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Abstract

Machine Learning (ML) systems are nowadays largely adopted in many
application domains. In the field of Image Classification (IC), where Con-
volutional Neural Networks (CNN) represent the state of the art ML mod-
els, they can even outperform human beings. The performance of a CNN
once deployed in the operational environment can be very different from
the one estimated before release, due to unpredictable/unconsidered oper-
ating conditions.

The life cycle of ML systems in use in big companies like Google envis-
ages a loop where the system is continuously monitored in operation, and
gathered data are used to decide corrections/improvements to be applied
in the next cycle. Since the amount of monitoring data in a cycle can be
huge and the correct output for each operational input is unknown (man-
ual labeling is required), the evaluation of the accuracy of the system in
operation (operational accuracy) is costly and time consuming.

This dissertation deals with the problem of assessing the operational
accuracy of CNN-based image classifiers. In line with the emerging life
cycle for ML systems, the thesis targets the assessment problem from two
perspectives: online assessment, directly in the operational environment,
and offline assessment, in the development environment.

Online assessment is based on automated oracles, typically used for
failure detection. Its advantage is to provide a continuous evaluation of
the accuracy, as close as possible to the actual one, without requiring
human intervention. The drawback is that online assessment is typically
based on a probabilistic (not deterministic) knowledge of the correct label
of an operational input.

Offline assessment typically involves human beings, who have to pro-
vide the correct label of the operational images, ultimately yielding more
faithful accuracy estimates.
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This thesis investigates experimentally the complementary character-
istics of online and offline assessment techniques, and then proposes to
combine them for providing continuous yet faithful estimates of the oper-
ational accuracy of CNN-based image classifiers, limiting the involvement
of human beings to a level that may be considered affordable in many
applications.

The thesis proposes and evaluates experimentally two online assess-
ment techniques and one offline technique to evaluate the accuracy of CNN.
The results of experiments show their respective strengths and limitations.
In particular, the higher cost to perform the offline assessment compared
to the online one is balanced by estimates closer to the actual accuracy.

Building on these experimental results, the thesis proposes a hybrid
CNN Accuracy Assessment Cycle (CNN-AAC) – combining online and of-
fline techniques - which can be integrated into iterative industrial-strength
life cycle models for CNN-based systems.

Keywords: Machine Learning, Image Classification, Automatic Oracles,
Sampling, Assessment.
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Chapter 1
Introduction

Motivation Machine Learning (ML) systems are today integral part of
many applications due to their ability reaching the same level or may even
outperform human beings [30, 22, 62] for many tasks, like in the image
classification (IC) domain. An ML system “is a software system including
one or more components that learn how to perform a task from a given
data set” [56].

The learning components are based on ML models. The main per-
formance indicator of such models is the accuracy, namely the number of
correctly classified images out of the total. The accuracy of an ML model
relies on different factors, like the data chosen for the training, the training
process itself, and the verification process.

An ML model is trained with a set of data (training dataset) and is
meant to operate in a given context (operational context). An arbitrarily
large set of operational data can be collected (operational dataset), con-
taining examples whose correct label is unknown. This data can be used
to evaluate the accuracy provided by the model during the operation, but
manual labeling is required. Due to unexpected phenomena occurring in
the operational environment, such as distribution shift or label shift [16],

1



2 Chapter 1. Introduction

the accuracy estimated before the release of the ML systems can be very
different compared to the one provided in operation.

Recht et al. showed how a broad range of ML models have impor-
tant drops in the accuracy (up to 15%) when completely new data are
submitted [55]. This issue depends on many factors, like incorrect train-
ing (overfitting), biases in the training process (such as the utilization of
the test set both in the training phase, and to estimate the generalization
error), utilization of unrepresentative datasets.

Life cycles (e.g. MLOps [1, 17]) specific for ML systems are envisaged
by companies like Google, where development and operational stages are
linked in a loop [3] aiming to assess and improve the accuracy of the ML
system according to the operational environment. In particular, they aim
to exploit operational data for remodeling and/or retraining of the ML
system before the new deployment (experimental stage), and for both au-
tomatic evaluation of the accuracy and automatic retraining of the models
on the field (deployment stage).

Problem Statement The operational data collected by monitoring the
ML system are characterized by the absence of the true label. This repre-
sents an issue for the evaluation of the provided accuracy, and it is com-
monly known as oracle problem [44, 45, 18]. According to Murphy et al.,
for ML models “there is no reliable test oracle to indicate what the correct
output should be for arbitrary input” [44, 45]. Moreover, in continuous
monitoring (such as MLOps), the size of the collected operational data is
usually huge, making the manual labeling costly and time consuming.

In this dissertation, the problem of evaluating accuracy using oper-
ational data is addressed in the IC domain. In the rest of the thesis,
operational data are considered to consist of images only, and Convolu-
tional Neural Networks (CNN) are considered as ML systems, as they are
the most popular and performing solution in this field [60].
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In this domain, the oracle problem is usually addressed via automatic
pseudo-oracles (for instance, based on ML models), which perform failure
detection exploiting various sources of knowledge (e.g., training set, ML
model, operational features). However, these classifications are only prob-
abilistic. Automatic oracles are more sensitive to unexpected biases which
can affect the classification causing the assessed operational accuracy to
divergence.

An alternative approach consists of reducing the size of the operational
dataset, sampling a few representative samples to compute the estimate.
The evaluation of these samples can be performed by a human being, who
can be considered deterministic but still characterized by a high cost.

Contribution The operational accuracy assessment is explored with ref-
erence to two different strategies: online, during the deployment stage, and
offline, during the experimental stage.

The online assessment aims to continuously evaluate the accuracy pro-
vided by the CNN under assessment directly in the operational environ-
ment. It performs an on-field evaluation of the predictions for each new
image automatically, namely via automatic oracles, avoiding human inter-
vention. Each time the predicted accuracy does not satisfy the require-
ments, a remodeling & retraining step is triggered.

The offline assessment estimates the accuracy provided by the CNN
in operation exploiting the human intervention. The most representative
operational input is sampled, and human beings define the correct labels of
the selected images. The operational accuracy is estimated by evaluating
CNN predictions by comparison with the new correct labels.

The cost of the offline assessment is higher than the online one due to
the involvement of human beings. On the other side, it opens to a new
perspective for CNN improvement, building a training dataset more rep-
resentative of the input submitted in operation by adding the new labeled
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images. Indeed, the higher cost of the offline assessment with respect to
the automatic one pays in terms of greater accuracy. While automatic ora-
cles are less accurate, they can be very informative about the performance
of the ML system. In particular, they give information about accuracy
drops, without human intervention.

For online operational accuracy assessment, the thesis proposes two
techniques – ICOS and PAOC - to implement an automatic oracle. ICOS
aims to exploit different sources of knowledge to extract (manually and au-
tomatically) invariants to evaluate if the output of a CNN is failing or not.
PAOC is a fully automated oracle exploiting clusterization and hierarchical
classification to detect misclassifications of the CNN monitored.

For the offline operational accuracy assessment, the thesis proposes
the DeepEST technique to spot as many misclassifications as possible,
while providing an unbiased estimate of the operational accuracy. This
is achieved leveraging an advanced rare population statistical sampling
technique.

As a final contribution, the thesis proposes a hybrid CNN Accuracy
Assessment Cycle, integrated into the life cycle of the CNN, combining
online and offline assessment to exploit the advantages of both approaches
while minimizing the assessment cost.

The rest of the thesis is structured as follows.
Chapter 2 sets background notions about ML fundamentals, ML sys-

tems life cycle, CNN for image classification, and introduces related work
on ML systems operational accuracy assessment.

Chapter 3 presents solutions for the online assessment of CNN.
Chapter 4 presents solutions for the offline assessment.
Chapter 5 presents the Accuracy Assessment Cycle resulting by the

combination of the two discussed approaches.
Chapter 6 reports the conclusions.



Chapter 2
Background and Related Work

This chapter presents the background and the related work. The back-
ground focuses on ML fundamentals, ML systems life cycle, and the state
of the art model in the IC domain, namely the Convolutional Neural Net-
works. The related work targets the operational accuracy evaluation of ML
systems, highlighting the differences among the state of the art approaches.

2.1 Machine Learning fundamentals

Machine learning solutions aim to build systems able to learn and im-
prove themselves via examples, without human programming. Zhang et
al. [75] list the following tasks ML models are usually applied:

• Classification: for each input, the model predicts a discrete value,
called label (the class). An example is image classification, where
the ML model predicts the label of the main subject of each image.

• Regression: the model predicts a continuous value for each input.
An example is the steering angle prediction for autonomous vehicles.

5
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• Clustering: the examples are partitioned into homogeneous regions.

• Dimension reduction: the complexity of examples used for ML model
training is reduced; for instance, by filtering of non-informative fea-
tures, or data representation.

• Control: depending on the input, the model performs actions aiming
to maximize a reward.

Based on the selected task, different types of ML can be chosen. Based
on the characteristics of the training data, they can be distinguished in:

• Supervised learning: the examples used for training contain the
ground truth.

• Unsupervised learning: the ground truth is unavailable and the ML
model aims to understand the data itself.

• Reinforcement learning: the data are represented as sequences of
actions coupled with a reward.

This thesis focuses on Image Classification (IC) performed via super-
vised learning, which is the most widely used type of machine learning
[27].

Independently of the specific task, six steps are needed to build an ML
model: data gathering, data preparation, model choice, model training
and parameter tuning, model evaluation, prediction.

The first two steps concern the collection and preparation of data (im-
ages), on which the ML model is trained. For instance, images are struc-
tured as a set of features, each one consisting of a matrix of pixels and a
label. The objective is to build three datasets: a training set, a validation
set, a verification (or test) set. The training set is a dataset of examples
“representative” of the images expected in the execution environment. The
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validation set is used to perform the parameter tuning of the ML model
to improve the performance. The verification (or test) set is made by data
previously unseen by the ML model to foresee the performance provided
after the deployment in the execution environment.

The choice of the ML model depends on various factors: the specific
task (image classification, natural language processing, and so on), the
amount of data available, and the number of features. In the IC do-
main, Convolutional Neural Networks (CNN) represent the state-of-the-
art model [66]. Nowadays, a plethora of very complex models, based on
CNN, have been defined and used [63, 67, 23].

The training and parameter tuning step aim to teach and improve the
performance of an ML model. A metric of the goodness of an ML model is
the accuracy, namely the ratio of the number of correctly classified examples
to the total number of submitted ones. Correctly classified examples are
images with a prediction of the model that matches the correct label. On
the opposite, a wrong classification is a prediction that does not match
the correct label, and it is called misprediction or misclassification (in the
classification domain).

The purpose of the model evaluation step is to compute the accuracy
obtained with the images in the verification set, whose correct predictions
are known. Since the data in the verification set are previously unseen by
the ML model, this step provides a measure of the generalization error,
indicating the error of an ML model predicting labels for previously unseen
data. This step corresponds to the acceptance testing step of classical
software systems, where the ML model is released only if the accuracy
reached with the verification dataset meets the requirements (namely, it is
beyond a certain threshold).

Concerning the prediction step, the ML model is assumed to run in
its operational environment. In this environment, the ML model predicts
labels for operational examples, namely arbitrary images whose labels are
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unknown (operational dataset). For this reason, the evaluation of the accu-
racy of those data is tricky and very costly due to the absence of an oracle.
In traditional software testing, an oracle is able to verify the output of the
system under test against the values expected by the developer. An oracle
in the ML domain is difficult to be defined since such systems “are designed
to provide an answer to a question for which no previous answer exists”
[75]. In current practices, a reliable oracle for arbitrary input in the ML
domain corresponds to a human being, which manually labels a very large
set of images to find the misclassifications.

In this thesis, the accuracy computed on the operational data is defined
as operational accuracy, namely the accuracy computed considering the
examples into the operational dataset.

2.2 ML systems life cycle

A detailed description of ML systems life cycle has been described by
Ashmore et al. [3], which distribute the six steps described in the previous
section in a spiral. A representation of this cycle is reported in Figure 2.1
where four main stages can be identified:

• Data Management : data collected in operation are processed and
selected to generate new training and verification datasets;

• Model Learning : an ML model is selected and trained according to
the data contained in the training set;

• Model Verification: the trained model is evaluated on the verification
set, and if the generalization error violates the requirements, the
process returns to the Data Management stage;

• Model Deployment : models satisfying the requirements are inte-
grated into the operational environment, with the monitoring of its
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Figure 2.1. ML systems life cycle according to ref. [3]

operation, and with its updating thorough offline maintenance or
online learning.

This spiral life cycle allows the collection of operational data to improve
the model in successive steps. According to MLOps perspective [1], the first
three stages can be seen as the experimental stage; the Model Deployment
stage corresponds to the deployment stage.

A view representing both Ashmore and MLOps perspectives about the
ML system life cycle is reported in Figure 2.2. In particular, the Data
Preprocessing, Remodeling & Retraining, and Model verification phases
correspond to the first three stages proposed by Ashmore, and they are
considered in the experimental stage, concerning all the actions performed
pre-release, outside the operational environment. The Deployment phase
concerns all the actions needed to deploy the ML system in the operational
environment; it represents the transition phase between the experimental
and deployment stages. In the deployment stage, the Monitoring phase
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Figure 2.2. Generic ML systems life cycle

concerns the collection of operational data, peculiar environment char-
acteristics, and the output of the ML system useful to evaluate the ML
system accuracy in operation and to take correcting/improving actions in
the next cycle. This life cycle is the one considered in the rest of the thesis.

