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Abstract 

In recent years we have witnessed a paradigm-shift in distributed computing from 

middleware-oriented architectures to Service Oriented Architectures (SOAs). The 

concept of service is becoming crucial, since a distributed system consists of a 

collection of interacting services, each providing access to a well-defined set of 

functionalities. Initially developed for Internet-scale environments, SOAs have been 

gradually adopted in more and more domains with particular interests to ubiquitous 

computing in all its flavours (ad hoc, nomadic and pervasive). The plethora of SOAs 

available today has further emphasized the heterogeneity of communication 

technologies and raised even more the integration and the traditionally neglected 

security issues. Much has been said with regards to security issues and requirements 

in mobile computing, and most of the current literature focuses either on the intrinsic 

limitations of mobile devices and environments, or propose more appropriate trust 

models and secure communication paradigms. However, with regards to SOAs, they 

do not always address security, and when they do, it is not done consistently. In other 

words, the notion is security is not a shared one. Most SOAs have not been designed 

with security in mind and only address security as an afterthought.  

The contribution given by this work is twofold. First, it defines a number of 

security requirements for SOAs in mobile computing, giving a consistent notion of 

security that is used to evaluate existing SOAs and that can be used to develop new 

ones.  The requirements defined follow a detailed analysis of all major SOAs existing 

in literature and the definition of new application scenarios with clear security issues. 

Second, but foremost in this work, the author proposes an architectural model, called 

SeNCA, for secure service provision in nomadic computing systems. The architecture 

allows the secure integration of existing SOA and provides extensibility to integrate 

with future service technologies.  An O-O methodology is finally proposed that would 

allow the design of secure SOAs for nomadic computing.  

 ix



Introduction 

In recent years we have witnessed a paradigm-shift in distributed computing from 

middleware-oriented architectures to Service Oriented Architectures (SOAs). The 

concept of service is becoming crucial, since a distributed system consists of a 

collection of interacting services, each providing access to a well-defined set of 

functionalities. In the context of SOA, a service is defined as “course-grained, 

discoverable software entity that exists as single instance and interacts with 

applications and other services” (Brown et al., 2002). SOAs federate such services 

into a single, distributed system capable of spontaneously configuring itself upon 

service connections and disconnections. Services can in fact be added or removed 

dynamically composing a changing pool of available functionalities. A service can be 

implemented on a single machine, distributed on a local area network or even across 

several company networks. In all instances, a service must first be found and then it 

can be accessed. To this aim each SOA relies on two distinct infrastructures called 

Service Discovery and Service Delivery.  

Initially developed for Internet-scale environments, SOAs have been gradually 

adopted in more and more technology and application domains. The notion of service 

has evolved along with the related discovery and delivery protocols giving birth to a 

wealth of different SOAs, which has further emphasized the heterogeneity of 

communication technologies and raised even more the traditional integration and 

interoperability issues of distributed computing. The actual development of SOAs has 

been driven by mobile computing revolution and the radical shift from a distributed 

computing paradigm characterized by multi-user systems to one characterized by 

multi-system users.  The number of personal and mobile computing devices per 

person has increased and they all allow some form of interaction with the world we 

live in.  

Of the different mobile computing paradigms, the one that best models the 

way people work and interact with each other every day is the one of nomadic 

computing Kleinrock (1996, 2000). Often called a hybrid model, nomadic computing 

is characterized by the existence of a service infrastructure, available through fixed 

nodes interconnected through a permanent network. Mobile devices, usually general 

purpose, move around freely, keeping a connection, either permanent or intermittent, 
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to the service infrastructure. Every day we travel from our home to our office, maybe 

taking a train or flying from our local airport. In other words we find ourselves 

moving with our laptop and other portable computing devices from one fixed location 

to another one, almost always in a position to access a fixed service and network 

infrastructure. With increased mobility though, also comes the need for discovery and 

delivery of available services anytime-anywhere. We want to be able to discover 

available services wherever we go and use them according to our needs. But in order 

to achieve such dynamic service availability we must first address the integration 

issues of exiting service oriented architectures. Given its characteristics, a nomadic 

computing domain will contain many of such architectures and play a natural role for 

the so needed integration. However, the rapid growth and diversification of service 

oriented technologies and protocols has added further complexity to the integration 

goal.  

Increased mobility and new communication and interaction paradigms have 

also introduced new threats and security concerns, which must be addressed, even 

though traditional service usage scenarios, such as discovery of printers and film 

projectors, still fail to expose strong security requirements. However, the definition of 

service has recently become more encompassing as to include also people, who can 

now be thought as service providers (e.g. a doctor or a policeman). Thinking about 

people as service providers quickly changes the perspective on things and security 

becomes a stronger requirement to address. For instance one must address the privacy 

of personal information such as identity and location. In order to accommodate new 

application scenarios suggested by the increased mobility, a number of service 

oriented technologies are beginning to be used beyond the original intended purpose 

and this has in turn further stressed the implications of how such technologies have 

addressed the security requirements. Then, when trying to achieve integration of 

service oriented architectures one cannot escape the security requirements that must 

be met to provide a secure service. However what it is meant by secure service and 

what security requirements must be met is still not clear from current research 

literature.  

In this work the author addresses the existing research gap regarding the 

security of service oriented architectures and their integration in the context of 

nomadic computing. Specifically, the research work presented here targets the 

following questions: 1) what does it mean for a service oriented architecture to be 
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secure? 2) Can existing SOAs support secure service provision as needed by modern 

application scenarios? And ultimately 3) is it possible to achieve secure service 

provision in a nomadic environment, characterized by a collection of legacy service 

technologies and architectures?  

Much has been said with regards to security issues and requirements in mobile 

computing, such as (Jøsang & Sanderud, 2003) (Ravi, Raghunathan & Potlapally, 

2002), and most of the literature focuses on the intrinsic limitations of mobile devices 

and environments. A variety of research studies have produced secure communication 

protocols, often adapting them from the traditional wired equivalent versions, such as 

(Harbitter & Menascè, 2001), and proposed more appropriate trust models and 

communication paradigms, such as (English, Nixon & Terzis, 2002) (Zhang & 

Kindberg, 2002). However, much less has been said with regards to the actual security 

requirements of service oriented architectures, and too little if one considers the 

relevance of the SOA paradigm in modern mobile computing. 

The first step towards providing some answers to the above stated questions is 

to clearly characterize the new mobile environment in which modern SOAs operate 

and to also identify the design requirements that may affect the way security 

requirements would be normally met. Second, one must be able to identify the 

application scenarios that drive the need for security and analyse existing SOAs to 

understand how security has been addressed. Based on such analysis one can then 

clearly define the security requirements that must be met in order to support the 

realization of such scenarios and evaluate how “fit to security” current SOAs really 

are. The purpose of the evaluation is also to clearly identify the integration issues that 

challenge secure integration. Based on the evaluation results and on a clear picture of 

the issues that must be faced, we can then address the third and last research question, 

that of the secure integration. The latter must be able to meet the security 

requirements identified and abide by the design goals the characterize the new 

computing paradigms. The research work being presented here has been structured 

following the above logical steps. Specifically, this document is organized into five 

chapters, summarized below.    

