIR methodology is complete, we have a fault model in a
tabular form: a row for each fault that can be injected in the component,
where the columns are the name of the fault, the failure mode from which is
derived, the name of the service or resource, a brief description of the fault,
and the fault persistence.

The SIR methodology provides generic guidance for engineers, but it
still leaves room for the human judgment, as it is their call to decide whether
a service is complex or a condition is rare to apply the checklists. During our
work on the fault model for the Android OS, we involved the test engineers
in the company, by asking them if a fault could be plausible according to
their personal experience with the Android OS. Framing the discussion in
these terms helped us to iteratively improve the fault model, and to make it
accepted by them as realistic.

3.2.2 Android Fault Model

To define the Android fault model, we refer to the Android architecture in
Section A.1 and focus on 6 subsystems: phone, camera, sensors, activity,

3.2. Fault Modeling 33

package, storage. These 6 subsystem are arbitrary chosen as representative
because with the highest impact on the final user and the highest interest
from the vendor. Every subsystem consists of more than one components,
however we consider the components at the lowest layers of the Android
stack as fault injection targets (marked with [target]), and the components
at the application and framework layers left as CUT (marked with [CUT]).
We studied these components reading the source code of Android, from
version 5 to 7, and reverse engineering them on actual smartphones.

We considered 14 fault injection target components with their interfaces,
and formalized more than 870 potential faults for the Android OS. Table 3.2
provides a summary of the faults inside the fault model. The complete fault
model is in Appendix B.

Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

34

V.8

88
o1
(44
06
€4

9%
Q9

941
[4%

€l
LS
VLl

€l

(&N
Lo

[e103

[42))

4

9¢

ji£4
0¢
9¢

9¢
01

<
PNESL

ssaurPwn

991

]

81

a1l
9¢

o
Koo

Q]
— M

Ariqereae

1ec
LS

qal
9¢

anfea
mdino

9¢cl

N NOYO O DN

—
—

JuswRZeuew

92IN0Sal

SIDIAJ(] pue SIDALI(] 93eI0)G
JDIAIIG JUNOIN
UOwde(] dWIN[OA
Axeiqr otuorg

Arexqr ayr10S
IDIAIDG I2ZeUrA 93eoeJ
IDIAISG IFeURIN AJIAPDY

S9OTAJ(] PUe SISALI(] SIOSUDG
TVH PUe 901AISG SIOSUSG

dIeMpIeL] pue ISALI(] BIdWED)

TVH epuwe)
JOTAIIG BIdWR))

I0SS3D0IJ puUe ISALI(] pueqaseq
ad

3o81e) UoTB[UT JNe]

[PPOIN 3[Ne] pPIoIpuy ayj Jo Arewrwing :g'¢ 214V,

a3e103s

adexped

Ayianoe

SIOSUos

elauwred

auoyd

wa)sAsqns

3.2. Fault Modeling 35

Android Service Interfaces and Resource Failures

The analysis of the Android subsystems, as reported further in this section,
identified the set of components services and resources types, that will be
considered for formalizing the fault model.

The service interfaces types are the following:

binder service interface: a service based on the Binder protocol, which
provides a proxy object to communicate with a remote process. It can
returns error or exception, it can corrupts the output parameters, and
it can reply later or not at all.

service over unix socket: a service based on the socket message ex-
change. it can return error on read /write, it can corrupt on read /write,
and it can reply later or not at all on read /write.

library service interfaces: a service exposed by specific libraries, usu-
ally vendor-specific. It can returns error or exception, it can corrupts
the output parameters, and it can reply later or not at all.

driver service over system call: a service provided by a driver that can
be queried through system calls on specific device files. It can return
error, it can corrupts the output parameters, and it can reply later or
hang.

The resource types are the following;:

Processes&Threads: processes and threads are abstractions provided
by the OS to execute programs (e.g., the Media server uses several
threads, one for each media-related service);

Memory: memory is a volatile support to temporarily store informa-
tion used by the CPU (e.g., the RAM of the smartphone);

Device Files: a device file is an interface for a device driver; it is not an
ordinary file on storage, but it is a virtual file emulated by the device
driver (e.g., the camera driver exposes the virtual file /dev/video0);

Sockets: a socket is an endpoint of bidirectional communication, used
by two processes to communicate with bytestreams (e.g., the RILD
socket used by the RILD process to exchange phone commands and
events with the application layer);

36

Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

Pipes: pipes are unidirectional bytestreams that connect the stan-
dard output of one process to the standard input of another process
(e.g., the AudioFlinger uses pipes to exchange audio streams between
its threads);

Binder Objects: a Binder object is an instance of a class that implements
a Binder interface, a well-defined set of RPC methods, properties
and events that are exchanged through the Binder driver (e.g., the
Connectivity Manager communicates with other network managers,
such as BluetoothManager or WifiManager, using Binder objects as

proxy);
(Ordinary) Files: a file is an abstraction of the OS used to store infor-

mation on a storage device (e.g., executable code, configuration data,
and multimedia data).

Phone Subsystem

The phone subsystem (Figure 3.3) is in charge of providing communication
capabilities to the device such as telephone call and messages. It consists of
the following components:

Phone Framework Services [CUT]: an API library is exposed to appli-
cations; in turn, commands and events are exchanged with the RILD
process through a UNIX socket interface;

RILD [target]: a system process that embeds a proprietary, vendor-
specific RIL library and the Event Scheduler, which dispatches the
events from the baseband processor, and the commands from the
upper layer;

Baseband Driver and Processor [target]: the Baseband Driver exposes
a device file (e.g., /dev/ttyS1 or /dev/ttyUSB1) to send/receive com-
mands and events to/from the Baseband Processor, which performs
the actual signal transfers.

To apply the SIR methodology, we analyzed documentation on the

Android architecture and the open-source version of the Android OS [9,78,
85, 86], to obtain the list of all the service interfaces and resources for the

3.2. Fault Modeling 37

Phone Framework Services
RILD

socket
RIL Daemon (rild)
Event Scheduler
Vendor RIL Library
device

file]
Baseband Driver
Baseband Processor

FIGURE 3.3: Architecture of the Android Phone Subsystem

RILD and Baseband Driver and Processor components. The RILD provides
services over a UNIX socket, and consumes services of the Baseband Driver
through system calls on a device file. The Baseband Processor is in charge of
physically communicate with the actual network it is attached to. Focusing
on a single component, the RILD includes the following service interfaces:

o Receive phone commands on RILD socket: the RILD receives phone com-
mands from the stock apps (start a call, send a message, etc.);

o Send phone events on RILD socket: the RILD sends phone events to the
upper layers (e.g., a call is dropped);

o Write AT command to modem: the RILD sends commands to the Base-
band Driver and Processor, using AT the protocol [87];

o Read AT response from modem: the RILD reads and handles AT com-
mands from the Baseband Driver and Processor;

The RILD resources include:

o Process and threads: the RILD process and its threads;
o Memory: the memory used by the RILD process and its threads;

o Sockets: the RILD uses a socket to communicate with the phone library;

38 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

Pipes: the RILD uses pipes to enable communication between different
threads;

The RILD service interfaces are based on socket and file primitives, such
as receive, send, read, and write. They all declare erroneous return codes
that can be encountered during service. Thus, we introduce availability
failures for all the RILD services. The RILD service is a multi-threaded
service that could be flooded by several messages, from/to both the higher
and lower levels, in a short amount of time. There is a not negligible
possibility that the service lose requests or responses. Thus, we introduce
timeliness failures. Similarly, other timeliness failures are added considering
the potential delay that can be accumulated when handling such a great
amount of messages. The RILD service also handles the data transmitted
with these messages, that can be altered in an involuntary way by the
dispatching algorithms. Thus, we also introduce output value failures for
all the RILD service. Moreover, the RILD is hosted by a specific native
process (i.e., the rild process) that could crash or hangs. Similarly, memory
and sockets are protected by strong permissions or can be easily leaked. For
all this possibilities, we introduce the resource management failures for the
RILD component.

Using the checklists and defining the fault persistences, we introduced
a total of 59 faults for the RILD fault model. The fault model of RILD is
presented in Table B.1

The faults in the baseband driver and processor, Table B.2, affect the
state of the phone, such as: the phone is inactive, or the kernel cannot
access it; and the phone traffic, such as: AT events or commands are ignored
or corrupted; data transfers through the kernel are corrupted because of
incorrect memory management (e.g., failed allocations of an I/O region on
the PCI bus management) or protocol I/O errors with the device controller
(e.., an incorrect write to a control register). Resources can be corrupted,
such as memory and device files.

Camera Subsystem

The camera subsystem, presented in Figure 3.4, consists of the following
components:

3.2. Fault Modeling 39

Camera App Media App Social App

Camera API
(android.hardware.Camera*)

binder
Camera Service

Vendor Camera Library

Camera Driver

Camera Device

FIGURE 3.4: Architecture of the Android Camera Subsystem

o Camera API[CUT]: it provides a Java interface (i.e., android.hardware.
Camerax) for Android applications that use the camera;

o Camera Service [target]: it provides the media server process an inter-
face through the Binder IPC for handling camera image streams and
metadata;

o Camera HAL [target]: it interacts with the camera service, it uses
a vendor-specific library to handle the camera device, it receives
data from the camera hardware, and it performs basic image filtering
(e.g., scaling, cropping, and noise reduction);

o Camera Driver and Hardware [target]: the driver handles the camera
at the kernel-level.

The Camera Service is hosted by the media server process, which exposes
the camera services to other processes in the Android OS. It provides the
Camera Service several resources, and they will be included in the fault
model of Camera Service, even if the media server process provides the
same resources also to other hosted services.

The camera subsystem can be affected by the faults in the Camera
Service, the Camera HAL, the Camera Driver and Hardware.

The faults in the Camera Service, Table B.3, affect the IPC interactions
between the Camera subsystem and applications. The Camera Service

40 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

API may return errors or be unresponsive; or, the camera applications may
overload the Camera subsystem or generate incorrect parameters. Resources
can be corrupted, such as process&threads, memory; files, sockets, pipes,
and binder objects.

The faults in the Camera HAL , Table B.4, affects the use of the vendor-
specific libcamera library, which handles image streams from the Camera
device.

The faults in the Camera Driver and Hardware, Table B.5, can affect
the state of the camera, such as: the camera is inactive, or cannot be ac-
cessed it; the camera commands are ignored or corrupted; data transfers
through the kernel are corrupted because of incorrect memory management
(e.g., failed allocations of an I/O region) or protocol I/O errors with the
device controller (e.g., an incorrect write to a control register). Resources
can be corrupted, such as memory and device files.

Sensors Subsystem

The sensors subsystem, presented in Figure 3.5, consists of the following
components:

Sensor Manager [CUT]: it is part of the Android Framework, and it
provides classes and APIs to consume sensor measurements;

Sensor Service and HAL [target]: the Sensor Service executes within
the system server process, it provides a Binder interface to the Android
Framework, and the HAL uses a vendor-specific sensors library to poll
sensor events through files in the /dev and /sys virtual file system.

Sensors Drivers and Devices [target]: the drivers handle the sensors
at kernel-level.

The Sensor Service is hosted by the system server process, which provides
several resources. They will be included in the fault model of Sensors
Service, even if the system server process provides the same resources also
to other hosted services.

The Android platform supports three categories of sensors:

Motion sensors, which measure acceleration, forces and rotational
forces along axes. This category includes accelerometers, gravity
sensors, gyro- scopes, and rotational vector sensors.

3.2. Fault Modeling 41

System App Sensor App

Sensor Manager

binder

Sensor Service

Vendor Sensors Library

Dev File System Entries

S T T B

FIGURE 3.5: Architecture of the Android Sensors Subsystem

Sys File System Entries

SensorN

Environmental sensors, which measure various environmental pa-
rameters, such as ambient air temperature and pressure, illumination,
and humidity. This category includes barometers, photometers, and
thermometers.

Position sensors, which measure the physical position of a device.
This category includes orientation sensors and magnetometers.

The sensors subsystem can be affected by the faults in the Sensor Service,
the Sensors HAL, the Sensors Drivers and Devices.

The faults in the Sensor Service and HAL, Table B.6, may affect the ensor
data and information reported to the application layer, the responsiveness of
the Sensor Service threads, and the configuration of the sensors subsystem
(e.g., sampling period or accuracy level). Resources can be corrupted, such
as processé&threads, memory; files, sockets, and binder objects.

The faults in the Sensor Drivers and Devices, Table B.7, affect the state
of the sensor, such as: the sensors are inactive, or the kernel cannot ac-
cess them, and the sensor data are ignored or corrupted; data transfers
through the kernel are corrupted because of incorrect memory management
(e.g., messages that contain acceleration or orientation values) or protocol
I/0 errors with the device controller (e.g., an incorrect write to a control
register). Resources can be corrupted, such as memory and device files. The
fault model in Table B.7 is for a generic Android sensor, and it is actually
specialized for each Android supported sensor, such as temperature sensor,

42 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

orientation sensor, accelerometer, gravity sensor, gyroscope, uncalibrated
gyroscope, linear acceleration sensor, step counter, magnetic field sensor,
light sensor, pressure sensor, and relative humidity sensor.

Activity Subsystem
The activity subsystem consists of the following components:

Activity Manager [CUT]: it presents the activity services as a Java
interface in the framework;

Activity Manager Service [target]: it provides services to start and
handle Android activities, and manage the activity stack.

The Activity Manager Service is hosted by the system server process,
which provides several resources. They will not be included in the fault
model of Activity Manager Service, because they are already included in
the Sensor Service and HAL fault model.

The faults in the Activity Manager Service can affect the activity man-
agement operations, Table B.8. Resources can be corrupted, such as pro-
cess&threads, sockets, pipes, and binder objects.

Package Subsystem
The package subsystem consists of the following components:

Package Manager [CUT]: it presents the package services as a Java
interface in the framework;

Package Manager Service [target]: it provides services to install or
remove packages, and manage the package permissions and intent
resolution.

The Package Manager Service is hosted by the system server process,
which provides several resources. They will not be included in the fault
model of Package Manager Service, because they are already included in
the Sensor Service and HAL fault model.

The faults in the Package Manager Service can affect the package and
permission management operations, Table B.9. Resources can be corrupted,
such as processé&threads, sockets, pipes, and binder objects.

3.2. Fault Modeling 43

Storage Subsystem

The storage subsystem, presented in Figure 3.6, consists of the following
components:

Application Framework [CUT]: it provides several high-level I/O in-
terfaces for Java applications for storing data in SQL database (i.e., an-
droid.database APIs), for managing data stores (i.e., android.os.storage),
and for accessing files;

SQLite Library [target]: it is adopted to embed a lightweight SQL
DBMS into Android applications;

Bionic Library [target]: it is a lightweight C library for Android, that
includes many library functions for accessing the storage;

Mount Service [target]: it is implemented into the System Server, it
provides an API to manage volumes, and it interacts with the Volume
Daemon.

Volume Daemon [target]: it is an Android process that manages the
internal and external storage partitions in the Android system, it
automatically mounts partitions on the Android filesystem, both at
boot-time and on demand for external storage, it manages their con-
figuration (e.g., labels, mount points, and permissions), and it receives
events from the Linux kernel through a Netlink interface;

Storage Drivers and Devices [target]: the drivers handle the storage
devices at the kernel-level.

The Mount Service is hosted by the system server process, which pro-
vides several resources. They will not be included in the fault model of
Mount Service, because they are already included in the Sensor Service and
HAL fault model.

The storage subsystem can be affected by the faults in the SQLite Library,
the Bionic Library, the Mount Service, the Volume Daemon, the Storage
Drivers and Devices.

The faults in the SQLite library, Table B.10, affect the execution of SQL
queries on the database, both insertions and selections (e.g., the queries
can be aborted or be slowed down); the correctness of data processed by

44 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

Application Layer

Javal/O SQLite API Storage API
(java.io) (android.database; (android.os.storage)

Mount
Service

binder

Bionic SQLite Volume
Library Library Daemon

Storage Driver

Internal Storage External Storage

FIGURE 3.6: Architecture of the Android Storage Subsystem

queries (e.g., a query only inserts partial data, omitting some tuples); and the
correctness of the physical database (e.g., the database file may be truncated
or corrupted with random errors). Resources can be corrupted, such as files.

The faults in the Bionic library, Table B.11, impacts on applications that
use I/0 library call provided by the library. In particular, the most relevant
I/0 library call used in Android applications include: open, read, write,
seek, close, and link. Table B.11 presents only the faults related to open and
read library functions, but the actual fault model consists of the faults of all
the storage-related library functions.

The faults in the Mount Service, Table B.12, and in the Volume Daemon,
Table B.13, may cause that the storage partitions may not be available. For
example, the Android system may be unable to mount an external storage
inserted by the user. Resources can be corrupted, such as process&threads,
memory, files, sockets, pipes, and binder objects.

The faults in the Storage Drivers and Devices, Table B.14, are related to
the I/O operations. The drivers can become performance bottlenecks when
accessing the storage, or they can corrupt data from/to the storage. The
faults in storage hardware can corrupt the physical blocks managed by the
filesystem. The most critical types of blocks are: Superblocks, Inodes, Data
Blocks, Dentries. Moreover, the physical storage can generate I/O errors
(e.g., due to a problem in the storage controller or firmware) when accessing

3.3. Android Fault Injection Tool (AndroFIT) 45

to the blocks. Resources can be corrupted, such as memory and device files.

3.3 Android Fault Injection Tool (AndroFIT)

This section first presents the fault injection techniques necessary to emulate
the faults in the Android fault model. Then, it reports the design and
implementation of the android fault injection tool, namely AndroFIT.

3.3.1 Fault Injection Techniques

The fault injection techniques for the Android platform, presented hereafter,
are the ones necessary to emulate the faults in the Android fault model
(Subsection 3.2.2). They are derived from the analysis of the Android archi-
tecture and from the survey of previous work on fault injection techniques
(Section 2.1).

Table 3.3 maps these techniques with the target components in the
Android fault model.

Binder IPC Hijacking

Binder is the most important IPC mechanism of the Android OS. A client
can invoke a method on a proxy that implements a public interface; the
proxy sends the request over the binder driver with the ioctl system call;
the server receives the request and, potentially, respond back to the client
through the binder driver (cfr.Section A.2).

The binder IPC hijacking technique intercepts IPC messages that the
target component (e.g., Camera Service) sends to and receive from the binder
driver. More specifically, the injector intercepts the ioctl system call on the
binder driver and modify the contents of the messages.

The injector consists of two main components:

the target controller, which remotely controls the target process (i.e., the
process to be injected), by forcing it to perform function call to the
injection library; and

the injection library, which modifies the ELF relocation tables of the
target process, provides fault injection functions, and is loaded as a
dynamic library in the context of the target process.

46 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

The steps of this fault injection technique are:

the injector main method invokes the ptrace system call to probe the
target process, which generates binder messages that will be injected;

the injector uses the ptrace system call to mislead the target process
to call the dlopen function, i.e.,

the injector saves the current processor registers of the target
process;

it replaces the instruction pointer (IP) register with the address
of the dlopen function and the registers with its parameters?;

the target process loads the injection library.

the library loader executes the init method in the injection library,
which modifies the procedure linkage table (PLT) section of the tar-
get process, by replacing the address of the ioctl function with the
address of an hook function in the injection library.

from this moment, every time the target process invokes the ioctl
system call, the hook function will be first invoked. This function
will perform fault injection, and then will invoke the original ioctl
function.

For fault injection purpose, the most important messages are the transac-
tion and reply messages. The transaction messages contain an identification
code which identifies the invoked ROP, and the set of input parameters of
the RPC. To request the execution of an RPC, a client process sends mes-
sages through the binder to the server process. Then, the client process
receives a response from the server with the return value of the requested
RPC (cfr.Section A.2).

Figure 3.7 shows how the injector operates on transaction messages sent
over the binder. The injector intercepts the messages, which are blue in
the figure, the client process sends to the server process. After the injector
catches a transaction messages, it modifies the message content. Then, the

2Due to Address Space Layout Randomization (ASLR), the address of d1open function
has to be discovered by inspecting the /proc/<PID>/maps file, which contains the addresses
of shared libraries linked to the process.

3.3. Android Fault Injection Tool (AndroFIT) 47

Target Controller

ll Injection Library
ioctl() > init()
’T> hook()

o | 5 l l

]

Corrupted
Transaction

FIGURE 3.7: Binder IPC Hijacking Fault Injection Technique
on Transaction Messages

injector calls the actual ioctl system call which requests the binder driver
to deliver the corrupted message, red-colored in figure, to the server process.

Similarly, Figure 3.8 shows how the injector operates on reply messages
sent over the binder. The injector intercepts the messages, which are blue in
the figure, the server process sends to the client process. Then, the injector
corrupts the message contents when the client process receives the reply
message from the server process.

For example, a camera application communicates with the Camera
Service in the media server process through binder, to send commands
and to set the parameters of the camera devices (e.g., to take a photo).
This injection technique can inject incorrect parameters to the camera, by
corrupting the input parameters to the RPC towards the Camera Service.
The camera application receives also a reply message that contains the
zero value if the phone has been correctly taken, not zero otherwise. This
injection technique can corrupt the return value to emulate an API failure
caused by faulty camera hardware.

48 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

Target Controller

Injection Library

ioctl()

"

i

init()

hook() | Original |

T IF
[]

FIGURE 3.8: Binder IPC Hijacking Fault Injection Technique
on Reply Messages

Library Hooking

The library hooking technique intercepts invocations of library functions,
and allows to emulate faults in shared libraries. This technique changes the
execution flow of the target process to invoke an hook function, instead of
the original library function.

The injector consists of the following components:

the target controller, which remotely controls the target process, by
forcing the target process to load the injection library in the same way
of the binder IPC hijacking technique; and

the injection library, which diverts the control flow of the target pro-
cess libraries to a set of libraries owned by the injector.

The injection library uses a control flow modification procedure to mod-
ify the control flow of the target process, which selects the addresses of the
library entries stored in the symbol table of the target process. The control
flow modification looks at the relocation table of the target process and
substitutes the original library function with the addresses of the hooks.
Each hook can inject the corruption of the input parameters, the delay of
the actual function invocation, or the corruption of the return value.

3.3. Android Fault Injection Tool (AndroFIT) 49

Target Controller ptrace() >

Injection Library

jﬂ:[[
hook_2() | libf_2()

hook_N() G libf_N()

FIGURE 3.9: Library Hooking Fault Injection Technique

Relocation Table

Control Flow
Modification

Figure 3.9 shows how the injector operates.

For example, the write function of the bionic library is hooked. The
control flow of the target process does not go directly into bionic, but it is
diverted to a custom write function, the hook, that always returns the EIO
error code.

System Call Hooking

The system call hooking technique diverts system call executions and allow
to emulate faults in the kernel and native components. This technique
changes the execution flow of call on the system call interface by the target
process.

The injector consists of the following components:

the target controller, which remotely controls the target process, by
forcing the target process to load the injection library in the same way
of the binder IPC hijacking technique; and

the injection library, which diverts the control flow of the target pro-
cess libraries to a set of libraries owned by the injector.

The injection library uses a system call entry modification procedure
which forces the target process to call the system call hooks. This operation
can be done using the ptrace system call. Each hook can inject the corrup-
tion of the parameters, the delay of the actual system call invocation, or the
corruption of the return value.

50 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

)

]

Target Controller

Injection Library

hook_2() syscall_2()
L -]

syscall_N()

Syscall Entries

Control Flow
Modification

hook_N()

f

FIGURE 3.10: System Call Hooking Fault Injection Tech-
nique

Figure 3.10 shows how the injector operates.

UNIX Socket Hijacking

The UNIX socket hijacking technique intercepts messages which are sent
or received by a target component (e.g., RILD, or Sensor Service) to or from
UNIX socket.

The injector consists of the following components:

the target controller, which remotely controls the target process, by
forcing the target process to load the injection library in the same way
of the binder IPC hijacking technique; and

the injection library, which probes the send and receive functions on
UNIX sockets of the target process, in order to intercept the messages
and to modify their contents

The injection library finds the points in the code area where the target
process sends or receives the messages through the sockets, and it instru-
ments the found locations with custom functions that redirect the message
flow.

Figure 3.11 shows how the injector operates.

For example, the Sensors Service thread notifies clients with sensor
events, which are messages sent though sockets. The injector intercepts

3.3. Android Fault Injection Tool (AndroFIT) 51

socket_1 | = > socket_1
| [
e | | = owes)

e | | > Comen

FIGURE 3.11: Unix Socket Hijacking Fault Injection Tech-
nique

Target Control Flow
Controller Modification

o -

the Sensors Service message and modify their content to emulate several
software bugs within the Sensors Service.

UNIX Signaling

The UNIX signaling technique simply exploits the UNIX signals, which
are messages sent from a process to another process to force the execution
of a signal handles, and to change the state of the signaled process. For
fault injection purposes, UNIX signals are used to force the premature
termination of the target process, and the stall of the target process.

The injector main component is the UNIX signal emitter, which send the
UNIX signals to the target.

The SIGSEGYV signal is used in UNIX systems to notify an illegal memory
access during a crash failure of a program. Therefore, to inject a crash
failure, the UNIX signal emitter sends the SIGSEGV signal to the target
process, using the signal system call. The SIGSEGV signal forces the same
behavior of a crash caused by a memory management bug (e.g., an invalid
pointer). Moreover, UNIX processes can become stalled (i.e., hangs) due
to a synchronization or I/O bug, which leads to an indefinite wait on a
synchronization primitive. To emulate a hang failure, the UNIX signal
emitter sends the SIGSTOP signal. This signal pauses the execution of the
target process, thus forcing the stall of the process.

Figure 3.12 shows how the injector operates.

52 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

-
Signa SIGKILL

Emitter SIGSTOP
SIGTRAP

FIGURE 3.12: Unix Signaling Fault Injection Technique

3.3.2 Design and Implementation of AndroFIT

The Android Fault Injection Tool (AndroFIT) suite is designed to support a
fault injection campaign of an Android device. It is a collection of scripts
and tools deployed on both the workstation and the Android device under
test. The Android device is connected to the workstation through an USB
cable.

The AndroFIT suite, Figure 3.13, consists of the following parts:

installation scripts: to compile the fault injector executable, to copy it
on the Android device among with other libraries and scripts required
for the tests, and to prepare the scripts for controlling the test;

workstation scripts: to orchestrates the device scripts and fault injector
executable, by providing the user a command-line interface;

device scripts: to identify the version and the capabilities of the An-
droid device under test, to generate configuration files for the fault
injection experiments, and to perform the fault injection experiments;

fault injector executable: to perform the actual fault injection, imple-
menting the technologies discussed in Subsection 3.3.1.

AndroFIT currently supports smartphones powered by Android from
version 5.0 (Lollipop) to version 7.1 (Nougat). The smartphone must have
the developer mode enabled [88], the debug USB option enabled, root
privileges, and a valid SIM card (to perform fault injection experiments
on the phone sybsystem). On the other hand, the workstation must have
the Android standard development kit (SDK) and native development
kit (NDK) installed. Furthermore, a Linux-like shell is required to start
AndroFIT.

3.3. Android Fault Injection Tool (AndroFIT) 53

C)

Insta I'Iatlon Device Scripts
| Scripts
Workstation Fault Injection
tester Scripts Executable

)

{e

USB CABLE l

FIGURE 3.13: AndroFIT Architecture

AndroFIT has two python scripts as entry points: the injector and the
experiment launcher.
The injector simply injects the fault and its syntax is:

Workstation# python inject.py [-h]l] [-d] [--version] --subsystem
SUBSYSTEM --component COMPONENT --target TARGET --failure FAILURE
{failure options} [--failure-timing {permanent,intermittent,
transient}] [--injection-start INJECTION_START] [--injection-
duration INJECTION_DURATION] [--random-seed RANDOM_SEED]

where
-h is a optional command-line argument to print the usage and exit;

-d is a optional command-line argument to add verbosity to console
output;

--version is a optional command-line argument to print the version
and exit;

--subsystem is a command-line argument to select the subsystem
where to inject faults;

--component is command-line argument to specify the component of
the subsystem in which inject;

--target is command-line argument to specify the target (e.g., func-
tion, method, API) of the component in which to inject;

54

Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

--failure is command-line argument to specify the failure type to
inject, chosen among availability, timeliness, corruption, crash,
hang and resource_corruption. Others options follows according to
the specific failure:

unavailability blocks and makes the target call return an error
case, which can be specified by the --unavailability-error-code
optional argument followed by the desired error code (default is
-1

timeliness blocks and makes the target call either delay for a
specified time, --delay-time followed by the number of sec-
onds to wait, or stall, --no-response (one of the two must be
specified);

corruption intercepts and corrupts randomly one of either all
the parameters of the target call, --corrupt-all-parameters, or
the parameters specified their positions, --parameters-positions
followed by the positions of the parameters to corrupts (default
is corrupt all parameters);

crash enables crash injection only when the target is process;
hang enables hang injection only when the target is process;

resource_corruption enables resources corruption fault injec-
tion only when the target is either process or driver into a spec-
ified resource by the argument --resource, and may assume
the values memory and device_file, for driver, or memory, file,
socket, binder, and thread, for process.

--failure-timing is an optional command-line argument to indi-
cate the frequency of injection. The following timings are available:
permanent (100%), intermittent(40%), and transient (10%)(default is
permanent);

--injection-start is an optional command-line argument with an
integer to indicate when, in seconds, injection actually starts once
the experiment starts. For example, if 2, the injections starts after 2
seconds the experiment begin (default is 0);

3.3. Android Fault Injection Tool (AndroFIT) 55

--injection-duration is an option command-line argument with an
integer to indicate how long, in seconds, is the injection. For example,
if 10, the injections lasts for 10 seconds (default is 120);

--random-seed is an option command-line argument with an integer
used as seed for the random utility of the tool.

Despite the long list of potential arguments and parameters, the command-
line tool guides the user in the selection of the necessary arguments, ar-
gument by argument. So, if the user want to inject in the camera ser-
vice api version 1, but he/she does not know what are the potential tar-
gets, the user just launch the tool to have some hints, as shown below

Workstation# python inject.py --subsystem camera --component
camera_service_vl --target <
___WELCOME TO__ _____ __
/ool oo _C /oo __ /()
/A VA A Y AV Y A |
VARV v /S N v/ A Uy v A S A N
usage: python inject.py --subsystem camera --component
camera_service_vl --target {start_preview,stop_preview,
start_recording,stop_recording,take_picture,set_parameters,
get_parameters ,send_command ,notify_callback, data_callback}

python inject.py --subsystem camera --component camera_service_vi:
error: argument --target: expected one argument
Workstation#

The experiment launcher starts a fault injection campaign, and it auto-
matically executes all the fault injection experiments.

A fault injection experiment, as shown in Figure 3.14, consists of two
phases:

Phase 1: a generic workload is executed to emulate user common
actions;

Phase 2: a fault is injected, by the injection techniques presented in
Subsection 3.3.1, and the execution of a specific set of actions that will
eventually activate the fault in the target (e.g., if the fault is injected
in the phone subsystem, the triggering workload consists of a phone
call).

In order to have a clean device and almost-identical initial condition be-
tween experiments, the experiment launcher reboots the device between ex-
periments. During both phases of the experiment, the experiment launcher
collects failure and performance data.

56 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

[Phase 1 \l Phase 2 | [Phase 1 | Phase 2 |

Istart of Experiment Tstart of Experiment Tstart of Experiment

Reboot of Device Reboot of Device Reboot of Device

FIGURE 3.14: Execution of the Fault Injection Experiments

Figure 3.15 shows the components involved in a single experiment
and the execution flow between them in order to perform the experiment.
@The entry point is the experiment launcher script that takes the campaign
file as input and loads all the necessary files into the adb-connected Android

device. Then, for each line in the file, @it first starts the data collector, that

uses the Android logcat and Linux proc files and ps command. @It starts
phase 1 by starting the generic workload generator, that communicates with
the Android device through adb exploiting mechanisms such as monkey,
event generator and service calls. Then, @it starts phase 2 by starting the
fault triggering workload generator and activating the proper injectors into
the Android device. Finally, @data are gathered and saved in a hierarchical
structure as explained further.

The main input of the experiment launcher is a file that list all the
experiments that should be executed. A bunch of experiments is called
experimental campaign or, simply, a campaign. Thus, this file is further
referred to as the campaign file. Each line of the campaign file represent an
experiment of the campaign, and is structured as

TRIGGER, PARAMETERS [, DESCRIPTION]

where TRIGGER indicates one of the potential triggering workload, such as
camera, which opens the main camera and takes a picture;
phone, which dials and calls a mobile phone number;

sensors, which opens the sensors app; and

3.3. Android Fault Injection Tool (AndroFIT) 57

Experiment
5 > [N]
Launcher
output campaign_name_2 Exe_PHO_1_20160
campaign_name.txt 0160214_0935 2140035
|
r 1

O—; :

y
Fault
Triggering
Workload
Genel

Generic
Workload
Generator

pa_p2 2xt
1
1
L

TUCYTN TR Y - ¥
Collector
@B Workstation
A 4 Android Device

rator

[Monkey] {Fault Injectors] [/proc]

Service Calls
Event Generator

FIGURE 3.15: Flow of a Fault Injection Experiment

user, which launches a monkey [89] script to emulate generic user
inputs;
PARAMETERS have the same meanings and potential values as in the injector
entry point; and DESCRIPTION is an optional argument that may represent
a brief description of the experiment to be printed during the script execu-
tion on the console. The experiment launcher automatically executes each

experiment in the campaign file.
The syntax to use the experiment launcher is:

Workstation# python experiment_launcher.py [-h] -f FILE [-n NUM] [--
verbose]

where
-h is an optional argument that shows an help message and exits;
-f FILEis the only compulsory argument where FILE is the campaign

file to use;

-n NUM is an optional argument that indicates how many repetition of
every experiment should be run (default value is 3);

--verbose is an optional argument that enables more verbose console
output of the script.

58 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

L OULPUL/ e Output files from the experiment launcher
<campaign_name>_<date>/

EXP_<subsystem>_<id>_<date>/
command. txt
logcat_TRIGGER_<repetition>.log
monkey_<repetition>.txt
perf_pl_<repetition>.csv
perf_p2_<repetition>.csv
ps_pl_<repetition>.txt
ps_p2_<repetition>.txt

+— EXP_<subsystem>_<id>_<date>/

e e

+— EXP_<subsystem>_<id>_<date>/
. summary_<date>.csv/

+— <campaign_name>_<date>/

N

+— <campaign_name>_<date>/

FIGURE 3.16: Output Folder Structure and Files of the Ex-
periment Launcher

The experiment launcher generates several output files organized in a
hierarchical structure. Once the experimental campaign ends, an output
folder will be generated and/or populated, as follows in Figure 3.16.

Every executed experimental campaign has its own folder inside the
output folder. The name of this folder is generated as

<campaign_name>_<date>/

where:

<campaign_name> is the name of the campaign file without extension;

<date> is the text-formatted date and time when the experimental
campaign started (formatted as %Y%mid_%H%M).

For each line of the campaign file, one or more (according to the NUM

parameter) experiments are executed and their outputs are saved in the
folder

EXP_<subsystem>_<id>_<date>/

where:

3.3. Android Fault Injection Tool (AndroFIT) 59

<subsystem> represents the subsystem where the injection is per-
formed in;

<id> is the line number of the campaign file where the performed
injection is specified;

<date> is the text-formatted date and time when the first repetition of
the experiment started (formatted as %Y%m%d_%H%M).

Inside this folder, there are all the outputs files of all the repetitions of a
single experiment. They are:

command. txt: is the line of the campaign file that indicates the injected
fault producing this outputs;

logcat_TRIGGER_<repetition>.txt: the logs from Android logcat,
one file for each repetition;

monkey_<repetition>.txt: the output of the monkey tools used in
phase 1, one file for each repetition;

perf_pl_<repetition>.csv: comma-separated values of performance
data during phase 1, one file for each repetition;

perf_p2_<repetition>.csv: comma-separated values of performance
data during phase 2, one file for each repetition;

ps_pl_<repetition>.txt: the output of the ps command executed
on the Android device immediately after phase 1, one file for each
repetition;

ps_p2_<repetition>.txt: the output of the ps command executed
on the Android device immediately after phase 2, one file for each
repetition;

where <repetition> is an integer representing which repetition the files
belong to (from 0 to NUM — 1).

These outputs are further analyzed to assess whether the injection suc-
ceeds and what are the consequences of the fault on the Android OS. During
the test execution, a first analysis is performed on the logcat. The potential
test outcomes, and the criteria used to obtain them, are:

60 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

crash: a native process or a user app has crashed due to the injected
fault, and the system logs a message reporting a “FATAL EXCEP-
TION”;

ANR: a user app is stalled due to the injected fault, and the system gen-
erates a log message that reports an ANR condition (i.e., Application
Not Responding [90]);

fatal: a high-severity error is raised by the Android OS, and the system
generates log messages with a high-severity level (i.e., either assert
(A) [91] or fatal (F) [92];

no failure: the Android OS is robust against the injected fault, and no
significant effect is perceived.

3.4 Experimental Evaluation

This section describes how we performed an experimental evaluation on
three high-end smartphones from three different vendors: Huawei P8,
Samsung Galaxy S6 Edge, and HTC One M9, running Android 6.0 (Marsh-
mallow).

We performed a fault injection campaign with AndroFIT, by targeting
the 14 components in the six subsystem (Subsection 3.2.2). The implementa-
tion of the AndroFIT faultload, from the Android fault model, altered the
number of actual faults to inject. On one side, we removed all the faults
derived from Android 5 (Lollipop) or Android 7 (Nougat). On the other,
the same output value fault in the Android fault model generates several
actual faults in the AndroFIT faultload, each with a different corruption on
the data’.

A summary of the results of the fault injection campaign can be found
in the tests outcomes, presented in Table 3.4.