MLOps principles [17] strongly focus on the concepts of Continuous
Integration and Continuous Delivery. They aim to develop a system able to
evolve according to the operational environment, stressing the monitoring
process, collecting statistics on the model performance (e.g. operational
accuracy) based on live data, and envisaging the online auto-improving
of model accuracy in operation (e.g. via auto-training). The main threat
to achieving these objectives is called oracle problem. For ML systems,
included CNN for IC, “there is no reliable test oracle to indicate what the
correct output should be for arbitrary input” [44]. The automation of the
operational accuracy assessment processes is limited by the absence of the
correct label for each operational input.



2.3. Convolutional Neural Networks for image classification 11

2.3 Convolutional Neural Networks for image clas-
sification

The first practical model of a CNN has been introduced by LeCun,
which developed the LeNet-5 [31].

As shown in Figure 2.3, a CNN is typically composed of: one or more
convolutional and pooling blocks, one or more fully-connected layers, and
an output layer.
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Figure 2.3. Generic CNN model

Convolutional Layers

The convolutional layer is the core of a CNN. It represents the layer
aiming to extract features from the image in input via convolution, a math-
ematical operation that applies a filter (Kernel) to the input image to
extract features. Features extraction is performed by applying the filter
through all the points of the image and convolving them into a single
output. Different filters can perform different operations, such as edge
detection, blur, and sharpening.



12 Chapter 2. Background and Related Work

Pooling

Pooling layers aim to reduce the number of parameters for large images
(sub-sampling). They take as input the output of the convolutional layer
producing a single value. Many different pooling techniques can be used:
max pooling (taking the maximum value), average pooling (taking the
average value), and so on. The purpose of these layers is to reduce the
number of parameters to make the network invariant to translations in
shape, size, and scale of the images.

Fully-connected layers

Fully-connected layers are composed of a set of interconnected neurons.
Each neuron applies a linear transformation to the input vector through
a weights matrix producing the output via an activation function. Fully-
connected layers are those layers where all the inputs from one layer are
connected to every activation unit of the successive layer. These layers take
as input all the features values extracted by Convolutional and Pooling
layers to compute the final output.

2.4 Operational accuracy assessment of CNN-based
image classifiers

A significant research effort has been put on quality evaluation of ML
systems [56], but just few of them concern the assessment of the accu-
racy provided in the operational environment. In fact, a primary goal
is to find adversarial examples causing mispredictions, namely to expose
as many failing behaviours as possible [48, 39, 76, 41, 47]. Specificly for
Deep Neural Networks, included Convolutional Neural Networks for Image
Classification, several structural coverage criteria have been proposed to
drive the automated generation of test inputs and assess the test adequacy
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– neuron coverage [48], k-multisection neuron coverage, neuron boundary
coverage [39], combinatorial coverage [41]. It has been argued that these
criteria may be misleading, because of the low correlation between the
number of misclassified inputs in a test set and its coverage [33]. Wu et al.
[72] and Kim et al. [28] recently considered discrepancy measures between
the training/validation data and test data, to improve fault detection and
to have coverage criteria better correlated to failure-inducing inputs.

The output of this type of failure-finding testing (and then debugging)
process is an improved model, with higher accuracy. This resembles what
is called debug testing in the traditional testing literature [15]. Beside dif-
ferences in testing ML models and conventional software (e.g., the oracle
definition), which make ML testing problematic, a further issue is that
the so-obtained testing results are not necessarily related to the accuracy
actually experienced in operation. In fact, testing data may be not repre-
sentative of the actual operational context. This may happen when test
data are generated artificially (like in adversarial examples generation) or
they differ significantly from input observed in the field. The number of
mispredictions and/or the coverage achieved give only an “indirect” (and,
for what said, inaccurate) measure of the expected accuracy in operation,
and ultimately of the confidence that can be placed in these kind of sys-
tems.

To compute a “direct” estimate of the accuracy provided in operation
by the ML model under test, two main strategies can be adopted:

• exploiting ML algorithms and statistical techniques to automatically
detect failures in operation;

• sampling a subset of operational input according to a certain belief
(imitating the sample distribution in the dataset [34], or preferring
the selection of failing samples [19]) and manually labeling the sam-
ples.
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The first solution is preferable when the accuracy of the ML system
must be evaluated online, during operation as in the deployment stage
in MLOps. A sampling strategy is preferable when new samples must
be manually labeled, for instance, to retrain the ML system (like in the
experimental stage in MLOps) to spot the most interesting examples (e.g.
the ones causing misclassification). Due to the manual labeling, the cost
of the second solution is higher, and it would be desirable to run it only
when necessary (e.g. the operational accuracy significantly drops).

2.4.1 Automated oracles

The oracle problem in ML testing is one of the main challenges tackled
by researchers Zhang et al. [75]. Often the proposed solutions are tailored
for, or at least evaluated on, image classification.

A common strategy to build an automatic oracle is to use cross refer-
encing, such as multiple-implementation testing (MIT) [64]. MIT is pro-
posed by Srisakaokul et al. to test supervised learning software. A test
input’s proxy oracle is derived from the majority-voted output running
the test input of multiple implementations of the same algorithm (based
on a predefined percentage threshold). The cost of multiple implementa-
tions is clearly high. On the other hand, the solution is able to obtain a
feedback about the output of any arbitrary input submitted to the system
under test. The technique does not require any prior knowledge about the
images’ labels.

On the same line, Pei et al. leverage multiple Deep Learning systems as
cross-referencing oracles in their DeepXplore framework for white-box test-
ing [48]. In particular, they compute a neuron coverage for measuring the
parts of the system under test exercised by test inputs and consider multi-
ple Deep Learning systems with similar functionality as cross-referencing
oracles to avoid manual checking. The aim is to find relations between
neurons activations and failing behaviors.
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Wang et al. [69] propose DISSECTOR, a fault tolerance approach to
distinguish input potentially causing a failure of the ML system. The input
validation is performed by training sub-models on top of the pre-trained
model under test, hence using sub-models for cross-referencing.

The common characteristic between the three presented techniques is
the source of knowledge used to set up the oracle as cross-referencing. In all
the cases, the output of the ML system is evaluated based on the knowledge
encoded into the training set. The multiple implementations, different
from each other (different ML models, or same ML model but different
architecture, or sub-models trained from the same main ML model), aim
to extract as much knowledge as possible from the training set to perform
a majority voting based on that knowledge. These techniques are strictly
affected by biases in the training set. When the training data are not
representative of the operational environment, the performance of that
oracles degrades significantly.

Corbière et al. [11] propose a criterion for failure prediction of CNN
based on True Class Probability criterion. This criterion is learned by a
confidence neural network (ConfidNet) built upon a classification model.
True Class Probability is shown to be effective in performing failure pre-
diction on classification and segmentation problems.

Great interest is also in misbehavior prediction of Deep Neural Net-
works for autonomous driving problems through automatic oracles [26].
Stocco et al. propose SelfOracles to detect unsupported driving scenarios
based on Deep Neural Networks behavior at run time [65]. Based on the
images in the training set, autoencoders are used to compute for each op-
erational image a reconstruction error. The higher the error, the higher
the probability of failure of the sample considered.

Xiao et al. [73] recently proposed SelfChecker (SC) for both failure
detection of CNN and autonomous driving systems. SC detects failures in
deployment when the output of the internal layers of the model under test
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is inconsistent with the final prediction. In this case, the internal layers’
output is used for cross-referencing. Besides failure detection, SC also sug-
gests an alternative prediction. SC significantly outperforms the state of
the art techniques (DISSECTOR [69], ConfidNet[11], and SelfOracle[65]).

The difference between the first three (MIT, DeepXplore, and DIS-
SECTOR) and the last three (ConfidNet, SelfOracle, and SC) techniques
is how the knowledge is extracted from the training set. In particular, the
first three approaches try “different” models learning from the same source,
exploiting the ensemble effect. The last three techniques compute metrics
to exploit the knowledge encoded in each training image. This strategy is
particularly effective for SC, which outperforms the state-of-the-art tech-
niques in failure prediction.

The discussed techniques do not account for the potential deviation of
the operational context from pre-deployment one. For this reason, the cited
techniques are expected to have bad performance in presence of unexpected
phenomena like label shift [16].

Other techniques are proposed that only partially address the oracle
problem, namely mutation testing and metamorphic testing. Mutation
testing is proposed by Ma et al. to evaluate test data quality [40]. They
define a set of source-level mutation operators to inject faults into the
sources of a DL model, like training data and programs, and model-level
mutation operators to inject faults directly into models. They consider
mutation to generate new samples starting from an input, whereby the
expected output is already known. However, as the mutation approach
requires knowledge of the label, it does not allow to submit test cases
whose expected output is unknown.

Metamorphic testing exploits many relations (called metamorphic rela-
tions) between changes of both input and output over different executions.
Every time a relation is violated, a failure is detected. For instance, Tian
et al. [68] consider metamorphic relations to generate tests and evaluate
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the output of DNNs in the autonomous vehicles domain. Xie et al. [74]
propose a metamorphic mutation strategy to generate new semantically
preserved tests, leveraging multiple coverage criteria to guide the test gen-
eration.

In the application of metamorphic testing to ML systems, and specif-
ically to IC systems [13], the metamorphic relations are used to generate
new images starting from those with a known label (e.g., by manipulating
the order or the values of the features) preserving the semantic of the im-
age (the label remains unchanged), or with a label certainly different from
the original one. Hence, it is often combined with mutation testing to au-
tomate the generation of test cases. However, since this way of applying
metamorphic testing assumes that tests are generated from images whose
label is already known, it is not applicable to test arbitrary images whose
label is not known.

2.4.2 Sampling techniques

In traditional software systems, probabilistic sampling is used in the
context of operational testing to estimate the expected reliability of a sys-
tem after deployment. In operational testing, test suites are built by select-
ing or generating tests according to the expected operational profile, which
is a probabilistic characterization of the expected usage. It was the core
technique of Cleanroom software engineering [43, 12, 10, 35], as a means to
certify the software against a given mean time to failure (MTTF), and then
of the Software Reliability Engineering Test process proposed by Musa at
AT&T [46]. With the years, researchers looked for more efficient sampling
strategies to improve the accuracy of the estimate at lower cost. Cai et
al. developed Adaptive Testing, still based on the operational profile, but
foreseeing adaptation in the assignment of test cases to input partitions
[38, 37, 6, 7]. Recently, Pietrantuono et al. stressed the use of (unequal
probability) sampling to improve the efficiency of the estimates [50], for-
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malizing several sampling schemes to this aim [49]. Pietrantuono et al. also
apply sampling algorithms to select tests for the operational reliability as-
sessment of Microservice Architectures [51, 52]. In particular, they propose
a sampling algorithm for rare populations to select as many failing tests
as possible. Failing tests are considered the most informative ones and en-
able a cost-effective estimate of reliability. The dis-proportional selection
is then balanced by the estimator to preserve the estimator’s unbiasedness.

In line with operational reliability assessment, recently researchers have
proposed sampling-based strategies for operational accuracy assessment of
CNN. Li et al. [34] presented CES (Cross-Entropy Sampling) as the state
of the art approach using operational testing to this aim. CES samples
images based on the output of the m neurons in the last hidden layer. This
information is assumed to be more robust to the operation context drift
and highly correlated with the prediction accuracy since it is derived from
the linear combination of this layer’s output. As the classical operational
testing, CES aims to select a small data sample that accurately represents
the population. A representative sample would roughly contain the same
proportion of examples causing misprediction as the operational dataset.

However, the mere imitation of the expected input can be inefficient,
especially with very accurate CNN, because a great effort is made to man-
ually label correctly classified images to get an acceptable estimate of the
operational accuracy. Considering the cost of labeling, it is evident that
maximizing the sampling of images related to misclassifications, while still
getting an unbiased estimate of the operational accuracy, is preferable.

2.5 Discussion

Looking at the ML literature, testing of ML models is mostly seen as
a pre-release activity, e.g.: testing for evaluation of accuracy on a verifi-
cation dataset (acceptance testing), testing against adversarial examples
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(robustness testing).

This thesis focuses on the evaluation of the accuracy by monitoring
the ML model after the release in its operational environment. The data
required to evaluate the operational accuracy can be monitored during
operation. The work refers explicitly to assessment rather than testing
because it is not required to resubmit operational data to the ML model. In
particular, the automatic pseudo-oracles take in input the output of the ML
model and compute online an estimate of the operational accuracy without
human intervention. The sampling strategies need to sample the most
significant examples to allow a human oracle to compute offline estimates
of the operational accuracy on a reduced set of examples.

Although the automatic oracles do not need human intervention, re-
ducing the cost of applying, they are characterized by the presence of a
high number of false positives [75]. This issue depends on the probabilistic
nature of the knowledge used to evaluate the output of the ML model under
assessment. On the opposite, the offline techniques rely on “deterministic”
feedback of the human oracle, which is costly and time-consuming, but it
guarantees the absence of false positives, providing more faithful estimates.

A way to reduce the costs of applying and maximize the benefits is
to combine the online and offline assessment in an Accuracy Assessment
Cycle, as shown in Figure 2.4. The idea is to have at each cycle a “low-cost”
estimate of the accuracy provided by the online assessment, and to trigger
a “high-cost” (but more faithful) estimate of the offline assessment only
when required (e.g. the operational accuracy provided by the automatic
pseudo-oracle drops under a certain threshold).