 

In chapter one we introduce the research context, which is that of nomadic 

computing, and clearly identify the issues regarding the secure provision of services 

across the heterogeneous service and communication technologies that are available 
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in a nomadic domain. In order to stress the security concerns and need for security in 

service provision, we also introduce two application scenarios which present clear 

security requirements, and discuss the issues that challenge secure service provision in 

nomadic computing. In the final part of this chapter we discuss the design 

requirements of middleware for mobile computing with specific reference to the 

security issues. In particular we draw a comparison between traditional middleware 

for fixed distributed systems and middleware for nomadic computing, highlighting the 

differences in terms of security functionalities addressed and design goals. 

 

In chapter two we review existing work with regards to Service Oriented 

Architectures and analyse the way security has been addressed. Our survey has been 

structured into three parts addressing standard protocols, integrated architectures and 

ongoing research, respectively. Standard protocols cover both the middleware (e.g. 

UPnP) and the transport layer (e.g. Bluetooth). Integrated architectures include more 

complex service architectures which have been developed in the framework of 

research projects or commercial initiatives. Finally we also include ongoing research 

work.  

 

In chapter three we present the first research contribution of this work by identifying 

the security requirements that need to be met by a SOA in order to be considered 

secure. The definition of such requirements is affected by both the intrinsic 

functionalities of a SOA and the lack of clear use cases from which one can possibly 

infer the security concerns. Ultimately but foremost, we identify a problem with 

regards to the correct definition of service, which should be security aware, in order to 

make the SOA itself security-aware from the outset. Using the identified requirements 

we perform an evaluation of the technologies and architectures presented in chapter 

two, providing at the same time an in depth analysis of the issues that must be 

addressed to achieve secure integration. 

 

In chapter four we present the second contribution of this research work, an 

architectural model for the secure integration of existing SOA in a context of nomadic 

computing, called Secure Nomadic Computing Architecture (SeNCA). A crucial part 

of the architectural model is the security-aware definition of service on which the 

whole design is based, making the proposed architecture also security-aware from the 
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outset. SeNCA models the nomadic environment through administration domains, 

which in turn contain one or more technology domains, one for each available service 

technology. Following the middleware design criteria identified in chapter one, 

SeNCA adopts the use of proxies, running on the infrastructure, to offload mobile 

devices of the computational complexity associated to cryptographic operations. 

 

In chapter five we present an object oriented methodology for the design of secure 

SOAs for nomadic computing systems. The methodology uses UML extensions for 

the formalization of security requirements. In particular it is shown how the design of 

secure SOAs can address the new threat models described in chapter one. The 

methodology presented can be used to both design new secure SOAs and to evaluate 

existing ones. The methodology can also be generalized and applied to the design of 

all secure applications for ubiquitous computing. 

 

Finally, in the concluding chapter we briefly discuss the lessons learned, and draw 

our conclusions 
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1 Security in Nomadic Computing Systems 

In this chapter we introduce the context of our research, which is that of nomadic 

computing, and identify the issues regarding the secure provision of services across 

the heterogeneous service and communication technologies that are available in a 

nomadic domain. In order to stress the security concerns and need for security in 

service provision, we also introduce two application scenarios which present clear 

security requirements, and discuss the issues that challenge secure service provision in 

nomadic computing. In the final part of this chapter we discuss the design 

requirements of middleware for mobile computing with specific reference to the 

security issues. In particular we draw a comparison between traditional middleware 

for fixed distributed systems and middleware for nomadic computing, highlighting the 

differences in terms of the security functionalities that should be addressed and design 

goals that should be followed. 

1.1 Modern Mobile Computing 

In the last decade, the distributed computing paradigm has undergone major changes 

and diversifications that have radically affected the way we think about and develop 

distributed applications. Words like ubiquitous, pervasive and smart have become 

more and more common to the extent that they are sometimes used interchangeably. 

In particular we have witnessed a radical shift from a distributed computing paradigm 

characterized by multi-user systems to one characterized by multi-system users.  The 

number of personal and mobile computing devices per person has increased and they 

all allow some form of interaction with the world we live in. A possible classification 

of distributed systems can be done according to a number of characterizing 

parameters, listed below. 

 

− Device – we can define a device as a network node that has computational 

capabilities. A device in turn can be classified in terms of its mobility and 

level of embeddedness. Generally, fixed devices tend to have a higher 

computational power and be more general purpose. Similarly, with increasing 

mobility we tend to have reduced computing power and higher level of 

embeddedness, i.e. the devices are built for specific purposes (e.g. sensors, 

badges, microcontrollers etc.). Mobility will also affect the device availability 
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due to limitations in battery life and connectivity. Mobile devices for example 

tend to be turned off more often or be in areas with no or scarce network 

coverage 

− Network connection, i.e. the quality of the physical connection between two 

network nodes, not the quality perceived through any communication 

layer/middleware. Roughly, a network connection can be either permanent or 

intermittent. The former is usually characterized by a larger bandwidth and 

lower error rate than the latter where several factors may affect the overall 

characteristics.  

− Context – with this term we refer to any information that may affect the 

behaviour of the application, such as battery status, CPU load, memory usage 

etc. Context may also be affected by environmental factors such as network 

bandwidth or location of the device. A context can be more or less dynamic 

depending on how it is affected by the available information. 

 

Having introduced the above parameters, we can better describe the different domains 

of distributed computing. In particular we can define: 

 

Traditional distributed computing – collection of fixed and general-purpose 

devices communicating through a permanent connection, and where the contextual 

dependencies, usually defined upfront, tend to be rather static. 

 

Pervasive computing – collection of special-purpose devices, both mobile carried by 

the individuals, or fixed such as sensors, RFID readers etc., all transparently 

interweaved into every day’s appliances and applications. The goal of pervasive 

computing is in fact to be invisible and transparent.  The type of connection is usually 

intermittent even though some pervasive devices may be connected and communicate 

through a fixed network infrastructure. The context is very dynamic and can change 

quite rapidly, affected by the interaction of highly mobile pervasive devices. 

 

Ubiquitous computing – very similar to pervasive computing both in terms of 

dynamicity of context and transparency of use, but with less emphasis on invisibility.  
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Network connections are also intermittent but the bandwidth in assumed to be higher 

to support ubiquitous interaction between computing devices. 

 

Nomadic computing – often also called a hybrid model, is characterized by the 

existence of a service infrastructure, available through fixed nodes interconnected 

through a permanent network. Mobile devices, usually general purpose, move around 

freely, keeping a connection, either permanent or intermittent, to the service 

infrastructure. The latter may also include some pervasive devices such as sensors, but 

the emphasis in nomadic computing is on the transparent access to services and 

general purpose computing from a mobile user. The context is also dynamic but it 

varies less rapidly than in pervasive computing. 