The close analysis of the experiments validates the accuracy of the
AndroFIT suite. We carefully checked that the inteded faults were actually
injected by the tool. For example, in the case of availability faults, we
found in the logs that the expected exeption indeed occurred (e.g., , the

3the mutation operators used in AndroFIT are the same operators used by the Android
Fuzzer Chizpurfle, further presented in Chapter 5

3.4. Experimental Evaluation 61

ActivityNotFoundException raised by the Activity Manager). In the case
of timeliness faults, we have looked at the responsiveness of the device
during the tests. For example, when we inject delays in the start activity
method of the Activity Manager Service, we noticed that the apps indeed
take several seconds more than usual before starting, and that in some cases
the Ul freezes. In the case of corruption faults, we looked at the logs and
found messages that told us about the corruptions. For example, when
we inject corruptions at reads and writes on APK files, we found error
messages by the Package Manager about incorrect APK metadata. For
each subsystem, some relevant failure scenarios are presented and deeply
analyzed. All the scenarios are fully reproducible and mostly belongs to a
single device, i.e., the Huawei P8, unless otherwise specified.

3.4.1 FaultInjection in the Phone Subsystem

For fault injection in the phone subsystem, we performed 309 experiments.
Results, in Figure 3.17, presented 22 failures for Samsung, 78 failures for
HTC, and 114 failures for Huawei. It is clear that, among the three vendors,
the Huawei devices produced the highest number of failures. Most of these
failures were “fatal errors” signaled by the phone subsystem, and, in the
case of Samsung and Huawei, a few cases in which native processes crashed
(mostly, the RILD).

failure scenario #1

This failure scenario considers the injection of faults between the RILD and
the baseband driver and processor. AndroFIT intercepts the AT messages
flowing from the baseband processor to the RILD; and corrupts them by
dropping the event codes and their parameters.

The effects of fault injection are shown in Figure 3.18. The corruptions
cause an incorrect internal state of the RILD, and cascade effects on the
phone services, such as isms and phone_huawei, which crash. In turn, the
telephony registry service crashes. Thus, the device is not able to manage
phone events anymore. This failure impacts on the end-user, which is
unable to perform phone calls. Even worse, the user is not informed about
the problem, and the phone application becomes not responsive: when
the phone stock application sends commands on behalf og the user, the

62 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

Huawei P8

HTC One M9

Samsung Galaxy S6 Edge

CRASH ANR FATAL NO FAILURES

FIGURE 3.17: Fault Injection Campaign Outcomes for the
Phone Subsystem

commands are simply ignored by the phone subsystem, without showing
any information regarding the unavailability of the phone system.

potential reliability improvements

The presented failure scenario involves several components, and points out
several opportunities for improving reliability.

The first, most important effect of the fault is the incorrect internal state
of the RILD that causes the crash of phone services. Instead, it would be
important for the RILD recognize violations of the AT protocol, and to
handle these worst-case situations. These violations should be detected at
run-time by adopting defensive programming practices, such as by checking
at every step that the messages exchanges with the baseband processor
follow the expected protocol. Moreover, the phone services should also be
programmed defensively, by recognizing out-of-order events, and avoiding
to crash in the case of these errors.

Another opportunity of improvement is in the Huawei phone stock
application. It would be advisable to have mechanisms to detect that the
phone subsystem is not responsive, for example by using a timeout when

3.4. Experimental Evaluation 63

Phone Service

Telephony
Registry

)
c
o
<
o
‘©
=
©
S
<
£
o
o

FIGURE 3.18: Analysis of the Failure Scenario #1

waiting for a response. Moreover, the application could trigger a soft restart
to mask the error state and to retry the failed operation. The phone app
should also avoid to not provide any feedback to the user, since the user
would have the perception of the lack of control over the device, and could
get frustrated by the unsuccessful attempts to repeat the operation. Thus.
in the case that these recovery mechanisms are not effective, the phone
app should at least inform the user about the problem with the phone
subsystem.

3.4.2 Fault Injection in the Camera Subsystem

For fault injection in the camera subsystem, we performed 111 experiments.
Results, in Figure 3.19, presented 34 failures for Samsung, 19 failures for
HTC, and 60 failures for Huawei. Again, the Huawei device resulted to be
the most fragile, as denoted by the highest number of failures among the
three vendors. Most of these failures were process crashes (mostly, crashes
of the Huawei camera stock application). In few cases, the camera system
reported fatal errors.

failure scenario #2

This failure scenario considers the injection of faults in the Camera Service.
The Camera Service is part of the standard Android framework, and it is
accessed by both third-party and stock applications. This service is exposed
through a Binder API interface. This experiment injected failures of the

64 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

Huawei P8

HTC One M9

Samsung Galaxy S6 Edge

EICRASH ANR EIFATAL BINO FAILURES

FIGURE 3.19: Fault Injection Campaign Outcomes for the
Camera Subsystem

com.huawei.camera Camera Service

FIGURE 3.20: Analysis of the Failure Scenario #2

Camera Service by forcing the takePicture method to return an error to the
caller.

The effects of fault injection are shown in Figure 3.20. In this scenario,
the error code returned by the method generates a run-time exception. This
exception is not handled by the Camera stock application, thus the Camera
application is aborted by the Android Runtime. A black screen appears to
the user, then followed by a pop-up message that reports the process abort.
The Camera application is not restarted. However, this message does not
provide any meaningful information to the use, and thus may give a bad
perception of the reliability of the device.

3.4. Experimental Evaluation 65

failure scenario #3

This failure scenario considers the injection of faults between the Camera
HAL and the Camera driver and hardware. In particular, the faults were
injected when the media server process attempts to read from the /dev/video
virtual device file, by forcing the operation to return an error, such as
ENOMEM or ENODEV.

The effects of fault injection are shown in Figure 3.21. In this scenario,
the propagated errors lead the media server to fail with a crash. It seems
that the media server is not able to handle a corner case triggered by the
fault injection: in the logcat, we found a fatal error message method not
implemented logged by the media server, in the Camera HAL. The crash of
the media server causes the crash of the Huawei camera stock application,
since the app is not able to handle the exceptions raised by the unavailability
of the media server. It is interesting to analyze how this scenario is handled
by the HTC One M9 device. This is showed in Figure 3.21. In the HTC
device, the camera stock application is programmed to catch the exception
from the Camera Service. After the crash of the media server, both the
media server and the camera app are quickly restarted, without showing
any error to the user. Thus, it is able to mask the fault to the user, and to
provide a better perception of device reliability.

potential reliability improvements

These scenarios unveiled noticeable failure effects (black screens, cryptic
error messages) to the end-user. Thus, it is advisable for Huawei developers
to further check these behaviors, and to mitigate them if possible. The
analysis of the scenarios highlight that the missing exception handling by
the camera stock application is a good candidate for reliability improvement.
This is confirmed by the analysis of the HTC device, in which the stock app
is able to catch the exception, and to mask the fault through a soft restart of
the camera subsystem.

3.4.3 Fault Injection in the Sensors Subsystem

For fault injection in the sensors subsystem, we performed 108 experiments.
Results, in Figure 3.22, presented 21 failures for Samsung, 16 failures for

66

Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

Media Server

Camera Service : Camera Driver
J

*com.huawei.camera

Media Server
Camera Service P Camera Driver

J

com.htc.camera

FIGURE 3.21: Analysis of the Failure Scenario #3

3.4. Experimental Evaluation 67

Huawei P8

HTC One M9

Samsung Galaxy S6 Edge

CRASH ANR FATAL NO FAILURES

FIGURE 3.22: Fault Injection Campaign Outcomes for the
Phone Subsystem

HTC, and 7 failures for Huawei. In these tests, the Huawei device was the
most robust, since it exhibited the lowest number of failures, even if the
numbers are very similar across the vendors. However, the Huawei devices
exhibited an ANR failure that did not happen in the other devices.

failure scenario #4

This failure scenario considers the faults injected when the sensors ser-
vice attempts to access the sensor devices through virtual device files
(e.g., /dev/sensor_hub). The experiments injected errors, such as ENOMEM on
I/0 system calls.

The effects of fault injection are shown in Figure 3.23. Theses errors
caused the crash of the sensor service. This crash has sever consequences
on the system server process, which also crashes. In turn, this causes the
termination of other Android services that execute inside the system server
process®. Most notably, the failure of the system server process affects the
Package Manager Service, and it causes cascading failures of the apps that
require special permissions, such as Maps and Contacts.

4the sensors service executes within a thread of the system server process.

68 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

System Server B

Sensor Service B Sensors Driver

J

Applications

e

FIGURE 3.23: Analysis of the Failure Scenario #4

potential reliability improvements

This failure scenario is an example of complex problem propagation across
several parts of the Android framework. In this case, the main vulnerability
is the co-existence of several services inside the system server process.
Thus, a fault in any service can potentially impact on all the other services.
However, it is not simple to fix this design since it is rooted in the design
of the Android OS. Thus, for improving reliability, it is important to avoid
failures of these services at all costs, in order to prevent failures of the whole
system server process. In particular, it is advisable that the Sensors Service
check the successful outcome of the I/O operations on the devices. If there
is any I/O error, the Sensors Service should catch the error, and should
gracefully handle it and avoid the crash.

3.4.4 Fault Injection in the Activity Subsystem

For fault injection in the activity subsystem, we performed 66 experiments.
Results, in Figure 3.24, presented 42 failures for Samsung, 51 failures for
HTC, and 58 failures for Huawei. The number of failures has been very
high for all of the three devices. These failures freezed the system ui and
other apps (including stock apps, such as the camera apps), which did not
respond to the inputs of the users. In particular, these freezes have been
caused by injected delays on key method of the Activity Manager Service
(e.g., bind service).

3.4. Experimental Evaluation 69

Huawei P8

HTC One M9

Samsung Galaxy S6 Edge

CRASH ANR FATAL NO FAILURES

FIGURE 3.24: Fault Injection Campaign Outcomes for the
Activity Subsystem

failure scenario #5

This failure scenario has low-severity, but it can still provide some improve-
ment feedback and it is useful to understand the fault injection approach.
In this scenario, a service availability fault is injected in the start activity
method of the Activity Manager Service. AndroFIT forces the method to
return an error code, i.e., —1.

The start activity method is mainly called by the system ui process.
When a fault is injected, the system ui is unable to start a new activity.
In this case, the system ui process catches the error code, and it shows a
notification that tells the user Application Not Installed. This behavior is
only a minor annoyance for the user, but it can mislead them, since the
application is actually installed and the Activity Manager failed for some
other reason. Thus, it would be more reasonable to display to the user a
more generic error message.

failure scenario #6

This failure scenario is a case of unresponsive user interface (UI). It is
important to avoid stalls of the UI, since they are clearly noticed by the

70 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

end-users, and since they negatively affect the user perception of reliability.
In this scenario, AndroFIT injected a timeliness fault in the stop activity
method of the Activity Manager Service. The timeliness fault delays the
execution of the stop activity method by several seconds. This kind of faults
can be experienced by the user as a failure because the device is overloaded,
or because of a performance bug.

The system ui process becomes not responsive. If the user tries to leave
the current activity, the system ui process invokes the stop activity method,
but it does not care whether the operation has been delayed or whether
the current activity is still open. As a result, even if the user taps on the
quit activity button several times, the Ul remains stuck. Clearly, this is
undesirable behavior. Instead, it would be necessary the the system ui
process should enforce a timeout on the operation, and detect the stall.
Then, the system ui should attempt a recovery action, such as to force the
termination of the activity by other means. Another possible action is to
inform the user that the operation is taking more time than excepted, and
to invite them to be patient for more time. Another effect of the injection is
the force restart of the system server process. If the user presses the show
activities butte, the Activity Manager Service will crash, bringing down the
whole system server process.

potential reliability improvements

The injection of timeliness faults pointed out that the system ui process
can often get stuck if it does not receive a timely response from the system
server process. This is an important problem since the stall of the Ul is
clearly noticed by the user. The stalls are caused by the fragile behavior of
the system ui process, which waits for a response for an indefinite amount
of time, without enforcing a timeout. This is due to the fact that the system
ui process excessively relies on the responsiveness of the system server
process. However, this excessive trust on the system server process can
expose the user to stuck Uls. Thus, it would be important to introduce
additional countermeasures to handle these worst-case situations when
they might happen. In particular, when possible, the developers should
adopt asynchronous interactions with the system server process: that is, the
system ui process should not block waiting for a response (a synchronous

3.4. Experimental Evaluation 71

Huawei P8

HTC One M9

Samsung Galaxy S6 Edge

CRASH ANR FATAL NO FAILURES

FIGURE 3.25: Fault Injection Campaign Outcomes for the
Package Subsystem

interaction), but it should be able to continue its execution, and to check
whether the requested operation has actually been completed.

3.4.5 Fault Injection in the Package Subsystem

For fault injection in the phone subsystem, we performed 63 experiments.
Results, in Figure 3.25, presented 30 failures for Samsung, 45 failures for
HTC, and 60 failures for Huawei. The numbers are similar to the fault
injection tests in the activity subsystem. Also similar hang failures showed
up when injecting delays on Package Manager Service key method, such as
resolve intent.

failure scenario #7

This failure scenario presents a case of stuck Ul The stall is caused by a
timeliness fault injected in the resolve intent method of the Package Manager
Service. This method is used by the system to resolve which app component
it should start, by reading the contents of an Intent. In this case, the failure
happens when the user presses the show activities button on the bottom

72 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

part of the UL When the resolve intent method is injected with a delay, the
whole UI becomes not responsive. It does not show the list of the current
activities, and do not provide any feedback to the user. Even retrying to
press the button does not solve the stall. Thus, it would be useful to detect
this kind of stall of the UlI, in order to avoid that such worst-case scenarios
lead to a poor user experience.

potential reliability improvements

This failure scenario proposed another stall of the device Ul, and it actually
enforce the suggestions provided in the previous subsection.

3.4.6 Fault Injection in the Storage Subsystem

For fault injection in the storage subsystem, we performed 75 experiments.
Results, in Figure 3.17, presented 36 failures for Samsung, 20 failures for
HTC, and 12 failures for Huawei. The Samsung device has been the one that
failed the most. In most of these failures, the system processes failed because
of unhandled exceptions and errors that were raised during filesystem I/O
and SQL queries.

failure scenario #8

This failure scenario is unveiled when the Package Manager uses the Bionic
Library to read information about apps, from the APK files of the app on the
storage. In this scenario, AndroFIT injects a failure of I/O library functions
of the Bionic Library, i.e., open and read. When these functions are invoked,
the tool corrupts the contents of data buffers.

There are two potential cases of crashes:

the Package Manager Service crashes in the middle of the get package
info method, with the error Package Manager has died,;

the Package Manager service crashes because of a failure of the An-
droid Runtime, with the error message

art/runtime/indirect_reference_table.cc:76] Check failed:
table_mem_map_.get() != nullptr ashmem_create_region failed
for ’indirect ref table’: Not a type-writer

3.4. Experimental Evaluation 73

Huawei P8

HTC OneM9 i

Samsung Galaxy S6 Edge

CRASH ANR FATAL NO FAILURES

FIGURE 3.26: Fault Injection Campaign Outcomes for the
Storage Subsystem

which is associated with the POSIX error code ENOTTY.

failure scenario #9

This failure scenario shows how the system server process crashes because
of a fault in the SQLite Library. The system server process uses SQLite to
store and to retrieve persistent information about the configuration of the
device and about the user. In particular, the Lock Setting Service is a service
that keeps the lock pattwen or password data and related setting for each
user. The Lock Setting Service performs the database query

SELECT value FROM locksettings WHERE user=7 AND name=7?

and, during this operation, AndroFIT injects an availability fault in the
sqlite step operation of the SQLite Library. The fault forces the operation to
return an error code (i.e., SQLITE_ERROR).

The JNI wrapper around the SQLite library throws an exception. Unfor-
tunately, the Lock Setting Service is unable to handle this exception, causing
a fatal failure of the system server process.

74 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

potential reliability improvements

In the case of corrupted APK files, the Package Manager Service should
isolate the fault only for the application affected by the corruption. Thus,
the app should be aborted, or should not be started at all, without affecting
other apps. This would require to carefully check that the contents read
from the APK are not corrupted, by performing checks that the data are
valid. For example, by checking that strings have weird characters or are
tool long, or by checking that integer variables should have values within a
reasonable range.

In the case of SQL queries, the system server process and the stock apps
should catch any exception that might occur, and they should avoid the
crash by masking the exception. In the specific case of the Lock Settings
Service, the device should inform the user an alternative way to unlock the
device. For example, by asking for a different PIN or password. Another
approach could be store and reuse a previous version of the database in the
case of problems.

3.4.7 Lessons Learned

In this subsection, we discuss about the fault model used in the AndroFIT
suite. We base the discussion on the experimental results presented in the
previous subsections. The purpose of this discussion is to point out which
fault modes were useful to give feedback to improve reliability, and which
faults were not effective. This information will help practitioners in future
efforts to perform fault injection tests on mobile devices.

According to the experimental results, the availability faults (i.e., excep-
tions and error codes returned by APIs, such as Binder calls, library calls and
system calls) were the ones that found vulnerabilities in the highest number
of Android subsystems. In these vulnerabilities, the Android OS lacked
exceptions or errors handlers, thus the exception/error was able to spread
and cause the failure of Android services and applications. Since so many
Android subsystems were vulnerable to these faults, it is recommended
to always include this fault type in fault injection test plans. Another ad-
vantage of this fault type is that it can provide clear and easy suggestions
for improving reliability: they point out the specific exceptions/errors that
are not tolerated, thus the developers can mitigate them by implementing

3.4. Experimental Evaluation 75

the missing exception/error handlers. This is especially important in the
stock applications, as they must provide user-friendly feedback in the case
of faults, in order to give a good perception of the reliability of the device.

The timeliness faults (i.e., delays and stalls of API calls) were another
frequent cause of failure of the Android OS. In particular, when the ap-
plication invokes the service in a synchronous way (i.e., the application
stops until the service is provided), the target service causes the failure
of stock apps and of the System UI. The synchronous approach is a cause
of performance bottlenecks for the application, and it can cause failures if
the API is delayed or stalled. The experiments tell us that the timeliness
faults are effective when they are injected on the Binder APIs of Android
services, since stock applications are often vulnerable to this type of faults.
Moreover, the delays/stalls of UI applications must be avoided since are
clearly noticed by the user, and would cause a poor quality of experience. In
order to make the applications more robust against these faults, they should
either adopt an asynchronous approach to call the service (by allowing the
application to continue to be responsive even if the call is delayed/stalled);
or the applications should enforce a timeout to detect the long execution
time of the service, and retrying the operation, or aborting the operation
and informing the user in a friendly way.

The output value faults (i.e., a service returns wrong data, that deviates
from the correct data) were effective for some specific components (the
RILD socket, the AT channel and the Bionic library). For these components,
the incorrect data were not correctly handled by the Android components,
and caused the crash of key services. These findings point out that the
corruption of protocols (such as the AT protocol) and formats (such as the
APK format, and the transaction format in surface streams) can expose
the Android OS to failures. Indeed, it is difficult for developers to build
robust protocol/format parsers that could manage any invalid data in
the protocol/format. Therefore, we recommend that output value faults
should be injected into protocols and formats that are complex and tricky
to parse/handle robustly. We found that even a simple approach (such
as injecting random noise in these protocols/format) can be effective to
highlight vulnerabilities.

Instead, we found that other components (e.g., the Camera Service,
the Sensors Service, and the Activity Manager) are quite insensitive to

76 Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

corruptions, since these services do not expose complex protocols/for-
mats. In these cases, the injection corrupted the input/output parameters
of the services (for example: in the Camera Service, parameters such as
whitebalance=auto are replaced with incorrect values, and numeric values
are corrupted with 0, negative, MAX, or random values; in the Activity
Manager, the methods return Intents with an incorrect Action field, such as
ACTION_BATTERY_CHANGED replaced by ACTION_POWER_CONNECTED, or a trun-
cated Data URI). In other cases, such as SQLite Library, the corruptions
caused the SQL query results to be truncated. These injections can affect
individual applications by corrupting their output (e.g., the Camera applica-
tion can return distorted images, or a background app service may not be
loaded); but these injections do not affect the stability of the Android OS
and stock apps (neither fatal exceptions nor ANRs occurred).

The resource management faults (e.g., the exhaustion of memory, the
inability to open files or create threads) were effective to find vulnerabilities
in processes and components in the native layer. Since these parts are
written in C/C++, they do not benefit from robust and automated resource
management as it would be the cause for the Java language, and thus they
are often vulnerable to resource-related problems. Thus, we advise to inject
resource management faults for testing the robustness of components and
processes in the native layer. Examples of this are the RILD process and
the Media Server (which hosts the Camera Service), as we found that these
processes were affected by failures in the case of resource unavailability.

3.4. Experimental Evaluation

TABLE 3.3: Fault Injection Techniques and Target Compo-

nents Map

RILD
Baseband Driver and Processor
Camera Service
Camera HAL
Camera Driver and Hardware
Sensors Service and HAL
Sensors Drivers and Devices
Activity Manager Service
Package Manager Service
SQLite Library
Bionic Library
Volume Daemon
Mount Service
Storage Drivers and Devices

Binder IPC Hooking

Library Hooking

X X

=< < System Call Hooking

> UNIX Socket Hijacking

UNIX Signaling

<

78

Chapter 3. AndroFIT: A Software Fault Injection Approach for the Android Mobile OS

HTC
One

Huawei

Samsung
Galaxy

P8

S6 Edge

M9

TABLE 3.4: Summary of the Fault Injection Campaign Out-

subsystem CRASH ANR FATAL # of experiments

phone
camera
sensors
activity
package
storage

phone
camera
sensors
activity
package
storage

phone
camera
sensors
activity
package
storage

0
31
3
8
3
33
78

6
11
7
32
20
11
87

6
56
6
37
55
8
168

comes

0
5
0
34
27
3
69

0
3
0
18
35
4
60

0
0
1
21
5
1
28

22
3
18
0

o O

309
111
108
66
63
75
732

309
111
108
66
63
75
732

309
111
108
66
63
75
732

79

Chapter 4

Software Aging Analysis of the
Android Mobile OS

When something is important enough, you do it even if the odds
are not in your favor.

— Elon Mush

Software aging is the common phenomenon of gradual accumulation of errors
that induces to a progressive performance degradation, and eventually to
failure. Long-running software systems are the most vulnerable to software
aging, such it is Android. The contributions of this work are:

an experimental methodology, based on the Design of Experiments
(DoE) approach [93] and including several statistical techniques, to
investigate the software aging phenomenon in Android OS;

the design and execution of an experimental campaign where devices
from four different vendors (i.e., Samsung S6 Edge, Huawei P8, LG
Nexus, and HTC One M9) were stressed and highlighted that software
aging does exist in Android, does depend on vendor customizations,
but does not vary significantly across Android versions.

80 Chapter 4. Software Aging Analysis of the Android Mobile OS

4.1 Overview

This chapter presents the second aspect of this thesis: software aging. With
mobile devices becoming crucial for our everyday tasks and activities,
the need for designing reliable, high-performance and stable software for
smartphones is well recognized. At the same time, the numerous new
functions required to satisfy the emerging customers’ needs along with the
short time to market greatly impact the size, complexity and, ultimately, the
quality of the delivered software. This turns into frequent software-related
failures, ranging from degraded performance to the device hang or even
crash.

A common problem, whose impact on end-user quality perception is
often underestimated by engineers, is software aging [58]. Software af-
fected by the so-called aging-related bugs (ARBs) suffers from the gradual
accumulation of errors that induces to a progressive performance degrada-
tion, and eventually to failure [23,25,94]. Due to such a subtle depletion,
ARBs are difficult to diagnose and debug during testing: they appear only
after a long execution and under non-easily reproducible triggering and
propagation conditions. Typical examples include memory leakages, frag-
mentation, unreleased locks, stale threads, data corruption, and numerical
error accumulation, which gradually affect the state of the environment
(e.., by consuming physical memory unjustifiably). The typical solution
is to try figuring out the temporal trend of the degradation, in order to act
by preventive maintenance actions known as rejuvenation, i.e., solutions to
clean and restore the degraded state of the environment [58,95,96].

The problem is known to affect many software systems, ranging from
business-critical to even safety-critical systems [15-18,21,22,26,59]. Soft-
ware aging in the Android OS can potentially affect the user experience
of millions of mobile products. Therefore, we conduct an experimental
study to extensively investigate if and how software aging impacts the
performance and reliability of mobile devices based on Android.

To investigate the phenomenon, we designed and ran a controlled ex-
periment, grounding on a series of long-running tests, where devices from
four different vendors (Samsung, Huawei, LG, and HTC) were stressed
and monitored under various configurations with the aim of highlighting
possible aging phenomena, to understand the conditions when they occur
more severely, and to diagnose their potential source.

4.2. Experimental Methodology 81

4.2 Experimental Methodology

To analyze software aging issues in Android, we adopt an experimental
methodology based on stress testing. A stress test exercises a system with
an intensive workload for a long period (typically, several hours), in order
to increase the likelihood that software aging effects, such as memory leaks,
accumulate over time [17,18,59,97].

Moreover, we perform tests under several different conditions, as the
extent of software aging effects (e.g., the rate at which the device experiences
performance degradation or resource depletion) varies depending on how
the system is configured and exercised [59,97]. For example, in the context
of Android, different user apps may have a different impact on software
aging, as they may trigger different services of the Android OS; or different
Android configurations (e.g., vendors or versions) may exhibit different
software aging effects. However, considering all of the possible combina-
tions of workloads and configurations leads to an extremely high number
of long-running experiments, which would take an unfeasible amount of
time to complete.

In order to determine the most influential factors (e.g., workload, device
vendor, OS version, etc.) and assess their on the software aging trend, we
adopt the Design of Experiments (DoE) approach [93] and derived the
methodology on the basis of our preliminary study [60].

We define a set of factors (i.e., the parameters of a test) and their possible
values (called levels in the DoE) for designing a test plan for the Android OS.
First, we identify the feasible combinations of Android devices and Android
versions, since we can not install all the versions to all the devices. Then,
we define a blocked, full-factorial design with regards to the other factors.
Moreover, we introduce response variables to quantify the impact of a test
on the target device in terms of software aging, and correlate the factors with
the response variable to identify the most influential ones. We consider both
user-perceived response variables and system-related response variables,
which respectively reflect the responsiveness of the device as perceived by
the user, and the depletion of system resources that may cause aging-related
failures.

The first objective of the data analysis is to assess whether the software
aging is present in Android OS, by analyzing the user-perceived response
variables. Once we demonstrate the presence of software aging, we analyze

82 Chapter 4. Software Aging Analysis of the Android Mobile OS

the variance of these response variables with regards to the values of the
factors. In particular, we focus of the variances between different Android
vendors and between different versions of Android OS. Finally, we analyzed
the system-related response variables to unveil the underlying components
where the software aging phenomenon is internally localized.

We analyze the experimental data using statistics techniques, such as:

Mann-Kendall test to statistically assess if there is a monotonic trend
in a series of the variable of interest over time [16];

Sen’s procedure to compute, in a non-parametric way, the slope of a
trend [98,99];

Spearman’s rank correlation coefficient to analyze the statistical de-
pendence between two variables of interest [100];

Analysis of Variance (or ANOVA) and Kruskal-Wallis / Wilcoxon hy-
pothesis test to analyze whether the differences among two sets of
experiments are statistically-significant (i.e., not simply due to random
variations) [101,102];

4.2.1 User-Perceived Response Variable

To quantify software aging as perceived by users, we focus on the respon-
siveness of the Android OS, as it is a key design goal of this mobile OS. For
example, an early design goal had been to cold-start a basic application,
up to a responsive GUI, within 200 ms at most [85, 103]. Therefore, we
quantify the user-perceived responsiveness by measuring the Launch Time
(LT) of Android activities (i.e., an application component that provides a
GUI screen). The LT is the period between the request to start an Activity,
and the appearance of the Activity on the screen, including the initialization
of background and foreground elements.

We measure the LT by analyzing the logs from the Activity Manager
of the Android OS, which is the service responsible for instantiate new
activities and to switch among them by saving and restoring their state. The
Activity Manager logs the event that triggers the start of a new Activity
(denoted by the ActivityManager tag and the keyword Displayed), includ-
ing the time spent for starting the Activity. We collect these logs using the
Android Logcat utility [91,92].

4.2. Experimental Methodology 83

To get periodical samples of the LT during the experiments, we peri-
odically (at a low frequency, every minute) terminate and restart the user
applications that are used as workload. These apps need to be terminated
since, otherwise, the Android OS would cache the Activities (i.e., if the app
has been started recently, its Activities are retrieved from a cache when the
user switches again on that app) and prevent the start of new Activities,
thus providing us no information about the responsiveness of the system.
Moreover, by periodically restarting the apps, we avoid that software aging
effects (such as leaked memory) could accumulate inside the apps, since
our focus is not to study aging of Android apps, but rather the software
aging effects in the underlying Android OS.

The following line is an example of log message that shows the MainActivity
Activity from the application com.example.myapp, which took 100 ms to
complete its initialization:

I/ActivityManager (1097) : Displayed com.example.myapp/.MainActivity: +100ms

After an experiment, we analyze the LT to identify any degradation of
responsiveness. Ideally, if the device is free from software aging, the average
LT should not vary across the experiment, since we keep fixed the workload
and the test conditions during the experiment. However, we expect that
software aging gradually manifests its effects during the experiment, by
continuously degrading the LT of the workload apps.

To analyze the LT, we produce a time series for each experiment using the
LT samples of all activities collected during the experiment, and we apply
the non-parametric Mann-Kendall (MK) statistical test to check whether
the time series exhibits a trend [16]. This statistical test checks the null
hypothesis that there is no monotonic trend in the time series, and provides
a level of significance, i.e., p-value, for the likelihood that the null hypothesis
is actually true in the time series. If the p-value is lower than a given «, we
can reject the null hypothesis with probability, namely with a confidence,
greater than (1 — «), which points out that the LT has been affected by a
trend. We require that the confidence should be higher than 90% (a = 0.1).
Being a non-parametric test, it does not require the measurements to follow
a specified distribution or the trend to be linear. However, it is required
that measurements are not serially correlated over time. To apply the test,
we preliminarily checked for auto-correlation of each data series by means
of the Durbin Watson test [104] at « = 0.05: when the test statistic d and

84 Chapter 4. Software Aging Analysis of the Android Mobile OS

the value (4 — d) are greater than the upper critical value, then there is
no evidence of positive or negative auto-correlation: in such a case the
conventional MK test is applied. In the other cases (i.e., there is evidence of
auto-correlation or the test is inconclusive) a modified version of the MK
test is adopted, namely the Hamed and Rao Variance Correction Approach [105].
The approach removes the trend from the series and compute the effective
sample size significant serial correlation coefficients. A corrected p-value
is then provided as outcome and considered. If the (modified) MK test
indicates the presence of a trend in the LT, we then obtain the slope of such
trend by applying the Sen’s procedure [98,99], which is a non-parametric,
robust technique that fits a linear model and computes the rate at which the
samples increase over time. It simply computes the slope as the median of all
slopes between paired values, and it is insensitive to outliers. This approach
is often adopted in software aging studies where the system is stressed
under fixed conditions, which is likely to lead to a fixed degradation rate (if
any) [17,18,59,97]. It should be noted that the outcome of each experiment
is not merely based on a single-point observation, in which case there is no
clue of the variability of the error caused by possibly repeating the run. It
is instead a trend computed over hundreds of observations, and its slope
value, obtained by the Theil-Sen estimator on the data series of response
times, is associated with a confidence interval under confidence level of 95%,
thus its assessment accounts for the impact of the variability of response
times. This is a good compromise between repeating more times the same
6-hours-long run for each of the 72 experiments (which would be more
accurate, but too costly), or having only 72 single-point observations with
no statistical significance associated with the response variable. The detailed
experimental plan is presented in Subsection 4.2.4.

4.2.2 System-Related Response Variables

To get more insights about software aging effects, we collect additional
metrics that reflect resource utilization inside the Android OS. These system-
related metrics include

the memory utilization, which is the resource most exposed to soft-
ware aging issue due to memory management bugs, and a scarce one
for mobile devices;

4.2. Experimental Methodology 85

the CPU utilization, which is also exposed to software aging, e.g., due
to algorithmic bugs that waste CPU time on bloated data structures;
and

the garbage collection duration, which is a critical activity foe the
efficient use of memory.

In our analysis, we will analyze these system-related metrics to point out
which are the most stressed areas of the Android OS that might be causing
software aging.

Memory

We focus on memory utilization since many previous experiments on soft-
ware aging effects demonstrated that this resource is the most affected one
and tends to have the shortest time-to-exhaustion (TTE) [16-18,24,59,97].
The Android OS uses elaborated mechanisms to manage memory, by auto-
matically handling the lifecycle of apps (e.., collecting resources once an
app is not used for a long time), by recycling processes (e.g., when starting
a new Activity), and by managing memory inside applications based on
the ART (Android Run-Time) Java environment. Another potential cause of
aging effects in memory utilization is represented by the complexity of the
Android OS services, such as Activity Manager and Package Manager, that
are persistent and may accumulate aging effects over time.

We analyze memory utilization through the Android dumpsys util-
ity, which reports the memory consumption of the Android OS both in
user-space (e.g., the memory used by Android apps and services) and in
kernel-space (e.g., Android extensions to the Linux kernel such as the Kernel
Samepage Merging, KSM, and virtual memory compression, zram). We
analyze memory consumption of each process of the Android OS, by period-
ically collecting (every 30 seconds) its Proportional Set Size (PSS), i.e., the
footprint of the process on the physical RAM (e.g., not including parts of
the process that do not consume memory, such as program code that has
not been executed and that still resides on the storage). We focused on this
metric because our previous results show that it is strongly correlated to
performance degradation trends [60].

We check again whether LT degradation is related to per-process PSS
metrics, by looking for trends and by checking whether these trends are

86 Chapter 4. Software Aging Analysis of the Android Mobile OS

correlated to LT degradation trends. For each PSS series, we perform the
following two steps: (i) we test the presence of a trend (and compute
its slope) using the MK test and the Sen’s procedure; (ii) we compute a
correlation measure between the slopes of the metric and the slopes of
the median LT trend, across all experiments, using the non-parametric
Spearman’s rank correlation coefficient [100], since it is robust to outliers and
does not make restrictive assumptions on data, contrarily to the parametric
counterparts. The correlation points out whether a trend of the metric is
systematically accompanied by a degradation trend of the LT.

Garbage Collection

Garbage collection (GC) is a key component of modern programming en-
vironment, as it manages dynamic memory allocations in place of the pro-
grammer (e.g., freeing unused area) in order to avoid memory management
bugs. However, despite it, there can still be residual software aging effects:
if unused objects are still referenced by the program (e.g., due to poor object
handling by programmers), the GC is not able to dispose of the objects,
which can accumulate over time [20,59,106]. This problem is exacerbated
by memory fragmentation, which occurs when when the program allocates
a mix of small and large objects with different lifetimes, causing “holes”
in the heap area and increasing the duration of garbage collections and of
memory allocations for large objects; and by other bad memory manage-
ment practices (e.g., frequently re-allocating objects that could instead be
reused). Because of these phenomena, GC can significantly degrade the
performance perceived by users. If GC takes too long, the application can be
frozen for short periods or be noticeably slowed down during GC. Therefore,
we include the duration of GC among system-related metrics.

We collect information on GC from the logs of the Android OS, marked
with the art tag. The ART reports on GC only in the case that the GC takes
much more than usual (in particular, when the GC Pause Time exceeds 5
ms, or the GC Duration exceeds 100 ms). In such case, the log includes the
event that triggered the GC (e.g., the GC has been triggered in background,
or it was explicitly invoked by the program as in the case of some Android
OS services); the GC algorithm (as the ART support more than one); the
amount of time spent for the GC; the amount of objects freed by the GC;
and the available heap memory. We collect these logs as soon as they appear

4.2. Experimental Methodology 87

over the course of the experiments. These ART logs denote cases of slow
GC, which are relevant for our analysis. We expect that intensive workloads,
such as the ones used by our stress tests, can highlight the effects of poor
memory management in Android components, which in turn can result in
degraded performance.

The GC metrics are analyzed for each individual process, by computing
trends using the Mann-Kendall test and the Sen’s procedure. We count
the number of cases in which the process exhibited a increase of GC times,
which reveals a possible relationship between software aging (in particular,
loss of responsiveness) and memory bloat or fragmentation.

CPU and memory utilization at task level

The Android OS adopts a complex multi-process and multi-threaded ar-
chitecture to run its several services and components (e.g., to manage a
specific hardware resource or provide an API). However, the previous met-
rics provide information about processes, but they do not provide specific
information about individual threads inside a process. This is a limitation
for analyzing the Android OS, as Android runs most of its basic services
(e.g., camera, audio, and phone) as threads inside few processes (e.g., system
server and media server processes) [78].

Therefore, we introduce additional metrics to get more insights about
the activity of individual services running inside threads. In the context of
the Linux kernel, both processes and threads are internally represented by a
task_struct object (we use the term task in the following of this paper), where
a thread is a special type of task that shares certain resources with other
tasks (i.e., their task_structs point to the same file table, the same page table,
etc.) [107]. Therefore, we analyze CPU and memory utilization metrics for
individual tasks. These metrics point out which tasks are mostly active
during the onset of software aging effects, and are a potential root cause of
software aging.

We obtain task-level metrics from proc filesystem of the Linux kernel. In
particular, we use the virtual files schedstat and stat files that are exposed
by the kernel (in the directory /proc/TASK_PID/) to provide information
on scheduling and memory usage of each task. These metrics include the
number of minor and major page faults (i.e., the task requires new code or
data, thus denoting higher memory activity), and execution time spent in

88 Chapter 4. Software Aging Analysis of the Android Mobile OS

user-space and kernel-space, which respectively point out the CPU and I/O
activity of the task. We periodically sample these task-level metrics (every
30 seconds).