The following two Chapters describe the techniques proposed for both
the online and offline assessment that aim to overcome the limitations
mentioned about the related work. In particular, the benefits and the costs
of the proposed techniques are discussed, highlighting the pros and cons
of each approach. In the last Chapter, the hybrid Accuracy Assessment
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Cycle shown in Figure 2.4 is described and simulated.



Chapter 3
Online operational accuracy
assessment

This chapter presents ICOS and PAOC as oracles for online CNN op-
erational accuracy assessment. The idea is that the input space can be
partitioned to reduce the complexity of the classification problem, sim-
plifying the detection of failures of the CNN under assessment. ICOS
exploits “manual” partitioning based on the characteristics of the opera-
tional environment. Instead, PAOC is based on automatic partitioning,
clustering the most similar classes based on the examples in the training
set. Although manual partitioning is more effective than automatic, it is
applicable only when specific features of the operational environment are
available. These features represent peculiar characteristics of the opera-
tional profile, like the way images are generated, and they are unavailable
for training images.

The objective is to define techniques able to assess the quality of a
CNN in the operational environment, to support paradigms, like MLOps,
aiming to know how a system is performing, avoiding the manual labeling

21
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of the operational input.

The online assessment performed via automatic oracle can be inte-
grated into the life cycle presented in the previous chapter (Figure 2.2).
In particular, the Online Assessment phase can be placed in the deploy-
ment stage: the automated oracle computes the predicted accuracy on
the data coming from monitoring of the CNN during the operation. The
predicted accuracy is then forwarded into the experimental stage. Based
on this estimate, correcting/improving actions can be performed in the
Data Preprocessing and Remodeling & Retraining phases. A graphical
representation is reported in Figure 3.1.

3.1 ICOS: Image Classification Oracle Surrogate

3.1.1 Overview

The Image Classification Oracle Surrogate addresses the oracle problem
in the IC domain inferring a set of invariants from input data, training
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data, and the specific ML algorithm adopted, representing assertions that
a correct response by the CNN should never violate. As reported in Figure
3.2, when submitted to ICOS, both the image and the predicted output
of the CNN are checked against the invariants: if at least one invariant is
violated, the output is fail, otherwise pass. When a failure is detected by
one type of invariant, the remaining ones are not further considered.

Invariants are expressed, similarly in constraint logic programming, as
clauses of the form:

H :- C1 ∧ · · · ∧ Cn, B1 ∧ · · · ∧Bm (3.1)

where H and Bi are atomic formulas and Ci are constraints, and it is read
as a rule: H is true if C1 and C2 and Cn are satisfied, and B1 and B2 and
Bm are true. This form suits the three types of invariants considered. The
following sections detail the invariants.

As an example, the following clause is considered:

(outcome = Fail) :- (pixel1 > 25) ∧ · · · ∧ (pixeln < 250),

(predicted_label 6= 3) ∧ (predicted_label 6= 6)
(3.2)

stating that the outcome of ICOS is Fail (H) if the values of the pixels
(pixeli) satisfy the constraints (C), and the predicted label is different from
3 and 6 (B). In this example, outcome = Fail, predicted_label! = 3, and
predicted_label! = 6 are atomic formulas, and pixel1 > 25 and pixeln <

CNN

ICOS

Predicted label

fail/pass
Operational

Image

Figure 3.2. ICOS workflow



24 Chapter 3. Online operational accuracy assessment

250 are constraints.

3.1.2 Input-data-dependent invariants

The invariants considered in the first stage of ICOS aim to partition the
operational input, based on specific features of the operational environment
(e.g. the way images are generated) which are unavailable for training
images.

Let us consider a system receiving input from two different cameras:
the first one pointed in a garden, and the second pointed in the sky. The
probability the first camera could photograph an airplane, or the second
one could photograph a dog is actually zero.

Reasonably this information can be used to define an invariant such
as “if the operational input belongs to the partition X, then the label
predicted by the CNN cannot be y”. This invariant can be considered
deterministic for a system, where X is the partition of all images generated
from the camera pointed in the garden, and y is the airplane label.

Another example can be described regarding the classification of hand-
written digits, a very common task in the image classification research [31].
In particular, a system with two input forms is considered: in the first
form the user must enter only digits without straight lines; in the second
form, the user has to enter only digits with straight lines. Consequently,
the operational input can be divided into two partitions: digits without
straight lines (P1) and digits with straight lines (P2). The corresponding
invariants are:

fail :- input_image ∈ P1, output /∈ (0, 3, 6, 8, 9)

fail :- input_image ∈ P2, output /∈ (1, 2, 4, 5, 7)

ICOS aims to incorporate such additional invariants when available.
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For instance, in a successive release of the system, the second form is
replaced by two forms which require the user to insert respectively: input
images without curves (P2,1), and digits with both curves and straight lines
(P2,2). Accordingly, the second invariant can be updated as follows:

fail :- input_image ∈ P2,1, output /∈ (1, 4, 7)

fail :- input_image ∈ P2,2, output /∈ (2, 5)

These characteristics represent the upfront knowledge related to the
system and its domain and do not depend on the training data and/or
the CNN architecture. This condition implies greater robustness against
phenomena like conceptual drift and distribution shift in general.

This invariants are defined as input-data-dependent invariants (IDIs).
Let FIDI denote the set of mispredictions detectable through IDIs, called
input-related failures. When the CNN output violates some IDIs, an input-
related failure has occurred (i.e., the accuracy as for the detection of input-
related failures is 100%, with no false positives); on the other hand, there
may be many failures not detected through IDIs (i.e., a high number of
False Negatives). IDIs are defined manually.

Google researchers studied the advantages of user-defined rules in Deep
Neural Networks [58] incorporating a rule encoder directly into the models.
They envisage a general improvement, also in terms of domain adaptation
using the rule strength, becoming robust to phenomena like distribution
shift.

3.1.3 Training-data-dependent invariants

The second source of knowledge considered is the training data. A
CNN is trained on a training set containing information about the ex-
pected behavior in operation. ICOS automatically infers knowledge from
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Figure 3.3. Two training-data-dependent invariants for MNIST

the training set through explainable ML algorithms, such as decision rules
or decision trees. It relates incorrect outputs to the observed inputs, en-
coding the inferred relation as an ordered list of invariants.

In image classification, an invariant inferable from training data may
consist of sets of pixels which, every time they have values beyond spe-
cific thresholds, make the CNN assign a certain class to the input image.
These are training-data-dependent invariants (TDIs). A TDI violation
occurs when the class assigned by the CNN is different from the class cor-
responding to the first invariant in the inferred ordered list, which matches
the image in input.

As examples, Figure 3.3 shows two invariants extracted form the train-
ing set of the MNIST dataset. Training data in Figure 3.3 a), labelled as
digit 1, have an invariant represented here with green and red pixels: green
ones are pixels expected to be close to white (pixel value close to 0) for an
input image to be classified as 1; red pixels are pixels expected to be close
to black (value close to 255) in a 1. Similarly for a digit 7 in Figure 3.3 b).
Table 3.1 reports two misclassifications detected based on these invariants.

Let FTDI denote the set of failures detectable by training-data-depend-
ent invariants, called training-related failures. FTDI may contain failures
different from FIDI , including false positives. Indeed, unlike the previous
case, these are likely invariants, since the consequent of the rule is only
probabilistically true given the antecedents. But they are expected to sig-
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Table 3.1. Two misclassifications detected by the TDIs of Figure 3.3

Input
image EO PO

First
matching
invariant

Image
vs

invariant

Class of
matching
invariant

IO CME

1 7 1 fail TP

7 1 7 fail TP

EO: Expected output; PO: output predicted by the CNN; IO: ICOS outcome;
CME: Confusion Matrix Element

nificantly improve the oracle in terms of low number of False Negatives, at
the price of more False Positives. The idea is similar to “mirror programs”
proposed by Qin et al. [53], generated from training data, and used as
pseudo oracles for ML programs testing.

The efficacy of TDIs mainly depends on the representativeness of the
training set with respect to operational input. The error probability of a
classifier function h : X → Y (that predicts the label y ∈ Y given the
input object x ∈ X), is the probability that it does not predict the correct
label on a given input [57]. This is strictly dependent on the quality of the
training set.

In principle, if T is an ideal perfect training set, T ∗ is representative
if Acc(T ∗) ≈ Acc(T ), where Acc(X) denotes the classification accuracy
obtained using X as training set [5]. Our ability to exploit the training set
to detect failures depends on how close Acc(T ∗) is to ≈ Acc(T ).

TDIs can work well when the training set is sufficiently representative,
otherwise, they are likely to lead to many false positives.
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3.1.4 Algorithm-dependent invariants

A CNN can fail in ways that may not be detected by IDIs and TDIs.
Specific characteristics of the CNN can be observed to look for possible
patterns occurring when there is a failure, e.g., in the output of a certain
layer of the neural network. For instance, Ma et al. [42] show that for an
input belonging to a specific class, a specific set of neurons is activated.
They exploit these conditions to define invariants to detect adversarial
samples. Observing how the algorithm behaves in the nominal case, one
should be able to collect the patterns describing it. Based on the idea by
Ma et al., ICOS is able to detect failures when such patterns are violated.

The output of the last layer of the CNN, namely a probability vector,
is considered as a relevant feature since the definition of invariants based
on the closeness of the output softmax values is a well-known way to de-
fine the uncertainty of a model [14, 70, 71]. ICOS extracts the patterns
observed in the nominal case from the probability values (for instance, it
derives that values are never very close to each other when the output is
correct), notifying a failure when a pattern is violated. Nominal patterns
are extracted by a random forest algorithm.

These are algorithm-dependent invariants (ADIs). Let FADI be the set
of failures detectable by algorithm-dependent invariants, called algorithm-
related failures. FADI may contain failures different from those in the set
FIDI ∪ FTDI , including false positives. Therefore, as for IDIs, these are
likely invariants.

Table 3.2 shows six examples from the MNIST dataset, along with
the CNN predictions and with the response of ICOS based on the type
of violated invariant. For instance, the third row is a handwritten digit,
whose label is 8; the digit is wrongly classified by the CNN as a 7, and the
misclassification is correctly detected by ICOS (a true positive), through
the violation of some TDIs. The last row represents a 6, it is correctly
classified by the CNN, yet ICOS outcome is fail (a false positive).
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Table 3.2. Examples of ICOS output for MNIST

Image Label CNN
output ICOS

Confusion
matrix
element

Type of
invariant
violated

9 0 fail TP IDI

5 8 pass FN none

8 7 fail TP TDI

4 4 fail FP TDI

6 8 fail TP ADI

6 6 fail FP ADI

A final remark is about the relation between the invariants: since the
invariants are evaluated in sequence, the TDIs and ADIs aim to detect
failures that “escape” the previous IDIs. The latter two types of invariants
are automatically inferred, and represent the actual added-value of ICOS
to increment completeness over the manually encoded ones. It may well
be that two inputs share some invariants. Moreover, it may well be that
a CNN failure on a given input is detectable by violations of more than
one type of invariants – ICOS notifies a detection at the first violation of
any invariant (the possibility to adopt more elaborated strategies, e.g., a
majority voting on violations of different invariants to notify a detection,
or associating a confidence depending on how many violations are raised,
is left to future investigation).
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3.2 PAOC: Partitioning-based Automatic Oracle

for CNN

3.2.1 Overview

PAOC is an oracle surrogate aiming to evaluate the output of an Image
classifier when (unlabeled) operational data are submitted. As ICOS, the
evaluation of the output of a CNN relies on a certain belief, which in
this case is extracted only from the dataset used for the training. In
particular, PAOC’s belief relies on how images can be partitioned based
on their common characteristics.

The objective is to evaluate the operational accuracy of a CNN using
operation data without human intervention.

3.2.2 Strategy

As for ICOS, the idea consists of extracting likely invariants from avail-
able sources of information, to be used to evaluate the CNN output. The
underlying assumption is that the input space can be partitioned based on
common characteristics among images of the dataset.

Figure 3.4 shows a demonstrative example of a dataset of four images
representing a dolphin, a dog, an airplane, and a country house. As shown
for ICOS, a human being can reasonably partition the images based on
their semantics: a partition (P1) containing animals (the dog and the
dolphin), and a partition (P2) containing inanimate objects (the house
and the plane).

In the case of automatic image classification, the partitioning can be
defined based on specific values of pixels, like the dominant color, or bright-
ness and contrast. An alternative partitioning is shown in Figure 3.5, where
images are partitioned based on the dominant color in the background: the
dolphin and the airplane have blue as the dominant color, the dog and the
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P1

P2

Figure 3.4. Partitioning Example (1)

country house have green as the dominant color.

P1 P2

Figure 3.5. Partitioning Example (2)

In summary, the images contained in the training dataset can be par-
titioned based on common characteristics. The partitioning will group the
most similar classes, adding a new label to each image into the training set
indicating which partition they belong to. So, PAOC can determine if the
label predicted by a CNN for a certain image is correct or not based on
the partition it should belong to. Moreover, new classifiers can be trained



32 Chapter 3. Online operational accuracy assessment

on the images of a specific partition, focusing on a reduced set of labels.