 

Ad hoc mobile computing – contrary to the nomadic one, this domain is 

characterized by the lack of a fixed infrastructure of reference and the devices must be 

capable of some form of autonomy to both auto configure themselves and interact 

with other devices. The context is also dynamic and the connections are mostly 

intermittent although they can also be permanent in some other cases when using 

wireless LAN technologies. 
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Figure 1-1 Modern Distributed Computing 

 

Figure 1-1 shows a graphical representation of the above classification. In the context 

of this work we will mostly refer to ubiquitous computing to address the concept of 

anytime-anywhere computing and we will refer to nomadic computing to specify the 

presence of network and service infrastructures. 
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1.2 Nomadic Computing 

This work focuses on nomadic computing Kleinrock (1996, 2000) as this better 

models the way people work and interact with each other. Every day we travel from 

our home to our office, maybe taking a train or flying from our local airport. In other 

words we find ourselves moving with our laptop and other portable computing 

devices from one fixed location to another one, almost always in a position to access a 

fixed service and network infrastructure. Wireless and transparent access to fixed 

networks is becoming more and more ubiquitous, either through more traditional 

802.11 networks or through modern 3G communication technologies. The ubiquity of 

these network and service infrastructures is such that the times when the user will be 

“on his own” are few and far in between. The availability of such infrastructure and 

the increasing diffusion of mobile communication technologies such as Bluetooth is 

gradually fulfilling Weiser’s vision (1999) of pervasive and ubiquitous computing and 

the realization of a number of application scenarios for office automation, smart 

homes and smart airports. A typical nomadic infrastructure will include a collection of 

communication and service technologies. Typically, a nomadic computing 

environment will include a number of different service oriented technologies, as 

shown in figure 1-2. 
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Figure 1-2 Nomadic computing architecture 

eased mobility though, also comes the need for discovery and delivery of 

services anytime-anywhere. We want to be able to discover available 

herever we go and use them according to our needs. However, the 

ty and heterogeneity of mobile technologies, both in terms of physical 
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communication and middleware, has greatly affected the goal of transparency and 

ultimately of service availability. Furthermore, mobility has also stressed the security 

issues. Even though in many cases a user will have access to a network infrastructure, 

the level of trust the user will place on it will vary according to the context. We may 

decide to trust our home network more than our office network. Contrarily, a work 

colleague may trust the corporate network more than our home network. Also, 

security is addressed differently across mobile technologies and providing end-to-end 

security in the nomadic domain is only limited to the lowest common denominator; 

we are only as strong as the weakest link in the chain. The research presented with 

this work addresses the problem of secure service provision in nomadic computing 

and in order to better appreciate the importance of security we are first going to 

present two application scenarios of nomadic computing which clearly highlight the 

need for security. Traditional scenarios, such as printer service discovery, tend to hide 

such need thus to mine the design-with-security-in-mind approach that is required. 

1.3 Terminology 

Before we delve into the discussion about the security issues in nomadic computing, it 

is useful to briefly introduce the terminology we will be using extensively throughout 

this work. 

 

− We will use the terms subject, principal or client entity to identify the initiator of 

an action or service/resource request to which we can apply access control 

− We will use the term credentials, based on the CORBA Security model (OMG, 

2001), to address the security attributes associated to a subject (or principal or 

client entity), which are used to make access control decisions. Credentials may 

include the principal’s identity, information about his role, associated privileges 

etc. 

− We will use object, service or resource to refer to the target of any invocation or 

request from a subject. An object is protected through access control which makes 

decisions based on the subjects’ credentials and some access control policies 

 

With regards to basic security concepts such as authentication, integrity, 

confidentiality authorization and other, the reader can refer to (Stallings, 2003). 
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1.4 Secure Scenarios in Nomadic Computing 

1.4.1 The Smart Campus 

Professor Steve is meeting up with his PhD student Al for an update on Al’s work and 

in preparation for next week conference in Berlin where Al will be presenting a paper 

on “Secure Ubiquitous Computing”. The meeting is at the University coffee shop 

which is wireless-enabled allowing a connection to the University Intranet. Steve and 

Al have a Wi-Fi and Bluetooth enabled Smartphone and PDA respectively. They 

order a coffee and a bite to eat and they start discussing the paper; from time to time 

Al adds some new tasks onto his PDA to remind him of important things he needs to 

do while at the conference. After a bit, Steve suggests they should go through a 

formal rehearsal of the Power Point presentation using a projector. They have not 

booked a room and it is now 6 o’clock p.m. and there is no staff to do the booking for 

them. All the university offices are closed but they still would like to find an available 

room with a projector in it, and possibly a printer. Steve uses his 802.11 enabled 

Smartphone to locate the nearest room with a projector but he belongs to the faculty 

of Engineering and he can only have access to the available rooms in the engineering 

buildings. Unfortunately, no room is available from the faculty of engineering, but 

one room is available in the nearby faculty of Physics; so he reserves the room which 

instantly becomes unavailable for further bookings over the next hour. However, 

Steve is not really familiar with the location of the room. Fortunately for him, the on-

line booking system also makes available a guide service and a local map is 

downloaded onto his PDA with both the current position and destination clearly 

marked, along with the directions. Alternatively, an active map is available which 

shows their current position as they move, using a combined Bluetooth Wi-Fi 

locationing service. Once reached the room with the projector, Steve and Al 

authenticate through the Bluetooth-enabled door and are able to get inside. The 

Projector is also Bluetooth-enabled and access controlled just like the door. Even 

though Steve is not from the faculty of Physics, the authentication and authorization 

has been handled transparently, thanks to administrative agreements between the two 

departments. 

While they are working on the presentation, Steve does not want to be 

disturbed unless it is really urgent. Therefore he sets the access policy on his 

Smartphone to “do not disturb”. This policy is also associated to a users profile so that 
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the phone will only let through calls or messages from the people contained in the 

profile. Additionally, as he himself doesn’t quite know how do direct people to the 

current room where he’s never been, he would also like the people associated with the 

above profile to be able to locate him. For everyone else he is utterly and definitely 

unavailable. However, Steve would also like to know who has been looking for him 

while he was busy with Al. Similarly, whoever looked for Steve might not want to let 

him know they were looking for him. 

After working on the presentation, Steve and Al decide that maybe they 

should print some handouts to distribute at the conference so that attendees can get 

more out of the presentation. The room they are in doesn’t have a printer so Steve 

looks for the nearest one, using the same service look up as before; this time though a 

wireless network is not available in the room and the service lookup is done using a 

Bluetooth network. It turns out that there is a UPnP printer available in the room next 

door and a Jini-enabled printer in the room down the corridor. Both printers are access 

controlled using the native technology and Steve is not recognized to use either of 

them. However, authorization is granted through the network infrastructure. 