To identify critical tasks, we compute trends for each metric and for
each task using the MK test and the Sen’s procedure. Then, we count the
number of cases in which a metric exhibited a statistically-significant trend
for the task, at a confidence level of 90%. The higher the count, the higher
the likelihood that the metric evolves with software aging effects, thus
revealing a potential relationship between a task and software aging of the
device.

4.2.3 Factors and Levels

We consider several factors to cover different configurations and workloads
in the experimental plan. We define 5 factors and obtain the test plan by
applying the DoE on the levels of these factors. Factors and levels are
summarized in Table 4.1.

In our analysis, we assess whether these 5 factors contribute to the sever-
ity of software aging, in order to provide context about which conditions are
more problematic. We apply the one-way ANOVA technique [101] to assess
which factors impact the response variable in a statistically-significant way.
In order to figure out which test for the ANOVA is more appropriate based
on the properties of data. In particular, to figure out if (and which type
of) ANOVA can be applied, the following assumptions must be verified:
i) independence of treatments; ii) normality of residuals; iii) homoscedas-
ticity of variances. Independence is assured by resetting the environment
at each treatment execution, and avoiding human biases by making the
entire procedure automatic. As for normality, we apply the Shapiro-Wilk
test; the null hypothesis states that data come from a normal distribution.
Rejecting the hypothesis means that the assumption is not verified. To
verify homoscedasticity, we performed the Levene’s test. The null hypoth-
esis is that variances of levels of variables are homogeneous; rejecting the
hypothesis means that we are dealing with unequal variances. We then
apply the following ANOVA tests accordingly: i) if the residuals are nor-
mally distributed and homoschedastic, then the conventional parametric
ANOVA Fisher test is used; ii) if the residuals are normally distributed
but heteroschedastic, then the Welch ANOVA test is used, which admits

4.2. Experimental Methodology 89

unequal variances; iii) if residuals are not normally distributed, then the
non-parametric Kruskal-Wallis/Wilcoxon test is adopted [102]. In all the
cases, the null hypothesis is that the factor does not impact the response
variable, and the p-value indicates again the confidence in rejecting this
hypothesis. We conclude that a factor impacts the response variable if the
level of confidence is higher than 90%, i.e., the p-value is less than 0.1.

Device (DEV)

Experiments are performed on different Android devices from different
vendors, each with its own software configuration and customizations. The
Android devices in our experimental setup represent the levels for the DEV
factor. We conducted experiments on high-end smartphones from four
different vendors; thus, we have four levels for the DEV factor, labeled as
HTCONEMY, HUAWEIPS8, LGNEXUS, and SAMSUNGS6EDGE.

Version (VER)

The Android devices can execute different versions of the Android OS.
The Android OS versions available for a device determine the levels for
the VER factor. It is worth noting that not every level in the DEV factor
can be combined with every level in the VER factor, because some devices
do not support older o newer versions of the Android OS (for example,
some devices may only support Android 5 and 6, while other may only
support Android 6 and 7). In total, we have three levels for the VER factor:
ANDROID5, ANDROID6, and ANDROID?.

Application Set (APP)

In our experiments, we use different sets of applications as workload to
exercise the Android OS. These apps are selected to be representative of typ-
ical usage scenarios (including browsing, making photos, dialing, chatting),
and counts of both stock apps and third-party apps. We include popular
Android applications, which are listed Table 4.1. These apps have been
installed on all Android devices used in the experiments. We organized
applications in two groups, which represent the two levels of the APP factor:
European applications (EU), and Chinese applications (CHINA), which are

90 Chapter 4. Software Aging Analysis of the Android Mobile OS

TABLE 4.1: Factors and Levels for Android Software Aging

Analysis
Factor Level Description
HTCONEM9 HTC One M9 device
DEV HUAWEIPS8 Huawei P8 device
LGNEXUS LG Nexus device
SAMSUNGS6EDGE Samsung S6 Edge device
ANDROID5 Android 5 (Lollipop)
VER ANDROID6 Android 6 (Marshmallow)
ANDROID?7 Android 7 (Nougat)

com.google.android.videos
com.*.camera
com.android.browser
com.android.email
com.android.contacts
EU com.google.android.apps.maps
com.android.chrome
com.google.android.play.games
com.android.calendar
com.google.android.music
APP com.google.android.youtube

com.tencent.mm
com.sina.weibo
com.qiyi.video
com.youku.phone
com.taobao.taobao

CHINA . .
com.tencent.mobileqqi
com.baidu.searchbox
com.baidu.BaiduMap
com.UCMobile
com.moji.mjweather
MIXED1 mostly switch events
EVENTS MIXED2 mostly touch events
MIXED3 mostly navigation events
FULL 90% of storage space usage

STO NORMAL default storage space usage

4.2. Experimental Methodology 91

obtained respectively from the European version of the Google app market,
and from Chinese app markets.

Workload Events (EVENTS)

Our workload generator (based on the Android monkey tool) produces a
set of events to interact with the apps and the Android device. The events
include: application switch, touch, motion, trackball, and navigation events.
The events are generated randomly, and their probability of occurrence is
configured by the EVENTS factor, that varies across three levels: MIXED1,
where half of the events are application switches; MIXED?2, where half of
the events are touches; MIXED3, where half of the events are navigation
events. In every level, the other half of the events are of the remaining types,
and are selected according to a uniform random distribution.

Storage Space Usage (STO)

We execute experiments either with or without available storage (i.e., free
space for storing data), as this aspect can impact on some of the services
of the Android OS (e.g., by storing photos and videos from the camera).
This factor varies between two levels: FULL, where 90% of the storage is
occupied by filling it with videos and images; and NORMAL, where the
default amount of storage space is used (i.e., the storage is occupied only by
system files and application packages).

4.2.4 Experimental plan

We defined an experimental plan by considering different combinations
of the levels and factors presented in the previous subsection. In turn, the
experimental plan can be divided in three sets. The full experimental plan
includes 72 experiments, for a total of 18 days of experimentation. All the
experiments are listed in Table 4.2 and sorted from the oldest to the newest
Android version. The three test plans are blocked full-factorial designs, in
which one factor is fixed (i.e., the Android device or version, according to
our research questions), while we vary all the other parameters.

92

Chapter 4. Software Aging Analysis of the Android Mobile OS

ID

EXP1
EXP2
EXP3
EXP4
EXP5
EXP6
EXP7
EXP8
EXP9
EXP10
EXP11
EXP12

EXP13
EXP14
EXP15
EXP16
EXP17
EXP18
EXP19
EXP20
EXP21
EXP22
EXP23
EXP24
EXP25
EXP26
EXP27
EXP28
EXP29
EXP30
EXP31
EXP32
EXP33
EXP34
EXP35
EXP36
EXP37
EXP38
EXP39
EXP40

TABLE 4.2: Experimental plan of the case study

DEV

HUAWEIPS
HUAWEIPS8
HUAWEIPS
HUAWEIPS
HUAWEIPS8
HUAWEIPS
HUAWEIPS
HUAWEIPS8
HUAWEIPS
HUAWEIPS
HUAWEIPS8
HUAWEIPS

HUAWEIPS8
HUAWEIPS8
HUAWEIPS
HUAWEIPS8
HUAWEIPS8
HUAWEIPS
HUAWEIPS8
HUAWEIPS8
HUAWEIPS
HUAWEIPS8
HUAWEIPS
HUAWEIPS
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
HTCONEM9
LGNEXUS
LGNEXUS
LGNEXUS
LGNEXUS

VER

ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5
ANDROID5

ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6

APP

EU
EU
EU
EU
EU
EU
CHINA
CHINA
CHINA
CHINA
CHINA
CHINA

EU
EU
EU
EU
EU
EU
CHINA
CHINA
CHINA
CHINA
CHINA
CHINA
EU
EU
EU
EU
EU
EU
CHINA
CHINA
CHINA
CHINA
CHINA
CHINA
EU
EU
EU
EU

EVENTS

MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3

MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2

STO

NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL

NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL

Continued on next page

4.2. Experimental Methodology

93

Table 4.2: Experimental plan of the case study — continued from previous page

ID

EXP41
EXP42
EXP43
EXP44
EXP45
EXP46
EXP47
EXP48
EXP49
EXP50
EXP51
EXP52
EXP53
EXP54
EXP55
EXP56
EXP57
EXP58
EXP59
EXP60

EXP61
EXP62
EXP63
EXP64
EXP65
EXP66
EXP67
EXP68
EXP69
EXP70
EXP71
EXP72

DEV

LGNEXUS
LGNEXUS
LGNEXUS
LGNEXUS
LGNEXUS
LGNEXUS
LGNEXUS
LGNEXUS
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE

SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE
SAMSUNGS6EDGE

VER

ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6
ANDROID6

ANDROID?
ANDROID?
ANDROID?7
ANDROID?
ANDROID?7
ANDROID?7
ANDROID?
ANDROID?
ANDROID?7
ANDROID?
ANDROID?7
ANDROID?7

APP

EU
EU
CHINA
CHINA
CHINA
CHINA
CHINA
CHINA
EU
EU
EU
EU
EU
EU
CHINA
CHINA
CHINA
CHINA
CHINA
CHINA

EU
EU
EU
EU
EU
EU
CHINA
CHINA
CHINA
CHINA
CHINA
CHINA

EVENTS

MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3

MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3
MIXED1
MIXED1
MIXED2
MIXED2
MIXED3
MIXED3

STO

NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL

NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL
NORMAL
FULL

The first set (EXP13~EXP60) covers all of the DEV levels, and keeps the
VER factor to ANDROIDS, since Android 6 Marshmallow is the only version
that can be installed on all the devices, allowing us to study the impact of
software aging across devices from different vendors (and all other factors
with the same level). The second set of experiments (EXP1~EXP24) fixes the

94 Chapter 4. Software Aging Analysis of the Android Mobile OS

(\ Commands: monkey, logcat

Test Configuration: app, storage

[—
Activity Launch Time "l
PSS Measurements
& GC Measurements
\) Task-level Measurements =

USB CABLE l

FIGURE 4.1: The Experimental Android Testbed

DEYV factor to HUAWEIPS, and varies the VER factor between ANDRQOID5
and ANDROID6. The third set (EXP49~EXP72), instead, fixes DEV to
SAMSUNGS6EDGE and the VER to either ANDROID6 or ANDROID?.
These last two sets are used to study the impact of software aging across
different versions of the Android OS. In each set, with the sole exception
of the fixed factor, we consider every possible combination of the levels,
leading to a full factorial design. Based on our preliminary experiments [60],
we calibrated the duration of each experiment to 6 hours, as this duration
suffices to point out software aging effects.

The devices are controlled and monitored using the Android Debug
Bridge (ADB) utility (which is a non-intrusive, dedicated channel through
the USB port for debugging purposes). User inputs are provided with the
monkey tool, which is a workload generator that randomly generates Ul
events. The events are generated at a high frequency (500ms) to stress
the device, and follow the random profile of the EVENTS factor. The
experimental testbed is showed in Figure 4.1.

4.3 Results

We analyze software aging phenomenon using the metrics and the exper-
imental plan presented in the previous section. Thus, we conclude the
analysis with a more detailed study of software aging symptoms.

4.3. Results 95

12000

browser
activities LT
[ms)
L]
o
o
o
1

camera
activities LT
[ms)
n
o
(=]
o
1
\
i
.

calendar
activities LT
[ms)

dialer
activities LT
[ms]
1
3
I
]

T T T T T T T T
0 5000 10000 15000 20000
time [s]

FIGURE 4.2: Groups Activities Launch Time for EXP39

4.3.1 Software aging across Android vendors

This subsection analyzes software aging across device vendors, by fixing
the Android OS to version 6.

Analysis of Launch Time

The Launch Time is a direct indicator of software aging effects experienced
by the user. To provide intuition about the software aging problems found
by the experiments, we show in Figure 4.2 examples of LT measurements
and trends. The figure focuses on a subset of activities from the experiment
EXP39, where the activities are divided among browser, camera, calendar,
and dialer. In the figure, the data points are the LT measurements over the
course of the experiment; the lines that cross the data points represent the
median slope estimated by the Sen’s procedure; the colored bands around
the lines represent the 95% confidence interval for the slope according to
the Sen’s procedure. Since the aging phenomenon takes some hours to
develop, and since there are unavoidable random fluctuations and sporadic
outliers in the performance measurements, these trends are not immediately
apparent from visual inspection, which is the reason why statistical analysis

96 Chapter 4. Software Aging Analysis of the Android Mobile OS

0.12 4 . - -
0.10 +
0.08 4
0.06
0.04

S PPUR- =< v SR =R SIS g
& g & S &

All Activities LT Trends
[ms/s]

o ¥ N o
L N QO Q O
> ¢© & & & Sl S &
& § N N N N
«© N \/O O%
L < S
©
2
DEV APP EVENTS STO
statistically significant statistically significant not istically signifi not isti significant

FIGURE 4.3: Distribution of the Launch Time Trends, with
all vendors and fixed to Android 6 (EXP13~EXP60)

is needed to address the research questions, such as the Mann-Kendall (MK)
trend detection test. The experiments provided evidence that the Android
OS version 6 (Marshmallow) is indeed subject to software aging. In the
majority of the experiments (33 out of 48), the Mann-Kendall test confirmed
the presence of a statistically-significant increasing trend in the LT series
across all the activities launched during the experiment, which implies that
the launch times become longer and longer over time. These trends are
summarized in Figure 4.3. The data points in the figure represent the slope
of the performance degradation trends obtained by the Sen’s procedure, in
terms of milliseconds of launch time lost per second. The values greater
than zero represent the cases were the series exhibited an increasing trend.
In total, there are 48 samples, one for each combination of the factors (EXPs
13 to 60 in Table 4.2, where the OS version is Android 6). All of the sub-plots
show the same data samples from different perspectives, where we split
the data samples with respect to different factors (device, application set,
workload events, storage space usage). On average, there was an estimated
degradation of 380ms of the launch time after 6 hours of testing (i.e., the
additional delay for launching apps after that the device has been stress-
tested); in the worst case, there was an estimated degradation of 2.5 seconds
of the launch time after 6 hours. At the end of some experiments, the devices
were so bloated to be unusable, as they reacted to user inputs with very
long delays (e.g., more than 10 seconds).

4.3. Results 97

We applied the one-way ANOVA technique to assess whether the ex-
perimental factors (see Table 4.1) had an influence on the extent of the
performance degradation trends. Table 4.3 reports the detailed results of
both the assumptions verification and the p-value for all the ANOVA tests
for this work. According to the ANOVA, the device vendor (DEV) is a factor
that determines statistically-significant differences in the Launch Time, with
a confidence level of 99%. We found that the experiments with HUAWEIPS
yielded the lowest trends, while the SAMSUNGS6EDGE yielded the highest
ones. Another statistically-significant difference is in the APP factor, with a
confidence of 85%, where the CHINA applications have a worse impact than
EU in terms of LT. This result suggests that software aging in the Android
OS depends on the workload, which can stress different services and sub-
systems of the Android OS depending on user applications; moreover, the
customizations from the Android vendors have also influence on software

aging.

Chapter 4. Software Aging Analysis of the Android Mobile OS

98

a8vd 3xau uo panuijuo)

68980
L18°0
€000
1000">

G106°0
80¢0
¢100°0
Sv10°0

£98°0

19¥C°0
Svsro
1000>

anfea-d

SITIVM-TVISAN
SITIVM-TVISAN
SITIVM-TVISAN
SITIVM-TVISAN

SITIVM-TVASEA
SITIVM-TVASI
SITIVM-TVASIA
SITIVM-TVASII

SITIVM-TVISNUN
SITIVM-TVISAN
SITIVM-TVISNEN
SITIVM-TVISAN

LSHL VAONV

ON 92200
SdA geco

ON 90100
ON 1000>
SHA 16090
SHA Gg€L9'0
ON 1000>
ON 1000>
SdA ¥84¢°0
SdA ¢180°0
ON S110°0
ON ¥10°0

"DSONOH 4<d0dd
HANHAHT

ON
ON
ON
ON

ON
ON
ON
ON

ON
ON
ON
ON

1000>
1000>
1000>
1000>

1000">
1000">
1000">
1000">

1000>
1000>
1000>
1000>

TVINION M>dO0dd

ATIM-OUIdVHS

Sd
™
ddVv
4OIAdd

Sd
™
ddVv
HOIAZd

Sd
™
ddv
HOIAZd

AJ1o13SEPadSOWOL] pue AJEULION] '} I'M DUBLIBA JO SISATeuy :¢'§ 414V,

IDAIDG 18ur]
waysAg S5 90BJING S5
9dIOYANYV | 9dIOYIANV

I
9 AIOYANV

99

4.3. Results

a8pd 3xau uo panurzuo))

L18°0 SITTVM-TVSIY SHA L6560 ON €010°0 sd
STSL0 SITTVM-TVSY SHA 71680 ON 1110°0 ™
8LV10 JHHSH SHA 92960 SHA TL0T0 ddv
100°0 SITIVM-TV S SHA 5090 ON L1100 NOISYEA
SPER0 ¥IHSH SHA S7€6'0 SHA 17900 sd
180 JHHSH SHA 25190 SHA 97800 ™
. ON : .
668€°0 HOTEM VSN 60000 SHA €79F°0 ddv
90000 HOTEM ON §TH0'0 SHA L6670 NOISYEA
050 SITTVM-TVSY SHA 1101°0 ON 1000°> Sd
9190 SITTVM-TV S SHA WIL0 ON 1000°> ™
L8YT0 SITIVM-TVSIY SHA 26800 ON 1000°> ddv
11200 SITIVM-TVS SHA 8110 ON 1000> NOISYHA
anfea-d LSAL VAONV DSOWOH ~ 4<€0dd TVARON ~ M>d0¥d
ANHAH MTIM-OAIIVHS

a8vd sno1aaid 1oL panu1j1i00 — AJ191)SEPIdSOWOL] pue AJTEWION] 1I'M dDUBLIRA JO SISATRUY ¢ 9[qeL

198urg
90eyING SSJ

8d Pmengy

hEVNETY
wdSAS S5

8d IAMVNH

I
8d ITAMVNH

Chapter 4. Software Aging Analysis of the Android Mobile OS

100

€€89°0
8¢CC0
95¢0°0
¥€20°0

86£8°0
€9¥5°0
1000
€000

G698°0
€680°0
€949°0
€8¢¥°0

anrea-d

SITIVM-TVASII
SITIVM-TVASII
HOTAM
SITIVM-TVISNUIN

SITIVM-TVASAA
SITIVM-TVASIAA
HOTAM
HOTAM

SITIVM-TVISAN
SITIVM-TVISAM
SITIVM-TVISNUN
SITIVM-TVISNUN

LSHL VAONV

SHA 6€VY'0
SHA 91480
ON 1000>
ON ¥000°0
SHA 80€€°0
SHA Y140

ON 1000>
ON 1000>
SdA 9¢81°0
ON 00

ON ¥.¥0°0
ON 6€€0°0

"OSONOH 4<dO¥dd
HNHAHT

ON
ON
SHA
ON

ON
ON
SHA
SdA

ON
ON
ON
ON

100070
8000°0
1961°0
000

¥000°0
<0000
108C°0
L0

1000>
1000>
1000">
1000">

TVINION ~ M>dOdd

ATIM-OUIdVHS

Sd
™
ddVv
NOISYIA

Sd
™
ddv
NOISYHA

Sd
™
ddv
NOISYdA

a8vd snoraaid woLf panuijuos — AJIO1ISEPIdSOWOL] pue AJ[EUWLION] "M dDURLIBA JO SISATRUY :¢'F S[qeL

&

s 9
5 3
o Mg
o a &
e 5
= ®dq
R ©
D (o))
@

wn

: P
£ B
mpn
03 5
@ ®a
g &
@

L1
adpg
9g Sunsureg

4.3. Results 101

Analysis of Memory Usage

While the LT give indication of software aging effects directly perceived
by users, the memory usage provides more insights about the underlying
cause of these issues, since memory often suffers from leaks, fragmentation,
and thrashing [106]. Based on the results of our preliminary work [60], we
focus the analysis on the PSS metric collected for four key processes of the
Android OS, namely the System Server, Media Server, System UI, and Surface
Flinger. These processes play an important role in the Android OS:

The System Server is the first Java process that starts at Android OS boot
and initializes the rest of the Android Framework. It runs the majority
of system services, such as the Activity Manager, which manages the
life cycle of applications and their activities, and the Package Manager,
which manages installed packages and security permissions.

The Media Server is the process that host most of the media related
services, e.g. Audio Flinger, Media Player Service, Camera Service, and
Audio Policy Service.

The System Ul is the process that composes notifications, device status,
and device navigation buttons as system bar elements in specific
screen areas.

The Surface Flinger process receives window layers (surfaces) from
multiple sources (System Ul included), combines them, and displays
them on the screen.

We again performed the one-way ANOVA, using the PSS of these pro-
cesses. Figure 4.4 shows the distribution of PSS trends from the experiments.
We found that these processes exhibit increasing trends of the PSS over the
experiments. The System Server is the process with the highest trends. More-
over, the DEV and the APP factors exhibit statistically-significant differences
of the the System Server, with a confidence of 99%: these trends are especially
high in the case of the SAMSUNGS6EDGE, and of the group of CHINA apps.
Instead, the EVENTS and STO factors do not have a statistically-significant
impact.

However, the results for the remaining processes (Media Server, Surface
Flinger, System UI) must be interpreted with caution, as in some cases they

102 Chapter 4. Software Aging Analysis of the Android Mobile OS

400 - . -

300 A i K . - - s -
200 |
0] as == B e ==} = =] == = =) S-S

statistically significant statistically significant not statistically significant not statistically significant

System Server PSS
Trends [kB/s]

250
200
150
100
50
] = . = om = - - =

statistically significant statistically significant not statistically significant not statistically significant

Surface Flinger PSS
Trends [kB/s]

IR S & S S v S » &
© © &8 o) ¢ & © &
S F & & S S K

S S R
@%
%‘?“
DEV APP EVENTS STO

FIGURE 4.4: PSS Trends Distributions: EXP13~EXP60 (An-
droid 6)

even exhibit negative trends. Instead, the trends for the System Server were
always positive. This behavior to the use of media (e.g., playing videos
or using the camera) by the workload, which require these processes to
temporarily allocate more memory: if the random workload uses media
more in the first part of the experiment, these processes will also use more
memory in the first part rather than the last part, leading to an apparent
decreasing trend, regardless of software aging phenomena.

We cross-check this interpretation of the results by jointly analyzing
the PSS and the LT metrics. We compared the memory consumption trend
of the processes with the corresponding LT trends of the experiments, by
correlating these two metrics using the Spearman’s rank correlation. The
correlation provides an index that points out whether the two metrics tend
to vary in the same way: for example, a positive correlation means that
higher values of one metric are accompanied by a higher values of the other
one.

Table 4.4 shows the results of the correlation. Indeed, the memory
consumption of the System Server exhibits a noticeable (and statistically
significant) positive correlation with the LT, meaning that high LT trends
(i.e., quicker performance degradation) occur at the same time of high PSS

4.3. Results 103

TABLE 4.4: Spearman Correlation Coefficients between All
Activities LT Trends and PSS Trends of Android System

Processes
SPEARMAN
PROCESS COEFFICIENT P-VALUE
system (System Server) 0.6481 6.0548e-05
mediaserver (Media -0.5641 0.0009
Server)
com.android.systemui
(System UI) -0.0306 0.87
surfaceﬂlpger (Surface 0.6125 0.0001
Flinger)

trends (i.e., quicker inflation of the memory consumption). Instead, the
other processes exhibit a less significant correlation, which is even negative
in two cases. Thus, the memory consumption of the Media Server, System
Ul, and Surface Flinger does not seem a possible cause of the performance
degradation (the LT trends). Instead, the increasing memory consumption of
the System Manager (which has an important role in starting and managing
activities through the Activity Manager and Package Manager) is a potential
symptom of software aging, that we further investigate later in this section.

4.3.2 Software aging across Android versions

We analyze software aging across different versions of the Android OS,
by looking for differences both between the Android versions 5 and 6 (by
locking the DEV factor to HUAWEIPS), and between the Android versions
6 and 7 (by locking the DEV factor to SAMSUNGS6EDGE).

Analysis of Launch Time

In the case of the SAMSUNGS6EDGE device, we again consistently observed
aging trends also for ANDROID?, which are showed in Figure 4.5. Overall,
the average LT trend across all of the SAMSUNGS6EDGE experiments has
been 3.01E-2 ms/s. We estimate that the LT at the end of the tests (i.e.,

104 Chapter 4. Software Aging Analysis of the Android Mobile OS

0.25 - -
ko 0204
8 2 o015
g g 0.10 -
D B0s &
e El & = e
ANDROID6 ANDROID7 CHINA MIXED1 MIXED2 MIXED3 LOW HIGH
VERSION APP EVENTS STO
not statistically significant not statistically significant statistically significant not statistically significant
FIGURE 4.5: Launch Time Trends Distributions:
EXP49~EXP72 (Samsung S6 Edge)
0.14
0.12 4 - .
0.10 4

0.08
0.06
0.04
.
] @%Eﬁ%@%@
0.00 —see
ANDROIDS ANDROID6 CHINA MIXED1 MIXED2 MIXED3 HIGH

VERSION APP EVENTS STO
statistically significant not statistically significant not statistically significant not statistically significant

All Activities LT
Trends [ms/s]

FIGURE 4.6: Launch Time Trends Distributions:
EXP1~EXP24 (Huawei P8)

6 hours) degrades, on average, by 650.89ms compared to the LT at the
beginning of the test. The maximum LT had been 2.36E-1 ms/s in the worst
case, with an estimated degradation of LT of 5.1 seconds after 6 hours of
testing.

In the case of the HUAWEIPS device, we also notice aging trends in
both the versions, as showed in Figure 4.6. The average LT trend across all
the experiments has been 1.35E-2 ms/s, with an estimated degradation of
291.62ms after 6 hours of testing. The maximum LT trend has been 1.19E-1
ms/s in the worst case, with an estimated degradation of 2.6 seconds after 6
hours.

Comparing ANDROID6 with ANDROID?, the LT trends show only
small differences with respect to the mean values, and a slightly higher vari-
ability of the trends for ANDROID?. The differences between ANDROID5
and ANDROIDG6 are apparently more noticeable, with a reduction of the
LT trends in favor of ANDROID6. We performed the one-way ANOVA on
these two sets of experiments, to assess whether the differences between

4.3. Results 105

the samples from different Android versions were statistically significant.
According to the ANOVA, none of the factors (including the Android OS
version) has a statistically-significant impact on the LT trends, both for the
SAMSUNGS6EDGE and the HUAWEIPS. According to these results, we
conclude that the software aging effects on the performance neither improve
nor worsen across different Android OS releases, as the LT trends do not
exhibit significant variations. This result suggests that the revisions to the
Android OS are not addressing the areas of the OS that are affected by
software aging, and that Android vendors need to invest more effort to
address this neglected problem.

Analysis of Memory Usage

Figure 4.7 and Figure 4.8 show the PSS trends for the four key processes, re-
spectively in the case of HUAWEIPS and SAMSUNGS6EDGE. According to
the ANOVA, in all processes, there were statistically-significant differences
(with confidence levels greater than 90%) between the trends of different
Android OS versions. In particular, in the case of HUAWEIPS (i.e., the tran-
sition from ANDROID5 to ANDROIDG6), the PSS trends for the System Server
process gets worse; instead, in the case of the SAMSUNGS6EDGE (i.e., the
transition from ANDROID6 to ANDROID?), the PSS trends for the System
Server exhibit an improvement. Considering the results of the previous anal-
ysis on LT trends, it seems that the magnitude of LT trends is not impacted
by these variations of the PSS trends (i.e., the LT trends are steady even if
the PSS trends are different). This result suggests that it is not the quantity
of memory consumption that influences the performance degradation, but
rather the way the memory is used, in terms of fragmentation, frequency
of allocations, or the adoption of bad programming practices (§ 4.2.2). We
analyze this aspect in more detail in the next sections.

4.3.3 Analysis of process internals

In this section, we analyze two indicators (the Garbage Collection, and task-
related events) that provide more information about the internal behavior
of Android processes, to get more insights about the reasons of the aging
trends discussed in the previous sections.

106 Chapter 4. Software Aging Analysis of the Android Mobile OS

7] 15 .
)

22 0 :
[0}

28] o
59 *
0

> 04

on

statistically significant

-5

350 T
] 300 .
%z‘ 250 - .
S8 2004 2 .
©f o] Lt
o i
o9 A
&E 504 i
3 0 E=
50

statistically significant

ANDROID5 ANDROID6
VERSION

FIGURE 4.7: PSS Trends Distributions: EXP1~EXP24

(Huawei P8)
400 .
300

200 A

100 * é%
4

0 v
statistically significant
1 Do
25 b .
20 A
15
10
5 %
04 st
statistically significant

ANDROID6 ANDROID7
VERSION

System Server PSS
Trends [kB/s]

Surface Flinger PSS
Trends [kB/s]

FIGURE 4.8: PSS Trends Distributions: EXP49~EXP72 (Sam-
sung S6 Edge)

4.3. Results 107

Analysis of Garbage Collection

We further analyze Android processes from the point of view of memory
management, by considering the time spent for garbage collections, namely
the GC Pause Time (i.e., the period that the process is suspended during the
GC) and the GC Duration (i.e., the total duration, including both the GC
that executes when the process is suspended, and the GC that executes in
parallel with the program).

We performed a trend analysis on these GC metrics for each process.
The results were grouped by different collection types [108]: in particular,
in our experiments only two GC types produced more than 100 samples
and exhibited a trend with confidence higher than 90%, namely:

Concurrent GC, in which threads are not suspended and not prevented
from making more allocations, but a separate thread performs GC
concurrently in background;

Explicit GC, where a thread makes an explicit request for GC and it is
blocked during this operation.

To analyze garbage collection,we performed a trend analysis (using the
MK test as before) on the garbage collection times, to check whether garbage
collection takes longer and longer over the course of an experiment. We
separately analyze each process of the Android OS, and each of the four GC
metrics (GC Duration/Pause Time, and Explicit/Background Collection).
We counted the number of experiments in which the garbage collection ex-
hibited a statistically-significant increasing trend. These counts are showed
in Figure 4.9.

In the figure, we ranked the processes with respect to these values, and
showed the 5 processes that most frequently exhibited a trend in the GC
pause times and GC durations. From the experiments, we noted that such
trends most often happened in the System Server process (which is inter-
nally labeled as system in the Android OS). This result provides a better
understanding about what has been the cause of software aging, since it
suggests that this process heavily uses heap memory, and that it is exposed
to performance degradation due to the inflation and fragmentation of the
heap, which increases the overhead of garbage collections and slows down
or freezes its threads. The Android OS is sensitive to slow-downs of this

108 Chapter 4. Software Aging Analysis of the Android Mobile OS

Occurences of Trend
system | ——————E————— s
zygotess NI 5
com.google.android.gms.persistent | NI 5
com.android.packageinstaller NN 4
zygote (NI 3
system |) 25
com.google.android.gms.persistent] 8
com.android.settings] 5
com.android.packageinstaller _ 5
zygote6s (I 4
system |, 24
com.google.android.gms.persistent | 11
com.android.systemui _ 6
com.google.android.gms [N 6
zygote | 2
system | 2.1
com.google.android.gsm.persistent | —— 21
com.google.android.gms (I 9
com.android.systemui [—
zygote) 5

Explicit Collection
GC Pause

GC Duration

Background Collection
GC Pause

GC Duration

FIGURE 4.9: Occurrences of GC metric trend: EXP1~EXP72

process: the System Server provides key services for managing the appli-
cations’ lifecycle (such as the Activity Manager and the Package Manager,
which both run as threads inside the System Server, and which are invoked
every time that an application is started, disposed of, or at other events.).
Since garbage collection delays the System Server (by freezing or slowing
down the process for short amount of time), these delays propagate to other
Android components and affect the responsiveness of the device. Moreover,
this result suggests that monitoring the GC times of these processes is an-
other useful indicator to detect software aging in the Android OS, and can
be leveraged to trigger software rejuvenation actions when GC becomes too
slow or too frequent.

Analysis of Tasks

We perform a trend analysis on task-level metrics in order to provide de-
tailed insights about specific Android services. Process-level metrics (such
as the PSS) cannot be used to analyze individual Android services, since
many Android services run as threads in the context of the same, shared
process (such as the Activity Manager and the Package Manager, which both
run within the System Server). Therefore, we consider task-level metrics,
which can be related to individual threads and thus to individual Android

4.3. Results 109

services. In particular, in the case of memory bloat and fragmentation, an
increasing CPU utilization can be due to an increasing amount of time spent
to walk data structures. For example, a typical form of memory bloat that
affect Java software is represented by Java containers that accumulate stale
objects (i.e., objects that are still referenced by the container, even if they are
unnecessary for the program); in turn, the accumulated objects increase the
cost for accessing the container (e.g., the access time for linked lists and trees
increases with the number of elements in the data structure). We applied to
the task-level metrics a similar approach to the case of garbage collection.
For each experiment, and for each group of tasks, we apply the MK trend
detection test on the time series of major faults, minor faults, kernel time, and
user time. Then, we counted number of experiments in which the task group
(i.e., at least one task in the group) exhibited an increasing utilization of
CPU and memory, and ranked the groups according to the count.

To relate the tasks to Android subsystems and to better understand them,
we grouped the tasks according to the Android service or subsystem they
belong to, according to their names and to our analysis of the Android AOSP
source code. For example, the ACTIVITY group in System Server consists
of four threads related to the Activity Manager, namely ActivityManager,
ActivityManager_2, ActivityManger_3, and HwActivityManag. The value of
each group is computed by averaging the trends count of each task of the
group. The groups ranked among the top-10 are presented in Figure 4.10.

The most of the occurrences showed up in some specific groups. For
example, in the System Server we have:

ALARM: the tasks that execute the Alarm Manager service, that is in
charge of setting up timers for the rest of the system.

BACKUP: the tasks that execute the Backup Manager, which is notified
each time there is new data to be saved persistently (e.g., new contacts
in the dialer).

ACTIVITY: the tasks that execute the Activity Manager service, which
handles requests for managing the lifecycle of Android activities.

PACKAGE: the tasks that execute the Package Manager service, which
handles requests for forwarding intents and checking permissions.

110 Chapter 4. Software Aging Analysis of the Android Mobile OS

;MWWWWWWWWWMWWHWWW@mm

a
<

ALARM
BACKUP
ACTIVITY
PACKAGE
INPUT
DISPLAY
NETWORK
POWER
AUDIO
LOCATION
DISPSYNC
EVENT
VSYNC
TIMER
SURFACE
MALI
MPPTHRE.
IDLEINVALIDAT(
BINDER
COPYBITWAIT

System Server Surface Flinger

OMajor Fault B Minor Fault B System Time @ User Time

FIGURE 4.10: Occurrences of task metric trend:
EXP1~EXP72

INPUT: the tasks that read and dispatch user inputs from the hardware
devices to the higher layers.

These groups and the others in Figure 4.10 represent tasks that are espe-
cially stressed during the experiments, and that exhibit increasing resource
utilization trends over time. For example, the Activity and Alarm groups
show an increasing trend of task-level metrics, which we attribute to mem-
ory bloat that develops in these services due to the very large number of
activities and notifications generated during the course of the experiments.
This information points out areas of the Android OS that may be targeted
by software rejuvenation: in particular, it is advisable to focus software
rejuvenation in the System Server, either at process-level (in order to rejuve-
nate all of the tasks inside the process) or at task-level (by re-initializing the
top-most services in the ranks, in order not to disrupt other services inside
the process).

111

Chapter 5

Chizpurfle: A Gray-Box
Android Fuzzer for Vendor
Service Customizations

An expert is a man who has made all the mistakes which can be
made, in a narrow field.

— Niels Bohr

Fuzzing is a well-established and effective software testing technique to
identify weaknesses in fragile software interfaces by injecting invalid and
unexpected inputs. Fuzzing can be extremely useful in finding software bugs
in Android services, particularly in closed-source vendor customizations. The
contributions of this work are:

a novel gray-box fuzzing tool for Android devices, namely Chizpurfle,
to address the gap in the spectrum of mobile fuzzers, and to improve
the effectiveness of fuzzing on vendor customizations;

an experimental evaluation campaign for Chizpurfle on the Samsung
56 Edge smartphone running Android 7 (Nougat), fuzzing 2272 vendor-
specific service methods and finding two bugs, with the realization that
Chizpurfle improves the depth of testing compared to the black-box
approach, by increasing the test coverage by 2.3 times on average and
7.9 times in the best case.

112 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

5.1 Overview

This chapter presents the third aspect of this thesis: fuzz testing. Android
comes in different flavors, depending on which vendor is implementing
it. Nowadays, more than 20 original equipment manufacturers (OEMs),
including but not limited to Samsung, HTC, Huawei, Motorola, and LG,
base their devices on the Android Open Source Project (AOSP) [9]. Hard-
ware capabilities are not the only factor that support the customers” choice.
Software customizations play a key role in this aspect, making user experi-
ence unique and more enjoyable. Unfortunately, these customizations often
introduce new software defects, which are vendor-specific. Because they are
proprietary, vendor customizations are not integrated in the open-source
Android and do not benefit from the feedback loop of the whole ecosystem.
Thus, they are less scrutinized than the core AOSP code-base, and their vul-
nerabilities take significantly more time to be patched. Indeed, the Google
Android security team publishes a monthly security bulletin [109] with new
and patched security vulnerabilities, but it has to refer the users to vendor-
specific security bulletins such as the ones by LG [110], Motorola [111], and
Samsung [112]. It is worth noting that vendors customizations consist of
code running with special privileges, thus exacerbating the security issues'.