3.2.3 Partitioning

Partitioning aims to enrich the training set with new labels represent-
ing for each image the corresponding partition. This allows training new
classifiers to determine the partition of each operational image. Clustering
is the most common technique to group the samples in a set; it is widely
used for unsupervised classification of images, usually exploiting k Nearest
Neighbours (kNN) algorithm [9, 20].

Figure 3.6 shows the partitioning process, consisting of 3 main steps:
clustering, partitioning, and labeling.

Clustering aims to find k clusters of samples in the CNN training
dataset, without considering their class. k has to be considered lower than
the number of labels l; k ≤ l/2 is suggested. Since it is an unsupervised
task, different clusters may contain images belonging to the same class.

As the final objective of the process is to generate k partitions with
distinct sets of labels (namely, the intersection of two partitions has to be
empty), in the partitioning step, partitions are built iteratively according
to Algorithm 1. For each cluster the number of occurrences of the labels
is computed; as long as there are labels left unassigned to any partition,
the label is assigned to the partition corresponding to the cluster with the
highest number of occurrences for that label.

During the labeling step, the label encoding the corresponding partition
is attached to each image into the training dataset. The output of the
partitioning process is a new dataset, called Partitioned dataset, which

Training
Dataset

Clustering Partitioned
Dataset

Partitioning Labeling

Figure 3.6. Partitioning process
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Algorithm 1 Labels partitioning
k: number of clusters; Ci: ith cluster; compute_occurences(Ci): returns
a data frame with three vectors representing the cluster, the label, and the
number of occurrences for that label in the cluster, while the number of
rows depends on the number of different labels in the clusters; Pj : jth

partition
1: for i in (0, k) do
2: DF.append(compute_occurrences(Ci))
3: end for
4: while !M.empty() do
5: index = find_max(M [occurrences])
6: j = DF [cluster][index]
7: label_t = DF [label][index]
8: Pj .add(label_t)
9: DF.remove(DF [label] == label_t)

10: end while

contains two labels for each image, concerning respectively the class and
the corresponding partition.

An example of the partitioning process is reported in Figure 3.7, where
a dataset with four labels is partitioned into two partitions (P1 and P2).

Figure 3.7 (a) shows the result of clustering. As shown in the table, each
cluster has a certain number of occurrences for each class. The partitioning
step is run as described in Algorithm 1, and the results are reported in
Figure 3.7 (b), where the new labels (which represent a sort of superclass
grouping the selected set of original labels) are shown (white and black).
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Figure 3.7. A contrived example for the Partitioning Algorithm

3.2.4 Architecture

PAOC is inspired by the classification via hierarchical ensemble ap-
proaches [61], commonly used for Multi-class problems. In particular, the
following hierarchy of classifiers is considered:

• A Partition Assigner : trained on the Partitioned dataset, it is able
to assign the corresponding partition to the operational images.

• A set of Partition Explorer : defined for each partition, they are
specialized in the classification of the samples considering only the
labels belonging to its partition.
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Figure 3.8. PAOC workflow

Figure 3.8 depicts a graphical representation of the workflow of PAOC.
The right Partition Explorer is triggered by the output of the Partition
Assigner. The decision process executed by the Evaluator for each image
in the operational dataset is explained by Algorithm 2.

Algorithm 2 Operational images evaluation process
i: current image from the operational dataset; class: class predicted by the
CNN; p: partition provided by the Partition Assigner; c: class provided by
the Partition Explorer; outcome: PAOC output
1: class = CNN(i);
2: p = PartitionAssigner(i);
3: if class /∈ p then
4: outcome = FAIL;
5: else
6: c = PartitionExplorerp(i);
7: if class 6= c then
8: outcome = FAIL;
9: else
10: outcome = PASS;
11: end if
12: end if

PAOC differs from traditional hierarchical classifiers on how the classi-
fication is made. In fact, to detect a misclassification, the “hierarchy” can
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be executed only partially since the Partition Explorers are triggered only
if the Partition Assigner does not find a failure.

3.3 Experimentation

This section reports an experimental evaluation of the proposed tech-
niques. A comparison with two baselines is provided: Cross Referencing
Oracle (CRO), implementing Multiple Implementation Testing [64], and
SelfChecker (SC), as the most performing oracle surrogate in the current
literature [73].

3.3.1 Research Questions

The experimental evaluation targets the following research questions
(RQs):

• RQ1 (effectiveness): How effective are ICOS and PAOC at measure
the operational accuracy compared to CRO and SC?

• RQ2 (invariants selection): How does invariants selection influence
the ICOS performance?

• RQ3 (stability): How do ICOS, PAOC, and SC behave in presence
of label shift?

The three RQs aim to show the effectiveness of the proposed tech-
niques estimating the accuracy achieved by the CNN monitored in opera-
tion (RQ1), considering how ICOS’performance can change due to invari-
ants tuning (RQ2), and how much robust they are to unexpected conditions
in operation (RQ3).
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3.3.2 Evaluation Metrics

To answer the Research Questions, the following metrics are considered:

• Mean Squared Error (MSE): MSE(φ̂) = 1
30

∑30
i=1(φ̂i− φi)2, φi is

the actual operational accuracy computed on the operational dataset
sampled during the ith repetition, and φ̂i is the accuracy computed
through oracle predictions (predicted accuracy) on the same opera-
tional dataset.

• Offset: offset i = |φ̂i − φ|, where φi is the actual operational ac-
curacy computed on the operational dataset sampled during the ith

repetition, and φ̂i is the predicted accuracy on the same operational
dataset.

• True Positives Rate (TPR): TPR = TP/(TP +FN) refers to the
proportion of CNN predictions lebeled as failing by the oracle out of
those who actually have failed;

• False Positive Rate (FPR): FPR = FP/(TN +FP ) refers to the
proportion of false alarms over the total number of actual correct
classifications;

• F1-score (F1): F1 = (2×TP )/((2×TP )+FN +FP ) refers to the
harmonic mean of the precision and recall.

The MSE aims to show how the oracles perform when automatically
assessing the operational accuracy of a CNN. The use of the TPR aims to
show the number of failures correctly classified by the automatic oracles.
The FPR well shows the proportion of False Positives, which represents
useful information choosing an oracle surrogate.

The goal is to achieve a high TPR and F1, and a low MSE and FDR.
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Table 3.3. List of datasets

Dataset Number of Images Number of Classes
MNIST 60,000 10
CIFAR10 60,000 10
CIFAR100 60,000 100

3.3.3 Experimental subjects

The evaluation is performed on nine different Convolutional Neural
Networks (CNN). In particular, three CNN models are considered for each
of the following three datasets: MNIST [32] (A, B, C), CIFAR10 (D, E,
F) and CIFAR100 (G, H, I) [29].

Table 3.3 reports the characteristics of the three considered datasets.
Table 3.4 reports the number of layers and parameters for each CNN.

Table 3.4. List of experimental subjects

CNN Dataset # of Layers # of Parameters

A
MNIST

7 6,237
B 6 97,114
C 8 545,546

D
CIFAR10

13 1,084,234
E 10 258,762
F 12 550,570

G
CIFAR100

16 15,047,588
H 9 564,484
I 13 1,465,220

Usually, strategies like transfer learning are used to achieve high accu-
racy levels [59]. Recht et al. showed that by exploiting previously unseen
test sets to evaluate the accuracy of the CNN, the claimed accuracy (ob-
tained on usual test sets) drops range from 3% to 15% on CIFAR10 and
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from 11% to 14% on ImageNet [55]. Since the datasets considered are
public, and there is no guarantee that the online available models are not
trained on the full dataset, to avoid biases, each CNN is trained “from
scratch” by separating training, verification, and test sets. For the verifi-
cation set, it is meant the set of samples used to evaluate the CNN and to
compute the generalization error. For the test set, it is meant the unlabeled
images used to sample the operational dataset in each experiment.

The training set size is set to 40% of the available dataset size for
MNIST and CIFAR10 (28, 000 and 24, 000 respectively). For CIFAR100 a
training set of 40, 000 images is considered to have at least 400 examples
for each class. The verification set size is 2, 500 images for MNIST and
CIFAR10; for CIFAR100 it is 4, 000. The test set size is set to 20, 000

images for MNIST and CIFAR10; for CIFAR100 it is 3, 000. Operational
dataset images are randomly selected (without replacement) from the test
set (in the number of 39, 500 for MNIST, 33, 500 for CIFAR10, and 15, 000

for CIFAR100) remaining after training and verification set construction.
As each experiment is repeated 30 times – for statistical significance -
the random selection procedure is performed before each repetition. The
labels of the selected images are removed to emulate the case of unknown
expected output.

3.3.4 ICOS implementation

Invariants are defined/extracted as follows.

Input-data-dependent invariants IDIs are defined assuming an oper-
ational domain with various input sources (like the examples in subsection
3.1.2), where each source produces output belonging to a certain subset of
labels.

In this way, the operational dataset can be partitioned in subsets as-
sumed to be disjoint (from a class perspective). For the evaluation, the
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following three partitions are considered for MNIST:

• set of all digits without straight lines (0, 3, 6, 8, 9);

• set of all digits with straight lines (1, 4, 7) only;

• set of remaining digits (2, 5);

the following two partitions for CIFAR-10:

• set of all animals (dog, frog, horse, bird, cat, deer);

• set of all non-animals (airplane, car, ship, truck).

and the following seven partitions for CIFAR100 (defined for brevity on
the coarse-grain classes):

• P1: aquatic mammals, fish;

• P2: flowers, fruit and vegetables, food containers;

• P3: large carnivores, large omnivores and herbivores, medium-sized
mammals, small mammals;

• P4: insects, non-insect invertebrates, reptiles;

• P5: vehicles 1, vehicles 2;

• P6: large man-made outdoor things, large natural outdoor scenes,
trees;

• P7: household electrical devices, household furniture, people.

These partitioning criteria are defined as fine partitioning (fp). It
means that for images selected from the partition with all digits with
curves, the output must be (0, 3, 6, 8, 9); otherwise, a violation occurs.

To show the impact of partitioning (a different partitioning can provide
different results), a second criterion, which just split the test set into two
partitions, is considered since it can be applied to all the datasets:
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• the first partition P1 is made by:

– (0, 1, 2, 3, 4) for MNIST

– (airplane, automobile, bird, cat, deer) for CIFAR10

– the first 50 classes (apple, ...,mountain) for CIFAR100

• the second partition is made by P2.

– (5, 6, 7, 8, 9) for MNIST

– (dog, frog, horse, ship, truck) for CIFAR10

– the last 50 classes (mouse, ..., worm) for CIFAR100

This partitioning criterion is defined as equal partitioning (ep).

Indeed, fp and ep criteria are selected just to show the role played by
IDIs in ICOS. Different partitioning can provide different results.

In the rest of the thesis, ICOSfp refers to ICOS implementing fine
partitioning, while ICOSep implements equal partitioning.

Training-data-dependent invariants The training-data-dependent rules
are derived applying the C4.5 algorithm [54], an implementation of deci-
sion trees known for its ability to generate classifiers with easy interpreta-
tion by human beings [2]; the setting is in Table 3.5. The Gini index is
used as the quality measure to compute the splits to derive the rules.

Table 3.5. C4.5 parameters configuration

Parameter Value
Quality measure Gini index
Pruning method No pruning

Reduced error pruning false
Min number records per node 5
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The list of rules obtained represents conditions satisfied by samples in
the training set. Each time a condition is violated a failure is detected. As
an instance, the invariant related to Figure 3.3.a is:

fail :- $514$ <= 253 ∧ $406$ > 157 ∧ $539$ <= 111∧

$411$ <= 61 ∧ $347$ <= 2 ∧ $206$ <= 0 ∧ $327$ <= 7

∧ $522$ <= 0 ∧ $489$ > 56 ∧ $350$ > 165, output 6= 1

This invariant states that when the values of pixels (shown between
“$” symbols) are below or above a certain thresholds, if the output of the
CNN is different from 1 a failure occurred. The pixels of each image are
sorted from left to right and from top to bottom.

The exact list depends on the values of confidence and support. For
RQ1, the minimum confidence value is set at C = 0.99 for all the models
and datasets and, since the discriminative power of the rules depends on
the support on which such a confidence is obtained, low-support rules
have been filtered out with these criteria: for MNIST, it is considered
the minimum support, under C ≥ 0.99, for which at least the 50% of
submitted images are evaluated; for CIFAR10 and CIFAR100, whose rules
have a considerable lower average support, the median support over the
rules is considered with C ≥ 0.99. The resulting values are: S = 140 for
MNIST, S = 14 for CIFAR10, and S = 8 for CIFAR100. 1

For RQ2, confidence and support are set in three different ways to
study the sensitivity to invariants selection criteria:

• Criterion 1 : Select invariants with high confidence (C = 0.99) and
high support, greater than 140 for MNIST, S = 14 for CIFAR10,
and S = 8 for CIFAR100;

1These parameters can be fine-tuned for improving performance on a case-by-case
basis. In the experiments, the default configuration is used. In RQ2, further different
configurations are considered.
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Table 3.6. Random forest parameters configuration

Parameter Value
Split criterion Information Gain Ratio

Number of models 100

• Criterion 2 : Select invariants with confidence greater than 0.99 (C =

0.99), regardless of support (S = 0); this is expected to give a wider
set of rules (which can allow detecting more failures), but those with
low support are expected to provide more false positives.