1.4.2 The Mobile Emergency Service 

This scenario is based on Zhu, Mutka, and Ni’s M911 scenario (2003). Rob is a 

general practitioner (GP) and he has a real dedication to his job. Recent advances in 

mobile technologies have made possible for him to offer his services also when out of 

duty in emergency situations. The same applies to Mark who is a law enforcement 

agent. Contrary to Rob though, Mark has been contracted to offer his services on 

demand even when formally off-duty. Both Rob and Mark’s positions are monitored 

through the Neighborhood Positioning Service (NPS), which operates using a number 

of technologies, namely RFIDs, Bluetooth, GPS etc. It is the weekend and both Rob 

and Mark are out with their respective family for a nice meal in one of the new 

restaurants in town. As they enter the restaurant, their presence and a description of 

the potential services they may offer (i.e. doctor and policeman) are registered with 

the Neighborhood Service Infrastructure (NSI); if needed they can be located and 

contacted. While Rob and Mark are enjoying their evening, someone in the restaurant 

next door is committing a robbery and at the same time one of the customers, Luis, 

suffers a heart attack. Luis pushes a button on his M911 device which places an 

automatic call to the 911. In addition, the device sends an M911 request to find any 
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doctor in the vicinity, who may help. Similarly, another customer pushes the button 

on the M911 device to call for a police officer in the vicinity. Both Rob and Mark are 

close to the scene and they are located by the M911 service operating through the 

NSI. Once contacted by the M911, Rob and Mark are given automatic direction to the 

scene of the crime. Further information is also available to Rob regarding Luis’ 

clinical records available through Luis’ smart phone. Luis doesn’t want his medical 

record exposed to total strangers but only to trusted doctors. Trust is managed through 

the NSI, which recognizes Rob as a trusted person to access Luis’ medical records. 

Ultimately, if no trusted doctor is in the vicinity, Luis is happy to share his medical 

records with any doctor available in the area. 

1.5 Issues in Achieving Security in Nomadic Computing 

The first consideration that is possible to make by reading the above scenarios is that 

they introduce a new notion of service compared to the one we are traditionally more 

used to. But on the actual definition of service we will concentrate in chapter four. In 

this instance we can say that both scenarios above present a number of security related 

issues. For example, we do not want everybody to know how many rooms there are 

around with projectors or printer or other devices. This is to prevent enumeration 

attacks for the purpose of theft (for example) or other. Similarly, we may want to limit 

the visibility of the number of doctors and law enforcement agents available in a 

specific area. Alternatively, criminals may decide to look for “safer” areas where a 

robbery can be carried out successfully.  We then have issues regarding the disclosure 

of private information. John, as a person, may provide a service (e.g. resolve an 

urgent problem) or pick up a phone call from a designated person or group or people. 

As a service, John may decide to limit or control his availability according to his 

needs and according to the company policy (e.g. it must be always possible to locate 

John). John could set the privacy control policy on his PDA or smartphone and such 

policy may change with the context (for instance based on John’s location). As 

mobility increases the number of potential services, there is also an issue of 

scalability, which can also be addressed by performing careful access control to 

services. Availability is another issue to address; if the service is discoverable via 

Bluetooth or via any other batter operated device, continually querying for the service 

would flatten the battery of the device, making the service unavailable. These are just 
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a handful of security-related issues and we will address them more thoroughly in 

chapter three. 

Traditionally, security requirements have been addressed with the use of 

encryption algorithms and security engineered communication protocols. Achieving 

security in the same way in the context of nomadic computing is somewhat more 

difficult for a number of reasons. 

1.5.1 Limited Resources 

In 1965 Gordon Moore, co-founder of Intel, predicted  that the number of transistors 

per square inch on integrated circuits would double for the foreseeable future 

(Gordon, 1965). So far that prediction, which is also widely known as Moore’s law, 

has been maintained and Intel expects that it will continue at least through the end of 

this decade. Unfortunately, Moore’s law does not apply to battery life and, even 

though battery technology has advanced substantially in the past years, these advances 

have not been as outstanding as in microprocessor development. Low power 

consumption is very important in mobile and wireless devices, because a good 

percentage of the battery power typically needs to be reserved for the radio 

transmission activities. ABI Research (2003, cited in Paulson, 2003) reveals how 

common nickel-cadmium and lithium-ion batteries, generally used in laptops, cellular 

phones, PDAs etc., have only increased their energy by 10 to 15 percent per year, and 

are capable of providing only another 15 to 25 percent. This will not keep up with the 

increasing power demands of mobile devices with fast processors, high resolution 

displays, games and other intensive applications, such as cryptographic operations. 

Another limitation is the lower processing power. Cryptography still is the 

main vehicle to achieve all security requirements (unless we are prepared to use 

security through obscurity). However, cryptographic operations, especially public-key 

based ones, are CPU-intensive. A common public-key cryptographic algorithm such 

as RSA using 1024-bit keys takes 43ms to sign and 0.6ms to verify on a 200MHz 

Intel Pentium Pro (Weiner, 1998) and it takes much longer on mobile devices that fit 

even smaller CPUs (Ravi,Raghunathan and Potlapally, 2002). With regards to CPU 

limitations research is currently pursuing several routes. In some cases traditional 

protocols have been adapted to the requirements of the wireless environment (Gupta 

and Gupta, 2001)(Harbitter and Menascé, 2001). Lots of effort is being put onto 

developing alternative public-key cryptosystems such as the Elliptic Curve 
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Cryptosystems (ECC) (Koblitz, 1987) and the lattice based cryptosystems (Hoffstein, 

Pipher and Silverman, 1998). Some security protocols can also be made to adapt their 

encryption policies based on the content of the data being encrypted. Video 

encryption algorithms such as those proposed by (Tosun and Feng, 2001) focus on 

protecting the more important parts of a video stream thereby reducing the total 

amount of data encrypted. Some researchers (Ravi, Raghunathan and Potlapally, 

2002) even stress the existence of a processing gap, claiming that it will not be filled 

if not by the development of new hardware and software designs. The same 

researchers propose a platform called MOSES which can also be used as a 

coprocessor in a handheld device to accelerate security-specific computation. 

Security is also affected by the lower storage memory for a number of 

reasons. First, the limited size of storage memory also limits the access control data 

structures (a.k.a access control lists or ACL) that we can store in them. Second, lower 

storage capacity also accounts for the increased difficulty to support multiple security 

protocols, and the flexibility demanded for the support of multiple encryption 

algorithms. Access control itself is still an unresolved issue in nomadic computing. In 

fact, a single point of access control is not sufficient because mobility may make that 

single point unavailable. On the other hand, keeping access control structures on the 

single device is not a viable solution either; first because of the limitation of storage 

memory which would make it not scalable, and second, because the administration 

associated to such an approach would be unbearable; it would entail operating on each 

individual device in order to modify access rights. For this reason, some form of 

distributed access control solution is required, which unfortunately increases the 

exposure to attacks. 