Fuzzing is a well-established and effective software testing technique to
identify weaknesses in fragile software interfaces by injecting invalid and
unexpected inputs. Fuzzing was initially conceived as a black-box testing
technique, using random or grammar-driven inputs [35]. More recently,
white-box techniques have been leveraging information about the program
internals (such as the test coverage) to steer the generation of fuzz inputs,
either by instrumenting the source code or by running the target code in
a virtual machine [38,39]. Unfortunately, these tools are not applicable to
proprietary Android services, since vendors are not willing to share their
source code, and since virtual machine environments (e.g., device emulators)
do not support the execution of these proprietary extensions.

This chapter introduces a novel gray-box fuzzing tool, namely Chizpur-
fle, to address the gap in the spectrum of mobile fuzzers, and to improve

For example, recent devices based on Qualcomm chipsets suffer from a vulnerability in
the Qualcomm service API that allows privilege escalation and information disclosure [12].

5.2. Chizpurfle 113

the effectiveness of fuzzing on vendor customizations. Similarly to re-
cent white-box approaches, Chizpurfle leverages test coverage information,
while avoiding the need for recompiling the target code, or executing it
in a special environment. The tool has been designed to be deployed and
run on unmodified Android devices, including vendor customization of
the Android OS. The tool leverages a combination of dynamic binary in-
strumentation techniques (such as software breakpoints and just-in-time
code rewriting) to obtain information about the block coverage. Moreover,
Chizpurfle is able to guide fuzz testing only on the vendor customizations,
by automatically extracting the list of vendor service interfaces from an
Android device.

We validated the applicability and performance of the Chizpurfle tool
by conducting a fuzz testing campaign on the vendor customizations of
the Samsung Galaxy S6 Edge, running Android 7 (Nougat). It came out
that Chizpurfle improves the depth of testing compared to the black-box
approach, by increasing the test coverage by 2.3 times on average and 7.9
times in the best case, with a performance overhead that is comparable
to existing dynamic binary instrumentation frameworks. Moreover, we
discuss two bugs found in privileged services during these evaluation
experiments.

Chizpurfle can fit mainly three vendor usage scenarios: vendor may
want to apply a lighter approach than white-box fuzzing because of very
complex target systems that make it difficult to re-compile instrumented
source code; vendor wants to take into accounts all the potential actions
an attacker can undertake, demystifying security through obscurity; or some
vendor extension can be closed-source code from sub-providers. The tool
also provides future research a platform for experimenting with fuzz testing
techniques (such as evolutionary algorithms) based on coverage-based
feedback.

5.2 Chizpurfle

This section includes further motivations for the realization of Chizpurfle,
and its design and some implementation details.

114 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

5.2.1 Motivations

When a vendor delivers a new smartphone on the market, it includes
several customizations of the vanilla Android, the open source software
stack from the AOSP. Unlike the AOSP, customizations are usually closed
source and undocumented, and vary among vendors. Vendors’ software
customizations are focused on three areas:

device drivers: they support proprietary hardware components of the
smartphone;

stock applications: they are pre-installed on the smartphone along
with the default AOSP stock applications;

system services: they enhance the Android OS with additional APIs
for both stock and third-party applications.

We focus on the third type of customizations, i.e., system services, be-
cause they usually run as privileged processes (thus, they have a major
potential impact on robustness and security); they are directly exposed to
(potentially buggy and malicious) user applications; they provide wrappers
to lower-level interfaces, such as device drivers; and they represent a large
part of vendor customizations.

In order to understand the extent of deployment of vendor customiza-
tions, we conducted a preliminary analysis of system services from vendor
customizations in three commercial smartphones, namely the HTC One M9,
the Huawei P8 Lite, and the Samsung Galaxy S6 Edge. We extracted the
services interfaces on the three devices and on their corresponding Android
AOQOSP versions, using the same techniques of the Chizpurfle tool (that are
further discussed in §5.2.2), and compared the two lists.

Table 5.1 reports the results of this analysis. The first row is the version
of the Android Platform running on each device. The second row is the
number of services found only on the device, but not in the corresponding
AQSP; in the third and forth rows, this number is split between Java and
C services. The next two rows refer only to the Java-implemented services,
of which we could retrieve the methods signatures through Java Reflection.
The fifth row considers the common Java services, present in both AOSP
and vendor devices, that have new methods in the vendor version. Finally,
the last row shows how many new methods are present in the vendor

5.2. Chizpurfle 115

TABLE 5.1: Vendors’ Smartphone Customizations on Sys-
tem Services

Huawei HTC SaGr;salj(r;g
P8 Lite One M9 56 Edge
Android version 5.0 6.0 7.0
new services 30 7 82
new C services 13 2 20
new Java services 17 5 62
extended Java services 15 25 52
new Java methods 325 166 2,272

services that do not exist in the AOSP. Figure 5.1, instead, visualizes the
portions of the three smartphones services, split between unmodified AOSP
services and vendor customizations (both new and extended services). Our
analysis shows that there is a significant number of customized services and
vendor-specific methods. Moreover, most of these services execute in the
context of privileged processes (such as System Server and Media Server
processes), where any failure can have a severe impact the whole OS.

The large vulnerability surface and high privilege of proprietary services
motivate the need for specialized tools to evaluate their robustness. To
achieve its full potential, fuzz testing needs to guide the generation of
inputs according to test coverage, as demonstrated by empirical experience
in several security-critical contexts [38, 67]. However, the lack of source
code for proprietary services, and the inability to run these proprietary
extensions on a device emulator, defy the strategies for profiling coverage
that are adopted by existing fuzzing tools.

5.2.2 Design

The Chizpurfle tool architecture is presented in Figure 5.2. It includes six
software modules running on the target Android device, that are imple-
mented in Java and C/C++. These modules cooperate to profile the target
system service and to generate fuzz inputs according to test coverage. We

116 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

Huawei P8 Lite HTC One M9 Samsung Galaxy S6 Edge
2 i |%|
45%
" L ‘ o
7 HUAWEI

\ 72% £

VENDOR = AOSP

FIGURE 5.1: AOSP and Vendor services.

/ - x\\\
/ ACTUAL DEVICE \

s ! N s N s N s ‘
‘ SEED MANAGER } AUz (= ‘ ‘ TEST EXECUTOR ‘ -{ OUTPUT ANALYZER ‘
L J

GENERATOR
I)\
" INSTRUMENTATION | - — 7L —
MODULE | "l STORAGE
\ o) S -
AN Y,
| ORCHESTRATOR P

FIGURE 5.2: Overview of the Architecture of Chizpurfle

(METHOD)\
EXTRACTOR

designed Chizpurfle to be as less intrusive as possible, and to only require
root permissions for few debug operations discussed further.

The Methods Extractor produces a list of system services and their meth-
ods, marking the custom vendor services as described in Section 5.2.1. It
also provides a map between services and their hosting processes. The Seed
Manager iterates over the custom vendor services and methods, and it pro-
vides initial inputs (i.e., seeds) for testing them. The Fuzz Input Generator
takes a seed (either the initial seed, or any previous worthwhile input) and
generates new actual inputs for the target method, by applying fuzzing
operators to the values of method parameters. Then, the Test Executor
applies the fuzzed inputs to the target service, while the Instrumentation
Module keeps track of the test coverage. The outcomes of the test are
collected, analyzed, and saved by the Output Analyzer. It also provides

5.2. Chizpurfle 117

feedback to the Seed Manager with seeds for the next test iteration. Finally,
the Orchestrator provides a simple user interface for Chizpurfle.

Orchestrator

The Orchestrator is the only part of Chizpurfle that runs outside the target
Android device (i.e., on the workstation), that loads and controls the other
modules using the Android Debug Bridge (ADB) [113] through an USB
connection. Chizpurfle minimizes the amount of interactions through ADB,
since this connection is notoriously unstable, and we could not rely on it due
to potential side effects of fuzzing. Thus, Chizpurfle is detached from the
ADB shell process right after it is started, in order to avoid any issue related
to the ADB connection. Test data are recorded on a local file on the device
and later pulled from the target device by the Orchestrator; the Orchestrator
periodically checks the progress of fuzz tests by briefly connecting with
ADB and inspecting the logs of Chizpurfle.

We also need to prevent the early termination of Chizpurfle in the case
of crashes of system processes. If Chizpurfle ran as a standard Android
app, it would be bound to Zygote, which is a daemon process that serves
as parent for all Android processes, and which provides a pristine copy
of the Android Runtime environment for its children through copy-on-
write mechanism. When the Zygote dies, all children processes die as well.
Thus, we run Chizpurfle modules in a distinct Android Runtime from the
Zygote, that is launched by the app_process command (the same command
that starts Zygote at boot). This enables Chizpurfle to keep working and
gather data even if key system processes fail due to software bugs in vendor
customizations.

Method Extractor

The Method Extractor gets the list of services from the Service Manager in a
vendor-customized Android device, and it compares them with a blueprint
of the AOSP with the same Android version.

The Android OS provides a service-oriented architecture to manage
its several services, where the Service Manager keep a list of all the regis-
tered services (cfr. Section A.3). The Method Extractor queries the Service

118 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

Manager on the target device to get the list of all registered services, in-
cluding customizations. By iterating on these names, it retrieves the list of
service descriptors. In case of Java-implemented services (supported by the
current version of the tool), a service descriptor is the string name of the
Java Interface that is implemented by that system service (e.g., the package
manager service implements the android.content.pm.IPackageManager
Java Interface). Then, Java Reflection API is used to inspect the definition of
the interfaces, and to get the signatures of the methods in the service. The
methods that are not in the AOSP are marked as vendor customizations and
considered for testing.

Another task of the Method Extractor is to map every service to the
system process that hosts that service. This mapping is obtained by hooking
calls to the Service Manager, before the services are registered. In particular,
we focus on invocations of the function

static int svc_can_register (const uintl6_t *name, size_t name_len,
pid_t spid, uid_t uid)

where spid is the PID of the process that wants to register the service named
name. The functions of Service Manager are hooked by copying a breakpoint
handler in the memory address space of the process and by modifying the
symbol table to hijack function invocations (the technique to modify the
memory of the target process is further discussed in the Instrumentation
Module). We force the system services to be published again (thus invoking
the Service Manager) by restarting the Zygote process, which in turn forces
the restart of system processes and their services. If the method returns 1,
then the service has been correctly registered, and the Methods Extractor
retrieves the name of the process and saves the mapping.

Instrumentation Module

The Instrumentation Module interacts with the process that runs the tar-
get service, in order to collect information about the test coverage. We
designed the Instrumentation Module by taking into account the following
requirements:

it must be able to intercept the execution of branches by the target
service, in order to identify any new code block covered by the test;

5.2. Chizpurfle 119

it has to attach to system processes that are already running, since
the life cycle of Android services (including vendors” ones) cannot be
directly controlled by external tools such as Chizpurfle, and since most
of these service are already running since the boot of the target device;
and

it should be able to instrument proprietary services on the actual de-
vice (which is the goal of this study), thus excluding any approach that
recompiles the source code or that runs in an emulated environment.

We initially explored both hardware and software solutions to measure
coverage. Hardware solutions typically take advantage of special CPU
features for debugging purposes, such as performance counters. The ARM
processors (the CPU family also adopted in Android devices) provide the
CoreSight on-chip trace and debug utility to trace the execution of program
[114]. However, this specific feature is not mandatory for ARM CPUs, and
it is not available on the CPUs typically used in Android devices. Thus, we
could not use the hardware support from the CPU, since this solution could
not be applied on commercial devices.

We then focused on software-based solutions, which typically have a
higher run-time overhead, but they can also provide more flexibility and
have less requirements about the underlying hardware. In particular, we
based our design on the ptrace system call of the Linux kernel: it allows a de-
bugger process (in our context, the Instrumentation Module) to inspect and
to write on the memory address space and CPU registers of the debuggee
(in our context, the process that runs the target system service). Typically,
debugging tools use ptrace to install software breakpoints, by replacing an
instruction of the debugged program with another instruction that stops
the program and triggers a breakpoint handler function.

We leverage the ptrace mechanism to profile the target code through
dynamic binary rewriting, which is a general technique used by virtual ma-
chine interpreters. The program is divided in basic blocks, which are small
groups of sequential machine instructions that end with a branch. When
the exit branch is reached, the control flow is returned to the interpreter,
which retrieves the next basic block, applies some transformations (such
as just-in-time compilation and instrumenting the final branch instruction)
and moves the control flow to the block; or the exit branch directly jumps
to the next basic block if it has already been processed and cached. In our

120 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

context, we apply the same principle to keep track of which code blocks are
executed, in order to compute the test coverage.

Figure 5.3 shows the instrumentation and tracing mechanism used by
Chizpurfle. The Instrumentation Module injects into the target process a
small C library by using ptrace; then, before restoring the execution of the
traced process, it starts a new thread in the process to run the library code,
which starts the stalker server. This server opens a local socket to talk back
with the Instrumentation Module. At the beginning of a test campaign,
Chizpurfle sends a message over this socket to enable the tracing of any
thread in the target process. Then, the stalker server rewrites the current
code block; from this point on, the code blocks will return the control flow
to the injected library, which will rewrite the next code block that will be
executed by the target. For every rewritten block, the tool adds instructions
to log the memory address of the code block, in order to record that the
block has been covered. The list of the addresses of covered code blocks
is collected by the stalker server in a global data structure. At the end of
testing, Chizpurfle sends a message to disable logging, and to let the stalker
send back to Chizpurfle the list of code blocks that have been covered.

In the current version of Chizpurfle, we implemented this approach
using the Frida framework [115]. Frida is a generic dynamic instrumentation
toolkit that provides basic facilities for dynamic binary rewriting, in order
to let developers to insert probes in a program for debugging and reverse-
engineering purposes. We have ported Frida to 64-bit ARM processors in
order to let it run on actual Android devices, and we extended the code
rewriting process to trace the coverage of code blocks.

Seed Manager

The Seed Manager is in charge of providing seeds (i.e., initial inputs for the
target service) to the Fuzz Input Generator. The Seed Manager manages a
priority queue of seeds to be fuzzed, which are ordered with respect to their
score 77. This score is assigned by the Output Analyzer (as discussed later),
after that the seed has been submitted to the target, and that the coverage
for the input has been measured. The score 77 represents the number of new
blocks executed by the traced process. If 7t is greater than zero, the seed is
fed back to the Seed Manager to be further fuzzed in subsequent tests.

5.2. Chizpurfle 121

CHIZPURFLE E ;’ TARGET PROCESS 'a

INSTRUM. | i E
MODULE : : PROCESS
: g THREAD

for each test
for each block

REWRITE

ADDRESS .

SEETES x : :
DDRESSES: jj

‘e .
--

FIGURE 5.3: Chizpurfle Instrumentation and Tracing Mech-
anism

122 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

This workflow represents the cornerstone for applying evolutionary
algorithms to drive fuzz testing towards deeper testing of the target service.
To select the next seed from the priority queue, we adopt an exploitation-
based constant schedule, where a seed is not used more than once [116]. The
termination criterion of Chizpurfle is to stop when all seeds have been con-
sumed from the queue, and no more seeds are available for further fuzzing.
Moreover, Chizpurfle represents a basis for applying several algorithms
for fuzz testing, e.g., by changing or tuning the queue scheduling policy
and the termination criterion. This is a valuable opportunity for research
on fuzzing in mobile devices, as the heuristics and algorithms adopted
by existing tools (such as AFL) have evolved over the years on the basis
of empirical experience and experimentation with alternative approaches,
which is facilitated by tools such as Chizpurfle.

At the beginning of a fuzz testing campaign for a target method, the Seed
Manager creates a new initial seed with empty (for primitive types) or null
(for object types) values. This initial seed is not mutated, but immediately
submitted as test input. This input will trigger the target method to cover
an initial set of 7t code blocks; then, the input is immediately fed back to the
Seed Manager to be used as first actual seed with score 7. The steps to fuzz
a vendor service method are summarized in Algorithm 1.

Fuzz Input Generator

The Fuzz Input Generator receives a seed to be mutated, and generates
inputs for the Test Executor. Several inputs are obtained from the same
seed, by applying different fuzz operators. The number of new inputs to
generate is proportional to the score 7t of the seed, and the fuzz operators
are selected according to the types of the parameters of the target method.
We implemented in Chizpurfle a rich library of fuzz operators, including
operators that are often adopted in existing fuzzing tools (including the
ones in Section 2.3). For each parameter type, the fuzz operators are:

Primitive types (boolean, byte, char, double, float, integer, long, short):
substitute with a random value, substitute with the additive identity
(0), substitute with the multiplicative identity (1), substitute with the
maximum value, substitute with the minimum value, add a random

5.2. Chizpurfle 123

Algorithm 1 fuzzing a vendor service method

Input: Service s, Method m, Process pid

1:

_ o e
S

15:
16:

parameters = createlnitialSeed(s, m)
outputs = executeTest(s, m, parameters, pid)
analyzedOutputs = analyzeAndSave(outputs)
priorityQueue = {}
priorityQueue.push(parameters, analyzedOutputs.rr)
repeat
parameters, 7t= priorityQueue.pop()
fori=1tom do
parameters’ = mutate(parameters)
outputs = executeTest(s, m, parameters’, pid)
analyzedOutputs = analyzeAndSave(outputs)
if analyzedOutputs.7r > 0 then
priorityQueue.push(parameters’, analyzedOutputs.rr)
end if
end for
until priorityQueue == {}

124 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

delta, subtract a random delta, substitute with a special character
(only for char);

Strings: substitute with a random string, substitute with a very long
random string, truncate string, add random substring, remove ran-
dom substring, substitute random character from string with special
character, substitute with empty string, substitute with null;

Arrays and Lists: substitute with array of random length and items, re-
move random items, add random items, apply fuzz operator on a item
value according to its type, substitute with empty array, substitute
with null;

Objects: substitute with null, invoke constructor with random param-
eters, apply fuzz operator on a field value according to its type.

For Object types, the Fuzz Input Generator provides additional ad-
hoc fuzzers for important specific classes defined by the Android OS. For
example, the android.content. Intent class has a specific fuzzer that in-
jects into the fields of an Intent (such as actions, categories and extras)
special values that have a meaning for the Intent (e.g., ACTION_MAIN and
ACTION_CALL for the Intent actions) [117]; and the fuzzer for the android.
content . ComponentName class takes into account which components are in-
stalled on the target device, in order to use and to mutate valid component
names during fuzz testing. For all the other classes, a generic object fuzzer
uses the Java Reflection API to create new objects using the class constructor
with random parameters, and to invoke setter methods of the class to place
random values in the fields of the object.

The Fuzz Input Generator keeps a list of all the inputs generated so far,
in order not to submit again the same input to the test executor. Seeds are
mutated by using a random number generator to select fuzz operators and
to guide them (e.g., new values replacing the previous ones are selected
randomly). These probabilities are tunable using a configuration file.

Test Executor

The Test Executor performs tests on the Android device, by invoking the
service method with the input provided by the Fuzz Input Generator. It

5.2. Chizpurfle 125

generates a proxy for that service using the IBinderObject associated to
the target service. Before invoking the target method, it flushes the logs
collected by the Android OS (the logcat, which is a global collector for log
messages produced both by user applications and system processes [92]).
Then, Chizpurfle sends the start message to the stalker server in the target
process and calls the target method. Any potential exception thrown by
the service is caught, so that the Test Execution is not aborted in the case
of service failures. After the method call, it sends another message to the
stalker to stop the tracing, and retrieves logs from the logcat. The steps
undertaken by the Test Executor are summarized in Algorithm 2.

Algorithm 2 execute test

Input: Service s, Method m, Parameters p, Process pid
Output: Outputs o
: flushLogcat()
startBranchTracing(pid)
try: call(s, m, p)
catch e: o.setException(e)
o.branches = stopBranchTracing()
o.logs = stopLogcat()

AN o e

Output Analyzer

The Output Analyzer parses the outputs produced by the Test Executor, and
stores the information and results of the tests on a file on the target device.

This component analyzes the logs to identify any failure that has been
triggered by the fuzzing test. A failure is detected using the following
criteria:

A/F messages: the system generates log messages with a high-severity
level (either assert (A) or fatal (F)) [91,92]; such messages are never
generated in failure-free conditions, and should be considered as
failure symptoms;

ANR messages: the system generates a log message that reports an
ANR condition (i.e., Application Not Responding) [90]; this condition

126 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

denotes that the fuzzed input from the Test Executor propagated and
triggered a long-running operation or an indefinite wait on the main
thread of some process;

FATAL messages: the system logs a message reporting a “FATAL
EXCEPTION”, which denotes an uncaught exception on the service
side.

It must be noted that we focus on errors logged by system processes
rather than the Test Executor; since the Test Executor stimulates the system
service with invalid input, it is correct for the service to raise exceptions and
not to provide any service to the Test Executor. Thus, we do not consider
these exceptions as failure symptoms as they indicate the correct handling
of wrong inputs.

Another check for failure detection is made when the Test Executor
retrieves the Binder proxy for the tested service. Chizpurfle registers a
callback, using the 1inkToDeath of the IBinder API for the service [118], to
receive a notification if the Binder object of the service is not available. This
happens when the process that hosts the target service dies.

The Output Analyzer component also analyzes the list of block ad-
dresses reported by the Instrumentation Module. It keeps trace of all blocks
covered by tests so far, and compares them with the block addresses of the
current test. If new blocks are detected, the test input is assigned a score 7,
and the new blocks are added to the list of covered blocks.

The outcomes of this analysis, along with general information about the
test inputs and the tested service, are saved on a file. If the input receives a
non-zero 7t score, the input is sent to the Seed Manager for the next iteration
of the fuzzing loop. The steps of the Output Analyzer are summarized in
Algorithm 3.

Further Optimizations

When we initially applied the Chizpurfle tool to the Samsung Galaxy S6
Edge, we needed to address an important technical problem: the system
services (including the ones from vendors’ customizations) execute in the
context of a few system processes, along with dozens of other threads, such

5.2. Chizpurfle 127

Algorithm 3 analyze and save results

Input: Outputs o, DeathRecipient r
Output: AnalyzedOuput ao
1: a0 =0
2: if (“FATAL" or “ANR" in ao.logs.message) or (“F” or “A” in
ao.logs.level) then
ao.hasFailures = true
end if
if ao.deathRecipient.deathNotified then
ao.serviceDead = true
end if
newBranches = ao.branches \ getExecutedBranches()
if size (newBranches) > 0 then
10: addExecutedBranches (newBranches)
11: ao.7t = size (newBranches)
12: end if
13: saveToFile(ao)

as the system_server process, which contains about 160 threads. Unfor-
tunately, instrumenting all these threads at the same time causes a high
overhead, that would slow down the execution of the fuzz tests.

We enabled Chizpurfle to avoid instrumenting threads that are unrelated
to the target service being tested. We base this approach on a simple, yet
effective heuristic to detect unrelated threads: for all the services running in
the context of the same process of the target service, we tokenize the name of
the service, and retain the tokens that belong only to that specific service (for
example, in the case of CocktailBarService, we retain the tokens Cocktail
and Bar); then, we get the names of the threads of the process, using the
comm entry in the proc filesystem; finally, we identify the threads whose
name include the tokens of services different that the one under testing (for
example, we exclude the CocktailBarVisi thread when testing services
different than the CocktailBarService). The associations between threads
and services can be easily reviewed by Chizpurfle’s users before starting
the testing campaign. This heuristic reduces the run-time overhead of the
instrumentation and avoids threads that are likely unrelated to the service

128 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

under testing.

We did another minor optimization to avoid few false positives that
happened during the tests. During our preliminary tests, some false posi-
tives occurred when the Android device reached a low battery level, that
caused the Android OS to switch to battery-saver mode. This change, together
with the workload of fuzz tests, slowed down the smartphone, and caused
spurious ANRs in processes not related to the service under testing. We
prevented these false positives by periodically checking the battery level
and pausing the tests if the level is too low. We carefully checked and
reproduced all the other failures described in next sections, to assure that
our results are free from false positives.

5.3 Experimental Evaluation

We applied Chizpurfle to a well-known commercial smartphone, the Sam-
sung Galaxy S6 Edge. Before testing, we updated this device with the
most recent Android OS officially released by Samsung based on Android
7 (Nougat). First, we perform a fuzz testing campaign on all the service
methods introduced by Samsung. Then, we perform additional tests to
evaluate the performance overhead and the test coverage, compared to a
pure black-box approach.

5.3.1 Bugs in Samsung Customizations

Chizpurfle detected 2,272 service methods from Samsung customizations.
In this first experimental campaign, Chizpurfle performed 34,645 tests on
these methods. The tool reported that 9 tests caused failures, which are
summarized in Table 5.2. We executed again the tests, and we found that
the failures were reproducible. Then, we analyzed the failure messages
reported on the logs, which include uncaught exceptions and the stack trace
at the time of the failures. Despite the source code not being available, we
notice that the failures affected high-privilege system processes, and were
caused by 2 distinct bugs (respectively, the first 4 failures, and the other 5
failures).

5.3. Experimental Evaluation

129

spengestureservice spengestureservice

spengestureservice

injectInputEvent injectInputEvent

injectInputEvent

ID

22

162

TABLE 5.2: Failures Detected by Chizpurfle

INPUT

{0, -2147483648, array of
android.view.InputEvent
objects with a null item, false,
NULL}

{(-715676118, -1, array of
android.view.InputEvent
objects with a null item, false,
NULL}

{0, 91, array of
android.view.InputEvent
objects with a null item, false,
NULL}

FAILURE

FATAL EXCEPTION: mainProcess:
com.android.systemui, PID: 12884
java.lang.NullPointerException:
Attempt to invoke virtual method ‘long
an-
droid.view.InputEvent.getEventTime()’
on a null object reference at

com.samsung.android.content.smartclip.

SmartClipRemoteRequestDis-
patcher.dispatchInputEventInjection
(SmartClipRemoteRequestDis-
patcherjava:201)[...]

FATAL EXCEPTION: mainProcess:
com.android.systemui, PID: 4025
java.lang NullPointerException:
Attempt to invoke virtual method ‘long
an-
droid.view.InputEvent.getEventTime()’
on a null object reference at

com.samsung.android.content.smartclip.

SmartClipRemoteRequestDis-
patcher.dispatchInputEventInjection
(SmartClipRemoteRequestDis-
patcherjava:201)[...]

l@*** FATAL EXCEPTION IN SYSTEM
PROCESS: android.ui
java.lang.NullPointerException:
Attempt to invoke virtual method ‘long
an-
droid.view.InputEvent.getEventTime()’
on a null object reference at

com.samsung.android.content.smartclip.

SmartClipRemoteRequestDis-
patcher.dispatchInputEventInjection
(SmartClipRemoteRequestDis-
patcherjava:201)[...]

Continued on next page

130

Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

spengestureservice

voip
calllnVoIP

voip

calllInVoIP

voip
callinVoIP

voip
callinVoIP

injectInputEvent

Table 5.2: Failures Detected by Chizpurfle — continued from previous page

ID

186

54

55

72

86

INPUT

{-188, 91, array of
android.view.InputEvent
objects with a null item, true,
NULL}

{77977\u001a??b\u0004A\
"1?7HanI??77\u0017770147
\u001a\u0006?Fu??UN [...] }

{?7_77\u0010,>\u0001\bK)
737t ?7R7G}IT<T\u00017\u

{7?7y\u00147~7\u001177E\
10007 \u000b? ¢ 7%7\u0016
yD\u0018779t24\u000 [...] }

{?7077\bF?7%7\u00037#,7?
7t\u001a7?797~?7Z$?7J\u0
0167\u0011\u00187\u [...] }

FAILURE

'@*** FATAL EXCEPTION IN SYSTEM
PROCESS: android.ui
java.lang.NullPointerException:
Attempt to invoke virtual method ‘long
an-
droid.view.InputEvent.getEventTime()’
on a null object reference at
com.samsung.android.content.smartclip.
SmartClipRemoteRequestDis-
patcher.dispatchInputEventInjection
(SmartClipRemoteRequestDis-
patcherjava:201)[...]

FATAL EXCEPTION: mainProcess:
com.samsung.android.incallui, PID:
23452 an-
droid.database.sqlite.SQLiteException:
near \",\": syntax error (code 1): ,
while compiling: SELECT
reject_number FROM reject_num
WHERE reject_number="\u000e?7? [...]

FATAL EXCEPTION: mainProcess:
com.samsung.android.incallui, PID:
24643 an-
droid.database.sqlite.SQLiteException:
near \"7?7?7\": syntax error (code 1):,
while compiling: SELECT
reject_number FROM reject_num
WHERE reject_number=>0017\u0 [...]

FATAL EXCEPTION: mainProcess:
com.samsung.android.incallui, PID:
25500 an-
droid.database.sqlite.SQLiteException:
unrecognized token:

(code 1): , while compiling: SELECT
reject_number FROM reject_num
WHERE reject_number=>779 [...]

FATAL EXCEPTION: mainProcess:
com.samsung.android.incallui, PID:
32445 an-
droid.database.sqlite.SQLiteException:
near \"7?7?7\": syntax error (code 1):,
while compiling: SELECT
reject_number FROM reject_num
WHERE reject_number=>7\u0011 [...]

Continued on next page

5.3. Experimental Evaluation 131

Table 5.2: Failures Detected by Chizpurfle — continued from previous page

ID INPUT FAILURE

FATAL EXCEPTION: mainProcess:
com.samsung.android.incallui, PID:
5745 an-
droid.database.sqlite.SQLiteException:
near \"@7d??7\": syntax error (code 1):
, while compiling: SELECT
reject_number FROM reject_num
WHERE
reject_number=70Q7@b}W\u000e [...]

{777L6717{<81>7P! : 7\u00
k057\/?G~\u00037#\u0000
k?7+c\u00167\u001eA?2 [...]
}

105

voip
callInVoIP

The first bug was found in the service spengestureservice, hosted
by the System Server process. The bug was triggered by the method
injectInputEvent. To understand the role of this method, we analyzed
the AOSP, and found a similar method (with the same name and minor
differences in the method signature) provided by the InputManager class
of AOSP, which handles input devices such as keyboards. This method
“injects an input event into the event system on behalf of an application”. It
is likely that the method with the same name in the spengestureservice
performs the same operation for input events from the S Pen in Samsung
devices.

One of the input parameters for this method is an array of android.
view.InputEvent objects, which is an abstract class for representing input
events from hardware components. During the fuzz testing campaign,
Chizpurfle detected a FATAL EXCEPTION when this array is non-null and
non-empty, and at least one of its elements is null (instead, the service does
not fail if the array is simply null or empty). This input causes the service
to throw a NullPointerException that is not caught, causing a crash. We
found that this bug is fully reproducible. The bug can have two different
effects on the Android OS, depending on which process will consume the
injected events from the Input Manager. If the events are consumed by
the process com.android.systemui, the uncaught exception triggers the
restart of the process, and a black screen of the user interface for a few
seconds. If the events are consumed by android.ui, which is a thread of the
system_server process, the fuzzed inputs has a higher impact: it crashes the
system_server and causes a restart of the whole Android device. Several

132 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

method calls with exactly the same parameters values can be arbitrarily
managed in both ways.

The second bug was triggered up when fuzzing the method callInVoIP
of the Samsung’s voip service. The method likely is used to place a call with
Samsung WE VoIP app [119], a stock application that provides voice-over-IP
for corporate users. The method takes as input parameter a string that
represents a SIP address URI (e.g., sip:1-999-123-4567@voip-provider.
example.net). Chizpurfle found that input strings that include specific SQL
control expressions (similarly to single quotes in SQL injection) trigger an
uncaught SQLLiteException by the com.samsung.android.incallui pro-
cess. This process is a customized version of the com.android.incallui
process of the AOSP, which handles the UI that appears during a call, pro-
viding several on-screen functions. The uncaught exception crashes the
com.samsung.android. incallui process, cutting off any ongoing call.

5.3.2 Comparison with Black-Box Fuzzing

We compared Chizpurfle with the black-box approach, to provide a baseline
for evaluating our gray-box approach. We first analyze the performance
overhead of Chizpurfle, i.e., the relative slow-down of fuzz testing when
applying the gray-box approach. The overhead includes the time for gener-
ating inputs and profiling the coverage of the tests. During the whole test
campaign on the Samsung Galaxy S6 Edge, Chizpurfle measured the overall
time spent for executing the test. An individual test takes on average 6.65
seconds, while testing a whole method takes on average 527.60 seconds.

To get the test duration that would be obtained with black-box fuzzing,
we performed a second round of tests by disabling both the Chizpurfle’s
Seed Manager and Instrumentation Module (the two distinctive elements
of gray-box testing). This usage mode of Chizpurfle (denoted as Chizpur-
fleBB) is equivalent to perform black-box fuzzing, without neither collecting
coverage nor using coverage for selecting the test inputs. In Chizpurfle®®,
the inputs are instead generated randomly. For each target method, we
used ChizpurfleP? by applying the same number of inputs that were also
generated by the gray-box Chizpurfle for that method.

By comparing the time to run Chizpurfle®® with the time to run the
gray-box Chizpurfle, we obtain a performance slow-down per service of
11.97x on average. To put this number into context, we must consider that

5.3. Experimental Evaluation 133

performance ovel
o
x

8x
- mill
0X-

spengestureservice
semclipboard
voip
mobile_payment
SecExternalDisplayService
sh_service
AODManagerService
gamemanager
edm_proxy
SecurityManagerService
enterprise_policy

vendor services

FIGURE 5.4: Performance Overhead of Chizpurfle

the performance slow-down is inline with other tools for dynamic binary
instrumentation. For example the Valgrind framework (which also uses
dynamic binary rewriting for complex analyses, such as finding memory
leaks and race conditions), when applied on the SPEC CPU 2006 benchmark
[120], causes an average slow-down of 4.3x when the program is simply
executed on the Valgrind virtual machine; and an average slow-down of
22.1x when performing memory leak analysis. Such overhead when running
tests is rewarded by a higher bug-finding power, and it is in many cases
accepted by developers as shown by the widespread adoption of Valgrind
in automated regression test suites in open-source projects [24]. In our
context, the slow-down still allows the Android system to execute without
any noticeable side effect, thus preserving the intended behavior of the
test cases. Figure 5.4 shows the performance overhead for the two services
previously discussed (voip and spengestureservice), and for other 10
randomly-chosen custom vendor services, which cover the 10% of all the
custom methods.

We then evaluate the gain, in terms of test coverage (the higher, the
better), obtained by applying gray-box fuzzing instead of black-box fuzzing,
given the same time budget T available for both forms of fuzz testing. To

134 Chapter 5. Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations

vendor services

N W A o o N
X X X X X X

code coverage gain

i
x

voip

enterprise_policy -

sb_service
spengestureservice

edm_proxy
semclipboard

mobile_payment -

gamemanager
SecurityManagerService

SecExternalDisplayService
AODManagerService

FIGURE 5.5: Code Coverage Gain of Chizpurfle

measure the test coverage of black-box fuzzing on the vendor customization,
the only possible approach is to apply the Instrumentation Module of
Chizpurfle (but without using the Seed Manager, in order to fuzz inputs in
a random way). We denote this mode as ChizpurfleB8+COV.

However, we need to take into account that code instrumentation slows
down the execution of the black-box tests, and thus simply applying Chizpur-
fleBB+COV for the same amount of wall-clock time of the gray-box Chizpurfle
would unfairly penalize the black-box approach. Therefore, to obtain a fair
estimate of the test coverage for black-box fuzzing, we compensate for the
slow-down due to instrumentation by granting it a higher time budget than
gray-box fuzzing. The time budget is obtained by multiplying the time bud-
get of gray-box fuzzing for the slow-down due to instrumentation (while
11.97x is the average slow-down according to the experiments discussed
above, here we applied to each method its slow-down factor).

On average, Chizpurfle covers 2.3x more code than the black box ap-
proach. The gain in terms of test coverage is shown in Figure 5.5 (which
focuses on the same services analyzed in Figure 5.4).

By looking at the code coverage gain per method (see Figure 5.6), we
noticed that Chizpurfle was more effective on those methods that take

5.3. Experimental Evaluation 135

code coverage gain
N w B o o ~ o =]
X ¥ x & 8 X X X

x

[© [2] @ 12 o c f=4 o

e S22 S%s85s2%5 855 3B

55 T GE L 8= 2 st 22 2 o3 33

58 Y 285 23 2l 3o ok &9 g s &2
o0 N GZ2 SH a8 v oL T2 w =

%o 55 4% 5@ 25 €2 83 ££ 82 @ b

cy © 2 3258 8K 29 ET 55 g2 R}

SESE L2207 23 98 5L g3 S 5 =

£E Q558 32 §3 22 €5 <X 7Q £8 s

sl gL 3< 20 3 ST 32 - 2 X5

o= 35 o g T ®© w

E2 85 £8 25 S5 2% 3 3% %

g2 = e s2

oE a3 (=3 S8 © i)

5 55 T .2 es £&

T £c j=§= =

5~§ Jol] 9

S X E ©

3 8% =

ko aQ

S iy o

3]

« o]

o

vendor services methods

FIGURE 5.6: Code Coverage Gain of Chizpurfle per Method

complex data in inputs, such as semclipboard’s method updateFilter takes
as input an object of type android.sec.clipboard.IClipboardDataPasteEvent for
managing clipboard data. Instead, in the case of simpler methods, such
as getters and setters, the gray-box approach has a minor impact on test
coverage.

137

Chapter 6

Conclusion And Future
Directions

Projects we have completed demonstrate what we know — future
projects decide what we will learn.

— Dr. Mohsin Tiwana

This thesis presented novel methods and experimental procedures to as-
sess the dependability of mobile OS, specifically Android OS, fundamental
for further improvements.