• Criterion 3 : Select all the invariants, regardless their confidence
(C = 0) and support (S = 0).

The influence of the possible orderings of TDI has been explored with
different datasets and models. The order of the invariants impacts the
results when considering the whole set of TDI without filtering with con-
fidence and support constraints. Since the order does not affect signifi-
cantly on average (for some CNN the TDIs with low support show better
effectiveness finding mispredictions, for other CNN invariants with higher
support are better) the results after the filtering, the random order of TDI
is considered to avoid additional biases in the results.

Algorithm-dependent invariants ADIs extraction uses the KNIME
implementation of Random Forest [4], with default parameter values (as
reported in Table 3.6), and considering the SUT verification set as training
set. In particular, the output of the last layer of each CNN is collected for
each element of the verification set. This new data are used as training set
for Random Forest. The aim is to train the Random Forest algorithm to
detect patterns corresponding to correct outcomes, so as to find misclassi-
fications each time they are not satisfied.
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3.3.5 PAOC implementation

In the following subsection, a description of how the Partitioned dataset
is built is reported, and Partition Assigner and Partition Explorer imple-
mentations are described.

Partitioned dataset

The Partitioned dataset is defined by applying clustering to the images
inside the training dataset. In particular, the clustering algorithm adopted
is kNN. This algorithm has been executed 15 times with different seeds to
find a robust partitioning of the labels in the training set. The number of
occurrences for each label inside the clusters is computed as the average
on the repetitions2.

The partitions are computed as described in Section 3.2.3.
For MNIST the following 3 partitions are extracted:

• P1 = (9, 4, 7)

• P2 = (3, 5, 8)

• P3 = (0, 1, 2, 6)

For CIFAR10 the following 2 partitions are extracted:

• P1 = (2, 3, 4, 5, 7)

• P2 = (0, 1, 6, 8, 9)

For CIFAR100 the following 3 partitions are extracted:

• P1 = (52, 68, 60, 17, 37, 49, 71, 59, 12, 89, 96, 81, 76, 13, 85, 47, 56,

90, 31, 19, 95, 23, 58, 32, 30, 72, 15, 5, 67, 38, 94, 3, 55, 8)

2The match of clusters resulting from each repetition is performed manually.
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• P2 = (20, 24, 86, 41, 29, 61, 16, 28, 57, 99, 91, 53, 9, 39, 22, 7, 0, 40,

10, 69, 48, 25, 36, 87, 11, 84, 2, 44, 78, 79, 6, 80)

• P3 = (1, 62, 92, 33, 51, 64, 70)

Once the partitions are defined, the Partitioned dataset is built by
relabeling each image in the training and verification sets with the partition
corresponding to the original label.

Partition Assigner

The Partition Assigner is implemented with a CNN trained on the
Partitioned dataset. For the experimentation, modified versions of CNN
C (for MNIST), D (for CIFAR10), and G (for CIFAR100) are considered
since they work on a different number of labels.

Unlabeled inputs are classified according to the following criterion:

outcome(s) = (Predicted_label(s) ∈ Assigned_Partition(s)) (3.3)

where Predicted_label is the output of the CNN monitored, and
Assigned_Partition is the output of the Partition Assigner. A failure
is detected when outcome = false, otherwise the image is sent to the
corresponding Partition Explorer.

Partition explorers

As the Partition Assigner, Partition Explorers are implemented con-
sidering CNN C, D, and G, with customizations depending on the number
of labels into the partition.

The following criterion is used to classify unlabeled input:

outcome(s) = (Predicted_label(s) == Explorer_labeli(s)) (3.4)
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where Explorer_labeli is the explorer of the partition i triggered by the
Partition Assigner. When outcome = false a failure is detected, otherwise,
the image is considered correctly classified.

3.3.6 Baselines

Cross Referencing Oracle

Cross-referencing oracle (CRO) is implemented like Srisakaokul et al.
for multiple-implementation testing [64]. In particular, it is implemented
as a majority oracle with the three CNN of Table 3.4 for each dataset,
adjudging as correct output the most voted value. When the three CNN
fully disagree, CRO refrains to make a decision (the output is considered
Pass).

SelfChecker

SelfChecker (SC) is an automatic oracle for in deployment evaluation of
CNN [73]. In particular, SC aims to evaluate the final output provided by
the CNN monitored considering features extracted from the internal layers.
SC also suggests advice (alternative prediction) in case of misclassification
detected.

The workflow of SC is reported in Figure 3.9. In particular, firstly the
training set is used to compute layer-wise density distributions for each
layer using kernel density estimation (KDE). After that, a selection of lay-
ers is computed to find the optimal combination exploiting the validation
set. Finally, the density values of the selected layers are used to decide
whether to provide an alarm and an alternative prediction (advice) in case
of a misclassification.
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Figure 3.9. SelfChecker

3.4 Results

3.4.1 RQ1: effectiveness

The effectiveness of the oracle surrogates is measured considering the
MSE. As reported in Section 3.3.2, it is computed based on the predicted
accuracy calculated on the output of each oracle, and the actual accuracy
computed using the “true labels” removed for the experimentation.

The results in terms of MSE for each datasets are reported in Figure
3.10.

For the MNIST dataset (Figure 3.10a), ICOS and PAOC show the best
values of MSE. In particular, ICOSfp shows the best values for CNN A
and B, while PAOC shows the best value for CNN C.

For CIFAR10 dataset (Figure 3.10b), PAOC outperforms all the other
techniques in terms of MSE. ICOSfp shows the second-best values, while
ICOSep shows values worse than SC, except for CNN E.

For CIFAR100 dataset (Figure 3.10c), the MSE showed by ICOS,
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Figure 3.10. RQ1 (effectiveness): Mean Squared Error
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PAOC and SC are very similar, except for CNN G, where the MSE of
SC is higher than the others.

Overall, ICOSfp and PAOC are robust in terms of MSE, showing low
values considering both complex CNN (in terms of layer and parameters)
and complex datasets (in terms of dimension of the images and the number
of classes).

Since the MSE is an average value, the statistical significance of the
results is assessed considering the offsets, computed for each repetition,
each automatic oracle, and each subject. The Friedman test [25] is run to
assess if there is a statistical difference among the offset showed by the five
automatic oracles. The test returns p-value = 2.5500e− 173, rejecting the
null hypothesis “there is no difference among offsets”.

Figure 3.11 reports the critical differences resulting by the application
of the post hoc Nemenyi’s test [8] on the offset values. Automatic oracles
with no significant difference are grouped using a bold horizontal line – the
more distant two oracles are (the distance being the average ranking) the
smaller the p-value for the null hypothesis of equal performance. In the
figure, the oracles are ordered from the worse to the best due to the chosen
metric (higher values of offset correspond to worse values of predicted
accuracy).

The critical differences show that there is no significant difference only
between ICOSfp and PAOC, which are confirmed to be the most perform-
ing automatic oracles for the assessment of the operational accuracy.
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Figure 3.11. Plot of post hoc Nemenyi’s test on offset values of automatic
oracles

The results are also reported in terms of TPR, FPR and F1, metrics
commonly used to evaluate oracles performance. The results are shown in
Tables 3.7, 3.8, and 3.9, where the best values for each CNN are reported
in bold.

The results in Table 3.7 show that SC achieves the best values of MSE
for 5 CNN, while ICOS achieves the best values 4 times, 3 with ICOSep
and 1 with ICOSfp. About ICOS, the performance is influenced by the
partitioning, in particular fine partitioning is more effective for MNIST
images, and less effective for CIFAR10 ones. Curiously, although SC often
shows the best values of TPR, its MSE is high.

According to the values reported in Table 3.8, CRO achieves the best
FPR for all models. However, CRO shows the lowest values of TPR.
For this reason, the MSE is very high compared to the other techniques
considered. For this reason, the second-best values for each model are
reported in italic.

SC achieves the best values of FPR for CNN C, H, and I, in correspon-
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Table 3.7. RQ1: TPR

TPR ↑
CNN ICOS_fp ICOS_ep CRO SC PAOC
A 0.7840 0.6252 0.5042 0.7997 0.7545
B 0.7641 0.6609 0.4078 0.8364 0.6161
C 0.7704 0.6495 0.3570 0.7236 0.5752
D 0.6143 0.8487 0.3621 0.8317 0.7609
E 0.6623 0.8498 0.4282 0.7926 0.7807
F 0.6921 0.8913 0.4142 0.8138 0.7347
G 0.7843 0.8474 0.2945 0.8903 0.7397
H 0.8168 0.8622 0.4166 0.8893 0.7892
I 0.7990 0.8476 0.3505 0.8700 0.7542

dence with its best values for the MSE. These values depend on the strong
ability of SC to detect failures with a low number of false positives, in
particular for complex models. On the opposite, the high presence of False
Positives, in particular for simpler models, causes a strong divergence of
the Predicted accuracy, resulting in high values of MSE. ICOS and PAOC
show better values in terms of MSE due to the better balancing between
TPR and FPR.

A consideration is that SC is preferable when the final purpose is to
spot true failures of the CNN, instead of assessing the accuracy provided
in operation.

The last metric considered is the F1, which expresses the balancing
between precision and recall. The values reported in Table 3.9 confirm the
considerations deducted observing the relations among MSE, TPR, and
FPR. In fact, ICOS and PAOC show the best values of F1 respectively
in 5 (3 for ICOSfp, and 2 for ICOSep) and 2 cases. SC shows the best
values for CNN H and I, which correspond to the best values of MSE,
while it shows the worse values for CNN A and B, where it significantly
underperforms compared to the other techniques in terms of MSE.
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Table 3.8. RQ1: FPR

FPR ↓
CNN ICOS_fp ICOS_ep CRO SC PAOC
A 0.0075 0.0077 0.0040 0.0532 0.0243
B 0.0085 0.0083 0.0071 0.0958 0.0266
C 0.0076 0.0077 0.0023 0.0052 0.0184
D 0.2166 0.2168 0.0440 0.3460 0.1296
E 0.2441 0.2448 0.0379 0.2450 0.1533
F 0.2854 0.2851 0.0294 0.2709 0.1466
G 0.2209 0.2190 0.0391 0.3073 0.2960
H 0.2810 0.2817 0.0230 0.2607 0.2647
I 0.2619 0.2615 0.0195 0.1946 0.2608

3.4.2 RQ2: sensitivity analysis on ICOS invariants

The main characteristic that distinguishes ICOS from the other tech-
niques is the possibility to perform tuning of the TDIs to achieve high
TPR still having an acceptable number of False Positives. In Figure 3.12
three different tuning of ICOSfp are considered to evaluate how the failure
detection ability changes.

The configurations considered are the following:

• Criterion 1 : Select invariants with high confidence (C = 0.99) and
high support, greater than 140 for MNIST, S = 14 for CIFAR10,
and S = 8 for CIFAR100;

• Criterion 2 : Select invariants with confidence greater than 0.99 (C =

0.99), regardless of support (S = 0); this is expected to give a wider
set of rules (which can allow detecting more failures), but those with
low support are expected to provide more false positives.

• Criterion 3 : Select all the invariants, regardless their confidence
(C = 0) and support (S = 0).
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Table 3.9. RQ1: F1

F1 ↑
CNN ICOS_fp ICOS_ep CRO SC PAOC
A 0.8086 0.7007 0.6318 0.5455 0.6650
B 0.7581 0.6928 0.4956 0.3276 0.4900
C 0.7895 0.7082 0.5024 0.7841 0.5724
D 0.5801 0.7212 0.4777 0.7175 0.7832
E 0.6200 0.7312 0.5560 0.7083 0.7587
F 0.6282 0.7423 0.5538 0.6927 0.7253
G 0.7069 0.7442 0.4095 0.7143 0.6364
H 0.7435 0.7705 0.5637 0.7931 0.7359
I 0.7365 0.7631 0.4985 0.8100 0.7088

The three criteria are characterized by intuitive trends: adding more
invariants from criterion 1 to 3, TPR increases considerably; on the other
hand, FDR increases too. In particular, relaxing the constraint about TDIs
support (ICOS, criterion 2), TPR increases by about 6% on average (9%
for MNIST, 11% for CIFAR10, and 2%for CIFAR100). Considering all
TDIs (ICOS, criterion 3), TPR increases by about 26% on average (20%
for MNIST, 42% for CIFAR10, and 23% for CIFAR100). Contextually,
FPR increases by five times for MNIST, 53% for CIFAR10, and 92% for
CIFAR100. Considering all TDIs (ICOS, criterion 3) it increases bty fifteen
times for MNIST, 213% for CIFAR10, and 220% for CIFAR100.

The comparison with PAOC and SC highlights that increasing the
number of TDIs considered, ICOS achieves a better TPR paying in terms
of False Positives.
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Figure 3.12. RQ2: ICOS sensitivity to invariant selection criteria

3.4.3 RQ3: stability analysis

An analysis of stability is performed on ICOS, PAOC, and SC to eval-
uate the performance in presence of label shift3. This phenomenon makes
the images of the training dataset less representative of the operational
ones. The training dataset extracted from MNIST has been mutated, as
by Li et al. [34], to simulate the label shift. In particular, couples of labels
are switched while the operational dataset is unchanged. Three different
label switches are considered: (2,7), (5,6), and (6,8). The CNN considered
for this analysis is C, representing the best case of SC (it shows the best
MSE). The three versions of CNN C trained on the mutated datasets are
named C1, C2, and C3. As shown in Figure 3.13, the performance of the

3CRO is omitted from RQ3 because it is unable to address the problem of label shift
due to its design. The misclassifications cannot be detected because all the CNN would
be trained on the same mutated training set with shifted labels.
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three techniques depend on the specific mutation adopted:

• in the first case (C1), ICOS outperforms PAOC and SC thanks to
the IDIs, that can detect failures due to the label shift;

• in the second case (C2), ICOSep degrades its performance due to the
ineffectiveness of its IDIs to the label shift;

• in the last case (C3), the three techniques perform badly in the same
way.