We then have usability; protecting and securing small mobile devices is 

definitely harder than for traditional devices, characterized by handy keyboard for 

inputting user credentials. For starters, the limited size and poor user interface of 

some mobile devices already pose problems for implementing user-friendly 

applications. Such limitations affect even more the achievement of reasonable 

security. Issues of HCI (Human Computer Interaction) come into play, and securing a 

small device in a way that it is still user friendly becomes a great challenge. Whitten 

and Tygar (1999) argue that effective security for mobile devices requires a different 

usability standard, and that it cannot be achieved through the user interface techniques 

appropriate to other types of consumer software. With regards to authentication, 
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Jansen (2003) presents an extensive surveys of ways to achieve authentication in 

handheld devices.  

Another limitation is given by the communication channels. While in the 

traditionally static environment we can afford expensive protocols which introduce 

large overheads and which are computationally expensive, not the same can be said 

for the mobile environment often characterized by lower and less reliable bandwidth. 

Limited resources are not only dictated by technological constrains but more 

so by economies of scale. Typically, personal consumer devices such as cellular 

phones are manufactured in extremely large quantities and are sold to price-conscious 

consumers at prices that are very low. To improve their profit margins, device 

manufacturers want to keep the per-unit costs of the devices as low as possible. 

Additional processing power or precious dynamic memory will not be added unless 

the consumers are willing to pay for the extra capabilities. Also, the increased cost 

given by added general-purpose features and capabilities would have to be well-

justified from the viewpoint of the target market and the consumer. 

On the whole we can sum up the limited resources issues by saying that they 

impose constraints on the practicality of applying standard safeguards. Even if such 

constraints weren’t there though, some mobile devices’ small size and mobility would 

inevitably lead to greater exposure to theft or misuse in the field.  

1.5.2 Flexibility 

Everyone agrees that security is an end-to-end requirement and that we are only as 

strong as the weakest link in the chain. A Nomadic domain will contain a number of 

different communication technologies (bearers) on top of which numerous 

communication and application protocols are layered. From a modelling point of 

view, we can say that security can be addressed at four distinct layers: 

 

1) Communication technology– Security in this domain relates to physical medium 

and the protocols involved in the establishment of physical link (wired or 

wireless) between communicating parties. It also deals with access control that 

lets only authorized devices connect to the physical network 

2) Network – This layer includes the traditional network and transport protocols 

running on top of the existing communication technologies. Security at this layer 
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relates to the provision of a secure communication layer, independent of the 

underlying communication technology. 

3) Service – Security in this domain relates to service oriented technologies and 

addresses service discovery and delivery protocols.    

4) Application – Security here relates to application between distributed nodes. 

Applications are meant to be developed on top of the service technologies and 

protocols or directly on the network layer 

 

While all other layers are more neatly defined, the service layer is the one that is most 

problematic to place in the model. As we will see in chapter three, existing service 

oriented protocols cannot be placed precisely in any one layer; some operate directly 

on top of the network layer, some others can be found in the application layer. 

In the traditional distributed scenario security is achieved mostly through 

protocols at the network and transport layers (the ones we have identified as network 

only), using IPSec and SSL/TLS respectively. The new wireless communication 

technologies though, have introduced a number of other “layer one” (in the above 

model) security protocols. In the new distributed scenarios now, mobile 

communications can be secured by employing security protocols from any 

combination of the above layers, with each protocol addressing security in its own 

way and using a different combination of encryption algorithms (symmetric or 

asymmetric). Consequently, moving around in a nomadic environment, a mobile 

device would be required to execute multiple distinct security protocols at once. In 

turn, this requirement calls for flexibility. Unfortunately the latter requirement is 

much harder to achieve in today’s mobile devices, characterized by limited processing 

and storage resources, and not suitable to run traditional middleware, through which 

in the past flexibility could be achieved.  

1.5.3 New Threat Models 

The diffusion of mobile technology has also greatly affected the number and types of 

threats to which we are all used from the traditional distributed computing. A nomadic 

environment will contain numerous wireless technologies and therefore inherit their 

threats and security challenges. The threat model for the traditional distributed 

computing is based on the notion of a castle, which contains all the resources and 
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information that we use and that we want to protect. The castle is surrounded by a 

security perimeter, defended by a system called firewall. The assumption on which a 

firewall works is that everything inside the perimeter is trusted, while not everything 

outside is. For this reason, a firewall cannot protect against internal threats or from 

malicious users from the inside. The trust model is mainly static and pre-evaluated. 

Traditional firewalls have then evolved into distributed architectures (Bellovin, 1999), 

which allow the use of firewalls on individual machines inside the defence perimeter, 

with a security policy dictated and administered by a central server. Both traditional 

and distributed firewalls though work on the assumption that the threats come from 

the outside and do not take into consideration the mobility of users and devices, nor 

the existence of alternative communication paths.  

Wireless technologies allow for easier deployment of unauthorized equipment, 

as no wiring is required, and traditional protection mechanisms such as firewalls and 

IDS (Intrusion Detection System) can be more easily bypassed. If devices can be 

installed without permission there is also the danger that an attacker may set up 

unauthorized services and steal legitimate identities, and credentials in general, in the 

process.  

Serious security concerns stem from the variety of ways in which mobile 

devices can interact with other, potentially malicious, computing resources, which can 

infect the device. Since PDA-enabled, application-level malware cannot typically be 

blocked by corporate firewalls, a device like the PDA may serve as a back channel 

through which network vulnerabilities can be exploited. Also, most mobile devices 

today incorporate various communication technologies (802.11, Bluetooth, GSM etc.) 

over which traditional defence mechanisms can exercise only very limited control, if 

any whatsoever. 

Another cost of mobility is the higher risk of loosing the devices or having 

them stolen. Theft is more likely to occur with wireless devices because of their 

portability. Also, it is easier to lose a PDA than a laptop, both storing potentially the 

same security-sensitive type of information. For this reason, tamper-proof solutions 

become very important for such devices, a requirement which in turn must come to 

terms with the usability of the device, already hindered by its physical limitations. 

Compared to the traditionally static threat model then, the new computing 

paradigms must account for mobility and wireless technology. In particular we can 

define three possible threat models, described below. Our classification is based on 
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the idea of Ostrovsky and Yung (1991) who first introduced the notion of a mobile 

adversary, later refined by Herzberg et al. (1995). The threat models can be applied to 

complex systems as well as to simple devices we wish to protect. 

 

� Traditional adversary – This is the traditional model, based on the notion of a 

security perimeter; everything inside this perimeter is trusted and everything 

outside the perimeter is not trusted. A traditional adversary has considerable 

resources at its disposal (bandwidth, processing power, time to plan an attack, 

etc.). As an attack can be carried out from the distance, a traditional adversary 

is likely to be anonymous (at least the real attacker). 