6.1 Fault Injection Testing

I presented the SIR methodology, which is based on the analysis of software
interfaces and resource of the components. I applied the methodology
on 14 components from 6 different subsystems of Android (i.e., phone,
camera, sensors, activity, package, and storage subsystems). This results
in a Android Fault Model for these subsystems that counts more than 870
potential faults for the Android OS.

The extracted fault model is the base for the fault load used by An-
droFit, the Android Fault Injection Tool, which design and implementation
is presented in this thesis. AndroFit faces several technical problems to
inject component failures in the Android OS, and to orchestrate a series of
consecutive fault injection experiments.

AndroFit proved its effectiveness with an experimental campaign, exe-
cuting fault injection experiments on three different Android smartphones

138 Chapter 6. Conclusion And Future Directions

running Android 6 (Marshmallow): Huawei P8, Samsung Galaxy S6 Edge,
and HTC One M9. It automatically executed more than 700 experiment on
the three devices, for a total of 2196 experiments. Results show the differ-
ences on the dependability approach among vendors. I also presented some
reliability improvements that can be applied by developers, and discussed
some lesson learned that can be useful to future mobile OS fault injection
practitioners.

The Android Fault Model and AndroFit could and should be extended
to all the Android components, that requires a greater effort of reverse
engineering and source code analysis. Fortunately, AndroFit is designed
with maintenance in mind so that porting to next Android versions or
new components should be done with little effort. Furthermore, the SIR
methodology is valid for other mobile OS as well, such as iOS, and fault
injection could be enabled also for this technologies. AndroFit can be part
of the first fault injection testing tools family for mobile platforms.

6.2 Software Aging Analaysis

We analyzed software aging issues in the Android OS, by performing a
large experimental study across several devices, versions, and test config-
urations. From the stress tests, we obtained a large amount of data that
provided us useful insights. Software aging effects in the vast majority of
the tests, which thus confirm that the Android OS is indeed affected by
software aging effects. Software aging impacted on the responsiveness of
the device, as confirmed by the increasing, statistically-significant trends of
the launch time of Android activities. Moreover, increases of the memory
consumption of key processes of the Android OS.

The analysis considered devices from four leading Android vendors
(Samsung, Huawei, LG, and HTC), and software aging occurs consistently
across these four vendors. Thus software aging is not limited to specific
Android devices. Moreover, the software aging effects are exacerbated by
the specific Android vendors, as they apply customizations to the basic
Android OS. Furthermore, the workload is another factor that significantly
contributes to the extent of software aging (e.g., by stressing the parts of
the Android OS that are affected by aging-related bugs), as in our tests the

6.2. Software Aging Analaysis 139

Chinese applications revealed higher software aging trends of the Android
0s.

Similarly, the analysis of the presence and the variability of software
aging across different versions of the Android OS considered the three most
recent Android releases at the time of writing, i.e., Android 5 (Lollipop),
Android 6 (Marshmallow), and Android 7 (Nougat). All the considered
Android versions are affected by software aging, thus pointing out that this
problem is not limited to specific Android versions, but that the problem
permeates the Android OS. Moreover, tests did not show an improvement
of the Android OS over time, as the most recent Android release shows
aging trends that are comparable to the previous one (i.e., , there are no
statistically-significant differences). This finding remarks the need for more
extensive tests to fix aging-related bugs, and for software rejuvenation
solutions to mitigate the effects of the (unavoidable) aging-related bugs that
get shipped with the products.

A final analysys of metrics inside the Android OS pointed out the possi-
ble causes of the software aging problems. The software aging trends are
accompanied by a statistically-significant increase of the memory consump-
tion of key Android processes. In particular, the memory consumption
of the System Server (an Android OS process that runs many of the basic
services of this system, including the Activity Manager for starting user
applications) is significantly correlated with the performance degradation
trends. The detailed analysis of these processes, by looking at garbage
collection and task-level metrics, pointed out that the System Server spends
more and more time on garbage collection during the experiments, which
is a strong symptom that the memory utilization becomes more fragmented
and bloated (i.e., burdened by unnecessary objects) over time. Moreover, the
task-level analysis identified the subsystems of the Android framework that
exhibit increasing trends in terms of CPU utilization and virtual memory,
which point out that these components are the ones most exercised in our
experiments and are the possible source of the software aging effects.

We point out that the software aging effects can be traced back to the
most basic elements of the Android OS. The extent of software aging varies
with the version of the Android OS, the workload and other conditions;
however, the fact that software aging manifested consistently across the
experiments suggests that the aging issues are not limited to components

140 Chapter 6. Conclusion And Future Directions

exercised by specific use cases, but are part of the fundamental components
of the OS that are always exercised by the user. The information from
the experiments is a useful starting point for developers to identify the
root causes of software aging issues in the source code of the Android
OS. For example, the processes and services with anomalous GC times
and CPU/virtual memory utilization should be scrutinized with more
emphasis, by performing a detailed memory profiling of these services to
identify stale objects and other bad memory management patterns. Since
profiling is a costly activity (both in terms of computational cost, since
the profiling can significantly slow down the execution of the tests and
produce large amounts of data, and in terms of time needed to analyze and
interpret the data), and since the Android OS has an extensive code base
(several millions of lines of code), it is important to restrict profiling to the
components that are more prone to aging-related issues. An alternative
approach is to adopt software rejuvenation strategies, since the underlying
software aging bugs may be too costly to be fixed (e.g., due to the long
time that may needed to reproduce them); moreover, software rejuvenation
can mitigate software aging bugs that may have been missed or that may
arise in subsequent versions of the Android OS. The information from the
experiments can be leveraged to design and to deploy efficient software
rejuvenation solutions. Since software rejuvenation also comes with a cost
(e.g., in terms of amount of time during which the device is not usable or
slowed-down due to rejuvenation), it is important to keep low this cost in
order to improve the quality of experience of Android users. This objective
can be pursued by developing software rejuvenation that target selected
components of the Android OS. Indeed, a reboot of the Android device can
definitely clear software aging effects, but it has a noticeable impact on the
user experience, since a reboot makes the device unusable for some minutes.
This impact can be reduced by focusing rejuvenation on specific processes
of the Android OS, for example by restarting or cleaning-up the state of a
selected system process. Knowing the Android processes most prone to
software aging (such as the System Server) allows to focus the engineering
efforts to implement rejuvenation actions at the process-level, such as to
introduce mechanisms to preserve any critical state during the restart of
a process, such that no Android applications or other system processes
are affected. Moreover, the impact of software rejuvenation can be further

6.3. Fuzz lesting 141

reduced by rejuvenating the Android OS at a finer grain, by cleaning-up
the state of specific services inside the processes of the system. For example,
we are currently investigating rejuvenation mechanisms that periodically
flush the data structures (such as Java containers) that tend to get bloated
over time, without restarting neither the Android device nor the process
that run the service. Rejuvenation can focus on the services that are most
used and/or that exhibit a higher utilization CPU and memory, such as the
services of the System Server and Surface Flinger that were pointed out by
our analysis. These actions should be triggered with a measurement-based
approach, by monitoring the memory utilization and garbage collection as
we did in our tests (e.g., by sampling the PSS and collecting logs from the
ART) in order detect the onset of software aging effects.

6.3 Fuzz Testing

Chizpurfle filled the gap in the mobile fuzzers: it is a novel gray-box fuzzer
designed to test custom system services from Android vendors. This tool
exploits dynamic binary instrumentation to measure test coverage and to
drive the selection of fuzz inputs. The experimental results on a commercial
Android device from Samsung showed that the gray-box approach can
discover relevant bugs, that it has a reasonable overhead, and that it can
increase the test coverage compared to the black-box approach.

The gray-box fuzzing represents a promising approach for testing pro-
prietary Android services in more depth. The Chizpurfle tool represents
a valuable opportunity for research on fuzzing in mobile devices, by al-
lowing to experiment with different heuristics for evolutionary fuzzing
(e.g., for determining when to stop fuzzing, for prioritizing seeds, and for
selecting fuzz operators), as happened for similar fuzzing tools that were
applied in different context than mobile devices. Another possible exten-
sion of Chizpurfle is to include support for system services implemented
in C; since there is not reflection API, other reverse engineering techniques
should be used in order to extract the method signatures.

142 Chapter 6. Conclusion And Future Directions

6.4 Further Discussion

On August 21, 2017, Google released to the public Android 8 (Oreo) [121].
This version is a major release that introduces several changes, particularly
for the vendor-related code. It better formalizes the role of the HAL in-
terfaces, by introducing the HAL Interface Description Language (HIDL)
similar to AIDL (Section A.2). The HAL will implements communication in
a binderized mode, i.e., by exploiting the Binder IPC mechanisms. As this
communication dramatically increases binder traffic, several improvements
are designed to keep binder IPC fast. First of all, two new binder contexts
backed by two new device file are added: the /dev/hwbinder to enable com-
munication between framework/vendor processes and between vendor
processes with HIDL, and the /dev/vndbinder to enable communication
between vendor processes with AIDL. They left the /dev/binder only for
communication between framework processes with AIDL. Another im-
provement for generic binder IPC is the scatter-gather optimization, which
eliminates the need of Parcel objects. This re-architect of Android changes
significantly the way vendor customizations are implemented, and poses
new challenges and research opportunity on the dependability study of

Android vendor customizations.

Mobile devices can be considered enablers for a larger and even more
pervasive computing revolution, the Internet of Things. IoT allow object to
be sensed or controlled remotely, creating a deep integration of the physical
world into computer systems. Sensors and actuators exploit IoT to create
smart homes, intelligent transportation, smart cities, smart manufacturing,
and more. These technologies exacerbate the problem of undependable
embedded devices, whereas smartphones are only tip of the iceberg. Google
already entered the field with Android Things [122], a reduced Android
release to build connected devices. This dissertation focuses mainly on
mobile devices, but it can be a notable start point for the analysis of software
dependability of the whole IoT.

If we live in a software-based environment, better it is reliable.

— Antonio Ken Iannillo

143

Appendix A

Android Insights

You know nothing, Jon Snow.

— Ygritte

This appendix presents Android and its internal, as a reference for this
thesis. It is based on books study [78,85], websites visits [9,123], source code
inspections [86], and reverse engineering on actual devices. Concepts in
this appendix are valid from Android 5 (Lollipop) and updated to Android
7 (Nougat).

A.1 Android Architecture

An Android System consists of several layers, as shown in Figure A.1.

Hardware

The Android device hardware on which the Android Software Stack is
installed. It includes all the physical resources, such as CPU, RAM and
battery, embedded in a single device with a great variety of sensors and
other devices, e.g., touchscreen, camera, Wi-Fi antenna and accelerometer.

Linux Kernel

The whole Android platform is based on the Linux kernel. Similar to other
Linux distributions, Android applies its own patch on the vanilla kernel
available from the Linux Kernel Archives. However, Android cannot be

144 Appendix A. Android Insights

The official website [123] defines Android as an OS, but if we visit the official
website of the AOSP [9], Android refers to both “an open source software
stack for a wide range of mobile devices and a corresponding open source
project led by Google”. In this thesis, we use the following definitions:

Android OS: the core OS built upon the Linux Kernel through which
all devices resources are accessed;

Android Framework: the collection of libraries and classes with the
common goal of providing a base on which to build applications (apps)
that extend the Android OS;

Android Software Platform, or Android Platform, or Android Software
Stack, or Android Stack: the open source software stack that provides
all the necessary software to run a wide array of devices (it includes
the Android OS and Android Framework);

Android System: the combination of an Android device hardware and
the Android Software Platform that runs on it;

Android Ecosystem: the system of interdependence between users,
developers, and equipment makers of the Android System.

Unless specified, the use of the term Android alone refers to the Android
System.

considered a proper Linux distribution. Indeed, whereas in any Linux
distribution a practitioner can substitute its kernel with another Linux
kernel with little to no impact on the rest of the distribution’s components,
Android’s user-space components run only an Androidized kernel or not
at all. These unique features stem from specific kernel modules, namely
Androidisms, such as the binder driver, wakelocks, low-memory killer,
anonymous shared memory, alarm, logger, paranoid networking, and RAM
console [78].

Hardware Abstraction Layer

The hardware abstraction layer (HAL) can be considered as a library loader,
which loads vendor-specific hardware libraries that access and use the
hardware components. An HAL module provides standard interfaces to

A.1. Android Architecture

145

Application Layer

v
c
s}
£
[}
©
©

services

Java Layer

Android Framework
[power][activity][package]
camera sensor mount [3
[service][service][service]
Native Layer

Android RunTime

service [vold]
N

A

androidisms

Linux Kernel

[low memory J[ashmem J berder
killer [driver]
[wakelocks][logger][] _

Hardware

FIGURE A.1: Android System Architecture

146 Appendix A. Android Insights

the higher layers, independent from the specific hardware and drivers
implementation, and it is loaded by the Android System at the appropriate
time.

Native Layer

The native layer is implemented in C and C++ and consists of the Android
Runtime, Native Libraries, and Native Daemons.

The Android Runtime (ART), introduced in Android 5 (KitKat), is the
environment that allows Java-based and Android-specific code to be exe-
cuted and to interface with the rest of the system. Every app run in its own
process and with its own instance of ART. ART executes bytecode optimized
for minimal memory footprint, namely DEX code.

Native Libraries are written in C and C++ and their functionalities are
available within the Android Platform. They includes, among others, the
Android implementation of the C library, namely Bionic.

The Native Daemons are key processes that continue to run throughout
the lifetime of the system and provide essential services. The most important
one is the init process. This process is the first, and only, user-space process
started by the kernel and, then, it is responsible for spawning all other
processes and services in the system.

Java Layer

The Java Layer is implemented in Java and consists of System Services and
Android Framework.

The System Services are modular components that cooperate to manage
all the features of the entire Android Platform. They essentially provides
software interfaces, through the binder, to make an object-oriented OS built
on top of Linux kernel.

The Android Framework is a collection of Java libraries that exposes
all the Android OS features through Application Programming Interfaces
(API). These APIs are the main instruments a developer needs to create
Android apps. The Binder Inter-Process Communication (IPC) mechanisms,
Section A.2, allows the Android Framework to cross the process boundaries
and to interact with the System Services.

A.2. Binder IPC 147

The Java Layer can communicate with the Native Layer (mostly Native
Libraries) also through the Java Native Interfaces (JNI).

Application Layer

The Application Layer includes applications or apps. The apps extend the
functionalities of the device and they are either developed by the manu-
facturers for the specific device (stock apps) or downloaded from a market
such as Google Play (third-party apps).

A.2 Binder IPC

Android’s Binder Inter-Process Communication (IPC) mechanism enables
remote method invocations from one Android process to another. It is
of paramount importance since Android is designed on a strong process
isolation principle, between both apps and different components of the
Android platform itself. The Binder architecture consists of three parts.

the Binder Kernel Module: it’s a special kernel module that expose
a device file, namely /dev/binder. It is also referred to as the Binder
driver. It implements the remote procedure call (RPC) model, i.e., the
sending process submits an operation to the kernel that is executed in
the receiving process. A message in the Binder Kernel Module is re-
ferred to as a transaction, which identifies the sender and the receiver,
it determines the target operation, and it contains the complete data
to exchange.

the Binder User-Space API: it is a user-space object-oriented library
(implemented both in Java and C/C++) that provides an API simpler
to use than the Binder Kernel Module. It actually wraps the ioctl
invocations defining Binder Proxies, used by the client to invoke a
remote method, Binder Objects, implemented by the server to receive
transactions from remote clients, and Parcel, a container for reading
and writing data exchanged in a Binder transaction.

the Binder Interfaces: a high-level interface-based programming
model, that simplifies the Binder IPC hiding all the internal mecha-
nisms. Once defined an interface with the Android Interface Definition

148 Appendix A. Android Insights

CLIENT (SERVER \

SERVICE IMPL
SERVICE PROXY SERVICE STUB

BINDER PROXY BINDER OBJECT

kernel m userspace
-

BINDER DRIVER

FIGURE A.2: Binder IPC Iteration Between Two Android
Processes

Language (AIDL), stub and proxy can be automatically created by the
aidl command-line tool. The proxy marshals the method call in to
a Parcel and calls the underlying Binder Proxy. The stub is called by
the Binder Object and decodes the Parcel into the appropriate method
and arguments to call.

Figure A.2 depicts the flow of data to implement a remote method call
between an Android process that acts as a client (i.e., the caller) and one
that acts as a server (i.e., the callee), thought the Binder IPC mechanism.
Let’s suppose that the client already obtained the Binder ID or handle of
the server (this aspect is covered in Section A.3). clt first marshals the

transaction objects into Parcels and 9' through the Binder User-Space API,
calls an ioctl syscall on the /dev/binder device file. The data is transfered
to the kernel, and the Binder Driver looks up the required service to obtain
its address space. The data is then copied to the server’s address spaces and
ethe Binder driver wakes up a server worker thread to handle the request.
eThe server unmarshals the Parcels, check for client’s permissions, and
performs the requested service. Once the server computes a response, it is
marshaled and sent back to the Binder driver, which dispatch it to the client
in turn.

A.3. Service Manager 149

A\ A\
A\ A\
SERVICE MANAGER SYSTEM
SERVICE SERVICE

(AOSPor CLIENT

SERVICE LIST VENDOR)

V' N y N -»
III?IIIIIIIIIIIIII.... E EEEEEEEEREIEEEEEEER

kernel ® userspace
n
-

BINDER DRIVER

FIGURE A.3: Android Services and Service Manager

A.3 Service Manager

The Android OS provides a service-oriented architecture to manage its
several services, as shown in Figure A.3. A process in the system should
have a handle to the system service it wants to invoke through Binder. The
Service Manager should be considered as a registry of all services available,
and it is started by the init daemon before any other service to properly
provide this functionality. Indeed, at boot time, cthe Service Manager
registers itself as the context manager, by sending a special message to the
Binder Driver. The Service Manager has a known handle, the Binder ID 0,
so that any process in the system is able to communicate through Binder to
it. Then, ea service provider publishes its services by sending a message
through the Binder driver to the Service Manager. When a client application

wants to contact a service, eit tirst queries the Service Manager with the

service name, and then einvokes the service directly through Binder with
the handle the Service Manager provided.

The Service Manager is also invoked by some command-line utilities,
such as dumpsys. This utility dumps the status of a single or all system
services, obtaining the list of all services and the single handle querying
the Service Manager. Once it get the handle, dumpsys invokes the service’s
dump function to dump its status and displays it on the terminal.

151

Appendix B

Android Fault Model

If you want something new, you have to stop doing something old.
— Peter F. Drucker

This appendix shows the Android Fault Model, presented and used as a
reference in subsection 3.2.2.

phone subsystem:

Table B.1: RILD Fault Model
Table B.2: Baseband Driver and Processor Fault Model

camera subsystem:

Table B.3: Camera Service Fault Model
Table B.4: Camera HAL Fault Model
Table B.5: Camera Driver and Hardware Fault Model

sensors subsystem:

Table B.6: Sensor Service and HAL Fault Model
Table B.7: Sensors Drivers and Devices Fault Model

activity subsystem:
Table B.8: Activity Manager Service Fault Model

package subsystem:

152 Appendix B. Android Fault Model

Table B.9: Package Manager Service Fault Model
storage subsystem:

Table B.10: SQLite Library Fault Model

Table B.11: Bionic Library Fault Model

Table B.12: Mount Service Fault Model

Table B.13: Volume Daemon Fault Model

Table B.14: Storage Drivers and Hardware Fault Model

153

Appendix B. Android Fault Model

a8vd 3xau U0 panuizuoD

LINHISNVIL
INHLLINIHLNI
INANVINIA]

INHISNVIL
LINHALLINYAINI
ININVINTA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LNHISNVIL
ININVINTA]

INHISNVIL
INANVINIA]

LINHISNVIL
INANVINIA]

LNHISNVIL
ININVINTA]

LINHISNVIL
INANVINIA]

LINANVINIHJ

HONHLSISYA

9p0d I0LIS Ue SUINjal pue
S[Tey 39520s ay) uo uonerado pear v

A1daz ou saateda1
193008 3y} uo uonerado pear v

pakerop
SI 39208 ay3 uo uonerado pear y

SIOMIWIRI AU} YIIM SJEDTUNUILOD
03 J9Y20S ® Sasn (1Y Y.L
SPeaIY} US9M}3q UOTROTUNUILIOD
a[qeus o3 sadid sasn (1Y YL
ansst Surde aremyjos
e 0} anp s103d1I0sap 91y SYea] (I IR
ansst Surde aremyjos
e 0} anp Arowawr s)ed] (1IN
reis
0} (I'I[Y S9SNed J[Ney dIeMOs

yser
0} ("IN SIsned J[Nej aremijos y

NOILJIRIDSHA

LHMO0S A1
NO dNVININOD
ANOHd
HAIADAYT

LHMO0S AT
NO dANVININOD
HNOHd
HATHOHY

LHMO0S A1
NO dNVININOD
ANOHd
HAIADAYT

LAXO0S

ddId

CRIE]

AJOWHIN
SAVAIHI®
SSHOOUd

SAVHIHI®
SSHO0Ud

HOdNOSHY
/HDIAYES

Liqerreae

ssaurEw

ssaur[owr}

Juawseurwr
901N0Sa1

JuswRdeuew
901n0Sa1

Juswadeurw
90IN0Sa1

Juawseurewr
901N0Sa1

Juswadeurw
92IN0sa1

Juswadeurwn
90IN0Sa1

HAOW
HANTIVA

[PPON e A'IIY -1°9 d4714V.L

S[rej 31 g 3195208 1R
3} WoIj pear 0} SaLn (I YL

19320s d'IIY =43
w01y peal 03 [qeun st 1Ty Y.L

pauodisod st A1oA1ap JuaAd
pue Aduajey Y31y e Yjim 3o300s
QTN 943 woxy spear (IR YL
193208 PILI oY}
uado jouured 10 sdoxp QNI oYL

sadid /syexo0s
uado jouued 10 sdorp IR YL

(SurSe aremyjos o3 anp)
SO[1§ 93ed0[e Jouued (IR YL
(SurBe axremyjos 03 anp) Arowewr
93ed0T[e Jouued (I dYL

s3uey 11y 2YL

saysen (IR YL

HANVN

Appendix B. Android Fault Model

154

a8vd 3xau uo panuizuoD

LINHISNVIL
INHLLINIAINI
ININVINTA]

LINHISNVIL
INHLLINIAINI
ININVINTA]

INHISNVIL
INHALLINYAINI
ININVINIA]

INHISNVIL
INALLINIALNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
ININVINIAd

LINHISNVIL
INHLLINYAINI
ININVINTA]

LINHISNVIL
INHLLINFMAINI
ININVINTA]

INHISNVIL

INHLLINIHLNI
INANVINIA]

HONHLSISYHd

90D I0LId Uk YIIM S[Tej [duueyd
1V a3 uo uonerado ayam v

paAerap are 1ossadoxd
puegaseq ay} 03 SPULWIIOD [

3507 are 10ssado01d
puegaseq ay} 03 SPUBWIIOD [

ejep
paidniiod spuas uonerado M v

9POd 011D Uk SWINdI pue s[rej
393[20s 3y} uo uonerado LM Y

pafeap
SI39520s a3 uo uonerado LM v

pawioyiad roasu
ST 393[20s 3y} uo uonerado NuIM Y

eyep
pardnirod s3o8 uonerado pear v

NOILdR-—IDSHA

INHAOW WOUd
ANVININOD
IV HLRIM

INHAOW
OL ANVININOD
IV HLRIM

WHAOW
OL ANVININOD
IV HLIIM

LAXO0S a1
NO SLNHAH
HNOHJ dNHiS

LAMO0S aT1rd
NO SLNHAH
HNOHJ dNHiS

LAMO0S a1l
NO SINIAH
HANOHd AN4S

LAXMO0S ATl
NO SINHAH
HANOHJ dNHS

LHMO0S A1l
NO ANVININOD
ANOHd
HAIADAT

HOdNOSsHY
/HDIAMES

Anqerreae

ssaurEw)

ssaurEw)

anyea yndino

Aiqepreae

ssaurEwW)

ssaurEwWT}

anyea yndino

JAOW
HANTIVA

a8vd snoraaid wioif panuiguod — PPOIN e QIR :1°d 2[9eL

JIOLId UE SIAIIAI
31 Inq 10ssa001d puegaseq ay
0} BJep IV 9LIM 0} SaL1) (JITY dY.L

Kouayer Y3y e ypim rossadord
pueqaseq a3 03 SALIM (I YL

10ssa001d
puegaseq Yy} 03 pUBLIWOD
LV 9J11Mm 03 3[qeun sT (IR YL

3930S (I'II Y3 uo asuodsar
pa3dnriod e sayum (Y Y.L

STrej 31 Inq 1208 QIR
AU} U0 3}1IM 0} ST} (ITIY YL

pauodysod st A1aAT[0p
asuodsax pue Aousre ySiy

© IIM 3920s (1IN 2} ySnomyp
uoryerado spuss N YL

393208 11 2Ud
OJUI 9JLIM 0} d[qeun St (1Y YL

39320s ("I o3 wioxy 3sanbazx
pa1dnizod e spear T 9YL

HNVN

155

Appendix B. Android Fault Model

a8vd jxau 1o panuizuod)

INHISNVIL
INANVINIHJ

HONHLSISYHd

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INALIINIALNI
INANVINIHd

HONHLSISYA

‘aremprey ayy Aq pasrer

JIOLId UE IO ‘PRO[ISAO UE “[SUISY dU[}
ur 3nq areMj0s € 03 anp (suor3ax

/1 ‘AI0waur) s90IN0saI 9)edo[[e
0] d[qeun ST IDALIP DIAP YL

NOILLdI—IOSHd

AJOWHIN

HOANOSHA
/HADIAIES

JuawLeuew

92INn0sal

HAOW
HINTIVE

K1ourowr ayedo[[e
03 d[qeun st 12ALIp duoyd ayy,

HNVN

[PPOIN HNneq I0SSad0IJ pue I2ALI(] puegaseq ¢ q H1dV],

pardnurod st eyep 1y

9PO0d 011D Uk }IM S[TeJ [ouueld
1V 9y uo uonerado pear y

paAeap are 1o0ssadoxd
puegaseq ayj 03 SPUBLUWOD |y

1s0[a1e 10ssadoxd
pueqgaseq a} 0} SPULWIWOD [

pardnriod st eyep 1y

NOILJRIDSHA

INHAOW WOUd
ANVININOD
LV aviad

INHAOW WOIA
ANVININOD
Lv avidd

INHAOW WOIA
ANVININOD
Lv avidd

INHAOW NOUd
ANVININOD
Lv avidd

IWHAON
OL ANVINNOD
IV LM

HOINOSHY
/HDIAYES

anpea yndino

Amqerreae

ssauTPWI}

ssaur[owr}

anyea yndino

HAOW
HINTIVA

a8vd snotaaid wolf panujuod — PO Ied 1N 1°d d1qeL

I0ssad01d pueqgaseq woig ejep
1V pa1dniiod spear QI 9YL

I0LI3 UB S9AIIAI
313nq 10ssa001d puegaseq woiy
ejep I peal 0} sarg TN YL
Aduayer
Y31y e y3m 1ossadoxd puegaseq
3y woxy spesr 01 YL
10ssa001d

puegaseq Y} WOy PULUIuod

LV peai 03 d[qeun st 1A YL

10ssa001d puegaseq 03 eyep
1V pa1dniiod sajtam (IR YL

JNVN

Appendix B. Android Fault Model

156

LINHISNVIL
INHLLINTAINI
ININVINTAJ

LINHISNVIL
INHLLINFMAINI
ININVINTA]

INHISNVIL
INHLLINIHLNI
ININVINTA]

INHISNVIL
INANVINIHd

HONHLSISYHd

‘paroadxa
uey) awm 193uof saxe) suorjerado
O/ JUSLIND Y[, "3DTAP S} UHIM
1020301d UoTEIIUNWIWOD (/T Y} UT
JIOLId Uk SISNEd ‘Drempiey sy} Woij
SuTwT} JUSAS JDLIODUT Ue IO “ISALIP
901ASP A} Ul Inq aremijos

‘pawroyad jou st suonyerado
O/ JUSLIND A, *901AP 3} HIM
1050301d UOGEIIUNWIWOD (/T 3Y} UL
IOLId Uk SISNED ‘dIempiey ay} Woij
SUTUIT) JUSAS JOLIODUT Ue IO “ISALIP
901A9P dY} ur Snq areMmyos

"JOIId Ue SUIN}dI SAeMTE DTAD
drempiIey aYJ, ‘dd1AdP A} YIM
[020301d uoTEdTUNUIWOD)/ 9} Ul
JIOLI3 Uk S9sned ‘arempiey] s} Woij
Bururn JUsAS 1091I00UL U IO “IOALID
901AIP 3} Ut 3nq 2IeMJos

suorssturrad
9)IIM /eI JO Or[9y} 0} aNp
Passad0k 3 JOUUED (,WPS /AP /
‘ wodadde /asp/ “ordurexs 103
‘1durexs 105) o1y 90149 [EN}IIA YT,

NOILdR-—IDSHA

TVNOIS ANOHd
HATHOHI
/ TVNDIS
ANOHJ AN4S

TVNDIS ANOHd
HATHOHE
/ TVNDIS
ANOHd AN4S

TVNDIS ANOHdJ
HATHOHE
/ TVNDIS
ANOHd AN4S

dTId 3DIAFdA

HOdNOSsHY
/HDIAMES

ssaurEwWIT)

anyea yndino

Aypiqeyreae

Juswadeurw
90IN0Sa1

JAOW
HANTIVA

uonyerado
O/ ue jo [[e3s ays Sursned
“IDALIP 9DIASP U} UI JOLID [0D030L]

uonerado
0O/1 ue jo uondniiod ay Sursned
“IDALIP 9DIASP U} UI JOLID [0D030L]

uorjerado
O/ ue jo 310qe ayj Sursned
“ISALIP 3DTASP SY} UI IOIId [0D030I]

passadoe
aq joured 1aATIp duoyd ay L,

HNVN

a8vd snoraaid wioif panuijuod — PPOIN INe I0SSV0IJ pue ISALI(] pueqaseq :¢'g d[qeL

157

Appendix B. Android Fault Model

a8vd jxau uo panuizuo)

LNHISNVIL
ININVINTA]

LINHISNVIL
ININVINTA]

LINHISNVIL
ININVINIA]

LINHISNVIL
INANVINIA]

INANVINITAD

LINHISNVIL
INANVINIA]

HONHLSISYA

-a3essow e puas 0} Jurdwepe
USUM S[IeJ I9AISS BIPIW d],
*SI9JJTIq UOTJEITUNUIUIOD IPUI(
oy Suneinyes snyj ‘peolIsA0
ue Aq pajodjje SI I9AISS RIPSWL Y],

“UOTEDTUNIOD $$3001dIa)uT 10§
3930s 10 adid mau uado 0y apqeun
SI JoAIaS erpaw 3y], 'sadid pue
S}33[20S A} SIYLINJES Jelf} “PLOTIdAO
ue £q pajoae ST I9AISS BIPIW Y],

‘s103drosap o1y uado 03 ajqeun
SI 19A19S eIpawt Y], s103dLIosap
a1y Sunjeay ‘Burde aremyjos
Kq pa3oayye ST I9ATSS BIPIW Ay,

“Krowaw ayedo[e
0} 9[qeun SI IAISS BIPIUT 9Y],
‘Krowowr Sunyes] ‘Surde aremijos
£q pa30djye SI I9AISS BIPIW Y[

"S9USEID JOATSS BIPIW A} ‘Dulr)
ur Apopuey ‘uonerado ayy Surmp
pue 910§9q S[qe[IeAR ST BISWED 3],

‘s@uey I9AISS BIPIW S} ‘OWy
ur Apuwopuey ‘uoryerado ayy Surmp
pue 21059q d[qeTeAR ST BISUIED YL,

NOILJIRIDSHA

1DA[90 JHANTd

HdId/ LA3MD0S

ERIE]

AJOWHIN

SAVAIHI®
SSHO0Ud

SAVAIHI®
SSHOOUd

HOdNOSHY
/HDIAYES

[9POIA }Ne 9TAISG eIOUTRD)

Juawseurwr
901N0Sa1

JuawLeurew
901N0Sa1

Juswadeurwn
90IN0Sa1

Juowedeuewr
901N0Sa1

Juswadeurw
90IN0Sa1

Juswadeurw
90IN0Sa1

HAOW
HANTIVA

:¢'g 414vy],

1opuig auy
0] SS9d0¢k JOUUR) I9AISS NEUQE mﬂ,ﬁ

(BurSe
aremyjos o3 anp) sadid 10 soxd0s
uado Jouued I9AISS BIPAW AT,

(Burde aremyyos 03 anp) saqy
uado Jouured I9AIIS eIPaW AT,

(SurBe aremyjos 03 anp) Arowowr
9)EDO[[E JOUUED TOAISS RIPIW Y],

Yselrd IoAI3S BIPIJA

uey 10A19s BIPIIN

HANVN

Appendix B. Android Fault Model

158

a3vd 3xau uo panurguoD

LNHISNVIL
INHLLINIHLNI
INANVINIA]

INHISNVIL
INHLLINIHLNI
ININVINIA]

INHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
LINHALLINYAINI
ININVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

INHISNVIL
INHLLINIHLNI
ININVINIAd

INANVINIAL

HONHLSISYHd

aw jo porrad
Zuoy e 19)5e paydaooe st 3sonbax
a3 INq “BISWED S} YHM 09PIA
e Surp1ooar jre)s 0} sysonbar esn v

*9su0dsal B S9ATRDAI 19A3U Jsanbar
) 1nq “usa1ds 3y} uo Jurkerdsip
maradxd ay dogs 03 sysanbar 1osn v

-oun 3uof e saye} ysonbar
) 1nq “usa1ds 9y uo Jurkerdsip
maraadxd ayy dogs 03 sysanbar sosn v

“IOLID ue
ym sprey ysanbaz ayy Ing ‘“repnys
oy} SupdIp 210534 303[qns Iy}
jo maraaid e a9s 03 sysanbaz 1osn y

*9su0dsar e S9AIDAX
19A9u 3sonbar ayy Ing “Tepnys
a SunIp a1039q 03lqns Yy
Jo maraaid e 99s 0 sysonbai 1osn y

-auy

Guo e saxe) 3senbar ayy 1nq “ennys
oy} SumdIp 210524 303[qns Iy}

jo maraaid e a9s 03 sysanbaz 1osn y
‘[ood peany} sIyy Jo uoneZIeHIUL
oy s1odurey jney sty ‘sed1AIaS

ST 10§ speaIyy o) adeuewr 03 [ood
eIy} B S9SN I9AIISEIPIW Y],

NOILdR-—IDSHA

ONI
“AYODHILAVILS
VIINVOI

MATATIIIOLS
VIINVOI

MATATIIIOLS
VIINVOI

MAIATIJLIVIS
VIINVOI

MATATIJLIVIS
VIINVOI

MAIATIJLIVIS
VIINVOI

SAVAIHIL®
SSHOOUd

HOdNOSsHY
/HDIAMES

ssaurPwIy

ssaurEwIy)

ssaurwI

Ayiqerreae

ssauT[own}

ssaurEw

JuawLeurewr
901N0Sa1

JAOW
HANTIVA

Kepop
Y31y e 1eyye 3senbax Surpioodar
11e)s A} sassadoid eroure)] Ay,

jsonbar maraaxd doys oy
0} puodsar jJou $20p eIdWER[YL,

Kepop Y3y e 19yye 3sonbax moaraard
doys ayy sassadoid erawre)[oy

10119 ue
BunyerousS 3sonbax maraaid yreys
e Surpuss ur s[rej erawed Ay,

ysonbar marasid yress ayy
03 puodsar jou s20p eI3WED] YL

Kepap yS1y e 1035e 3sanbax maraard
11e)s A} sassadoid eroure]] Ay,

1ood peany;
AU} }11}S },ULD IDAISS BIPIIA

HNVN

a3vd snotaaid wiof panuijuod — JPPOIN 3Ne, IITAIIG eIdWE)) :¢'q el

159

Appendix B. Android Fault Model

a8vd jxau uo panuizuo)

INHISNVIL
INALIINIALNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INALIINIALNI
INANVINIHd

HONHLSISYdd

‘pardniiod
st 3sonbaz ay) Ing “eroured
93 JO (530939 ‘sndojJ ‘aduereq
10700 “a1nsodxa) srejowrered
9y} 19s 03 sysanbai 1asn y

“IOLI Ue YIIM S[Tej
jsanbai ayy ynq ‘erowed Ay yim
amyord e oxe) 03 sysonbar 1asn v

*9su0dsal e S9AIDAI I9AU
jsanbai ayj ynq ‘erowed Ay yim
2myord e oxe) 03 sysonbar 1asn v

-owry Suof e soxey
jsanbai ayj ynq ‘erowed Ay Yyim
2myord e o) 03 sysonbar 1asn v

-asu0dsar e $9A19031 I9AU jsanbau
AU} INq “BISWED Y} YHIM 03PIA U}
Surpiodax doys 03 sysonbai 1asn y

‘awry Suof e soxe) 3sanbarx
A} M “BISWED I} YHIM O3PIA 9}
Burpiodax doys 03 sysonbai 1asn y
“IOLID Ue YJIMm s[rej 3sanbau
AU} J1q “BISWED A} YIM O3PIA
© Surp100a1 31838 03 spsonbai 1esn v
-asuodsal e s9A19091 I9AU jsanbax
AU} J1q “BISWED A} YIIM O3PIA
e Surp10da1 31838 03 sjsonbai 1esn