The results show that ICOS is the only technique robust against some
label shifts thanks to the IDIs, which represent specific characteristics of
the operational environment. Although the defined IDIs are very simple,
they are useful to detect failures of the CNN in case of a strong distribution
shift, with consequent label shift. SC and PAOC are not robust against
label shift since they rely on the knowledge encoded into the training set.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
MSE ×10 2

ICOSfp

ICOSep

SC

PAOC

C_1
C_2
C_3

Figure 3.13. RQ3 (stability): MSE in case of label shift
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3.5 Discussion

This chapter presented ICOS and PAOC as new contribution for auto-
matic oracles for operational accuracy assessment of CNN. Their effective-
ness in estimating operational accuracy has been demonstrated by com-
parison with CRO and SC, representing the best automatic oracle in the
state of the art. The results show that despite the high number of False
Positives that affect automatic oracles, the predicted accuracy is a faithful
representation of the actual accuracy of the CNN monitored. Studying the
performance of the pseudo-oracles in the case of label shift, ICOS shows
how a rule derived directly from the operational domain makes it more
robust to unexpected conditions in the operational domain.



Chapter 4
Offline operational accuracy
assessment

This chapter presents DeepEST, a technique for the offline CNN as-
sessment of the operational accuracy [19]. It aims to estimate the accuracy
of CNN by selecting the most interesting images (the ones causing misclas-
sifications) collected during the operational phase. The aim is to reduce
the size of huge operational datasets, very costly to be manually labeled.

This assessment strategy can be integrated into the experimental stage
of the life cycle presented in Chapter 2 as Offline Assessment phase. It
takes data collected in operation with the CNN predicted labels as input
and provides the estimated accuracy and the sampled images (labeled by
human classifier) to the Data Preprocessing phase. As for the Online As-
sessment phase, the estimated operational accuracy can be used in the
Data Preprocessing and Remodeling & Retraining phases to correct/im-
prove ML system behavior. A graphical representation of the life cycle is
reported in Figure 4.1.

57
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Figure 4.1. ML systems life cycle with Offline Assessment

4.1 Sampling-based assessment

The idea of the sampling-based assessment is to exploit sampling tech-
niques to reduce the operational dataset to a smaller subset of representa-
tive examples. Based on the sampling process and sampled examples an
estimate of the operational accuracy provided by CNN is provided.

The estimate of operational accuracy is influenced by the way images
are sampled. In particular, two strategies can be considered:

• sampling the examples building a subset representative1 of the pop-
ulation of examples in the operational dataset;

• sampling the most interesting examples (e.g. misclassified images)
and balancing the selection bias during the computation of the esti-
mate.

In the sampling theory, the sample is the set of n examples (namely
images) S = {s1, . . . , sn}, having a binary outcome, Fail or Pass. Out-
comes are a series of independent Bernoulli random variables zsi such that

1A subset of examples is representative if it contains the same proportion of mispre-
dictions as the operational dataset.



4.2. Auxiliary variables 59

zsi = 1 if the CNN predicts the correct label for si, zsi = 0 otherwise.
The operational accuracy of the CNN is the parameter of interest, θ. The
aim is to obtain an estimate θ̂ with two desirable properties: unbiasedness
– i.e., the expectation of the estimate E[θ̂] should be equal to the true
value θ - and efficiency – for the given the sample size, the variance of
θ̂ should be as small as possible (implying a highly-confident, stable esti-
mate). The probability that zsi = 1 corresponds to the true (unknown)

proportion: θ =
∑N

s=1 zsi
N , with N being the population size (i.e., the size

of the operational dataset).

4.2 Auxiliary variables

In sampling theory, auxiliary variables are supposed to have a cor-
relation with the variable of interest, which, in this case, is operational
accuracy. Auxiliary variables are used to reduce the variance of estimates
obtained through sampling. The final effect of adopting those variables
is to guide sampling through the most interesting examples (misclassifica-
tions). For this reason, values of the auxiliary variable have to be asso-
ciated with each operational example encoding the amount of interest for
that example. Since the main interest is in misclassifications, the auxil-
iary variables considered in this thesis encode the probability of a wrong
classification by the CNN on each operational image. In particular, they
are:

• the confidence value of each classification provided by the CNN;

• the distance between the images in the operational dataset and the
ones in the training dataset.

The confidence (CS) aims to exploit the output of the last layer of the
CNN monitored, namely a probability vector encoding how much the CNN
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is “convinced” of the label provided as output. The assumption is that low
values of confidence are highly related to failing examples.

The distance is based on the result by Kim et al. [28], showing that
inputs more “distant” from training data are more likely to cause mispre-
dictions. In particular, they propose two different metrics: Distance-based
Surprise Adequacy (DSA) and Likelihood-based Surprise Adequacy (LSA).
These are computed by the Activation Trace (AT), namely a vector of ac-
tivation values of each neuron of a certain layer corresponding to a certain
input; In this case, the AT is computed with reference to the last CNN
activation layer.

LSA uses Kernel Density Estimation (KDE) to estimate the probability
density of each activation value, obtaining the surprise of a new input with
respect to the estimated density. LSA is computed as a measure of rareness:

PLSA = −log(f̂(x)) (4.1)

where f̂(x) is the KDE applied to the new input x. LSA can be used
both in the case of classification and regression models.

DSA is computed starting from the Euclidean distance between the AT
of the new input x and the ATs observed during training:

PDSA =
dista
distb

(4.2)

where dista is the distance between the ATs of the new input x and its
nearest neighbour belonging to the same class xa, distb is the distance
between the ATs of xa and its nearest neighbour belonging to a different
class xb.

The effectiveness of an auxiliary variable strongly depends on the CNN
and the training/operation dataset: for instance, for a distance metric, the
belief that examples far from the one in the training set are more likely to
cause a misprediction is not an absolute truth. In particular, if an example
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is very similar to many others in the training set according to the distance
metric, but has a different label, distance will be not a good metric to select
it. Similarly, the confidence is a good proxy if the CNN is well trained for
the operational context. In general, relying on a single auxiliary variable
may work well in some settings and bad in others. Combining multiple
beliefs is a choice that is expected to improve the stability of results across
multiple settings.

Based on this, a further variant of our algorithm, named DeepESTC ,
is defined considering as auxiliary variable the combination of confidence
and distance:

PC = PCS × (1− norm(PDSA)) (4.3)

where PCS is the confidence value, norm(PDSA) is the DSA value nor-
malized [0, 1]2 and PC is probability of correct prediction. The intuition
behind this is that the probability of a correct prediction is related to both
the confidence of the CNN and the drift of the example from what was seen
during training. In fact, PCS is related to the probability that the CNN
does a correct prediction according to what was seen during training (in
other words: it is the probability of correct prediction with perfect train-
ing); PDSA is a proxy for the probability of the wrong prediction related
to how far the example is from what seen during training – hence due to
the imperfection of training. If confidence PCS is high and the example is
close to the training dataset (i.e., PDSA is small), there is a high chance of
correct prediction.

2In DeepESTC , DSA is preferred to LSA since it has been shown to have better
performance for the deeper layer [28].
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4.3 DeepEST: Deep neural networks Enhanced Sam-
pling Technique

4.3.1 Overview

The idea behind DeepEST [19] is to assess the CNN accuracy favoring
the sampling of misclassified images. Since mispredictions are usually rare
compared to correct examples, the strategy adopted by DeepEST is to
exploit a sampling algorithm for rare populations, inspired to the Adaptive
Web Sampling [24], to both spot as many failures as possible, and, at
the same time, provide an unbiased estimate of the accuracy provided in
operation. To achieve this task, the sampling is performed according to
a piece of information, namely an auxiliary variable, which encodes the
probability of failure of each input collected in operation.

Figure 4.2 shows the workflow conceived for DeepEST. All the unla-
beled images submitted to the CNN in operation (operational data) are
collected in a dataset. Starting from the output of the CNN and from the
training data, the auxiliary variables are computed for each new opera-
tional image. Thus the DeepEST samples the operational data according
to the chosen auxiliary variable. Finally, each image is labeled by a human
oracle. The output of DeepEST consists of an operational accuracy esti-
mate and a set of labeled operational images, which can be used to retrain
the CNN.

4.3.2 Sampling strategy

The sampling strategy adopted by DeepEST focuses on selecting the
most interesting examples by exploiting an auxiliary variable. A weight
wi,j between any pair of images i and j of the operational dataset is defined
starting from the auxiliary variables. The space of examples is explored
adaptively following the weights. For instance, assuming to use the nor-
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Figure 4.2. DeepEST workflow

malised DSA distance: if the example i has distance PDSAi (representing
the belief that i causes a misprediction), and a pre-defined threshold τ is
exceeded (i.e., i has a sufficiently high distance compared to the others),
then all the wi,j values (∀j of the operational dataset) are set to their dis-
tance PDSAj ; otherwise wi,j = 0. This way, a strong-enough belief about
example i causing misprediction entails the activation of all the weights
toward i. The latter is used, as explained hereafter, for sampling, and
makes the algorithm follow the distance criterion to spot potential clusters
of failing examples.

The DeepEST sampling strategy is sketched in Algorithm 3. Assuming
n examples to be selected from the operational dataset for the assessment,
the algorithm selects one image per step. The first input is selected by sim-
ple random sampling, namely, initially all examples have equal probability
of being selected. Then, one of two sampling schemes is used to select
next example: weight-based sampling (WBS), or simple random sampling
(SRS). Example i is selected from the operational dataset at step k with
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probability qk,i given by:

qk,i = r ·
∑

j∈sk wi,j∑
h/∈sk,j∈sk wh,j

+ (1− r) · 1

N − nsk
(4.4)

where:

• r: probability of using WBS (hence, probability of using SRS = 1-r;
r is set to 0.8 in our implementation);

• sk: current sample (all examples selected up to step k);

• wi,j : weight relating example j in sk to example i;

• nsk : size of the current sample sk;

• N : size of the operational dataset.

For both WBS and SRS, the selection is without replacement.3 WBS
selects an example i proportionally to the sum of weights wi,j of already
selected examples toward i – the chance of taking i depends on the cur-
rent sample, favouring the identification of clusters of failing examples if
the auxiliary variable (hence, wi,j) is well-correlated with mispredictions.
As this is not always the case, the WBS “depth” exploration is balanced
by SRS, chosen with probability (1-r), for a breadth exploration of the
example space. This diversification in the search is useful to escape from
unproductive cluster searches. The steps are repeated until the budget
n ≤ N is over.

At step 1, the probability that a randomly selected example will cause
a misprediction is estimated as the outcome y1 (1 in case of misprediction,
0 otherwise).

3Without replacement sampling schemes generally give smaller variance than their
with replacement counterpart on the same sample size [36].
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Algorithm 3 DeepEST sampling strategy
OD: operational dataset; i: current example; S: sample; n: number of
examples; r: probability of WBS
1: S = ∅
2: i = SRS_sampling(OD); //first example by SRS
3: OD = OD \ i; //remove example from dataset
4: S = S ∪ i; //add to sample
5: y1 = labelling_and_checking(i)
6: for k = 2; k <= n; k++ do
7: rs = random(0, 1)
8: if rs < r then
9: i = WBS_sampling(OD); OD = OD \ i;
10: else
11: i = SRS_sampling(OD); OD = OD \ i;
12: end if
13: S = S ∪ i
14: yi = labelling_and_checking(i)
15: zk = Equation 4.5
16: end for
17: θ̂ = Equation 4.6; //compute final estimate

At step k>1, example i, whose outcome is yi, is selected with prob-
ability qk,i according to Eq. 4.4, and the estimator of the misprediction
probability is that by Hansen-Hurwitz [21]:

zk =
1

N
(
∑
j∈sk

yj +
yi
qk,i

) (4.5)

where the yj values are the outcome of the examples already selected. zk
is an unbiased estimator of the expected misprediction probability at step
k; the final estimator of the expected operational accuracy of the CNN is
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1 minus the average of the zk values:

θ̂ = 1− 1

n
(y1 +

n∑
k=2

zk) (4.6)

where n is the number of sampled images.

4.4 Experimentation

4.4.1 Implementation

DeepEST is implemented mostly in Java. The implementation of the
distance metric in DeepESTDSA and DeepESTLSA is the same used by
Kim et al. [28]. Their Python scripts have been used to compute DSA
and LSA values.

These are computed considering the last activation layer of each CNN.
The threshold τ needed for the weights definition are set as follows:

• DeepESTDSA: τ = mean(DSA) + 2× Std(DSA);

• DeepESTLSA: τ = mean(LSA) + V ar(LSA).

The threshold for confidence, used by DeepESTCS and DeepESTC , is set
to 0.7, assuming that lower confidence values are more related to mispre-
diction (i.e., the weights are activated when the confidence is less than
τ = 0.7).