� Mobile adversary – This threat model considers the threats introduced by 

malicious entities (either an attacker or a compromised device), who are 

mobile and can therefore move freely inside the security perimeter.  Compared 

to a traditional adversary, a mobile adversary must come into closer contact 

with the intended victim so it will be more exposed (more difficult to be 

anonymous). A mobile adversary is assumed to have fewer resources than the 

traditional one (limited to what can be carried around to perform the attack); 

time is also likely to be less.   

� Mobile victim – this model takes into the consideration the threats a mobile 

device exposes itself to with its mobility. The model considers the likely 

application scenarios that the device will be involved in, trying to anticipate 

the possible threats that are associated to each scenario. Albeit similar, the 

mobile victim model is different from the mobile adversary model as it only 

considers the threat situations caused by the victim. The mobile adversary can 

be modelled as the user’s alter ego, who will perform actions that may 

threaten the system, such as leaving the laptop unattended while in a public 

place. In particular, one could model the actions of a mobile victim in terms of 

the set of possible actions that may be enabled (or rights that may be granted) 

to either a mobile or traditional adversary.  

 

The use of these threat models can better help address all the possible threats in a 

scenario of nomadic computing. In chapter five we will present a methodology for 
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modelling these threats using a combination of misuse cases and extensions to the 

UML modelling language, called UMLsec. 

1.6 Security-Aware Middleware 

Mobility, along with wireless technologies and heterogeneity of computing devices 

has also greatly affected the way middleware is supposed to address the security 

requirements. The concept of middleware as we know it traditionally is no longer 

valid. The paradigm shift in distributed computing has also brought about a radical 

rethinking of the definition of middleware as the traditional design requirements are 

greatly affected by physical mobility of modern devices and new wireless 

technologies (Mascolo et al., 2004). Existing middleware technologies have been 

developed so that distributed application developers wouldn’t have to explicitly deal 

with problems related to distribution, such as heterogeneity, scalability, resource 

sharing and security. The main driving principle of traditional middleware, such as 

transaction-oriented, message oriented or object oriented middleware, has been the 

one of transparency, achieved through the use of higher levels of abstraction.  

Modern middleware on the other hand is required to be adaptable, available, 

secure, modifiable and performing (Raatikainen et al., 2002).  These qualities are 

dictated by the needs of new application scenarios which are enabled by the diffusion 

of wireless communication technologies and mobile devices. However, how modern 

middleware is supposed to address all of these qualities is still an issue. Mascolo et al. 

in (Mascolo et al., 2002) present a survey of existing middleware for mobile 

computing and introduce a reference model for the characterization of existing 

middleware solutions, based on computational load, communication paradigm and 

context requirements. Mascolo’s reference model clearly shows the differences 

between the traditional middleware for fixed distributed systems and the various 

middleware solutions for the mobile computing paradigms. 

In order to better discuss the characteristics of modern middleware with 

regards to the security requirements, we will first describe how security has been 

handled traditionally in middleware for fixed systems. 

1.6.1 Security-Aware Middleware for Fixed Distributed Systems 

To date CORBA (OMG, 2002) represents the best example of traditional security-

aware middleware and we can use it as a reference model to better discuss the issues 
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regarding security-aware middleware for mobile computing. Figure 1-3 (OMG, 2001, 

p. 30) below depicts the model for CORBA secure object systems. All object 

invocations are mediated by appropriate security functions to enforce policies such as 

access controls.  
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Figure 1-3 CORBA security model 
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� Security Auditing – required to make users accountable for their security related 

actions 

� Security of communication between objects – required as communication between 

objects often occurs over insecure lower layer communications. Secure 

communication may include mutual authentication of client and server along with 

protection of the integrity and confidentiality of messages exchanged (message 

protection). 

� Administration of security information  – this is required to administer and apply 

security to a group of objects and applications (a domain), regardless of whether 

the applications are security aware.  

� Non-repudiation (optional) – required for the creation, transmission and storage of 

irrefutable evidence that can be associated to an action performed by a principal, 

against subsequent attempts to falsely deny the receiving or sending of the data. 

� Delegation – clients can authorize intermediate targets to user their identity or 

privileges, optionally with some restrictions. 

 

All such functionalities rely on the use of other security functionalities such as 

cryptography, which are though transparent and not directly accessible by any 

application objects. In particular, a number of security-related architectural goals were 

defined, even though their achievement was not mandatory for the purposes of 

compliance to the security specifications. The goals set were  simplicity, consistency, 

scalability, usability for end users, administrators and implementers, flexibility of 

security policy, independence of security technology, application portability, 

interoperability, performance, and ultimately but most important of all was the goal of 

object orientation. The end result (OMG, 2001) is a complex security architecture, 

described in over 400 pages thus failing the “first” stated goal of simplicity.  

The most remarkable results have been achieved with regards to security 

interoperability. The latter is addressed through the CSIv2 architecture (Common 

Security Interoperability) (OMG, 2002) whose objective is to define the format and 

rules to send the security information from a client to a server, between CORBA to 

CORBA objects, J2EE to J2EE objects and between CORBA and J2EE objects. The 

CSIv2 architecture defines three layers as shown in figure 1-4. 
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Figure 1-4 CSIv2 Architecture 

 

As we can see from the figure, the core of the CSIv2 architecture is represented by the 

SAS protocol, intended to be used on top of a secure transport layer protocol 

(SSL/TLS support is mandatory), in charge of providing message protection (i.e. 

integrity and or confidentiality) and server-to-client authentication1. The 

authentication layer is used to support client authentication that may not be supported 

or not sufficiently supported by the underlying transport protocol. The attribute layer 

may be used by a client to deliver security attributes (identity and privilege) to a target 

where they may be applied in access control decisions. 

SAS is a secure connection-oriented protocol based on the concept of a 

security context, which needs to be established before a client can access a target 

object on a server. For each object that needs to be secured, the server specifies a 

number of security requirements, for each one of three layers defined in the CSIv2 

architecture. Before accessing the remote object, a client will check to see whether the 

target’s requirement can be met and whether these in turn meet the client’s own 

security requirements. Both client and target’s security requirements are expressed in 

terms a defined set of security associations (e.g. Integrity, Confidentiality, 

EstablishTrustInTarget, EstablishTrustInClient etc.).    

1.6.2 Security-Aware Middleware for Nomadic Computing 

Before discussing the issues regarding the support of security requirements in 

middleware for nomadic computing, one should first try to identify the security 

functionalities that are needed by such a middleware, and then set the architectural 

goals that should drive its design. In the previous section we listed the security 

functionalities that were sought for in a mature middleware for fixed distributed 
                                                 
1 One drawback with SAS is that target-to-client authentication is done at the transport layer and is not 

supported by neither the authentication layer nor the attribute layer. 
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systems such as CORBA. While all the functionalities defined for the traditional 

middleware still hold, we cannot say the same for all of the architectural goals. 