NOILJRIDSHA

SYALANVIVI
~LH3S "'VIJNVOI

HANLOIdANVL
VIINVOI

HANLOIdANVL
VIINVOI

HINIDIdANVL
VIINVOI

ONIAYODFAL
-OLS 'VIdNVOII

ONIAYODTAL
-OLS 'VIdNVOII

ONI
~QIODTIIIVIS
VIINVOI

ONI
~QIODTIIIVIS
VIHINVOIL

HOINOSHY
/HDIAYES

anyea jndino

Apiqeyreae

ssaurwI

ssaurPwIy

ssaurPwy

ssauTPWI}

Liqerreae

ssaurEwWIT)

HAOW
HINTIVA

siajowrered
198 a3 s3dnaIod eIdWwR)] YL

10119 ue
Bunersuag ysanbar amjyord axey
e Surpuas Ul s[rey erowe)[YL,

ysonbair a1nyord axes ayy
0} puodsa1 jJou $20p eIdWER] YL,

Aeop yS1y e 1935e 3sonbax armjord
axe} 9y sassanoid erowed] YT,

jsanbax Surprodar doys ayy
03 puodsai jou S0P eraWEed] YT,

Keap
y31y e 1033e 3sanbaix Surprooax
doys ayy sassavoid erawre) oy

10115 ue
Sunerauad ysonbax Surpiodar yeys
e Surpuas ur s[rej erowed] Y],

jsonbax Surpiodar yre3s ayy
03 puodsaz jou s20p eI3WED] YL

JNVN

a8vd sno1aaid 1oL panu131107 — JOPOIA JNe, DTAISG eIoWe)) ¢ e

Appendix B. Android Fault Model

160

a3vd 3xau uo panuiguoD

INHISNVIL
LINHALLINYAINI
ININVINTA]

LINHISNVIL
INHALLINYAINI
ININVINTA]

LINHISNVIL
INHLLINIAINI
ININVINTA]

LINHISNVIL
LINHLLINIAINI
ININVINTA]

LINHISNVIL
LINHLLINIALINI
ININVINTA]

HONHLSISYHd

-awn Suog
e saxe} 3senbar oy Inq “erowred
a3 Jo (S309y30 “sNd0J “@duereq
10700 ‘ammsodxa) sroyourered
oy} 193 03 sysanbax zesn y

‘pardnizod
st 3sanbar ayj Inq “erowred
93 JO (S30939 ‘sndoj ‘aduefeq
10700 ‘2imsodxa) sreyourered
oy} 193 03 sysanbax zesn y

“I01IS ue
UM syrej 3sanbair oy nq “eraured
33 JO (S309J39 ‘sndoj ‘aduefeq
10700 ‘ainsodxa) sreyourered
au 39s 03 sysanbai 1asn v

‘asuodsar e saATedax
19A3u 3senbar sy Inq ‘eroured
93 JO (S3093 ‘sndoj ‘aduefeq
10700 ‘arnsodxa) sreyourered
9y} 19s 03 sysonbar 1osn

oy Juoy
e saye) 3senbar oy Inq ‘erouwred
33 JO (S3199JJ9 ‘SndoJ ‘adueeq
10700 ‘arnsodxa) szeyourered
9y} 19s 03 sysonbai 1osn

NOILdR-—IDSHA

SYALANVIVI
-14D "VIdNVOII

SYALANVIVI
-L3D "VIANVOII

SYALINVIVI
-LHS "'VIFNVOI

SYHLHNVIVI
-LHS "'VIHANVOI

SYHLHNVIVI
-LHS "'VIHNVOI

HOdNOSsHY
/HDIAMES

ssaurEw

anyea yndino

Ayqerreae

ssaurEwWI)

ssaurEwW}

JAOW
HANTIVA

Kepop
Y31y e 1033 3sanbai s1ejowrered
308 oy sassavoid erowreD Ay

eIawed
a jo s1vjawrered ay) JO UOISIOA
pardnizod e surnjer exouwre) Syl

10119
ue Surjerous$ ysonbai siojowered
398 © SuIpuas ur s[rey eIawe] YL,

jsonbar s1ajowrered jos ayy
0} puodsar jou s20p erOWE] YL

Kepp
Y31y e 1o33e 3sanbaur s1ojowrered
195 ay sassaoo1d erawey ay L

HNVN

a3vd snotaaid wiof panuijuod — JPPOIN 3Ne, IITAIIG eIdWE)) :¢'q el

161

Appendix B. Android Fault Model

a3vd 3xau uo panuyuoD)

INHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYdd

pa1dnurrod st 3sanbar
a3 INq “(JUSAS I9)NYS) LISWED A}
WOIj UOTJEdYOU © 10§ JIeM I9SN

“IOLID Ue U)IM

sprey 3sanbaz ay 1nq ‘eIawEd) 0}

(uona3ap JdEJ ‘SPUNOS ‘UOTIRIUILIO
Kerdsip “wooz yoowrs) puewuiod
oueuag e puss 0 sysonbar 1esn

"asuodsar e saAT19031 oAU
jsenbar a Inq “eroured ay 0y
(uorOa39p JdEJ ‘SPUNOS ‘UOTIRIUILIO
Kerdsip “wooz yoowrs) puewuod
ouauas e puss 03 sysanbar 1asn

"oy Suoy e
saye) 3sanbaix ay 1nq “erowed 9y 03
(uona3ap JdEJ ‘SPUNOS ‘UOTIRIUILIO
Kerdsip “wooz yoowrs) puewuiod
ousuag e puss 0 sysanbar 1asn

“IOLID Uue
UM s[rey 3sonbai ayj inq ‘erowed
93 JO (S30939 ‘sndoj ‘aduefeq
10700 “amsodxd) s1ejouwrered
9y} 193 03 sysonbax 1esn y

*9su0dsar e S9AIDAX
199U 3sanbaz ayy Inq “eroured
a3 Jo (S309y39 “sndoy “@duereq
10700 “amsodxd) s1ejouwrered
oy} 193 03 sysanbax 1esn y

NOILJRIDSHA

AOvd
“TIVOAIILON
LNAI'TO
“VIINVOI

ANVIN
-INODANHS
VIINVOI

ANVIN
-INODANHS
VIHANVOI

ANVIN
-INODANHS
VIHNVOIL

SYAIANVIVI

-13D "VIdNVOII

SYAIANVIVI

-14D "VIdNVOII

HOINOSHY
/HDIAYES

anyea yndino

Amqerreae

ssaurPw

ssaurPwy

Aymqerreae

ssaurwI

HAOW
HINTIVA

siajowrered
pue ad4) uonesyyou paydniiod
© SWIMJaI JusT[DeIowe)] YL

10119 ue Sunersuad
jsenbar puewruod puss
e Surpuss Ut s[rey erowe)[oYL,

jsonbar puewrod puas ay
03 puodsar jou s20p eIWED] Y,

Kepap
Y31y e 1933e 3sanbar pueuruod
puas a sassadoxd erawre) sy,

10119 ue Sunersudd
1sonbai s1ojowered 108
e Surpuss Ul s[rey erowe)[YL,

jsenbar szojowrered 108 oy
0} puodsa1 Jou $20p eIdWER[YL,

JNVN

a8vd sno1aaid 1oL panu131107 — JOPOIA JNe, DTAISG eIoWe)) ¢ e

Appendix B. Android Fault Model

162

a8vd 3xau uo panuizuoD)

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INHLLINFMAINI
ININVINTA]

LINHISNVIL
LINHALLINYAINI
ININVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

INHISNVIL
INHLLINIHLNI
ININVINIAd

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

HONHLSISYHd

SUOTeWIOfUI Pajdniiod
a sapraoxd ad1AI9G BIOWED
3} J1q “SLIdUIRD 3} JO U0 RULIOJUT
U} 9ALI}DI O} SJUEM Jasn Y

POAISDAI JoASU
st A1dax 3senbaz oy Inq ‘(yuass
I9PNYs) eroured oy} woiy (aewr
Godl “aGewr mer ‘ejepeiow) ejep
HIM UOT}EdYTIOU € I0J JIeM J9Sn Y

owrn 3uof e saye} Ajdex ysonbai
93 INq ‘(JU2Ad I9}NYS) LIdWed 3
woiy (98ewr Mel ‘ejepejaw) eyep
1M UOT}EdTIOU B I0J JTeM JISn Y

pardnizod st jsenbar
9y} Inq ‘(JULAS Io}NYS) vISWED Y}
woiy (98ewr me1 ‘ejepejow) ejep
UM UOLROGTIOU B 10§ JIeM I9Sh i/

ourn 3uof e saye) Ajdex 3sonbaix
A3 N “(JUSAS I91NYS) LISWED U}
WOIj UOHEDYIIOU © 10§ JIeM I9SN

PpaA1ea1 198U st A[dax ysonbar
93 INq ‘(FUSAd Io}NYS) BIdWED d}
WO UOTJEdYT)OU B IO JIEM 1SN Y

NOILdR-—IDSHA

OANIVIH
-INVOLdD
HOIA
“AISVIINVOII

A0vd
-“TIVOVLVAd
LNHITD
“VIINVOI

AOvd
-TIVOVLIvd
"LNHITO
“VIINVOI

ovd
-TIVOVLVAd
LNAI'TO
“VIINVOI

AOvd
“TIVOAIILON
LNHITO
“VIINVOI

Ovd
“TIVOAJILON
LNAI'TO
“VIINVOI

HOdNOSsHY
/HDIAMES

anyea yndino

ssaurEw}

ssaurEw

anyea yndino

ssaurEw

ssaur[own}

JAOW
HANTIVA

ojur exoured pajdnirod
© SUINJaI 9IAIdGRIdWED] Y],

JUSAS ejep B AJrou
JOU S90p JURI[DeIdWE]] Y],

Aeap Y31y e 1035 JUaAd
elep © AJjou justDerawe)] sy,

ejep paidniiod
SuIN}aI JuSI[DeIdWe YT,

juaas ue £Jyou
JOU S0P JuSI[DeIWE)] YT,

Kepap y31y e 1o35e Juasd
ue £ynou jusr)erawe)] Ay,

HNVN

a3vd snotaaid wiof panuijuod — JPPOIN 3Ne, IITAIIG eIdWE)) :¢'q el

163

Appendix B. Android Fault Model

a8vd jxau uo panuizuo)

LINHISNVIL
INHLLINIAINI
ININVINTA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINTAINI
ININVINTAJ

LINHISNVIL
INHLLINIAINI
ININVINTA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIAINI
ININVINTA]

HONHLSISYdd

A1dax j0u saop ao1a19g
eIdWE)) 9y} JNq ‘Serowed pajsanbar
31} 0} PIJIIUUOD DTAJ(JRIIWE))
3} DASIIJII O} SJUBM I9SN Y/

Kepap jea18 e yyim sar[dar ad1A19g
eIdWEe)) 3y} INg ‘serowed pajsanbar
3} 0} PAJIBUUOD IDTAS(JRISWE))
U} 9ALIIDI O} SJUEM J3sn Y

DA rIdUIR))
pa1dnizod e sapraoid ad1arag
eIdWED) 3y} INg ‘serawed pajsanbar
U} 0} PAJIBUUOD IDTAS(JRISWE))
U} 2ASLIIDI O} SJUEM Iasn Y
apod
JIOLId Uk SUINJAI 90TAIDG BISUIR))
U} 1Nq ‘SeIaured aU} JO U0 eULIOJUT
39U} 9ASLI}DI O} SJURM J9SN Y

A1da1 j0u sa0p 201AI9G BIDWED)
Ay} INq ‘SLISWED 3Y} JO UOT}RULIOJUT
9} DASIIJOI O} SJUBM I9SN Y/

Kepop
jea18 e 1M sardoar adIATOG BIDWER))
9} INq ‘SeIaured dYj JO UOTBULIOJUT
9Y} 9ASLIDI O} SJUEM oSN

NOILJRIDSHA

HOIA
“HALOINNOD
HOIA
“JASVIAINVOI

HOIA
-HALOINNOD
HOIA
“JISVIINVOI

HOIA
“HALDOINNOD
HOIA
“dASVIAINVOI

OdANIVIH
-INVOLdD
HOIA
“JASVIAIINVOI

OANIVIH
-INVOLAD
HOIA
“JISVIINVOI

OANIVIH
-INVOLdD
HOIA
“JHSVIAINVOI

HOINOSHY
/HDIAYES

ssaurEw)

ssaurPwy

anyea yndino

Aqerreae

ssaurPw

ssaurEwy)

HAOW
HINTIVA

1sanbax
9DIAIP 3O9UUOD Y} 03 puodsar
JOU S30P ddIATdGRIdWE] Y],

Kepap yeard
© yjim 3sanbai 90149 Joouuod
oy ssaooid adraTageIBWE)] Y,

do1asqeIowe)) paydnirod
B SUINJAI TAIGRIOWE)] Y,

10119 ue
SUIN}aI pue oyur erawed Jurnjad
UI S[Iej 9DIAIIGRISWER)] YL,

1sonbax
ojul BIWED 3y} 0} puodsar
JOU S0P IDIAIIGRIDWED] YL,

Kepop
jea1d e ypm 3sanbai ojur exoured
a3 sassaoo1d so1aregeDWwe)] AY T,

JNVN

a8vd sno1aaid 1oL panu131107 — JOPOIA JNe, DTAISG eIoWe)) ¢ e

Appendix B. Android Fault Model

164

a8vd jxau 1o panu1juod)

LINHISNVIL
INHLLINIHLNI
INANVINIA]

INHISNVIL
INALIINIALNI
INANVINIHd

LINHISNVIL
INHLLINIALINI
ININVINTA]

INHISNVIL
INALLINIALNI
INANVINIHd

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

HONHLSISYHd

Kepap yeaid e yyim weans ayy
S$9)eaId 19S)ADIAJ(RIDWED] Y} INq
‘IDIAS(JRISWIRD) A} YIIM BISUIRD
oy 10y (weans ndino /indur)
WeL)S B 9)BaId 0} SJUBM I3SN Y

JOLId UE UIN}I PUE UOISSIUNS
Ul S[TeJ J9s)adIAd(Jelauwed[
9y} Inq ‘Od1Ad(JeIWE)) A}

0} 3sonbai e jruuqns 03 syuem 19sn y

10119 Aue £jmou jou
sa0p pue jsonbai ayy yruugns Jou
S90P JIWNS ISSITAS(TLIOWE]
3y} Inq ‘ed1Ad(TeIdWED) Y}
03 3sonbar e Jruuqns 03 sjuem 19sn

Aerop yea1d e yyim jsonbar
3} JIWINS T3S IDIAS(RISWR)]
Ay} Ing “‘ed1Ad(TRIDWED) U}
03 3sonbar e Jrugns 03 syuem 1esn y

IdqUINNOWeIISe]
J091I00UT U SUINI 31 jng jsonbaix
A} SHWINS JIS)IIIAJ(eIdWE)]
dY} ‘@d1Ad(TeIdWR)) A}

03 3sanbar e JruIqns 03 syuem 1esn
9POd I01Id Ue SUINIAI IAIDG
eIawe) 9y} Inq ‘seroured pajsanbar
3} 0} PIOIUU0D IAJ(JRIdWED)
dY} 9AJLI)II 0] SJUBM IISN

NOILdR-—IDSHA

INVHILSHLVA™O

AISNADIA
“HAVIINVOI

1s4n0
-ALINGNS
“MHISNADIA
-HAVIANY DI

1s4n0
-HIALINGNS
“IHSNADIA
-HAVIFINVOI

1s54Nn0
-TALINGNS
“AASNIDIA
-HAVIANVOI

1s4n0
-HALINANS
AISNADIA
-HAVIIINVOI

HOIA
“HALDINNOD
HOIA
“AISVIINVOII

HOdNOSsHY
/HDIAMES

ssaurPwy

Lyiiqerreae

ssaurEwWI)

ssaurEwI)

anpea ndino

Liqerreae

JAOW
HANTIVA

Aerop 3013 e ypim jsonbar
wean}s 9jead ayj sassavord
I9S()90TAd(JRISWR)] YL

10119 Uue
sunjar pue ysonbair e Surrugns
UT S[rej I19S()9DIAd(RISWR)] YL,

jsenbazr ay yruugns Arenyoe
10U S0P 19S()DIAJ(JeISUTE] AL,

Kepap yea1d e ypim 3sonbar oy
SITWIQNS 19S)ITAS(TRIdWED] Y],

_qunNpPwerjise] paydniiod
© SUINJAI 19S)3dTAJ(JeIdWEe]] Y],

IO1Id Uue
SUINJaI pUe 3d1AIP 3} SU1d9UU0d
UL S[TeJ 9dIAIdGRIdWE] S],

HNVN

a3vd snotaaid wiof panuijuod — JPPOIN 3Ne, IITAIIG eIdWE)) :¢'q el

165

Appendix B. Android Fault Model

a8vd 3xau uo panurguoD

LINHISNVIL
INHLLINIAINI
ININVINTA]

INHISNVIL
LINHALLINYAINI
ININVINTA]

INHISNVIL
INALLINIALNI
INANVINIHd

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYdd

Kepp
1ea18 © Y)IM uondesURI) IOPUIq
A} SPULS SYOE[[EDIIIAS(TRIdWED]
3} 1Nq ‘JUSAS pajIe)s
armyded erowred e yjm paynou
3q P[NoYs adIAd(eIdWED) Y],

uonoesuer)
ISPUIq A} YHMm ojur paydniiod
puas syoeq[e)adIAdeIawe)]
ay ;g ‘(senxa pue dureysowrn)
UOT}eULIOJUT PAJe[aI YIIM
JUSAS pajre)s arnjded ay) paynou
9q P[NOoYs ad1Ad(JeIdwe)) Y[,

10119
Ue UINJI PUe UOHEaId WEdL)S dU)
UI S[Te I9S[)DIAd(JRISUIR D] U} INg
‘9dIAJ(JLIDUIR)) A} IIM BISUIED
oy 105 (weans ndino /indur)
WIean)s e 9)eald 0} SJUeM Iasn y

I0110 AUe AJmjou J0u S90P
pUe WeaI)s ayj 9)ea1d J0U S20p
S9)BAID 19SADIAS(JRIDWE)] Y3 INq
‘9DIAS(RISWIEY) A} YIIM BISUIRD
oy 10y (weans ndino /indur)
WEDI)S ©)edId 0} SJURM IISN

NOILJRIDSHA

AAIIVLSHANL
-dVONO
‘SOvd
-“TTIVOHIIA
-HAVIAINVOI

AHLAVLSHINL
-dVONO
‘SIOvd
“TIVDHIIA
“HAVIHNVOI

INVAILSHLVAID
AISNADIA
“HAVIINVOI

INVHILSHLVA™O
IHSNADIA
“HAVIINVOI

HOINOSHY
/HDIAYES

ssaurEw)

anyea jndino

Aiqepreae

ssauTPWI

HAOW
HINTIVA

Aepap jea18 e M UOEDGHOU
pasress arnyded sapraoxd
Syoeq[EDRIAd(RISWED] Y],

JUDAD pajIe)s
ammydeo ay ue Surdynou arym
uoneurIoyul pajdniiod e sapraoxd
syoeRq[E)RdIAd(RISWED] Y],

IOLIS Ue suInjar pue jsonbar
weans ajeard ayy Jurssadord
UI S[TeJ I9S)90TAd([RIOWe)] SYL

1sonbax
weax)s 9)eard ay) 03 puodsar
JOU S0P 198 DIAS(TeIdWe)] YL,

JNVN

a8vd sno1aaid 1oL panu131107 — JOPOIA JNe, DTAISG eIoWe)) ¢ e

Appendix B. Android Fault Model

166

a8vd 3xau uo panurzuo)

LINHISNVIL
LINHLLINYAINI
ININVINTA]

LINHISNVIL
INHLLINTAINI
ININVINTAJ

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
LINHLLINIALINI
ININVINTA]

HONHLSISYHd

uonoesuer)
ISPUIq A3 Y3IM oJur pa3dniiod
SPUds IUR)SIJAdIAIIGRIWE)]
ay) mq ‘erawred dy1ads e jo
JuaAd paduel snjess sy paynou
3q PINOYs dIATdGRIDWERD) 3],

uoroesuel} Lpulq ay} Spuas
10U S90Dp Sydeq[[eDaIIAd(JRrIDWER)]
39U} INq ‘JUDAS PIATIIAIL
JNSal eIWED © YIM payijou
9 PINOYs dIAd(JeIdwWe)) Y],

Keop
Jea18 B Y)IM UondeSURT) IpUIq
AU} SPUBS SYdeq[[e)DTAJ(TeIaUeD]
3} N ‘JUSAS PIATIIAI
JINSII BISWED B }IM PafTIou
3q P[NOYS ad1A_(JeIdWE)) Y],

uonoesuer}
Iapurq 9y} yim ojur paydniiod
Ppuss syoeq[e)adIasgeIswe)]
oy} Inq ‘(senxa pue
Bjepe}aU) UOLIRULIOJUL Paje[al UM
JUSAD PIATDII }[NSAI S} PayIiou
9q P[NOYS aDIAd(RIdWER)) 3,

uondesuel) IPUI]) SPUIS
JOU S0P SyOeq[eDIDIA(JRIDWE]D]
a3 INq ‘JUSAd paAIL)S
amjded erouwred e YjIm pagnou
9q PINOYs adIAd(eIauwe)) 9

NOILdR-—IDSHA

JIDONVHOSNL
-VLSNO

YINHLSITIDIA

“JHSVIAINVOI

[EEVNE®)
“HALINSHINO
‘SAOVd
“TIVOHOIA
“HAVIANVOI

AdIAIEO
“HILTNSHINO
'SIOVd
-TIVDHIIA
“HAVIINVOI

ddAIID
“HILTINSTHINO
'SIOVd
“TIVOHIIA
-HAVIIINVOI

AAIIVLSTANL
-dVONO
‘SOvd
“TTIVOHIIA
-HAVIIINVOI

HOdNOSsHY
/HDIAMES

anyea jndino

ssaurEwWIT)

ssaurPwIy

anpea ndino

ssaurEwW}

JAOW
HANTIVA

eIowed
® jo snje)s ayy Surkjnou arym
uoneurIoyul pajdniiod e sapraord
ISUR)SITIdIAIIGRIDWED] Y,

JuaAd
PaAT031 3 NS 3} AJTOU J0U S0P
sydeq[[eDRITAd(RIWE])] Y],

Ke[ap 1ea13 B 1M UOT}EOTIIOU
paAradax ynsa1 sapraoxd
SyPRQ[IEDRTAS([RISWED] YL,

JUSAD POAISDDI
J[nsa1 9y ue Surkynou arym
uoneurioyur pajdniiod e sapraoxd
sypeqe)RdIAd(JRIDWED] YL,

JUSAD pajIe}s
armded ay Aynou jou seop
SyoRq[[EDRIAS(RISWED] Y],

HNVN

a3vd snotaaid wiof panuijuod — JPPOIN 3Ne, IITAIIG eIdWE)) :¢'q el

167

Appendix B. Android Fault Model

a8vd jxau uo panuizuo)

INHISNVIL
INALLINIALNI
INANVINIHd

HONHLSISYHd

LINHISNVIL
LINHLLINFIALINI
ININVINTA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYA

Kepp
Jea1d e yjim Juas st jsanbar ayp
JNq “UOISSas SUIpI0da1l B 10§ SIJNqg
03PIA Y} UI BJRp [LSI 10 BIRP BloW
2108 03 TV eIowed ay} jsonbay

NOILLdI—IOSHd

SNEEE P!
-NIVLIVd
“VLIANHIOLS
"L 7SdO "dDIAEA
TVIHAVD
"HOIAAd
TVIINVD

HOANOSHA
/HADIAIES

ssaurEwWI

HAOW
HANTIVA

[PPON H[neq "TVH elowe) g d14V],

uonodesueI} I9pulq Y} puss
10U S0P IoUR}SITIIIAIRGRISWER)]
9y} Inq ‘JuaAd
paSueypd snjejs e yim paynou
9 P[NOYS DTAIGRIdWERD) Y],
Kepop
jea18 e YjIm uonoesuer) opurq
9} SPUSS I9U}SI IIAIIGRISWER)]
9} 1IN “JUdAd
paduep snjess e Ym paynou
9 PINOYS ddIAIRGRISWER)) 3],

NOILJRIDSHA

AIONVHOISNL
-“VLSNO
YINHLSITIDIA
“dASVIAINVOI

dIONVHOSNL
-VLSNO

YINHLSITIOIA

“AISVIINVOII

HOINOSHY
/HDIAYES

ssaurEwWI)

ssauTPWI

HAOW
HINTIVA

Aerop 1018 e ypim jsonbar
3[qesIp /3[qeus Iojjn wely
ayj ssaooxd TyH erowed 9yl

HNVN

JULAd
padueyp sniess ayy Aypou jou
S90P I9UL)SI[IIIAIGRISUIR)] YL

Kepap yea1d e ypim
Ju2Ad a3ueyp snjess e sapraord
IOUR)SI[dIAIGRIdWED] Y],

JNVN

a8vd sno1aaid 1oL panu131107 — JOPOIA JNe, DTAISG eIoWe)) ¢ e

Appendix B. Android Fault Model

168

a8vd jxau 1o panu1juod)

INHISNVIL
INALLINIALNI
INANVINIHd

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYHd

Aeap
1218 ©)IM 3T S20P 31 Inq ‘maraard
Oy} JOJ Sowrey Y} weans maraard
S} UI }I9SUT 0} SJUBM BISWED YT,

pa1dniiod are ejep
ST} INq “erep YIM weans maraaxd
3} JO SIdJN Y} [BISWED],

JIOILId Uk SUINJaI JI

INq “UoISsas SUIPIOIAI B JOJ SISINQ
09PIA A} UI €Jep [ed1 IO klep ejowr
910)s 0} TYH eIoured auj) jsanbay

asuodsai & S9AIRIRI 19AU
3sonbai oy Inq ‘uorssas Jurprodar
© 10j SIdJNq 09pPIA Y} UL Bjep
9103s 0} TYH eIdwed ay) 3sanbay

NOILdR-—IDSHA

a3vd snotaaid wiof panuijuod — PPOIN e TVH erowe)) g 9[qel,

NEEEIgL!
“HNANONH 'L
“SdO " MHIATA]
TVIHAVD
"HOIAAA
TVIHAVD

REEEIL:|
“4NINONH L
“SdO TMHIATId
TVIIAVD
HDIAAA
TVIIAVD

SYAd4Nd
“NIVIVd
“VLINAIOLS
"L 7SdO "HDIAEA
TVIIAVD
"HOIAAA
TVIIAVD

Syd44N4d
“NIVIVd
“VLINAIOLS
"L 7SdO "HIIAHA
TVIHAVD
"HOIAAA
TVIHAVD

HOdNOSsHY
/HDIAMES

ssaurEwI

anyea ;ndino

Liqerreae

ssaurPwy

JAOW
HANTIVA

Aepap 1ea13 e pim wreans maraard
3y} UI sawrely Mau Jo uononpoid
oy} speudis eroured ayJ,

weans maraaxd ay jo
s1ayynq ay3 s3dniiod exouwred ayJ,

jsanbaz a[qestp /a[qeud
I9pyng awelj 3y} uo
IOLId Ue SuInjal TyH elauwred ay],

1sanbaz s[qestp /s[qeus
I9Jjnq awrey ay} sseooxd
JOU S90p TYH eIowed Y],

HNVN

169

Appendix B. Android Fault Model

a8vd jxau uo panuizuo)

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINMALINI
ININVINTA]

INHISNVIL
INALLINIALNI
INANVINIHd

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYdd

asuodsax
© S9AT19D91 19A3U Jsonbar ayy
mq ‘weans ndino 3unsixs ue 10y
Pa1edO[[e SI9JNq Y3 SN [[IM PIYM
‘asn 10§ wrean)s ndur Mau e a3edofe
03 TVH erowred oy} jsonbay
Kepap
Jea1d e y)im Juas st 3sanbar ayp
ng ‘weans dmo Sunsixe ue 10§
Pa1edO[[e SI9J3Nq Y3 SN [[IM YPIYM
‘asn 10§ weans ndur Mau e a3edo[e
03 TV H erawed ayj jsenbay

mdino paydniiod e surnjar
31 1nq “‘weans mdino Junsixa
Ue I0j Pajedo[[e SIdjynd Y3 asn [[Im
yorym “ureans yndur mau e ayedofre
03 TVH erowed oy} jsonbay

“I9JJNq Y} OJUT SOWRL MAU
aly} J0J paeudIs J0U ST ISWNSU0d
A Inq sowey aY} Wearn)s maraaxd
QU UT }19SUT 0} SJUBM BIdwed 3],

NOILJRIDSHA

a8vd snotaaid wolf panuiguod — PPOIN INe TVH eldwe)) F'g d[qel,

NVHILS
THIVOOTIV
"1 7SdO "HDIAEA
TIVIENYD
‘HOIAHA
TIVIENYD

INVHILS
THIVOOTIV
"L 7SdO "dDIAEA
TIVIANVYD
"HOIAAd
TCVIENVYD

INVHILS
THIVOOTIV
"L 7SdO "HDIAHA
TIVIENYD
"HOIAAA
TIVIENYD

REEEIL:|
“4NINONH L
“SdO TMHIATEd
TVIIAVD
HOIAAA
TVIIAVD

HOINOSHY
/HDIAYES

ssaurPwIy

ssaurEwWIT}

anyea ndino

ssauTPWI

HAOW
HINTIVA

1s9nbax
weaxns ayedo[e ayy ssavoid
JOU S30p TV eIduwed Y[

Kepop yeard
e y3m jsanbar ureans ajedoyre
ay} sseo01d Ty erowed ay],

1sonbax
WIeaI}s 9)ed0[[e AU} UO Iogynqg
Pa3eaId 9y} Uo OFur pa3dniiod
suInjaI Ty eIawed 3y,

weans maraard
9 ur ssurery mau jo uononpord
A3 [PUSIS JOU S20P BISWED AL,

JNVN

Appendix B. Android Fault Model

170

a8vd 3xau uo panuizuoD

LINHISNVIL
INHALLINIAINI
ININVINTA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINFMAINI
ININVINTA]

INHISNVIL
INHLLINIHLNI
ININVINTA]

HONHLSISYHd

“I9JJNq Y} OJUT SIWELY MAU
9} JI0J PaRUSIS JOU ST IOWNSUOD
ay} inq “ndmno/mdur ayy
10§ sawreyy ay} weans yndino /ndur
SU} UI }I9SUT 0} SJUBM BISWIED ST,

ATeap yea1d e ypim
11 s90p 31 g ‘mndino /indur ayy
10§ sawrely a3 weans ndino /ndur
9} UI }19SUT 0} SJUEM BISUWIED SYL

paidniiod axe ejep sy ng
“eyep Ym weans ndino /mndur
AU} JO SIdJyN A [[If BISWED Y],

10119 Ue SuInjal

31 1nq “weans ndino 3unsixa ue 10§

PaIedO[[R SI9JNq Y3 SN [[IM PIYM

‘asn 10§ wieans ndur Mau e a3edofe
03 TYH erowed oy} jsonbay

NOILdR-—IDSHA

a3vd snotaaid wiof panuijuod — PPOIN e TVH erowe)) g 9[qel,

REEETL|
“HNINONH ‘L
TSdO TINVHYIS
TIVIANVD
HDIAIA
TIVIANVYD

d444nd
“HNANONH 'L
“SdO TIWVHIILS
TIVIENYD
‘HOIAZA
TIVIENYD

¥a11nd
“HNINONH 'L
TSdO TINVHIILS
TIVIANVYD
‘HOIAAA
TIVIANVYD

NVHILS
THIVOOTIV
"L 7SdO "HIIAHA
TIVIENYD
"HOIAAA
TIVIENYD

HOdNOSsHY
/HDIAMES

ssaurEw)

ssaurPwIy

anyea yndino

Aiqepreae

JAOW
HANTIVA

weans ndino /indur
Ay} ur saurery mau jo uononpord
a3 [euSIs J0U S0P BISUIRD Y],

Keap
jeard e yyrm weans ndino /mdur
a3 ur sauwrery mau jo uononpord
oYy sTeuSIs erauwred ay[,

wreans ndino /indur ayj jo
s1ayyng oy} s3dnirod exsuwred ay[,

jsenbar wreans ayedore ayy uo
JOIId Uk SUINIdI TYH eIouwed 9y,

HNVN

171

Appendix B. Android Fault Model

a8vd 3xau uo panurguoD

INHISNVIL
INALIINIALNI
INANVINIHd

LINHISNVIL
INHLLINMALINI
ININVINTA]

INHISNVIL
INALLINIALNI
INANVINIHd

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYdd

paidniiod axe ejep sy ng
“eyep Ym weans ndino /mndur
AU} JO SI2JYN B [[If BISWED Y],

101D
ue suInjai 1 nq ‘sureans ndno
pue mndur mau dn 39s pue aurpdid
Suissaooid ao1a9p e1OWEd TV oY}
39801 0} TYH eIoured ayy jsanbay

asuodsai e S9AT9091 I9ASU
jsanbar a3 nq ‘swreans ndino
pue ;ndur mau dn 3as pue aurjadid
Burssaooxd 9d1A9p BIOWEd TYH O3
39591 0} TYH eIawed ayj 3sanbay

Aerop 1ea18 © yj1m juas
st 3senbar oy g ‘sureans yndino
pue mndur mau dn 39s pue surpdid
Burssanoid ao1a9p eIOWEd TYH 9Yh
39821 0} Ty eIauwred ayy jsonbay

NOILJRIDSHA

a8vd snotaaid wolf panuiguod — PPOIN INe TVH eldwe)) F'g d[qel,

1san0ad
“HINLIVD
~853D0Ud
"L 7SdO "HDIAFA
TEVIAIINVD
HDIAAA
TEVIINVD

SINVHILS
THINOIANOD
"L 7SdO "dDIAEA
TEVIHNVD
"HOIAAd
TEVIHNVD

SINVHILS
THINDIANOD
"L 7SdO "HDIAHA
TEVIHNVD
"HOIAAA
TEVIENVYD

SINVHILS
THINDIANOD
"L 7SdO "dDIAEA
TEVIHNVD
HOIAZA
TEVIANVD

HOINOSHY
/HDIAYES

anyea yndino

Lyiqerreae

ssaurEwWIy

ssauTPWI

HAOW
HINTIVA

ureans ndino /indur ayj jo
s1ayynq oy} s3dnirod exsuwred ay[,

jsonbar sweans am3yuod ay) uo
JIOLId Uk SUIN}aI Ty H eloured ayJ,

1sanbax
sureans amn3yuod ayy ssedoxd
JOU S30p TV H eIoued 3y [

Aerop yeard
e yym 3sanbar swreans am3yuod
a3 ssaooxd Ty erowed ay[,

JNVN

Appendix B. Android Fault Model

172

a8vd jxau uo panuizuod)

LINHISNVIL
INANVINIHd

HONHLSISYHd

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYHd

sonImn
juswaSeurew 201A9p ddeds-1asn
UL 10 “ISALIP 9} Ul ‘[SUIay
oy ur 8nq e jo asnedaq ‘a[qIssadde
JOU ST 3[1J 3JIASP [eNIIA Y],

NOILIR—IDSHA

HTId 3DIAFdA

HOdNOSHY
/HDIANES

Juswadeurwn
90IN0Sa1

JAOW
HANTIVA

(suorgar
0/1 ‘A10wWwBUI) $90IN0SAI AjLdO[E
0} 9[qeun ST IDALI(] BIdWE)) Y],

HNVN

[PPOIN Hneq aIeMpiIel pue JI2ALI(] eldwe)) (g q H1dV],

“I9fjNq 9} OJUI SIWRL} MU
a3 10§ pareuSIs Jou SI IDWNSUO0d
ays g ‘mdno /mdur oy
10§ sawrely a3 weans ndino /ndur
S} UI }I9SUT 0} SPUBM BISWED YL,

ATeap jea1d e ypim
11 s90p 31 1nq ‘mndino /indur ayy
10§ sawrely a3 weans ndino /ndur
AU} UT }I9SUT 0} S)UBM BIDWED 3],

NOILdR-—IDSHA

a3vd snotaaid wiof panuijuod — PPOIN e TVH erowe)) g 9[qel,

1s3n0aA
“HINLIVD
~S$5HD0Ud
"L 7SdO "HDIAFA
TEVIINVD
HOIATA
TEVIINVD

1S4N0TI
THINLAVYD
~ SSHDOUd
"L 7SdO "HIIAHA
TEVIHNVD
"HOIAAA
TEVIENVD

HOdNOSsHY
/HDIAMES

ssauT[owr}

ssaurPwy

JAOW
HANTIVA

ureans yndino /indur
9y ur ssureiy mau jo uononpord
a3 [PUSIS JOU S20P BISWED A,

Kepp
yeard e yyrm weans ndino /mndur
a3 ur sauwrery mau jo uononpord
oY) s[eudis eroured ayJ,

HNVN

173

Appendix B. Android Fault Model

LINHISNVIL
INHLLINIAINI
ININVINTA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINMAINI
ININVINTAJ

LINHISNVIL
INANVINIHd

HONHLSISYdd

pa[Tess are suonerado
O/ JUDLIND Y, "IOIAP S} UM
[020301d UOGEIUNWWOD (/] SY3 UL
JIOLId U S9SNEd ‘drempiey ay} Woiy
UL} JUDAS JO2LIODUL UR IO “ISALIP
901A9P a3 ut 3nq SIEMYOS

parioqe are suonerado
O/ YUSLIND 3, "9DIAP Y} UM
1020301d UOT}EdTUNWIWOD () /T 9Y} UT
IOLID Ue SISNED ‘DIeMpIeY Y} WOIy
Bururn JU2AS J091I00UT UB IO “IOALIP
9DIADP A} UT 8Nnq IEMIJOS Y

3uny s1 10 19531 ST SNJLIS IIASP
dreMpIeY Y], "9J1AIP A} YIM
[020301d uonEdTUNWIWOD O /] A} UI
JIOLId Uk SISNed ‘arempiey oy} Woij
uruum JUSAS J091I0OUL U IO “IOALIP
201A9D a3 ut 3nq 2I1eMOS