4.4.2 Baselines

Simple random sampling

Simple random sampling (SRS) is the first baseline approach. SRS
draws independent and identically distributed examples directly from the



4.4. Experimentation 67

operational dataset. The estimator of the expected operational accuracy
is reported in Equation 4.7.

θ̂ =
1

n

n∑
i=1

yi (4.7)

Where n is the number of examples selected, and yi is 1 when the image
is correctly classified by the CNN or 0 otherwise.

SRS is the simplest and cheapest way for carrying out the assessment.
For the experimentation, the implementation provided by Li et al. [34] is
used.

Cross-entropy Sampling (CES)

Li et al. [34] present Cross Entropy-based Sampling (CES), a technique
that performs sampling using the output of the m neurons in the last hid-
den layer. This information is assumed to be more robust to the operation
context drift, and to be highly correlated with the prediction accuracy since
it is directly derived from the linear combination of this layer’s output. The
CES sampling algorithm (Algorithm 4) builds the sample firstly selecting
as random an initial set of examples, and then it selects the remaining
examples trying to minimize the average cross-entropy between the prob-
ability distribution of the m-dimensional representation of the output of
neurons computed on the operational dataset and the selected images.

The objective is to sample a set of images as much as possible represen-
tative of the operational dataset, namely if it contains the same proportion
of mispredictions as the operational dataset.

For CES, the authors demonstrate that the estimator is the same as
SRS (Equation 4.7).

For the experimentation, the same configuration as the original article
[34] is adopted. The size of the initial sample is p=30, enlarged by a group
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Algorithm 4 CES sampling algorithm
Input: O: operational dataset, n: sample size.
Output: S: sampled examples for labeling (|S| = n).
1: Selecting randomly p examples as the initial sample S.
2: while |S| < n do
3: Randomly select l groups of examples, Q1, ..., Ql from O. Each group

contains min(q, n− |S|) examples.
4: Choose the group that minimizes the cross entropy, i.e.,

Q∗ = min
Qi

CE(S ∪Qi), i = 1, ..., l (4.8)

5: S ← S ∪Q∗
6: end while

Q∗ of q=5 examples at each step. The number of random groups from
which Q∗ is selected is L = 300.

4.4.3 Research questions and experiment design

The empirical evaluation is designed to answer the following research
questions.

• RQ1 (effectiveness): How does DeepEST perform in estimating a
CNN operational accuracy and simultaneously finding inputs causing
misprediction (i.e., failing examples)?

• RQ2 (sensitivity): How does the performance of DeepEST vary with
the sample size?

• RQ3 (stability): How does DeepEST behave in presence of label
shift?
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4.4.4 Subjects

The subjects considered for the experimentation are the same as in
Section 3.3.3, and the same training, verification, and operational datasets
sizes are considered.

The number of examples is set to 200 for each session, then varied
to answer RQ2. The experiments are repeated 30 times for statistical
significance.

4.4.5 Evaluation Metrics

The metrics considered for the experimentation are the following:

• Mean Squared Error (MSE): MSE(θ̂) = 1
30

∑30
i=1(θ̂i−θ)2, where

θ is the true operational accuracy computed on the whole operational
dataset, and θ̂i is the accuracy estimated by the sampling technique
at repetition i (estimated accuracy);

• Offset: offset i = |θ̂i − θ|, where θ is the true operational accuracy
computed on the whole operational dataset, and θ̂i is the accuracy
estimated by the sampling technique at repetition i.

• Average Number of Failing Points (NFP ): is the average num-
ber of failing examples sampled in a single session defined as NFP =

Mean(NFPi) with NFPi being the number of failures at repetition
i.

• Variance of Failing Points (V FP ): is the variance of the number
of failing examples detected over the 30 repetitions, it is defined as
V FP = 1

n−1
∑n

i=1(NFPi −NFP )2
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4.5 Results

4.5.1 RQ1: effectiveness

To answer the first research question, the MSE is graphically repre-
sented in Figure 4.3, and the details of MSE, NFP , and V FP are reported
in Tables 4.1, 4.2, and 4.3. The best values for each CNN are reported in
bold.

Table 4.1. RQ1: results (MNIST)

CNN Technique Auxiliary
Variable MSE NFP VFP

A

CES N/A 6.67E-04 22.2 20.2
SRS N/A 5.98E-04 18.7 24.0

DeepEST

CS 6.96E-04 87.4 28.4
DSA 1.59E-03 64.6 39.6
LSA 8.73E-04 37.2 18.6
C 6.09E-04 82.6 33.1

B

CES N/A 4.22E-04 11.3 16.5
SRS N/A 2.28E-04 11.0 9.0

DeepEST

CS 7.24E-04 85.8 24.5
DSA 6.84E-04 56.7 40.0
LSA 2.22E-04 24.7 14.5
C 4.12E-04 80.5 52.9

C

CES N/A 2.48E-04 14.0 9.8
SRS N/A 2.65E-04 13.5 10.9

DeepEST

CS 4.07E-04 70.8 34.0
DSA 9.02E-04 97.8 32.7
LSA 1.51E-04 32.9 28.3
C 1.38E-04 48.3 34.8

Observing the tables and the detail of the MSE in the corresponding
figure, SRS and DeepESTC are the best strategies due to the higher num-
ber of best values achieved (4 each). Only for CNN B the best MSE is
achieved by DeepESTLSA.
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Figure 4.3. RQ1 (effectiveness): Mean Squared Error
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Table 4.2. RQ1: results (CIFAR10)

CNN Technique Auxiliary
Variable MSE NFP VFP

D

CES N/A 9.96E-04 56.2 40.6
SRS N/A 7.57E-04 56.0 30.3

DeepEST

CS 1.38E-03 94.4 48.4
DSA 3.37E-03 100.2 35.6
LSA 2.94E-03 58.8 40.4
C 7.47E-04 81.7 56.5

E

CES N/A 8.03E-04 38.5 20.2
SRS N/A 1.05E-03 42.4 43.3

DeepEST

CS 5.81E-04 83.8 42.6
DSA 4.17E-03 99.7 39.8
LSA 1.16E-03 68.4 24.5
C 4.58E-04 64.9 40.5

F

CES N/A 1.21E-03 70.0 50.1
SRS N/A 6.07E-04 69.7 25.1

DeepEST

CS 1.64E-03 111.3 37.4
DSA 4.13E-03 105.5 30.9
LSA 3.46E-03 79.4 48.7
C 1.11E-03 97.9 46.9

About the number of failures detected, DeepEST is the best technique,
in particular with the CS and DSA auxiliary variables achieving all the
best values (respectively 4 and 5 times). The ability to find failures showed
by these two auxiliary variables overcame the capacity of the estimator
balancing the sampling. This condition causes a higher MSE estimating
the operational accuracy of the CNN.

In terms of V FP , SRS achieves the best values for more times (4). The
VFP increases with less accurate CNN since failures are very frequent, and
the auxiliary variables are less representative of the classification ability of
the considered CNN.

CES never shows the best value in terms of MSE. Moreover, it is re-
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lated to the worst value for CNN I trained on CIFAR100, showing that
minimizing cross-entropy does not provide examples representative of the
operational data.

The most interesting result is that although SRS is a very simple tech-
nique, it is very stable independently from the different datasets and CNN.

Table 4.3. RQ1: results (CIFAR100)

CNN Technique Auxiliary
Variable MSE NFP VFP

G

CES N/A 1.08E-03 66.3 43.5
SRS N/A 5.75E-04 67.2 23.7

DeepEST

CS 2.50E-03 128.2 41.8
DSA 1.32E-02 141.9 33.5
LSA 3.40E-03 130.4 34.9
C 4.50E-03 134.6 31.4

H

CES N/A 3.12E-03 76.0 41.0
SRS N/A 1.04E-03 85.5 42.8

DeepEST

CS 1.37E-03 130.5 45.6
DSA 7.13E-03 134.0 19.9
LSA 4.28E-03 113.3 68.7
C 1.94E-03 128.2 50.1

I

CES N/A 8.20E-03 65.8 55.2
SRS N/A 9.68E-04 82.2 40.0

DeepEST

CS 2.12E-03 133.4 56.5
DSA 3.93E-03 116.2 24.9
LSA 2.98E-03 118.7 39.3
C 7.27E-04 92.0 35.3

As in the previous Chapter, a Friedman test is applied to the offsets of
the six samplers, computed for each repetition, each technique, and each
subject. The test returns p − value = 1.7148e − 35 rejecting the null
hypothesis that there is no difference among techniques offsets.

Figure 4.4 reports the pairwise comparison resulting from the post hoc
Nemenyi’s test, as performed in Chapter 3. As in the previous chapter, the
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samplers are ordered from the worse to the best due to the offset metric.
The plot confirms the considerations about MSE values, DeepESTC and
SRS are the most performing samplers estimating the accuracy (there is
no statistical difference between them). Moreover, DeepEST with CS and
LSA auxiliary variable does not differ significantly from CES. DeepESTDSA

is the worst sample since it shows the worst offset values.

Figure 4.4. Plot of post hoc Nemenyi’s test on offset values of samplers

The same statistical analysis is performed for the number of failing
points. The Friedman test returns p− value = 9.3124e− 262 rejecting the
null hypothesis that there is no difference among techniques. Figure 4.5 re-
ports the pairwise comparison among the techniques resulting from the post
hoc Nemenyi’s test. Since a higher number of failing points corresponds to
better techniques, the ranking of the samplers is in the conventional order.
DeepEST with CS and DSA auxiliary variables are confirmed to be the
best approaches, while CES and SRS are confirmed to be the worse ones.
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Figure 4.5. Plot of post hoc Nemenyi’s test on failing points of samplers

4.5.2 RQ2: sensitivity

To answer this RQ, experiments are run with the sample sizes 50, 100,
200, 400, 800, considering the subject with the highest accuracy (B), and
the one with the lowest accuracy (H), to analyze how DeepEST performs
when there are very few and many failing examples in the dataset, respec-
tively. Figures 4.6 and 4.7 plot the MSE and the average number of failing
points, respectively. Increasing the sample size all techniques, except CES
for model H, exhibit a decreasing trend in MSE and an increasing trend
in failing examples.

For CNN B (highest accuracy), surprisingly, SRS shows the best per-
formance in terms of MSE becoming better with the increasing sample
size. Observing both the MSE and the failing examples detection ability,
DeepESTC is the best approach. In particular, it converges with MSE
estimates of both SRS and CES, increasing the sample size, and it has the
second-best values in terms of NFP (the best approach is DeepESTCS)
which correspond to more than seven times the number of failures detected
by CES and SRS.
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Figure 4.6. RQ2: Sensitivity to sample size (MSE)
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For CNN H (lowest accuracy), CES and SRS outperform DeepESTC for
100 sample sizes; from 200 to 800, the estimation by CES starts diverging,
while SRS and DeepEST keep good performance. This anomalous trend
for CES depends on its lower ability to find failures of the CNN H. The
number of failures detected by CES is lower than the ones detected by SRS.
Performance in failing examples detection is always clearly in favor of all
DeepEST variants. As for the ability to detect failing examples, confidence
is the best auxiliary variable for DeepEST for CNN H: it presents the best
values in all configurations. This time, it can be preferable compared to
DeepESTC due to the similar performance in terms of MSE.
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4.5.3 RQ3: stability analysis

As for ICOS and PAOC in Section 3.4.3, a sensitivity analysis is per-
formed to measure how the proposed techniques are robust in the case of
operational dataset very different from the dataset used in training, like
in the case of label shift. Three versions of CNN C trained on the mu-
tated datasets (label switches (2,7), (5,6), and(6,8)) are considered (C1,
C2, and C3). The results in terms of MSE are reported in Figure 4.8, and
the detailed results are reported in Table 4.4 with the best values for each
variant reported in bold.
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Figure 4.8. RQ3 (stability): MSE in case of label shift

The results show that techniques like SRS and CES, which aim to ob-
tain a sample as much as possible representative of the operational dataset,
are more robust to label shift, in particular, CES show the best values,
thank a very low variance in the number of failing examples detected.

DeepEST, in particular the version with DSA auxiliary variable, is still
very strong in terms of failures detected.
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Table 4.4. RQ3: results

CNN Technique Auxiliary
Variable MSE NFP VFP

C_1

CES N/A 3.78E-04 50.6 15.28
SRS N/A 8.45E-04 50.9 34.16

DeepEST

CS 3.11E-03 93.9 41.44
DSA 3.88E-03 112.1 53.54
LSA 1.78E-03 68.1 51.17
C 3.04E-03 76.8 43.48

C_2

CES N/A 6.18E-04 49.6 24.05
SRS N/A 1.05E-03 48.0 43.21

DeepEST

CS 5.34E-03 91.4 50.25
DSA 3.61E-03 112.0 34.65
LSA 1.12E-03 66.0 34.17
C 2.91E-03 73.3 55.60

C_3

CES N/A 5.08E-04 49.8 20.81
SRS N/A 6.87E-04 49.2 27.32

DeepEST

CS 6.33E-03 91.5 42.19
DSA 3.64E-03 115.2 52.51
LSA 1.49E-03 64.7 55.53
C 4.49E-03 72.9 36.16

4.6 Discussion

This section presented DeepEST as a technique for sampling-based
assessment of CNN. Its versatility allows practitioners to use the best aux-
iliary variables to select the images for the assessment. DeepEST ability
to find failures is evident from the experiments. It finds up to eight times
the number of failures than the baselines. This characteristic makes the
estimated accuracy diverge when a label shift occurs since images with low
interest in terms of auxiliary variable value fail unexpectedly. An interest-
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ing finding overall of the three discussed RQs is that SRS, a very simple
technique, can perform very robustly when estimating the accuracy of a
CNN.
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Chapter 5
CNN Accuracy Assessment
Cycle (AAC)

This chapter proposes a possible combination of the online and offline
assessment strategies presented in the previous chapters according to their
characteristics and how they can be integrated into the ML systems life
cycle. In particular, the objective is to exploit their complementarity to
reduce the application cost.