However, we can make some considerations with regards to the security 

functionalities for a security-aware middleware for mobile computing.  

 For starters, secure administration is equally important if not more than for 

traditional distributed computing. Nomadic computing brings together a number of 

heterogeneous technologies along with associated services; mobility in turn increases 

the possibility to access such services. Security administration is vital if one wants to 

manage and control access to a vast number of services from a dynamic set of moving 

entities. This is particularly true if an encompassing definition of service, as we will 

see later on in this work, makes the number of available services highly dynamic and 

countless.    

The second consideration regards the functionality of access control, which is 

required to restrict the use of services only to authorized entities. This functionality is 

greatly affected, as discussed earlier, by the limited resources of a number of modern 

computing devices. However, in this context limited resources means that, compared 

to traditional fixed devices, smaller mobile devices are less likely and not meant to 

host numerous objects that need securing. Furthermore, the size and type of services 

running on such devices will not need the same access control granularity that is 

justified for traditional fixed devices. For the same reason it is not expected that the 

access control functionality will provide mechanisms for the support of service or 

application specific factors, nor support for both security-aware and security-unaware 

applications or services running on the device, as in CORBA. Also the audit and 

delegation functionality, as for the access control, are not likely to be performed by a 

small device, but more so by the service infrastructure that must manage the 

integration of technologically heterogeneous and administratively independent 

domains. 

As regards the functionality of secure communication, the middleware must 

take advantage of the security services implemented by the underlying bearer 

technologies and, as the user moves across different technologies, it must also adapt 

to them. In other words, the secure communication functionality must be implemented 

in a technology-aware, and adaptable fashion. 

When it comes to designing a middleware that has all the above functionalities, 

the most difficult part is doing it while meeting the architectural goals or design 
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requirements, which are dictated bythe context of application, in this case being the 

nomadic computing. Also, when looking at security-specific architectural goals, one 

must bear in mind that traditional design principles for middleware do not still hold in 

the context of mobile devices, as discussed earlier, while new ones find their way in.  

The following is a list of security-related design principles or goals which the authors 

believe should be considered in a middleware for nomadic computing devices. 

  

� Simplicity – This goal, defined for traditional middleware, is even more applicable 

here and refers to a security model that should be simple to understand and 

administer. 

� Scalability – With increased mobility, also comes a higher number of available 

services and service users. Scalability is therefore a dominant design goal. 

However scalability cannot be addressed solely or primarily by the middleware on 

the devices, due to their limited resources. 

� Independence of security technology (transparency) – This is still required so that 

applications can be largely unaware of the underlying security technology. 

However, the same level of abstraction achieved in traditional middleware is not 

suitable for the new middleware. Traditional in fact, the diversity on underlying 

technologies was flattened by the common communication substrate (TCP/IP) and 

the problem was that of establishing a secure communication context between a 

client and a server (e.g. CSIv2). In a mobile context such an approach would be 

too cumbersome and unsuited given the disconnected communication paradigm. 

Ideally, the middleware should be modular so that different underlying security 

services could be used without needing the middleware layer being too thick, 

adopting the concept of just enough middleware (Subramonian and Gill, 2002) or 

some sort of security profiles specialized for type of devices, following the 

approach taken by the design of the Java 2 Micro Edition platform (J2ME). 

� Consistency – This goal refers to the possibility to provide consistent security 

across a distributed system. Achieving this goal is going to be very challenging as 

security is already addressed inconsistently across existing service oriented 

technologies (we will show this in chapter three). Consistency refers also to fitting 

with existing environments, providing end-to-end security even when using 

communication services, which are inherently insecure. Given the intrinsic 
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resource limitations across the range of mobile devices, the middleware will not 

be able to bear the mechanisms required to support such consistency; this is yet 

another challenge which must be addressed with the help of the nomadic service 

infrastructure.   

� Usability for end users, administrators and implementers – This is one of the most 

fundamental goals that must be met by the middleware. However, as we discussed 

earlier, security and usability together are more difficult to achieve in mobile 

devices. Another problem here is related to traditional approach to usable security, 

which tends to make security services and mechanisms as transparent as possible. 

However, if security is totally hidden from the user it can lead to system misuse or 

misplaced trust.  A user might for example assume that the system is working 

securely (transparently) while it is not, and allow successful attacks to remain 

undetected. Some security awareness must then be assumed from the user and the 

challenge is to determine what type of evidence is really necessary and present it 

to the user in an intuitive and intelligible way.  

� interoperability – This is an even bigger requirement than for traditional 

middleware given the number of already existing heterogeneity of service oriented 

architectures and communication technologies which address security in different 

and non-interoperable ways, as we will see in chapter three. Also, this design goal 

is considerably more difficult to achieve than it was traditionally, as the 

complexity that it entails cannot be absorbed by the middleware running on the 

device.  

� performance – This design requirement is much stronger than for traditional 

middleware, which could benefit from powerful general purpose fixed machines. 

 

The following architectural goals, on the other hand, cannot be considered anymore 

applicable to middleware. 

 

� Application Portability – Traditionally, one of the architectural goals was to 

support application portability, i.e. the fact that an application object should not 

need to be security-aware, so it could be ported to environments that enforced 

different security policies and use different security mechanisms. This is no longer 
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a design requirement as applications tend to be more device-specific or device-

bound and slim lined to fit the resource limitations of current devices. 

� Flexibility of security policy – The middleware no longer needs to have flexible 

and granular security policy at device levels. First because, as we said, the type of 

application and services running on mobile devices will not require such policies; 

second, the analysis and enforcement of highly flexible policies would greatly 

affect the performance requirement, again due to the limitation of resources. 

Flexibility of security policy must addressed though at infrastructure level, where 

the required complexity can be born by the available computing resources, in 

order to manage access control for a large set of services and users. 

 

Ultimately, the requirements for mobile applications are considerably different from 

the requirements imposed by fixed distributed applications and, as Mascolo et al. 

(2002) point out, the approach adopted in some cases so far, is to rely on the 

application to handle all the services and deal with the non-functional requirements as 

the security ones. However, this approach is a no-middleware solution, as it 

completely relies on application designers for the solution of the non-functional 

requirement middleware should provide. 

In some other cases, such as MICOsec, object oriented middleware has been 

adapted to mobile computing to allow interoperation with traditional fixed networks. 

However, there are recognized problems associated to the physical resources required 

by the middleware and the assumptions of fixed connectivity, which no longer apply; 

synchronous connectivity cannot be given for granted in most of the mobile 

computing scenarios. 

The current middleware scenario is very rich, characterized by a strong 

heterogeneity and lack of standardization. In the chapters that follow we will address 

the security requirements imposed by current and future service-based application 

scenarios analyzing current technologies to see how they have addressed security. 