"9DIAJP dIEMpPIEY
a3} Jo AJIIqerreae ay} sasned
j[ney Sy, aremprey ayy Aq pasrer
JIOLId UE IO ‘PRO[ISAO UE ‘[SUISY S}
ur 3nq areMmjos e 0} anp (suor3ax
O/1 “Ar0waur) S90IN0SAI 93LI0[[R
0} 9[qeun ST ISALIP 31AP Y],

NOILJRIDSHA

a8vd snoiaaid 1oL panu131107 — JOPOIA Ne] dTeMPIRH PUR JOALI(] BISWE)) :

vivd
VIANVD avad

vivd
VIINVD aviad

vivd
VIINVD avid

AJOWHN

HOINOSHY
/HDIAYES

ssaurEw)

anpea yndino

Lyiqerreae

Juswadeurw
30IN0Sa1

HAOW
HINTIVA

uonerddo
O/ ue Jo [Te3s ayy ursned
“IOALIP 3DTASP dY} UI IOLIS [0D0}0I]

uonjerado
0O/1 ue jo uornydnizod ayy Sursned
‘IOALIP DTASP Y} UI JOLID [0D0}0L]

uonyerado
O/1 ue Jo }10qe ay3 Sursned
“IDALIP 9DIASP U} UI JOLID [0D030L]

suorssturzad
9)LIM / peal JO D[dY} 0} anp
Ppassaode 9q jJouued ()0SPIA/ AP/
*3°3) a1 9OIAdP [eN}IIA Y],

JNVN

§'d °198L

Appendix B. Android Fault Model

174

a8vd jxau uo panuizuod)

INHISNVIL
ININVINTAJ

INHISNVIL
INANVINIHd

INHISNVIL
INANVINIHd

LINANVINIHJ

LINHISNVIL
INANVINIA]

INHISNVIL
INANVINIHd

INANVIN—YHJ

LINHISNVIL
INANVINIA]

HONHLSISYA

1apulq ay}
£q pa19JJ0 SORIIOL] UOHRITUNUILOD
9} asn 0] d[qe J0U SI TATSS YT,

s3o3d0s pauado Apeaife
o sasop Apdniqe 10 39500S
e uado 0} d[qe JOU ST ADIAISS Y,

So0[peap e se yons
‘s3nq aremijos 0} anp aarsuodsar
JOU ST PeaI} 9DIAISG IOSUSG

uondaoxa pa[pueyun o3
aNp SAYSLID PLIIL} ADTAIIG IOSUIG
'Sy
uado 03 a[qeun st 3] "s103dLSap
d[y syeo] pue urde aremijos
Aq pajoayye ST I0AISG WIISAG AT,

‘Krouwrowr
SI0W 3)BJ0[[E 0} d[qeun ST I
‘Krowaw syea] pue urde aremijos
Aq pa3dagye ST IDAIDG WAYSAG A,

J[OUM B SE JOAIIG Wd)SAS U}

JO [[e3s 9y} sasned jey} Snq [edHLD
e Aq poajdagJe SI I9AIDG WYSASG Y],
Joym e
Se I9AI9G WRISAG 9} JO UOTFRUTULIS)
a3 sasned jey) Snq [edHLD
© £q pajoagye SI 19A19G WdYSAG Ay,

NOILJI-IDSAd

[PPOIN 3Nk TVH Pue 901AIdG I0SUdS :9°q 41dV]

1DA[90 JaANId

LAXO0S
SAVHIHI®
SSHO0Ud
SAVAIHI®
SSHD0Ud

BERIE

AJOWHIN

SAVHIHI®
SSHOOUd

SAVAIHI®
SSHO0Ud

HOINOSHY
/HADIAIAS

JuswRdeuew
901N0Sa1

Juaweuew
901N0Sa1

JuawLeuewr
901N0Sa1

Juswadeurw
0IN0Sa1

Juswadeurw
90IN0Sax

Juaweurew
901N0Sa1

JuswRdeuew
901N0Sa1

Juswaeurw
90IN0Sa1

HAOW
HINTIVA

199090
1apurg ay3 sdorp ad1A19G 10SUSG

syospos sdoip
10 uado 3,ued DIAIDG I0SUIG

s3uel] 901AI9S I0SUSG

SaYSe.ID IDTAIIS I0SUag

say uado jouued 19AI9S W)SAG

Arowowr
9)eDO[[E JOUURD I9AIIS WA)ISAG

SpeaI [[e
Surpnpour ‘sayseId I9AISG WI)SAG

spea1y}
[re Surpnpour sSuey 19AI19G Wa)SAg

JNVN

175

Appendix B. Android Fault Model

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INALIINIALNI
INANVINIHd

HONHLSISYdd

‘ejep I0Suds sajepdn
A[3091100UI 921AIDG I0SUSG Y[,

‘ejep J0suds ayepdn
AWy J0U SE0P IDIAIIG I0SUSG YT,

‘ejep Iosuds ajepdn
JOU S30P DIAISG IOSUIG Y[,

‘[PuuRyD) JUSAY UE 181D
0] d[qeun SI ADIAIG JOSUAG],

"SIOSUS S[qe[TeAe U} Jo ISI] Suoim
e sopraoid 901A19G 10SUSG YT,

'SIOSUDS d[qe[IeAe U} JO ISI] A}
apraoxd jouued 2d1AISG IOSUDG AL,

NOILJRIDSHA

SINHAH
JOSNHS ANHES

SINHAH
YOSNHS ANHS

SINAAH
YOSNHS ANHS

TANNVHD
AYOSNHS
HSI'Idv.Lsd

LSI'T
SYOSNHS 13D

LSI'T
SYOSNHS 13D

HOINOSHY
/HDIAYES

anyea yndino

ssaurPwIy

ssaurPwy

Apiqerrese

anyea yndino

Lyqerreae

HAOW
HINTIVA

SJUDAD I0SUDS
s3dnuirod ao1AT9GIOSUSG SY T,

SJUA JOSUS JO SUTpIeMIoy
3} SAe[op 9DTAISGIOSUSS AT,

SJUDAD IOSUSS PIeMIO]
0] S}IWO ITATIGIOSUDG],

[PuUUeYD I0SUDS B YSI[qe)sd
0] S[TeJ IDIAIIGIOSUIG Y [,

SIOSUDS d[qe[TeAR JO }SI[1091I00UT
Uue SUINJaI 9TAIIGIOSUSG A],

SIOSUDS d[qe[TeAR JO ISI] A} UInjax
JOU SI0P IDTAIIGIOSUIS Y],

JNVN

a8vd snoraaid 1oL panu131107 — JOPOIA N TVH PUe DIAISG JOSUSS :9°¢ J[qeL,

Appendix B. Android Fault Model

176

a8vd 3xau uo panuizuoD

INHISNVIL
LINHALLINYAINI
ININVINTA]

LINHISNVIL
INHLLINIHLNI
INANVINIAI

LINHISNVIL
ININVINTA]

LINHISNVIL
ININVINTA]

HONHLSISYA

paioqe are suorjerado
O/ YUSLIND Y, *JTAIP) 1M
[020301d uonEdTUNUIWOd)/ A} Ul
JIOLI9 Uk S9asned ‘arempiel] sy} Woij
Buruin JUsAd 1091I00UL U IO “IOALID
901AIP 3} UT 3nq 2TeM)Jos

3uny s1 10 19531 ST SNJEIS AP
drempiIey aYJ, ‘9d1AdP A} YIM
T020301d UonEdTUNUIWOD () /T AY) UT
JIOLId Uk SIsned ‘arempiey] oy} Woij
Jurum U243 1091I00UT Ue 10 “IOALIP
901A3p 3} ur 3nq 2I1eMJos

"9DTASP dIEMPIEY
ay Jo AjqIqerreae i} sasned
ey SIYJ, ‘arempiey] ay) Aq pasrer
JOLI Uk IO “PRO[IDAO U ‘[UId 3y}
ur 3nq a1eM)jOs e 0} aNp (suor3ax
0/1 ‘Ar0waur) S90IN0SaI 9)LdO[[R
0 3[qeun SI ISALIP DTAIP YL,

‘uogyerado
Aue wroyrad 03 s[qeun st IOALIP
S, 'SPEaIY} [SUISY JO OO[pesp
© sosned (srempiey ayj woiy Surnun
JUSAS }D21100UT Ue J0 ‘3N 31eMIJOs
e Aq pasned) ansst £>Ua1MdOU0d Y

NOILJI-IDSAd

viva aviad

vViva aviad

AJOWHIN

HT1I4 HOIAFA

HOINOSHY
/HADIAIAS

anyea jndino

Amqerreae

JuawLeuew
901N0Sa1

Juawseuewr
901N0Sa1

HAOW
HINTIVA

ejep
0/1Jo uondnirod ay ursnes
“IDALIP DIASP 3} UI JOLID [0D0F0L]

uonyerado
O/1 ue jo 310qe ayj Sursned
“ISALIP 3DTAP SY} UI JOLI [0D030I]

(suordax /1 ‘Arowawr
orwreudp) Arouraw ayedofre
0} d[qeUun SI JDALI(] I0SUSS Y],

suorsstwzod 9)1Im / peal Jo
oe[33 03 NP PassadIe 3 Jouued
(A9p /) S[1 901A8P [eNIIA Y],

JNVN

[PPOIN Nk SadTA9(pue SISALI(] SIOSULG :/°q H1dV],

177

Appendix B. Android Fault Model

a3vd 3xau uo panuyguoD)

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
ININVINTA]

LNHISNVIL
ININVINTA]

LINANVINIHJ

LNHISNVIL
ININVINTA]

HONHLSISYHd

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYA

jusuodwod £3rAroe mau
© }1B3S 0} S[E JOU SI IDIAISS Y],

Iapulq 9y}
Aq Pa13JJ0 SaNI[IOB] UOTJEDTUNTILOD
S} 9sN 0} S[qe JOU SI ITAISS A,

adid /3ax0s pauado Apeaife
oy sasop Appdniqe 1o adid /393008
e uado 03 9[qe Jou ST ADTAISS Y],
S)nej 9IeMIOS
3OS 0} ANP S[[e}S IIIAIIS A,
S)[neJ aIeMJOS
JWIOS 0} NP SIYSLID IDTAISS AT,

NOILLdIIOSHd

ALIALLDV IAVLS

1DA[90 JIANTId

HdId / I3ID0S

SAVAIHI®
SSHO0Ud

SAVAIHIL®
SSHOOUd

HOANOSHA
/HADIAIES

ssaurPwy

JuawLeuewr
901N0Sa1

Juawseuewr
90IN0Sa1

Juswadeurw
30IN0Sa1

Juawseuewr
90IN0Sa1

HAOW
HINTIVA

ysonbai Aj1anoe 31e)s 93 0}
puodsar Jou s30p IIAISS Y YL

3lqo
1apuiq e sdoxp ao1aT9s NV YL

sadid pue syaxoo0s sdoip
10 uado 3,ued 901AISS AV YL

SaySseld ITAISS NV 94],

s3uey 901AISS TV YL

HNVN

[OPOIA 3[Ne 9IAISG IoJeUrIA ANALDY :8'q 414V,

pairess are suonerado
O/ YUd1IND YT, "9DTAIP Y} UM
[020301d vonEdTUNUIWOD O /T AY) UT
JIOLId Uk SIsned ‘arempiey] ay} Woij
Jurum U243 1091I00UT Uk 10 “TOALIP
901A3P 3} ur 3nq 2I1eMos

NOILJRIDSHA

vViva aviad

HOINOSHY
/HDIAYES

ssauTPWI

HAOW
HINTIVA

a8vd sno1aaid 1o.4f panu131107 — JOPOIA Ne SITAS(] PUR SIOALI(] SIOSUSG

uonjerado
O/1 ue jo [[e3s ay Sursned
“IOALIP 9DIASP U} UI JOLID [0D0J01]

JNVN

49 °19BL

Appendix B. Android Fault Model

178

a3vd 3xau uo panuyuoD)

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINMALINI
ININVINTA]

LINHISNVIL
INHALLINIAINI
ININVINIA]

LINHISNVIL
LINHALLINYAINI
ININVINTA]

INHISNVIL
INALLINIALNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYHd

juayur pagroads
© I0J JATIDII }SLOPLOI(© 19)SI3a1
0} aWT} YONW 00} Sa[e} IAISS Y],

jusyur paywads
© JOJ I9ADDI }SedOPeOIq MU
© 19)S1391 0} d[qE JOU SI IIIAISS A,

(suonensi3ar
193e[AUe 0} JUSS 9q 0} “PYSIUTy
sey jsedpeoiq dyj Iaje punoie
Keys £ous, a1e yey) syusjuy)
Juaur A3dus paydniiod e 303
31 JNq IDATIDAI B I9)SISI 31AISS Y],
duo pajoadxa

ayy woiy jusuoduwod Lyranoe
juaragIp e sdojs ao1a19s Ay,

juauodwod Ajianoe ue doys
0} SWIT} YONW 00} SIYB} IAISS YT

juauodwod Ayanoe
© dojs 03 9[qe J0U ST 9DIAISS Y[,

Juo payoadxa
ayy woiy yusuodurod Lyianoe

JUDISJJIP B S}IL)S 9DTAIIS ST,

yusuodwod AJIAT}or MIU e JIe)s
0} SWII} YONW 00} S9N B} IAISS Y],

NOILdR-—IDSHA

YHAIADTT
JALSIOHY

REVNEBER
YALSIOHY

YAATADHY
AAISIOHA

ALIALLDV

HSINIA

ALIALLDV
HSINIA

ALIALLDV
HSINIA

ALIAILDYV 1dVIS

ALIAILDV IAVLS

HOdNOSsHY

/HDIAMES

ssaurPwy

ssauTWI

anyea yndino

Ayqerreae

ssaurEwW)

ssaurEwI)

Aypiqerreae

SsauTowm

JAOW
HANTIVA

Kepap yeard
e 1M 3sanbsar 1010001 10351301
a3 sassa001d 901ATSS ATV YL

jsonbai 19419091 10)s1831 93 0}
puodsar Jou S30p IIAISS Y YL

Juaur , A1s, paydniiod
© SWIN}aI IAIIS Y YL

uorydaoxe ue
smoayy pue jsanbar Ajranoe ystuy
e Surpuas ur s[rey 901AISS Y 9YL

Kepop
jea18 e yym jsenbar Ay1anoe ysrury
a1y} $9ss9001d ADTAISS NV YL

ysenbar Ay1anoe ystury oy 03
puodsar J0u S30p IIATSS Y YL

uorydooxa
ue MOIY} pue AJIATOR MU
© SunIe)s Ul s[rey 901AI9S ATV YL
Kepop
jea18 e yym jsanbsar Ly1anoe jress
o} $9s89001d IDTAISS NV YL

HNVN

a8vd snoraaid woLf panuijuod — [SPOIA e, 901AIdG ToJeurN ANANOY :§°'g [qeL

179

Appendix B. Android Fault Model

INHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INALIINIALNI
INANVINIHd

HONHLSISYdd

auo pajsanbai ayy
wo1y Juauoduwiod 3d1A 1S JUSISJJIP
© 0} AJ1ATIOR UR PUIq IDTAIDS YT,

Jusuodwod 3d1AISS
paisenbaz ayy 03 A31an08 UE pUIq
0} SWIT} YONW 00} S3YB} IAISS YT

juauodwod

ao1A19s pajsanbar ayy 03 Aj1anoe

ue puiq 03 [qe JOU ST DIAIIS Y[
welsAs proipuy ayi

03 auo pajsenbar ayy woiy jusyur

JUDISHIP © S)SedPrOI] DIAISS Y,
w9)sAs

PIOIpUY S} 03 JUSJUI UR JSEOPLOIq
0} SWII} YONW 00} SIYB} IIAISS Y,

W9)SAS PIOIPUY dY} 0} JUJUT Ue
JSEOPROI] 0} [E JOU SI IDIAIIS],

paisenbaz ay

WOIJ JUSIUT JUSISJTP € 0] J9AIIAI
JSEdPROIq dY) SI9)SIZDI ADIATSS Y],

NOILJRIDSHA

HOIAYHAS ANId

HOIAYAS ANId

HOIAYHS ANIA

INHLINI
LsvOoavouad

INHLINI
Isvoavoad

LINHLNI
1svOoavodd

UHAIHOAT
AAISIOHA

HOINOSHY
/HDIAYES

Apiqeyreae

ssaurwI

ssaurPwIy

Amqerreae

ssauTPWI}

ssaur[owr}

Lyqerreae

HAOW
HINTIVA

uorydaoxa
ue SMOI} pue AJIAOE MaU
e 3une)s ur s[rey adIAILS ATV YL
Kepop
jea18 e yy1m 3sanbsar ad1aIas purq
au} sassa001d ad1AISS Y AL

3sanbaz 9o1AI0S puIq Ay 03
puodsar J0u s30p IIAISS Y YL

uondaoxa ue smoIyy
pue 3sanbai juajur 3sedpeoiq
e Surpuoas ur s[rey 901A19S Y 9YL
Aerop yea1d

e 31m 3sanbsar juajur 3sedpeoiq
ap sassavo1d 30T1ATSS NV YL

jsonbai juajur 3sedpEROI] A} 0}
puodsai j0u S20p JDTAISS Y YL

uondeoxa ue smoIyy

pue 1sonbai 19A19091 103S1301
e Surpuas ur s[rey a1A19S Y YL

JNVN

a8vd sno1aaid 1oL panu131107 — JOPOIA JNe DTAISG Toeurey ANTALOY :§°g d[qeL,

Appendix B. Android Fault Model

180

a8vd jxau uo panuijuo)

INHISNVIL
LINHLLINYAINI
ININVINIA]

INHISNVIL
INHLLINIHLNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
ININVINTA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

INHISNVIL
INANVINIHA

INHISNVIL
INANVINIHJ

LINANVINIHJ

INHISNVIL
INANVINIHA

HONHLSISYA

uonedrydde
pa[[eisur ue 10§ uorssrurad
© 329D 0} [P JOU SI IIAIIS YL,

Jyusuodwod
Pa[[eISUI U. JO UOT}RULIOJUT
pa3dnizod saAaLnar 901AISS YT,

juauodwod
P3[[eISUI UB JO UOT}RULIOJUT
PUSSs Jouued 9DIAISS YL

jusuodurod paressur
Ue JO UO}eULIOJUI 3]} dAILIDI
0} SWI} ONUW 00} SANE} IDIAISS],

juauodwod
P[[ISUI UE JO UOL}RULIOJUL 3}
QASTI}DI 0} (L JOU ST IDIAIIS A,
Iapulq ay}
£q pa19350 SONI[IDRY UOI}RDTUNIWOD
93 9Sn 0} S[qe J0U SI DIAISS Y,

adid /3exd0s pauado Apeaire
ayy sasop Apdnaqe 1o adid /3e500s
e uado 03 a[qe J0u ST 9dTAISS AL,
sj[nej aremijos
3WOS 0} NP S[[e)S ADTAIIS AN,
Sj[ney aremijos
WS 0} NP SAYSLID IATSS Y],

NOILJI-IDSAd

[°POIN HNneq 90TATIaG Mwwmﬁmz QMMMUSAH 6'd 41dVL

NOISSINYAd
JOHHD

OdNI
INANOINOD
13D

OdNI
INANOINOD
139

OdINI
INANOINOD
13D

OdINI
ININOJNOD
139

1DA[90 AN

HdId / IIID0S

SAVHIHI®
SSHD0Ud

SAVHIHI®
SSHO0Ud

HOINOSHY
/HADIAIAS

ssaurEw

anyea ndino

Aiqepreae

ssaurwI}

ssaurPwI

Juaweuew
901N0Sa1

JuawLeuew
901N0Sa1

Juswadeurw
90IN0Sa1

JuawLeurw
901N0Sa1

HAOW
HINTIVA

jsonbar uorssturzad xoayp a1y 03
puodsar J0u S90P ADTAISS JAJ YL,

jusuodurod e Jo uoneULIOfUT
pa1dnr1od saxe) 9d1AISS JAJ YL,

uondadxe ue smoIyy pue
ysenbar ojur yusuodwos 323 a1y
Burpuss ur srey 9d1AISS N J YL

Kepap yeard
e 1M 3sanbai ojur yusuodwod
108 ayj sassa001d 901AISS N J YL

3sanbar ojur yusuodwods 393 oy 03
puodsar J0u S30p IIAISS A YL

103lqo
1apuiq e sdoxp 9d1AISS A J YL

sadid pue syaxoos sdoip
10 uado 3,ued IAISS A J YL

SaUSeId IAISS N J YL

suey 9014198 A J YL

JNVN

181

Appendix B. Android Fault Model

INHISNVIL
INALLINIALNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INALIINIALNI
INANVINIHd

HONHLSISYdd

agexped mau e [epsur
0} WIT} YDNUI 00} SIB} ADIAISS],

a8exped mau
© [[eISUI 0} 3[e JOU ST TAIIS AT,

UOT}RULIOJUT DA[OSDI
pa1dniIod suingar ad1ATSS AT,

syuauodwod pajerdosse uoim
AU} 0} JUDUT UB DA[OSI DIAIIS A,

syusuodwod
PA3RID0SSE 3} 0} JUSJUL UR A[OSII
0} SWIT} YONW 00} SIYB} IAISS YT,
syusuodwod

Pa3eIO0SSE S} 03 JUSJUL
B SAJOSII 0} (e JOU ST DIAIS Y[,

suorsap Ausp / yuerd uorssrurod
J091I0DUI SUINJII IDIAISS Y,

uonyeoridde

pajressur ue 1oy uorssrurrad e ooy
0] dWIN} DN 00) SINE] IDIAIIS A,

NOILJRIDSHA

HOVIOVd
TIVISNI

HOVIOVd
TIVISNI

INHLNI
HATOSHI

INHLINI
HATOSHI

INHLINI
HATOSHY

INHLINI
HATOSHY

NOISSINIHd
ADHHD

NOISSINIHd
JADHIHD

HOINOSHY
/HDIAYES

ssaurPwy

ssaurwI

anpea yndino

Amqerreae

ssaurPwy

ssauTPWI}

anyea yndino

ssaurEwWIT)

HAOW
HINTIVA

Kepap yeard
e 1M 3sanbar a8exded [reisur
a3 $9ss9001d IDTAISS I J YL

jsonbar a8esped [reysur oy 03
puodsai J0u S90P ADTAISS JAJ YL,

OJUT dAJOSAI
Ppa3dnrIod surnjar 9d1AIdS JAJ 9YL

uondodxa ue smoIyy
pue 3sanbax juajur aa[osaz oy
Surpuas ur s[rey 901198 JAJ YL
Kepp
yea18 e yyim 3sanbai yusjur aajosar
o3 $9ss2001d IDTAISS I J YL

3sanbax jusyuT 910591 9} 03
puodsar j0u s20p DTAIIS A J YL

paruaparqeordde
joNparuerd vorssturad
wInjax sAemye 9DIAISS JAJ YL

Kepap yeard
e y3im 3sanbar uorsstuwiad spayo
a3 sassa001d 01AISS A J YL

JNVN

a8vd snoraaid 1oL panu1j1107 — JOPOIA INe 0TAISG Taeure]y a3ede] 6 dqel,

Appendix B. Android Fault Model

182

LINHISNVIL
INHLLINFMAINI
ININVINTA]

LINHISNVIL
INHLLINFIAINI
ININVINTA]

LINHISNVIL
INHLLINIAINI
ININVINTA]

LINHISNVIL
INHLLIN¥MALINI
ININVINTAJ

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INHLLINTAINI
ININVINTAJ

LINHISNVIL
INHLLIN¥MAINI
ININVINTA]

HONHLSISYA

ﬁ@#QSHHOU ole aseqejep
AITOS Y3 JO SULIU0D Y],

aseqejep a3
Ul ejep 3Iasul 03 a[qeun st I IOS

A0S
ur saxnjrey uorjerado Sunppo]

a191dwodur sanfea wmnjax
3} e Jey]) (SI0SINd aseqerep
jo a8esn joaxr00Ur UE ~39) Snq
STWILIOZE Uk SISUNOdUL TS

suorjerado
aseqeiep TOS JO UOIINIAXD
oy} Surp mors A194 St ATTOS

suorjerado
aseqejep T0S ue Sururoyrod
UM JOILId Uk suInjax ajrfbg

suorjerado
aseqerep 10S arederd 03 Surdn
USUM IOLID U SUIn3al A0S

a7y aseqejep ayy uado o3 Jurdn
UayMm JIOLId Uk suwimnial arj0s

NOILJI-IDSAd

ERIE]

CRIE]

CRIE]

AIANO

AIAN0O

AIAN0O

AIAN0O

asvavivda
NHdO

HOINOSHY
/HADIAIAS

Juswadeurwn
92IN0Sa1

Juswaeurwn
90IN0Sax

Juswadeurw

901N O0SaI

anyea yndino

ssauT[owr}

Liqerreae

Ayqerreae

Ayqerreae

HAOW
HINTIVA

[PPON Hneg Areiqr] anTOS :01°d 814V

3SI0U Wopuex
LM dseqejep ayj ururejuod
a1y rearsAyd ays spdniiod 91105
uonedridde £83nq e 10

peor2a0 ue Aq pasned ‘oseqejep
ATTOS Y} JO Y3MOIS dAISSdXT

o[e axmboe 03 djqeun st
pue ‘s30] aseqejep s)ea[ATIDS

uonedrdde 1ayped ayp
03 eyep a3a1dwodur suInjar AIOS

suorjerado
aseqejep TOS JO UoNIAXI
oy} Surmp mors A194 st ATTOS

suorjerado
aseqerep TOS 9IMdaxd 0} Jurkn
UM JOLId Uk SUINIdI 1TOS

8nq e 03 anp Axenb TOg ue pring
pue asxed 03 s[rey 3OS YL

(suorssturzad 3091100UT

03 anp “39) 9y aseqerep
ay uado 03 dfqeun st AITOS L

JNVN

183

Appendix B. Android Fault Model

a3vd 3xau uo panuyuoD)

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

INHISNVIL
INALIINIALNI
INANVINIHd

LINHISNVIL
INHLLINFMAINI
ININVINTA]

LINHISNVIL
INHLLINFMAINI
ININVINTAJ

LINHISNVIL
LINHLLINIAINI
ININVINTA]

LINHISNVIL
INHLLINYAINI
ININVINIA]

INHISNVIL
INHLLINIHLNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
ININVINIAd

HONHLSISYA

ySu9r
SuoIM A} YHIM IDfjNq pedI 9}
suInjaI 31 3nq ‘oY e pear ssadoid y

suInjal
I9AdU)1 1Nq ‘ATY e peas ssedord v

Kepap yea1d e 19)ye I9JJNq pEaI A}
SuInyaz 31 4nq ‘afy e pear ssavord v

UOT)OUNJ 3} WOIJ 0119 UL SIATEIDI
J1 pue ‘o[e pear jouured ssadoxd y

‘SO
3} WOy S[pueY JO3LI0dUT Uk 303
31114 ‘o[e uado jouued ssadord v

'sGefy Suoim
a3 yatm pauado a1y ay Jo [puey
ay 398 31 Inq ‘ory e uado ssavord v

SO °u
woiy asuodsar Aue 10 s[puey e 103
I9A3u 31 Inq ‘oY uado ssavord v

Keop
1213 ® I8)e GO A} WO S[puey
© 1398 3114 ‘ory e uado ssavord ¥

SO 9y} wiogj d[puey e 393 Jou S0P

31 sm ‘o e uado jouued ssadoxd v

NOILJIRIDSHA

aviaa

aviaa

aviaa

aviaa

NHJO

NHJO

NHJIO

NHdO

NHdO

HOdNOSHY
/HDIAYES

anyea ;ndino

ssaur[owr}

ssaurEwIT)

Ayqerreae

anyea yndino

anyea jndino

ssaurEwI}

ssaurEw)

Aiqepreae

HAOW
HANTIVA

[PPOIN 3neq Areiqr] dwiorg :11°g 414V

ySua[Suoim ay ym
a[y oYy pear Areiqy d1uoLq ay],

91y e Surpearx
a[ym sSuey Areiq[oruorq ayJ,

a1y e Surpear
ut sfe[op Areiqr[oTuoIq Sy L

oy e
Gurpear ur syrey Areiqry oruorq ay,

103dr0sap oy Suoim e yym
paunjar st AreIqry oruoIq YL,

s3ey Suoim ay \Ppm
91y ayy uado Arexqry oruorq ayJ,

a1y e Suruado
I[ym s3uey Areiqr oTuoIq YL,

a1y e Suruado
ur sAe[op Areiqry oruorq ayJ,

a7y e uado 3, ued Areiqry oruorq oYL,

HANVN

Appendix B. Android Fault Model

184

a8vd jxau 1o panuijuod)

LINHISNVIL
INHLLINYAINI
ININVINTAd

LINHISNVIL
INHLLINFMAINI
ININVINTA]

LNHISNVIL
ININVINTA]

LINHISNVIL
ININVINIA]

LNHISNVIL
ININVINTA]

HONHLSISYHd

LNHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYHd

pa1dnurod st 3sanbax ayy 1ng
‘UOWdR(] SWN[OA dYj 03 sysonbax
3w 0} S3L1} IAIIGIUNOA YL

pajerdwod jou st uondesuRI}
dY} pue pauIN}aI SI IOLIS Uk ng
“UOWIR(] SWN|OA Y} 0} sysanbaz
OB 0} SALI} IDTAIIGIUNOIA] YT

10puUIq O

Aq Pa13JJ0 SONI[IOL] UOTJEITUNTILOD

93} asn 03 a[qe JOU SI 90TAISS I],

sj[nej aremijos
WIOS 0} NP SAYSLID IATIS AT,

sj[nej aremijos
3OS 0} aNP S[[e}S AITAIIS AL,

NOILLdI—IOSHd

[9POIA }[ne 3JTAISG JUNOIN

I9Jynq pea1 paydnirod e

SuIn3az 31 nq ‘o e pear ssadoxd v

NOILdR-—IDSHA

dATOA
OLANVINNOD 2nfeaindino
AN4dS
dTOA
OL ANVININOD Ayiqerreae
ANHdS
Juawseurw
1D4[dO JAANId JONN
SAVAIHI® Juswadeueuwr
SSHOOUd 92IN0SaI
SAVHAHL® jusurogeueuwr
SSADOOUJ 90IN0SaI
HOANOSHA AAONW
/ADIAIAS HANTIVA
¢rg a1davy,

aviday

HOdNOSsHY
/HDIAMES

anpea yndino

JAOW
HANTIVA

UOwaL(] SWNJOA
ay 03 puewrwod paydnirod
© PUIs IDTAIIGIUNOIA YL,

UOWdR(] SWN[OA 3} 0} PUBLIUIOD
PUSS JOUUED IDTAIIGIUNOIA] ST,

123(qQ Topurg
o sdoxp 901AI9G JUNOJA YT,

PaYseId ST 9IAIAG JUNOJA UL

PO[TRIS ST 9ITAISS JUNOA S L,

HNVN

I9Jnq pear pajdnizod e yim
paunjar st A1eIqry dS1uoIq ayJ,

HNVN

a8vd snoraaid wosf panuijuod — [SPOIN e Areiqry oruorg :11°d S[qeL

185

Appendix B. Android Fault Model

a3vd 3xau uo panurguoD

LNHISNVIL
ININVINTA]

LINHISNVIL
ININVINTA]

HONHLSISYA

LINHISNVIL
INHLLINFMAINI
ININVINTA]

INHISNVIL
INALIINIALNI
ININVINTAJ

LINHISNVIL
INHLLINFMAINI
ININVINTA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYA

(8nq yuowaBeuew
Axowow e “3°9) 8nq e Jo asnedaq
SaYSEId UOWIdR(] SWN[OA Y],

(porpesp
e ~39) 8nq e 03 anp pa[eIS
S9W0D9q UOWSR(] SWN[OA YT,

NOILJI-IDSAd

SAVAIHIL®
SSHOOUd

SAVAIHIL®
SSHOOUd

HOINOSHY
/HDIAIES

Juawseuewr
901N0Sa1

Juswadeurw
90IN0Sa1

HAOW
HINTIVA

[PPOIN neq uowise(sWIN[OA ¢1°g H1dV L

Keop
Suo e 1935e 93urd 2Y) saynou
SDTAIIGIUNOIA] AU} I ‘DWNOA
© JO a1e)s Jo aduep e ST a1y,

JUSAS I9Yjoue sayTjou
IDIAISGIUNOIA A} N ‘DUIN[OA
© JO a1e)s Jo aduep e ST a1y,

a8ued ayy £ynou jou saop
SDTAISGIUNOIA] A} 1N ‘DWN[OA
© JO 933 JO dZueyD € ST aIdY L,
Kepap Suor
© I9)Je PI[puey pue pajjruusues)
A[Ten3oe are spuLwUOd ay} Inq
“UOWdL(] SWN[OA 3y} 0 s}sanbax
9XEW 0} SALL) ATATOGIUNOIA] YT,

NOILJRIDSHA

d’TOA INO¥d
NOILVOIJILON
INHAH HATADHYT

dTOA NOUA
NOILVOIdLLON
INHAH HATADHA

dTOA NOUA
NOILVOIJLLON
INHAH HAIHOHY

dTOA
OL ANVINNOD
dNids

HOINOSHY
/HDIAYES

ssaurEwWI}

anyea yndino

Liqerreae

ssaurwI

HAOW
HINTIVA

{SeId UOWIR(] SWNJOA

Guey uowae(SWN[OA

JNVN

UOWdk(] SWN[OA Y} WOIJ
UOTedYTIOU JU2Ad Ue Surjpuey
J& MO[S ST TAIIGIUNOIA YL,

uowdeq
9INJOA 9} WOIJ UOTILIYTIOU JUDAD
ue 3dNII0d 9OTAISGIUNOIA Y],

uowde(] AWN[OA
9Y} WOIJ UOT}ed1IOU JUIAS
Uk S9SSTW 9DIAIIGIUNOIA Y L,

paAelap are uowaeq
WIN[OA 33} 0} IDIAIIGIUNOA
9} WOIJ SPULUIWOD],

JNVN

a8vd sno1aaid 1oL panu1j1100 — JOPOIA INe,] SOTAISG JUNOIA :ZT'd 3[qelL

Appendix B. Android Fault Model

186

a3vd 3xau uo panuyuoD)

LINHISNVIL
INHLLINIAINI
ININVINTA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

INHISNVIL
INHLLINIHLNI
ININVINTAd

LINHISNVIL
INHALLINIAINI
ININVINIA]

LINHISNVIL
LINHALLINYAINI
ININVINTA]

INHISNVIL
INHLLINIHLNI
ININVINTA]

LINHISNVIL
INANVINIA]

INHISNVIL
INANVINIA]

HONHLSISYHd

J[qrssadoe
10U dW003q YOIYM “SIWN[OA
9} INOJE UOTJRULIOJUT }03II0dUT
S9ASLI)AI UOWIL(] SWN[OA Y[,

UMOP PIMOTS aIe
suope1ado junowun pue Junoj

d[qrssadde
JOU W03 YOTYM ‘SauInjoA
93} INOge UOLJRULIOJUT 9ASLI}OX
0} 9[qeun ST UOWdR(] SWIN[OA 3],

9[ISSAIOL JOU U0 SIWN]OA PUe
‘[9UISY A} WOIJ SJUSAS JO9LIOOUT
SOASLIJOI UOWIR(] SWN[OA YL

Keop
3uo[e 19)Je [9UIY B[} WOIJ SUIAD
S9ASTIJAI UOWdB(] SWNJOA YT,

[9UI9Y] 9} WO} SIUSAS AILIDI
JOUUERD UOUISE(] SWIN[OA Y[,

adid /3e30s pauado Apearre
ay sasop Apdniqe 1o adid /395008
e uado 03 9[qe jJou sT AD1AIBS Y],

ansst
BurBe aremyjos e 03 anp sroydrosap
31 SYES] UOWdE(] SUINJOA Y],

NOILdR-—IDSHA

(avid
NOILVYI
-NOIANOD 149

(gvia)
NOILVY
-NOLNOD 13D

(avid)
NOILVY
-NOLINOD 13D

HOVIOLS WO¥A
NOILVOIdILON
HATHOHY

HOVIOLS WOUA
NOILVOIdILON
HATHOHY

HOVIOLS WOUA
NOILLVOIHILON
HAIADAT

HdId / LEID0S

J1d

HOdNOSsHY
/HDIAMES

anyea yndino

ssaurPwy

Aiqepreae

anyea jndino

ssaurEwW)

Aiqepreae

Juswadeurw
92IN0Ssa1

Juswadeuewr
90IN0Sa1

JAOW
HANTIVA

(- qyed syshs
‘roquumu uonnred ‘[aqef qurod
junow 3Uoim) qe}sy ploA WOy
UORINSIUOD SWN[OA }9LI0OUL
UR SOAJLIAI UOWDR(] SWINJOA YT,
Kepap 3uol e yym qeysy poa
WOy UORINSIJUOD SWN[OA 3}
SIAJLIJOI UOWIR(] SWN[OA YL,

qe3sy proA woiy
uorem3uod SWNOA 1) dASLIAI
0} d[qeun ST uowae(] SWN[OA YL

Ppa1dni100 are UOTPAUUI0d NUIION
a3 I9A0 (*** “pajUNOW ‘pajIasur
SWIN[OA) SUOL}EOYT}OU JUDAY
PpaAelap are UOTOAUU0D NUIION
9} I9AO0 (*** “pajunour ‘pajrasut
9WIN[OA) SUOT}EOYTIOU JUDAY
3SO[a1t UOT}OaUU0d YUI[}aN
9} I9A0 (*** “pajunour ‘pajrasut
AWMNJOA) SUOT}EIYTIOU JUSAY

sadid pue sjoxpos sdoxp 10
uado 3,ued uowak(] SWN[OA YL,

(Bur3e aremiyos 03 anp)saqy
uado jouued uowde(] SWNJOA Y,

HNVN

a3vd snotaaid wioif panuiuod — JPPOIN 3Ne] UOWDe(] SWNJOA €T°q d[qeL

187

Appendix B. Android Fault Model

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INHLLINTAINI
ININVINTAJ

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYA

(paydnizod
aIe SJUSIU0d dY) “*8°9) J091I00UT ST
wia)sAs ayy Aq papraord DISY YL
(suorssturzad
Sye[19sn a3 “3-9) J0a1I00UT
st 1asn ayy Aq papraoxd ggo ayL
uorssturad Suoim
AU} YIIM PIJUNOW IO S[ISSIIOLUL
31 Supjew ‘OwnN(oA e Junow
A[3091100UT UOWSR(] SWNJOA YT,