The chapter is structured as follows: in the first section, the cost of the
two types of assessment is presented; the definition and implementation of
the Accuracy Assessment Cycle are presented in the second section; finally,
a simulation of the AAC is reported.

5.1 Assessment cost

The assessment techniques presented in chapters 3 and 4 are very ef-
fective in estimating the operational accuracy of CNN. These techniques
are characterized by an application cost, which can represent a threat to
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their usage in a continuous monitoring perspective.

5.1.1 Online Assessment

The online assessment performed via automatic oracles is characterized
by a fixed cost for the knowledge extraction from the training dataset. In
particular, each technique presented in Chapter 3 requires a “training” cost,
defined as follows:

• ICOS requires training for TDIs and ADIs;

• PAOC requires training for Cluster Assigner and Explorers;

• SC requires to compute layer-wise density distributions for each layer,
and each image in the training data;

• CRO requires training each alternative implementation.

CRO and PAOC can be considered more costly in terms of training
compared to ICOS and SC, but ICOS and SC are characterized by addi-
tional cost, concerning the manual invariants definition (IDIs for ICOS)
and parameters tuning (confidence and support of TDIs for ICOS, and
layer selection for SC).

The cost for manual definition and parameters tuning can be considered
low as they occur una tantum, while the training cost is necessary only
when the training and verification sets are modified. Compared to the
cost of training the CNN, the training cost can be considered acceptable
since they can be executed mostly simultaneously.

5.1.2 Offline Assessment

The offline assessment via sampling techniques is characterized by the
manual labeling cost, very high due to the need for human intervention
each time they are executed.
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Except for Simple Random Sampling, all the other sampling techniques
are characterized by a cost for the computation of the auxiliary informa-
tion.

The weight of this computation depends on the considered auxiliary
information:

• the confidence does not require any computation and is collected
directly during the monitoring of the ML system;

• Surprise Adequacy metrics (DSA and LSA) require heavy compu-
tation since they need to compare each operational image with the
ones in the training set;

• Cross-entropy (related to CES technique) must be computed at each
sampling step.

Despite the high cost, the average MSE of the sampling-based techniques
is very low, even in the case of label shift (like for SRS), and in particular,
it is lower than the MSE of the automatic oracles. The difference between
the MSEs is one order of magnitude (on average).

Moreover, the high cost of the manual labeling of the operational im-
ages is balanced by the possibility to use the labeled samples to enlarge the
training dataset, providing more representative images of the operational
environment.

5.2 Accuracy Assessment Cycle

The way to reduce the assessment cost by exploiting all the advantages
of the presented strategies is to combine them in an Accuracy Assessment
Cycle, as reported in Figure 5.1.

The following phases are defined:
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Figure 5.1. Accuracy Assessment Cycle (AAC)

• Data Preprocessing: the starting phase of the cycle, where the
training dataset and the verification datasets can be updated both
considering new labeled images (if available) and based on the accu-
racy estimates provided by the previous phases (if available). The
aim is to build a training set representative of the observed opera-
tional domain.

• Remodeling and Retraining: the model is trained from scratch
(first iteration or in case of remodeling) or according to the output
of the previous phases using the new training set in input from the
Data Processing phase.

• Model verification: in this phase, the accuracy of the ML system
trained in the previous phase is computed on the verification dataset
provided by the Data Preprocessing phase.

• Deploy: the CNN is deployed into the execution environment with
all the instrumentation needed to collect new (unlabeled) samples.

• Monitoring: all the new samples are collected coupled with the
prediction of the CNN deployed and additional information proper of
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the environment (image sources, user typologies, operational profile,
etc.)

• Online Assessment: an automatic oracle is used to classify each
output of the deployed CNN as Pass or Fail. The oracle predictions
are used to compute the predicted accuracy of the CNN in operation.

• Evaluator: it triggers a sampling session each time the accuracy
of the CNN deployed decreases significantly compared to the one
estimated on the verification dataset before the release of the CNN
(7.b). Otherwise, the sampling-based assessment is skipped (7.a).

• Offline assessment: in this phase, a set of images is sampled from
the operational data and labeled by a “human oracle”, and an esti-
mate of the accuracy (estimated accuracy) achieved in operation is
computed.

The idea to reduce the cost is to consider the online assessment for a
continuous evaluation of the operational accuracy provided by the ML sys-
tem and to reduce the cost of manual labeling, retraining, and remodeling,
performing them only if required.

5.3 Simulation of the Accuracy Assessment Cycle

5.3.1 Implementation

The simulation of an AAC is performed using the following implemen-
tation. The automatic oracle considered is ICOS due to both its effec-
tiveness in estimating the accuracy of the CNN on previously unseen data
and also for the robustness against label shifts. The sampling technique
considered is SRS since it is a simple technique and is robust against the
label shift. Moreover, SRS has been preferred to DeepEST because the
purpose of this simulation is to have an accurate assessment, and there is
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no interest in having a high number of failing examples. DeepEST rep-
resents a more efficient solution when the purpose is to rapidly improve
the CNN accuracy since it can spot the most interesting images (the ones
causing misclassification).

The dataset considered for the simulation is MNIST. In particular,
1000 samples have been considered for training, 500 for the verification
set, and 1000 unlabeled images (for each cycle) as the operational dataset.

The configuration chosen for ICOS is fp (as in Section 3.3.4), assuming
that the input of each partition is generated by different input sources.
The sample size considered for SRS is 500 since in the sensitivity analysis
(Section 4.5.2) has been shown that for budgets greater than 400, SRS
estimate converges to the true accuracy.

5.3.2 Simulation

The AAC is simulated running eight consecutive cycles. The Online
Assessment is executed in each cycle. The Offline Assessment is executed
only when the accuracy estimated through ICOS is lower than 0.05 com-
pared to the one estimated on the verification set before the release. Each
time the sampling-based assessment is performed, the new manually la-
beled samples are sent to the Data Preprocessing phase. In this phase, the
new images can be integrated into the training and verification sets. The
proportion between new and old samples in the training dataset can be
varied according to the accuracy estimates provided by the last cycles. In
Figure 5.2 a graphical representation of the cycles is provided and Table 5.1
shows the details of each cycle. The first three cycles represent the nomi-
nal conditions, namely when the training and validation set well represent
the operational dataset. As expected, the predicted accuracy computed
through ICOS does not trigger any alarm in the first three cycles.

Starting from the fourth cycle, a label shift is simulated by switching
labels 2 and 7 in the operational data. Thanks to IDIs, the failures are
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correctly detected. The accuracy drop detected thanks to the predicted
accuracy triggers the offline assessment. The estimated accuracy confirms
that the operational dataset is starting to diverge from the one observed in
the previous cycles. Thus, the new samples are inserted into the training
dataset, and the model is retrained accordingly.

During cycles 5 and 6, the accuracy drop is still correctly detected by
ICOS, and the rest of the cycle is repeated as previously explained.

In cycle 7, ICOS provides a False Alarm, which triggers the sampling-
based assessment phase. Observing the value of the estimated accuracy
during the data processing phase, it is evident that the false alarm provided
by ICOS (largely due to the TDIs) depends on a problematic design of
the training set of the CNN. For this reason, in the last cycle, only the
images collected in the last four cycles are used for training. After this
retraining, the accuracy of the CNN on the current operational profile
grows up significantly, and the predicted accuracy returns converge to the
true value.
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Table 5.1. Detailed results per cycle

Accuracy
Cycle Verification Actual Predicted Estimated Alarm

1 0.858 0.837 0.824 N/A No
2 0.858 0.830 0.809 N/A No
3 0.858 0.841 0.818 N/A No
4 0.858 0.696 0.685 0.684 True
5 0.872 0.744 0.724 0.718 True
6 0.820 0.731 0.695 0.728 True
7 0.832 0.838 0.741 0.824 False
8 0.872 0.879 0.839 N/A No

5.3.3 Considerations

Figure 5.2 shows that the accuracy computed before the release can be
very different from the one achieved in operation (Actual), in particular in
cycles 4, 5, and 6.

The accuracy predicted by ICOS follows the actual accuracy with the
operational data, except in cycle 7, where the bias in the training set causes
many false positives.

The estimate provided by SRS is very useful to evaluate the accuracy
provided in operation, and its high cost (due to manual labeling) is avoided
in many cycles thanks to the predicted accuracy provided through the
automatic oracle.
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Conclusions

Machine Learning models represent a very general solution for very
specific problems. The literature about automatic oracles shows how ML
models can be used to detect failures of other ML models seeing the same
training data from different perspectives. PAOC is an extreme example
of this, since it uses a slightly modified version of the same CNN under
assessment, with very performing results.

A common practice in the current research is to try to solve the oracle
problem in a general manner. This objective contrasts with the specificity
of the task to be solved - dedicated solutions are expected to be more
efficient. In fact, features of the operational domain represent important
information to faithfully assess the accuracy of ML systems once they are
deployed, and this aspect is not explored enough in the literature. A
more interesting contribution for companies is to define a methodology
that can be applied in any operational context and can improve the failure
detection, and consequently the faithfulness of the accuracy assessment.
Although operational features can be too specific for classifiers, troubling
the generalization ability of the ML system, they can be very useful to
evaluate the output of such systems on the fly (like IDI for ICOS).
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The power of ML models has been demonstrated to go further than
the mere classification task. As for human beings, physical symptoms can
hide structural problems; similarly, ML models can be analyzed to generate
new features (e.g. confidence, DSA, LSA) demonstrated to help evaluate
the operational behavior since they encode the faithfulness of the output
provided.

This thesis focuses on the Image Classification task, which is one of the
most studied classification tasks in the literature. IC is well known to be
a very complex task (even for human beings) for many reasons, like intra-
class variation, variation in terms of scale, rotation, blurring, illumination,
and so on.

In this work, the characteristics of the ML systems are considered to
address the operational accuracy assessment problem in the IC domain
adopting two different strategies. Contextually, three techniques have been
proposed: ICOS and PAOC, as techniques for the online assessment via
automatic oracles, and DeepEST, for the offline assessment via sampling.

The experiments performed on nine different CNN and three popu-
lar datasets (MNIST, CIFAR10, and CIFAR100) show that each strategy
presents pros and cons depending on its specific nature:

• Online assessment via automatic oracles provides a continuous eval-
uation of the operational accuracy of the CNN, but it requires im-
plementation and training cost to be added to the CNN life cycle.

• Offline assessment via sampling provides an on-demand faithful es-
timate of the operational accuracy of the CNN and a new set of
labeled images very representative of the operational domain. On
the opposite, it involves high costs due to the manual labeling of
selected samples.

The mentioned characteristics of the two adopted strategies allow com-
bining them by defining an Accuracy Assessment Cycle. This cycle aims to
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continuously assess the operational accuracy of the ML systems, reducing
the cost of the offline assessment. As shown in the last chapter, the au-
tomatic oracle can follow the operational accuracy variations of the CNN,
triggering the offline assessment only when required, minimizing human
intervention.

Steps forward can be done about the implementation of the Accuracy
Assessment Cycle. The life cycle conceived as a loop helps engineers to
collect features about the operational environment to specialize the ML
systems performing the task they need in the way they need. This research
could also help to find specific strategies for the improvement of the CNN
in the loop. Techniques like DeepEST can spot a high number of failing
examples, which, along with operational features, can help improve the
performance of ML systems also in corner cases.

A possible advancement of the Accuracy Assessment Cycle can also
integrate the automatic improvement both at the experimental and de-
ployment stage. As shown in the last Chapter, rarely is required to change
a performing model in case of unexpected phenomena like label shift. Of-
ten, additional training or training from scratch of the model incorporating
the operational examples in the training set can be sufficient to improve
the operational accuracy. For this reason, in line with MLOps perspectives,
strategies for the online auto-improvement of ML models can be based on
the “probabilistic” output of the Automatic Oracles. Moreover, automating
data preprocessing, the offline retraining step can be run without human
intervention when remodeling is not required.

The assessment, and consequently the improvement, of the accuracy
of the ML systems can be of interest beyond the IC domain, and, more
in general, beyond the classification domain. In particular, the AAC can
find applications in the Autonomous Driving domain, also impacting in-
dustrial practices. The steering angle prediction, a regression problem,
represents a possible application. For this purpose, both online and offline
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assessment require specific customization: IDI must be defined in the Au-
tonomous Driving context (e.g. based on traffic rules); TDI and ADI must
be reconceived to work on continuous values; new auxiliary variables to
guide sampling must be found (e.g. autoencoders output) since confidence
and DSA are not directly computable for ML models for regression.

This process poses new challenges related to the collection and evalu-
ation of operational features, which can be useful but need very specific
reasoning to infer useful constraints. An interesting research direction is
to apply inferential engines on operational features to automatically ex-
tract operational constraints which can help focus the task on the final
objective.
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