QWINJOA € junouw 0} awrj} ypnua
00] sy} uowae(] aWnN[OA 9Y],

(Aouspuadop Gursstuu
IO UDJRWSIW UOISIDA B 0} anp “8°3)
[PuIdy 9y} Aq papeo] aq jJouued 10
puUnNoj Jou SI IDALIP 3} J1q ‘DWN[OA
© JUNOW 0} IdPIO UT IDALIP 959eI10)s
© peOJ 0} SaLI} UOWdR(] dWN[OA Y[,

NOILJRIDSHA

dOVIOLS
INNOW

HOVIOLS
INNOW

HOVIOLS
INNOW

HOVIOLS
INNOW

HOVIOLS
INNOW

HOINOSHY
/HDIAYES

anyea yndino

anyea yndino

anyea ;ndino

ssaurowm}

Apiqerrese

HAOW
HINTIVA

DSV paydniiod
IO PI[EAUL UB S}UWNS Wd)SAS ay [,

490 paydniiod
IO PI[EAUI UR S}WNS I9SN 3y,

WIN[OA B junow
A[3091100UT UOWISR(] WN]OA Y],

9DIAdP B JUNOW 0} ST}
3uo[e soxe) UOWRE(] SWN[OA YT,

awmjoa ay} Sununowr
10 IDATIP 93LI0)S J091100 3Y) Peo|
0} 3[qeun ST UOWwae(] SWN[OA YL,

JNVN

a8vd snoraaid wio4f panu1ju0d — JPPOIN I[N UOWe(] SWNJOA €1°g d[qeL

Appendix B. Android Fault Model

188

a8vd jxau uo panuizuo)

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINFMALINI
ININVINTA]

INHISNVIL
INHLLINIHLNI
ININVINTA]

INHISNVIL
INANVINIHd

LINHISNVIL
INANVINIA]

HONHLSISYA

pajress are suonerado
O/ YUd1IND Y], "90TAIP Y} YIM
T020301d UoTEdTUNUIWOD () /T AY) UT
JIOLId Uk S3sned ‘arempiey] oy} Woij
Jurum U243 1091I00UT Ue 10 “IOALIP
901A3P 3} uT 3nq 2I1eMIJOS

payioqe are suorjerado
/1 IUd1IND 3], "TASP A} IIM
[020301d uonEdTUNUIWOD O/) UI
JIOLId Uk SISNed ‘arempiey sy} Woij
Jurwury JUDAS J03LIOOUL Ue IO “IOALIP
201A9p a3 ut 3nq 2I1eMIOS

3uny s1 10 19531 ST SNJR)S AP
arempiIey aYJ, ‘9d1AdP A} YIM
[020301d uoTEdTUNUIWOD)/ Y} Ul
10119 Uk S9sned ‘arempiel] sy} Woij
Bururn JUsAd 1091I00UT U IO “IOALID
01AIP 3} Ut 3nq 2TeMjos

‘aremprey ayj Aq pasrer
JOLI Uk IO “PROLISAO Uk ‘[UIdY 9y}
ur 8nq aremyjos e 03 anp (suor3ax
0/1 ‘A1owaur) $90IN0SaI 9)Ld0[[R
0} 3[qeun ST IOALIP DTAIP AL

‘uoryerado
Aue wroyrad 03 a[qeun St IOALIP
U], "'SPEaIY} [SUIdY JO YOO[pesp
© S3sNeDd aNsST ADUSLINDUOD Y

NOILJI-IDSAd

HIRM /avad

HIRIM /avad

HIRIM /AvHd

AJOWHIN

4114 HOIAFA

HOINOSHY
/HADIAIAS

ssaurPwIy

anyea yndino

Aiqepreae

Juswadeurwn
90IN0Sa1

Juswaeurw
90IN0Sa1

HAOW
HINTIVA

uonjerado
O/1 ue jo [[e3s ay Sursned
‘ISALIP 921ASP 3} UI JOLID [030}01]

ejep
0/1 30 uondniiod ayy Sursned
“IDALIP 9DIASP U} UI JOLID [0D0JOL]

uorjerado
O/ ue jo 310qe ayj Sursned
“ISALIP 3DTASP SY} UI IOLI [0D030I]

(suor8az /1 ‘Arowawr
orwreudp) Arouraw ayedofre
03 9[qeun ST I9ALIP 93e103S Y],

suorssturad jo
S[De[93 03 ANP PISSIIIE A JOUUED

(Mg /3201q/ A9p / “ofdurexa
I0J) 9[1J 91AdP [eNIIIA Y],

JNVN

[PPOIN 3. dIeMpIeL] pue SIDALL(] 98eI10)§ H1'g 414V

189

Appendix B. Android Fault Model

a8vd jxau uo panuijuod)

INHISNVIL
LINHALLINYAINI
ININVINIAd

INHISNVIL
INALLINIALNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INALIINIALNI
INANVINIHd

HONHLSISYA

pardnizod Apuopuer
ST20[q Biep Tenprarpur uy

awIm} Yonw 003 Saxe}
sapout Jo dnoid e 03 ssadoe Ay,

SIOLID)/ sostex
sapout jo dnoi3 e 03 ssadde Ay,

pardnirod
Aqwopuer st sapour jo dnox3 v

awry yonuw
00] S93B) dPOUT Ue 0} $S30J€],

10119 /] Ue sastel
9pOUL [ENPIATPUL Ue 0} $S300€ dY],

paidnurrod
A[wopuez sI apour [enprarpur uy

‘paidniiod sawodaq yporqradns
stp a3 ‘uonerado ayy Surmg

‘uoryerado ay 21059q paydniiod
saw0aq yoo[qradns Mstp oy,

NOILJRIDSHA

a8vd sno1aaid 1oL panu131107 — JSPOIA I[Ne dTeMPIeF PUR SIOALI(] 938I0)G

D014 vVivd
HIRIM /avad

HAONI
HIRIM /avad

HAONI
HIRIM /Avad

HAONI
HIRM /avad

HAONI
HILM /avad

HAONI
HIRIM /AvHd

HAONI
HIRIM /AvHd

ADO0TdIAdNS
HIRM /avad

ADOTdIAdNS
HIRIM /avad

HOINOSHY
/HDIAYES

anyea jndino

ssaurwWI],

anyea yndino

anpea yndino

ssaurwIy

anpea yndino

anyea ;ndino

anyea yndino

anyea yndino

HAOW
HINTIVA

2019
ejep Tenprarpur jo uondniio)

"MO[S
st sapour jJo dnoid e 03 ssadde Ay,

"sapout jo sdnoxg Surssaooe
UsYM IOLId (/] JUSISuel],

sapour jo sdnoig jo uondniro)

MOJS ST $5900€ dpOoUl A [,

apour Jurssadoe
USUM IOLID (/] JUdISUeI],

apout [enprarput jo uondnio))

yoorqradns Surssadoe
UayMm I0LI3 O /] Jualsuel],

uondniiod yoojqradng

JNVN

‘¥1'd °19eL

Appendix B. Android Fault Model

190

a3vd 3xau uo panurguoD

LINHISNVIL
INALIINIALNI
INANVINIHd

LINHISNVIL
INHLLINFMALINI
ININVINTA]

LINHISNVIL
INHLLINFMALINI
ININVINTA]

LINHISNVIL
INHLLINIAINI
ININVINTA]

LINHISNVIL
INHALLINIAINI
ININVINIA]

INHISNVIL
LINHALLINYAINI
ININVINTA]

INHISNVIL
INALLINIALNI
INANVINIHd

INHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

HONHLSISYHd

pardnriod Ajwopuex
st syporq Anuap jo dnoil v

awIn Yonuwr 003 saxye} 20[q
A1juap [enpIATPUT UR 0} SS9008 3T,

10113 O /] Ue SIsTel 320[q
A1jUap TENPIATPUT Ue 0} SS90 AT,

pardnirod Apuopuer
SIY0[q A1USP [ENPIATPUL UY

awIm} Yonw 003 S} SI0[q
eyep jo dnoig e 03 ssedde 9y,

SI0113 () /] SISIeI SY20[q
eyep jo dnoig e 03 ssedde 9y,

paydnizod
ATwopuer st sxoo[q eyep jo dnoid y

awn yonux
00} sa3B) D0[q BIeP © 0] SS900.],

10113) /] Ue SIsTel 3D0[q
elep [ENPIAIPUT UE 0) SSDOE [,

NOILdR-—IDSHA

a8vd snoraaid wosf panuijuod — [SPOIA INe] dIEMPIRE] PUR SISALI(] 9881015

AD0Td ALLNAA
HIRIM /avad

AD0Td ALLNAA
HIRIM /avad

AD0T1d ALLNAA
HIRIM /avad

AD0T1d ALLNAA
HIRIM /avad

JD01d vivd
HIRNM /avad

JD001d vVIvd
HIRIM /avad

JD001d vVIvd
HIRIM /Avad

JD001d vVIvd
HIRIM /Avad

AD014 Vivd
HIRM /avad

HOdNOSsHY
/HDIAMES

anyea yndino

SssaurEwI],

anyea yndino

anyea jndino

ssaurEwI],

anyea jndino

anyea yndino

ssaurWI],

anpea yndino

JAOW
HANTIVA

S20[q
Anyuap jo sdnoid jo uondniro)

MOTS ST §§900% 20[q ATJUap L,

3o01q Anyuap Surssadoe
USYM I0LId (/] JUSISUeI],

32019
Anyuap renprarput jo uonydniio))

MOIS SI SY20[q
eyep jo dnoig e 03 ssedde oy

s0[q erep jo sdnoid Surssadoe
USYM I0LId (/] JUSISUeI],

syporq
eyep jo sdnoig jo uondniio)

MOTS ST §59008 320[q Bep Y],

3o01q erep 3urssadde
USUM IOLID (/] JUdISUeI],

HNVN

‘¥1'd °1qeL

191

Appendix B. Android Fault Model

INHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LNHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
INANVINIA]

LINHISNVIL
INHLLINIHLNI
ININVINTAJ

LINHISNVIL
INALIINIALNI
INANVINIHd

HONHLSISYdd

0/1 Aue urroyrad jou ssop pue
9ATSUOdSaI JOU ST IA[[OTU0D Y],

uonerado ue Guump paydniiod
are 9)1IM / peal 0} $0[q A[dn N

suorydaoxa
O/1 o[dn[nu sasrex I[[OIu0d Y],

uorydaoxa
O/ Ue Saster ID[[OIU0d Y],

uonerado ue uump
Pa3dnLIod SI 9j11M / peal 03 3P0[q

ST} DN 00} S3Xe) SH0[]
Anyuap jo dnoid e 03 ssadoe oy,

SI01I9 /] SaSIel SYO0[q
Anyuap jo dnoid e 03 ssedoe oy,

NOILJRIDSHA

a8vd sno1aaid 1oL panu131107 — JSPOIA I[Ne dTeMPIeF PUR SIOALI(] 938I0)G

ANV
HIRIM /Avad

ANV
HIRM /avad

ANV
HILM /avad

ANV
HIRIM /AvHd

ANV
HIRIM /AvHd

AD0Td ALLNAA
HIRM /avad

AD0Td ALLNAA
HIRIM /avad

HOINOSHY
/HDIAYES

ssaurwI

anyea yndino

anpea yndino

anpea yndino

anyea yndino

ssauT[owIL]

anyea yndino

HAOW
HINTIVA

A}IM /peal
3po1q uo Jurey Is[[0nU0)D)

9)IM /peal
3o01q paydnriod ardnnn

JLIM /PeaI D0[q
ardnmnuw uo 10119 /] JUSISUEI],

9)LIM /pedl
320[q U0 0L /] JUdISuel],

LM /pedl
3o01q paydniod s[durg

MOTS ST SY20[q
Anyuap jo dnoid e 03 ssadoe oy,

sspo1q Anuap jo sdnoid Guissadoe
UdyM I0LId /] yualsuel],

JNVN

‘¥1'd °19eL

193

References

(1]

[2]

Life is too short to be living somebody else’s dream.
— Hugh M. Hefner

M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,” Computer,
vol. 30, no. 4, pp. 75-82, 1997.

S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “No pain, no gain?: the
utility of parallel fault injections,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 2015, pp. 494-505.

D. Ferraretto and G. Pravadelli, “Efficient fault injection in gemu,” in Test Symposium
(LATS), 2015 16th Latin-American. 1EEE, 2015, pp. 1-6.

R. Sasnauskas and J. Regehr, “Intent fuzzer: crafting intents of death,” in Proceedings
of the 2014 Joint International Workshop on Dynamic Analysis (WODA) and Software and
System Performance Testing, Debugging, and Analytics (PERTEA). ACM, 2014, pp. 1-5.
A. Mukherjee and D. P. Siewiorek, “Measuring software dependability by robustness

benchmarking,” IEEE Transactions on Software Engineering, vol. 23, no. 6, pp. 366-378,
1997.

Capgemini, M. Focus, and Sogeti, “World quality report 2017-2018,” 2017.

A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and Taxonomy of
Dependable and Secure Computing,” IEEE Trans. on Dependable and Secure Computing,
vol. 1, no. 1, 2004.

IDC - Analyze the Future, “IDC: Smartphone OS Market Share 2016, 2015,” June 2017.
[Online]. Available: http:/ /www.idc.com/promo/smartphone-market-share/os
Android, “Android Open Source Project,” August 2017. [Online]. Available:
https:/ /source.android.com/

E. Weyuker, “Testing component-based software: A cautionary tale,” IEEE Software,
vol. 15, no. 5, 1998.

T. O. Vuori and Q. N. Huy, “Distributed attention and shared emotions in the innova-
tion process: How nokia lost the smartphone battle,” Administrative Science Quarterly,
vol. 61, no. 1, pp. 9-51, 2016.

Common Vulnerability and Eposures, “CVE-2016-2060,” May 2017. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2060

http://www.idc.com/promo/smartphone-market-share/os
https://source.android.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2060

194

REFERENCES

(13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

E. Martins, C. M. Rubira, and N. G. Leme, “Jaca: A reflective fault injection tool
based on patterns,” in Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on. 1EEE, 2002, pp. 483-487.

Antonio Ken Iannillo, Roberto Natella, Domenico Cotroneo, Santonu Sarkar, “A Fault
Injection Tool For Java Software Application,” January 2013. [Online]. Available:
https:/ /akiannillo.github.io/master_degree/Iannillo_masterthesis.pdf

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A Survey of Software Aging
and Rejuvenation Studies,” ACM Journal on Emerging Technologies in Computing Systems
(JETC), vol. 10, no. 1, p. 8, 2014.

S. Garg, A. V. Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A Methodology for
Detection and Estimation of Software Aging,” in Proc. of the 9th Intl. Symp. on Software
Reliability Engineering (ISSRE), 1998.

M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of Software Aging in
a Web Server,” IEEE Trans. Reliability, vol. 55, no. 3, pp. 480491, 2006.

L. Silva, H. Madeira, and J. Silva, “Software Aging and Rejuvenation in a SOAP-based
Server,” in Proc. of the 5th IEEE Intl. Symp. on Network Computing and Applications
(NCA), 2006, pp. 56-65.

R. Matias and J. Paulo Filho, “An experimental study on software aging and re-
juvenation in web servers,” in Computer Software and Applications Conference, 2006.
COMPSAC’06. 30th Annual International, vol. 1. 1IEEE, 2006, pp. 189-196.

D. Cotroneo, S. Orlando, R. Pietrantuono, and S. Russo, “A measurement-based
ageing analysis of the jvm,” Software Testing, Verification and Reliability, vol. 23, no. 3,
pp. 199-239, 2013.

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software Aging Analysis of
the Linux Operating System,” in Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on. 1EEE, 2010, pp. 71-80.

J. Araujo, R. Matos, V. Alves, P. Maciel, F. Souza, K. S. Trivedi et al., “Software Aging in
the Eucalyptus Cloud Computing Infrastructure: Characterization and Rejuvenation,”
ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 10, no. 1, p. 11,
2014.

D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting aging-related bugs using
software complexity metrics,” Performance Evaluation, vol. 70, no. 3, pp. 163-178, 2013.

D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi, “Fault triggers
in open-source software: An experience report,” in Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on. 1EEE, 2013, pp. 178-187.

F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Aging-related bugs in cloud comput-
ing software,” in Software Reliability Engineering Workshops (ISSREW), 2012 IEEE 23rd
International Symposium on. 1EEE, 2012, pp. 287-292.

M. Grottke, A. Nikora, and K. Trivedi, “An empirical investigation of fault types in
space mission system software,” in Proc. Intl. Conf. on Dependable Systems and Networks,
2010.

https://akiannillo.github.io/master_degree/Iannillo_masterthesis.pdf

REFERENCES 195

(27]

[40]

[41]

J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, “Adaptive On-Line Software Aging
Prediction based on Machine Learning,” in Dependable Systems and Networks (DSN),
2010 IEEE/IFIP International Conference on. 1EEE, 2010, pp. 507-516.

P. Zheng, Y. Qi, Y. Zhou, P. Chen, J. Zhan, and M. R. Lyu, “An Automatic Framework
for Detecting and Characterizing Performance Degradation of Software Systems,”
Reliability, IEEE Transactions on, vol. 63, no. 4, pp. 927-943, 2014.

R. Matias, A. Andrzejak, F. Machida, D. Elias, and K. Trivedi, “A systematic differential
analysis for fast and robust detection of software aging,” in Reliable Distributed Systems
(SRDS), 2014 IEEE 33rd International Symposium on. 1EEE, 2014, pp. 311-320.

J. Araujo, V. Alves, D. Oliveira, P. Dias, B. Silva, and P. Maciel, “An Investigative Ap-
proach to Software Aging in Android Applications,” in Systems, Man, and Cybernetics
(SMC), 2013 IEEE International Conference on. 1EEE, 2013, pp. 1229-1234.

H. Wu and K. Wolter, “Software aging in mobile devices: Partial computation offload-
ing as a solution,” in Software Reliability Engineering Workshops (ISSREW), 2015 IEEE
International Symposium on. 1EEE, 2015, pp. 125-131.

Q. Wang and K. Wolter, “Reducing task completion time in mobile offloading systems
through online adaptive local restart,” in Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering. ACM, 2015, pp. 3-13.

Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “PersisDroid: Android Performance Diagnosis
via Anatomizing Asynchronous Executions,” arXiv preprint arXiv:1512.07950, 2015.

S. Marcek and M. Drozda, “Predicting system failures on mobile devices,” in Proceed-
ings of the Mediterranean Conference on Information & Communication Technologies 2015.
Springer, 2016, pp. 499-508.

B. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX
utilities,” Communications of the ACM, vol. 33, no. 12, 1990.

P. Koopman and J. DeVale, “The exception handling effectiveness of posix operating
systems,” IEEE Transactions on Software Engineering, vol. 26, no. 9, pp. 837-848, 2000.
K. Kanoun, Y. Crouzet, A. Kalakech, A. Rugina, and P. Rumeau, “Benchmarking the

Dependability of Windows and Linux Using PostMark Workloads,” in Proc. FTCS,
2005.

Michal Zalewski, “American Fuzzy Lop (AFL),” December 2016. [Online]. Available:
http:/ /lcamtuf.coredump.cx/afl/

C. Cadar, D. Dunbar, D. R. Engler ef al., “KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs.” in OSDI, vol. 8, 2008, pp.
209-224.

P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox fuzz testing.” in
NDSS, vol. 8, 2008.

C. Mulliner and C. Miller, “Fuzzing the Phone in your Phone,” Black Hat USA, June,
2009.

http://lcamtuf.coredump.cx/afl/

196

REFERENCES

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the android apps with
intent-filter tag,” in Proc. Intl. Conference on Advances in Mobile Computing & Multimedia,
2013.

R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A. Stavrou, “A
whitebox approach for automated security testing of android applications on the
cloud,” in Proc. 7th Intl. Wksp. Automation of Software Test (AST). 1EEE, 2012.

A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An Empirical Study of the
Robustness of Inter-Component Communication in Android,” in Proc. IEEE/IFIP Intl.
Conf. on Dependable Systems and Networks (DSN), 2012.

K. W. Y. Ay, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the Android
Permission Specification,” in Proc. ACM Conf. on Computer and Communications Security,
2012.

Y. Hu and I. Neamtiu, “Fuzzy and cross-app replay for smartphone apps,” in Proc.
11th Intl. Wksp. Automation of Software Test. ACM, 2016.

C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.-P. Weinmann, iOS Hacker's
Handbook. John Wiley & Sons, 2012.

W. H. Lee, M. Srirangam Ramanujam, and S. Krishnan, “On designing an efficient
distributed black-box fuzzing system for mobile devices,” in Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security. ACM, 2015,
pp- 31-42.

C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson, H. Liu, Y. Liu,
J. Tang, X. Shan, R. Chandra et al., “Caiipa: Automated large-scale mobile app testing
through contextual fuzzing,” in Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking. ACM, 2014, pp. 519-530.

C. Cao, N. Gao, P. Liu, and J. Xiang, “Towards Analyzing the Input Validation Vul-
nerabilities associated with Android System Services,” in Proc. 31st Annual Computer
Security Applications Conf. ACM, 2015.

H. Feng and K. G. Shin, “BinderCracker: Assessing the Robustness of Android System
Services,” arXiv preprint arXiv:1604.06964, 2016.

R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability with software
fault injection: A survey,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 44, 2016.

Android. (2017, Sep.) Start the emulator from the command line | an-
droid studio. [Online]. Available: https://developer.android.com/studio/run/
emulator-commandline.html

R. Natella, D. Cotroneo, J. Duraes, H. S. Madeira et al., “On fault representativeness of
software fault injection,” Software Engineering, IEEE Transactions on, vol. 39, no. 1, pp.
80-96, 2013.

Roy Longbottom, “Roy Longbottom’s Android Benchmarks,” June 2017. [Online].
Available: http:/ /www.roylongbottom.org.uk/android %20benchmarks.htm

Nelson Guilherme M. Leme, Eliane Martins, “JACA Software Fault Injection Tool,”
June 2017. [Online]. Available: http:/ /www.ic.unicamp.br/~eliane /JACA. html

https://developer.android.com/studio/run/emulator-commandline.html
https://developer.android.com/studio/run/emulator-commandline.html
http://www.roylongbottom.org.uk/android%20benchmarks.htm
http://www.ic.unicamp.br/~eliane/JACA.html

REFERENCES 197

[57]

(58]

[71]

[72]

J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing
experiments?” in Proc. Intl. Conf. on Software Engineering, 2005.

Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software Rejuvenation: Analysis,
Module and Applications,” in Fault-Tolerant Computing, 1995. FTCS-25. Digest of
Papers., Twenty-Fifth International Symposium on. 1EEE, 1995, pp. 381-390.

G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo, “Memory leak analysis
of mission-critical middleware,” Journal of Systems and Software, vol. 83, no. 9, pp.
1556-1567, 2010.

D. Cotroneo, F. Fucci, A. K. Iannillo, R. Natella, and R. Pietrantuono, “Software aging
analysis of the android mobile os,” in Software Reliability Engineering (ISSRE), 2016
IEEE 27th International Symposium on. 1EEE, 2016, pp. 478-489.

J.-C. Fabre, F. Salles, M. R. Moreno, and J. Arlat, “Assessment of COTS microkernels
by fault injection,” in Proc. Dependable Computing for Critical Applications 7, 1999.

S. Winter, C. Sarbu, N. Suri, and B. Murphy, “The impact of fault models on software
robustness evaluations,” in Proc. Intl. Conf. on Software Engineering, 2011.

D. Cotroneo, D. Di Leo, E. Fucci, and R. Natella, “SABRINE: State-Based Robustness
Testing of Operating Systems,” in Proc. IEEE/ACM Intl. Conf. on Automated Software
Engineering, 2013.

N. Kropp, P. Koopman, and D. Siewiorek, “Automated robustness testing of off-the-
shelf software components,” in Proc. Intl. Symp. on Fault-Tolerant Comp., 1998.
Google, “syzkaller - linux syscall fuzzer,” May 2017. [Online]. Available:
https://github.com/google/syzkaller

S. Bhansali, W.-K. Chen, S. De Jong, A. Edwards, R. Murray, M. Drini¢, D. Miho¢ka,
and J. Chau, “Framework for instruction-level tracing and analysis of program execu-
tions,” in Proc. 2nd Intl. conference on Virtual Execution Environments. ACM, 2006.

E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of constraints:
Whitebox fuzz testing in production,” in Proc. 2013 Intl. Conference on Software Engi-
neering, 2013.

Android, “Intent | Android Developer,” May 2017. [Online]. Available:
https://developer.android.com/reference/android /content/Intent.html

K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random testing of
haskell programs,” Acm sigplan notices, vol. 46, no. 4, pp. 5364, 2011.

L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang, X. Xing, and
P. Liu, “Context-aware System Service Call-oriented Symbolic Execution of Android
Framework with Application to Exploit Generation,” arXiv preprint arXiv:1611.00837,
2016.

J. Arlat, M. Aguera, L. Amat, Y. Crouzet,]. Fabre, J. Laprie, E. Martins, and D. Powell,
“Fault Injection for Dependability Validation: A Methodology and Some Applications,”
IEEE Trans. on Software Engineering, vol. 16, no. 2, 1990.

J. Duraes and H. Madeira, “Emulation of Software faults: A Field Data Study and a
Practical Approach,” IEEE Trans. on Software Engineering, vol. 32, no. 11, 2006.

https://github.com/google/syzkaller
https://developer.android.com/reference/android/content/Intent.html

198

REFERENCES

(73]
[74]
[75]

[76]

[77]

[78]

[79]

(80]

[81]
(82]
(83]

(84]

(85]
(86]
(87]

(88]

(89]

J. Christmansson and R. Chillarege, “Generation of an Error Set that Emulates Soft-
ware Faults based on Field Data,” in Proc. Intl. Symp. on Fault-Tolerant Comp., 1996.

J. Voas, E. Charron, G. McGraw, K. Miller, and M. Friedman, “Predicting How Badly
"Good" Software Can Behave,” IEEE Software, vol. 14, no. 4, 1997.

P. Marinescu and G. Candea, “LFI: A practical and general library-level fault injector,”
in Proc. Intl. Conf. on Dependable Systems and Networks, 2009.

H. S. Gunawi, T. Do, P. Joshi, P. Alvaro,]. M. Hellerstein, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE and DESTINI: A Framework for
Cloud Recovery Testing,” in Proc. USENIX Symposium on Networked Systems Design
and Implementation, 2011.

A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri, “An Empirical Study of
Injected versus Actual Interface Errors,” in Proc. ACM Intl. Symp. Soft. Testing and
Analysis (ISSTA), 2014, pp. 397-408.

K. Yaghmour, Embedded Android: Porting, Extending, and Customizing. " O’Reilly
Media, Inc.", 2013.

D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental analysis of binary-
level software fault injection in complex software,” in Proc. European Dependable
Computing Conf., 2012.

D. Cotroneo, A. Lanzaro, and R. Natella, “Faultprog: Testing the Accuracy of Binary-
Level Software Fault Injection,” IEEE Transactions on Dependable and Secure Computing,
2016.

D. Powell, “Failure mode assumptions and assumption coverage,” in Predictably
Dependable Computing Systems. Springer, 1995, pp. 123-140.

J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault injection experiments
using fiat,” IEEE Transactions on Computers, vol. 39, no. 4, pp. 575-582, 1990.

F. Cristian, “Understanding fault-tolerant distributed systems,” Communications of the
ACM, vol. 34, no. 2, pp. 56-78, 1991.

D. P. Siewiorek,]. J. Hudak, B.-H. Suh, and Z. Segal, “Development of a benchmark
to measure system robustness,” in Fault-Tolerant Computing, 1993. FTCS-23. Digest of
Papers., The Twenty-Third International Symposium on. IEEE, 1993, pp. 88-97.

A. S. Tanenbaum and H. Bos, Modern Operating Systems. Prentice Hall Press, 2014,
ch. 10.8.

AndroidXRef, “Androidxref,” August 2017. [Online]. Available: http://androidxref.
com/

A. ETSI, “command set for gsm mobile equipment (me),” ETS, vol. 300, p. 642.

Android, “Configure on-device developer options | android studio,” May 2016.
[Online]. Available: https://developer.android.com/studio/debug/dev-options.
html

——, “Ui/application exerciser monkey | android studio,” May 2016. [Online].
Available: https:/ /developer.android.com/studio/test/monkey.html

http://androidxref.com/
http://androidxref.com/
https://developer.android.com/studio/debug/dev-options.html
https://developer.android.com/studio/debug/dev-options.html
https://developer.android.com/studio/test/monkey.html

REFERENCES 199

[90]

[91]

[92]

[93]
[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Android Developers, “Keeping Your App Responsive,” May 2017. [Online]. Available:
https:/ /developer.android.com/training/articles/ perf-anr.html

——, “Write and View Logs with Logcat,” May 2017. [Online]. Available:
https:/ /developer.android.com/studio/debug/am-logcat.html

——, “Logcat Command-line Tool,” May 2017. [Online]. Available: https:
/ /developer.android.com/studio/command-line/logcat.html

D. C. Montgomery, Design and analysis of experiments. John Wiley & Sons, 2008.

”

M. Grottke and K. Trivedi, “Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate,
IEEE Computer, vol. 40, no. 2, pp. 107-109, 2007.

J. Alonso, R. Matias, E. Vicente, A. Maria, and K. S. Trivedi, “A comparative exper-
imental study of software rejuvenation overhead,” Performance Evaluation, vol. 70,
no. 3, pp. 231-250, 2013.

M. Grottke, D. S. Kim, R. Mansharamani, M. Nambiar, R. Natella, and K. S. Trivedi,
“Recovery From Software Failures Caused by Mandelbugs,” IEEE Transactions on
Reliability, vol. 65, no. 1, pp. 70-87, 2016.

R. Matias Jr and P. Freitas, “An Experimental Study on Software Aging and Rejuve-
nation in Web Servers,” in Proc. of the 30th Intl. Computer Software and Applications
Conference (COMPSAC), vol. 01, 2006, pp. 189-196.

P. K. Sen, “Estimates of the regression coefficient based on kendall’s tau,” Journal of
the American Statistical Association, vol. 63, no. 324, pp. 1379-1389, 1968.

H. Theil, “A rank-invariant method of linear and polynomial regression analysis,” in
Henri Theilds Contributions to Economics and Econometrics. Springer, 1992, pp. 345-381.

W. Pirie, “Spearman rank correlation coefficient,” Encyclopedia of statistical sciences,
1988.

F.J. Anscombe, “The validity of comparative experiments,” Journal of the royal statistical
society. series A (General), vol. 111, no. 3, pp. 181-211, 1948.

W. W. Daniel, “Kruskal-wallis one-way analysis of variance by ranks,” Applied Non-
parametric Statistics, pp. 226234, 1990.

Android, “Developers - keeping your app responsive,” May 2016. [Online]. Available:
https://developer.android.com/training/articles/ perf-anr.html#Reinforcing

J. Durbin and G. S. Watson, “Testing for serial correlation in least squares regression.
ii,” Biometrika, vol. 38, no. 1/2, pp. 159-177, 1951.

K. H. Hamed and A. R. Rao, “A modified mann-kendall trend test for autocorrelated
data,” Journal of Hydrology, vol. 204, no. 1-4, pp. 182-196, 1998.

M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software aging,” in
IEEE Proceedings of Workshop on Software Aging and Rejuvenation, in conjunction with
ISSRE. Seattle, WA, 2008.

R. Love, Linux Kernel Development. Pearson Education, 2010.

https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/studio/debug/am-logcat.html
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/training/articles/perf-anr.html#Reinforcing

200

REFERENCES

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Android, “Developers - investigating your ram usage,” May 2016. [Online].
Available: https://developer.android.com/studio/profile/investigate-ram.html#
LogMessages

Android, “Android Security Bulletin,” May 2017. [Online]. Available: https:
/ /source.android.com/security /bulletin/

LG, “LG Security Bulletins,” March 2017. [Online]. Available: https:/ /Igsecurity.lge.
com/security_updates.html

Motorola, “Moto Security Updates,” March 2017. [Online]. Available: https://
motorola-global-portal.custhelp.com/app /software-upgrade-security/g_id /5593

Samsung, “Samsung Android Security Updates,” March 2017. [Online]. Available:
http:/ /security.samsungmobile.com /smrupdate.html

Android Studio, “Android Debug Bridge,” April 2017. [Online]. Available:
https:/ /developer.android.com/studio/command-line/adb.html

ARM, “CoreSight on-chip trace and debug,” May 2017. [Online]. Available: http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.coresight/index.html

Ole André V. Ravnas, “FJIDA,” February 2017. [Online]. Available: https:
/ /www.frida.re

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing as
markov chain,” in Proc. 2016 ACM SIGSAC Conference on Computer and Communications
Security.

AndroidXRef, “Cross Reference: Intentjava,” May 2017. [Online]. Avail-
able: http:/ /androidxref.com/7.0.0_r1/xref/frameworks/base/core/java/android/
content/Intent.java

AndroidXRef, “Cross Reference: IBinder.java - linkToDeath,” May 2017. [Online].
Available: http://androidxref.com/7.0.0_r1/xref/frameworks/base/core/java/
android/os/IBinder.java#257

Samsung, “WE VoIP Application for Business,” May 2017. [Online]. Avail-
able: http:/ /www.samsung.com/us/business/business-communication-systems/
unified-communication-solutions /IPX-LSMP/STD

N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6. ACM, 2007.

Android, “Android - 8.0 oreo,” September 2017. [Online]. Available: https:
/ /www.android.com/versions/oreo-8-0/

Things. (2017, Sep.) Android things | android things. [Online]. Available:
https:/ /developer.android.com/things/index.html

Android, “Android,” August 2017. [Online]. Available: https://www.android.com/

https://developer.android.com/studio/profile/investigate-ram.html#LogMessages
https://developer.android.com/studio/profile/investigate-ram.html#LogMessages
https://source.android.com/security/bulletin/
https://source.android.com/security/bulletin/
https://lgsecurity.lge.com/security_updates.html
https://lgsecurity.lge.com/security_updates.html
https://motorola-global-portal.custhelp.com/app/software-upgrade-security/g_id/5593
https://motorola-global-portal.custhelp.com/app/software-upgrade-security/g_id/5593
http://security.samsungmobile.com/smrupdate.html
https://developer.android.com/studio/command-line/adb.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.coresight/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.coresight/index.html
https://www.frida.re
https://www.frida.re
http://androidxref.com/7.0.0_r1/xref/frameworks/base/core/java/android/content/Intent.java
http://androidxref.com/7.0.0_r1/xref/frameworks/base/core/java/android/content/Intent.java
http://androidxref.com/7.0.0_r1/xref/frameworks/base/core/java/android/os/IBinder.java#257
http://androidxref.com/7.0.0_r1/xref/frameworks/base/core/java/android/os/IBinder.java#257
http://www.samsung.com/us/business/business-communication-systems/unified-communication-solutions/IPX-LSMP/STD
http://www.samsung.com/us/business/business-communication-systems/unified-communication-solutions/IPX-LSMP/STD
https://www.android.com/versions/oreo-8-0/
https://www.android.com/versions/oreo-8-0/
https://developer.android.com/things/index.html
https://www.android.com/

arm64_writer_put_label (&cw, the_end)

	Abstract
	Acknowledgements
	Introduction
	The Need for Dependable Smartphones
	Dependability Threats and Assessment
	Thesis Contributions
	Fault Injection Testing
	Software Aging Analysis
	Fuzz Testing

	State of the Art in Mobile System Dependability
	Fault Injection Testing
	Software Aging and Rejuvenation
	Fuzz Testing

	AndroFIT: A Software Fault Injection Approach for the Android Mobile OS
	Overview
	Fault Modeling
	Methodology
	Android Fault Model

	Android Fault Injection Tool (AndroFIT)
	Fault Injection Techniques
	Design and Implementation of AndroFIT

	Experimental Evaluation
	Fault Injection in the Phone Subsystem
	Fault Injection in the Camera Subsystem
	Fault Injection in the Sensors Subsystem
	Fault Injection in the Activity Subsystem
	Fault Injection in the Package Subsystem
	Fault Injection in the Storage Subsystem
	Lessons Learned

	Software Aging Analysis of the Android Mobile OS
	Overview
	Experimental Methodology
	User-Perceived Response Variable
	System-Related Response Variables
	Factors and Levels
	Experimental plan

	Results
	Software aging across Android vendors
	Software aging across Android versions
	Analysis of process internals

	Chizpurfle: A Gray-Box Android Fuzzer for Vendor Service Customizations
	Overview
	Chizpurfle
	Motivations
	Design

	Experimental Evaluation
	Bugs in Samsung Customizations
	Comparison with Black-Box Fuzzing

	Conclusion And Future Directions
	Fault Injection Testing
	Software Aging Analaysis
	Fuzz Testing
	Further Discussion

	Android Insights
	Android Architecture
	Binder IPC
	Service Manager

	Android Fault Model
	References