Based on such analysis we will then evaluate each technology and identify the 

challenges that must be addressed to achieve secure interoperability.   
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2 Related Research 

Having introduced the main concepts and definitions with regards to security and 

middleware for ubiquitous computing, in this chapter we review existing work with 

regards to Service Oriented Architectures and analyse the way security has been 

addressed. Our survey has been structured into three parts addressing standard 

protocols, integrated architectures and ongoing research, respectively. Standard 

protocols cover both the middleware and the transport layer. Integrated architectures 

include more complex service architectures, which have been developed in the 

framework of research projects or commercial initiatives. Finally we also include 

ongoing research work. In describing the various protocols we will concentrate on the 

security aspects and comment on their effectiveness and design choices. Some other 

surveys already exist in literature, which do not address though the security aspects 

(Rakotonirainy & Groves, 2002) (Lee & Helal, 2002). 

2.1 Standard Protocols 

2.1.1 UpnP 

UPnP (Microsoft Corporation, 2000) stands for Universal Plug and Play and it has 

been developed by a consortium of companies formed in 1999 lead by Microsoft. 

UPnP is designed to support zero-configuration, “invisible” networking, and 

automatic discovery for a breadth of device categories. Several UPnP products are in 

the market today, but so far they have been limited to small office or home network 

scenarios only, not large enterprise wide networks.  

The main components of a UPnP network are devices, control points (CP) and 

services. A UPnP device acts as a container of services and nested devices. A service 

exposes actions and models its state with state variables. Changes of state may in turn 

trigger events which the service publishes to interested subscribers. Event messages 

are expressed in XML and formatted using the UPnP General Event Notification 

Architecture (GENA). A control point is a software entity capable of discovering 

devices and invoking actions on the services they offer in the form of control requests 

to the device. A control request is a SOAP message that contains the action to invoke 

along with a set of parameters. The response is also a soap message and it contains the 
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status, return value and any return parameters. A device can incorporate both services 

and control point functionality.  

UPnP relies on TCP/IP to provide network connectivity between devices and 

on HTTP for its discovery and delivery protocols. UPnP uses the Simple Service 

Discovery Protocol (SSDP) for resource discovery and advertisement. SSDP uses 

HTTP over Multicast UDP (HTTPMU) and Unicast UDP (HTTPU) for its operations. 

When joining the network, a device that offer services sends an advertisement 

multicast message (using HTTPMU), called ssdp:alive, to advertise its services to 

control points. Similarly, when a device with control point functionalities is added to 

the network, it can send a search multicast message, called ssdp:discover, to search 

for devices/services of interest. Any device that hears this multicast message responds 

with a unicast response message (using HTTPU) to the control point. Both presence 

announcements (ssdp:alive) and unicast device response messages contain basic 

information about the device such as an identifier and the type of device, but most 

importantly, a pointer to the location of an XML file, called  device description 

document. The latter contains information on the set of properties and services 

supported by the device (including embedded devices) and must be retrieved by a 

control point before it can begin any sort of interaction with the device.  

UPnP security architecture, described in (Ellison, 2003b), addresses security 

from the viewpoint of the SOAP control messages exchanged between control points 

and devices. Each device has a password and a public key pair. The private key is 

kept secret on the device while the password and the hash of the public key, also 

called the device SecurityID, are generally made publicly visible to external users 

(either via a display or having them printed on a label attached to the device). Both 

the password and the key pair can be generated by the device on power up if the 

device has some source of randomness, or they can be assigned once and for all by the 

device manufacturer.  

UPnP security architecture introduces two new entities called the DeviceSecurity 

service, and the Security Console (SC). The former provides the services necessary to 

secure the UPnP SOAP actions (authentication, privacy etc.); the latter provides the 

administrative human interface for controlling the device, and it can be a UPnP 

Control Point (CP). A device which includes the DeviceSecurity service is called a 

secured device, and it can be discovered in a non-secure way, using SSDP, or securely 
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using a new defined protocol or ceremony2 described in (Ellison, 2003a). Also, when 

new secured devices become available, they are announced as generic devices, and 

are not described in any detail except in response to requests from authorized Control 

Points. 

The DeviceSecurity service is responsible for implementing access control for 

itself and for other services on the same device it runs on. Access control is enforced 

using either an ACL (Access Control List) or authorization certificates. Each ACL 

entry specifies the SecurityID (or a group of SecurityID) the entry refers to, and what 

that SecurityID (or group) is allowed to do. Associated to each ACL entry is also a 

validity period. Because the secured device might not have enough memory space to 

store an ACL, the SC can empower the various CPs by issuing them certificates that 

grant permission to the CP. These certificates can then also be cached, memory 

permitting, by the secured device for efficiency. An authorization certificate differs 

from an ACL entry in that the issuer needs to be specified as does the target device. 

Therefore, an authorization certificate is the equivalent of a signed ACL entry. It is 

important to note that no ACL entry or authorization certificate can overwrite some 

other entry’s permissions. Revocation of grant of rights is accomplished differently 

with ACL entries and certificates. When a permission is granted by ACL entry, one 

can revoke that permission by editing or deleting that entry. When a permission is 

granted by certificate, the permission can be revoked only by having the certificate 

expire and not be renewed. 

While it is the device that enforces access control, it is the SC that defines the 

access control policy by either editing the ACL or issuing the authorization 

certificates. A Security Console (SC) can in turn be used to administer other devices 

(for example an entire household network) but its use is not mandatory the device can 

do without it. In particular, the ACL can only be edited by the owners of the device, 

which are listed, with their SecurityID, in a special table called owner list. A SC can 

only take ownership of a device if the device does not have an owner yet, i.e. if the 

owner list is empty. Once owning the device, the SC is permitted to do everything on 

that device, including granting and revoking ownership (they cannot remove owners 

                                                 
2 The concept of ceremony is introduced in UPnP to identify a protocol which refers to messages 

among computers, people and possibly the environment, as opposed to a network protocol which 

specifically refers to messages between network nodes only. 
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they have not granted themselves though). Until a device is not owned it will not be 

able to perform any access control as the ACL does not contain any entry to grant 

authorization. In order to take ownership of a device, a SC must have the device’s 

public key and password, and sign the invocation request its private key. A timestamp 

is also used against replay attacks. Other methods of taking ownership, for example 

via physical contact through cables have not been standardized and left open to 

manufacturers.  

Before a CP (or a SC) can invoke any secured actions on a device (except 

TakeOwnership and SetSessionKeys), session keys must be established, using an 

SSL-like handshake. The session keys are set by the control point and sent to the 

device encrypted with the device’s public key. There are two keys for the device and 

two for the control point; one key is used for encryption and the other one for signing. 

Once a session key has been established, a sequence number is introduced for replay 

prevention. 

Confidentiality can only be achieved if supported by the service provider. 

Before invoking a secure action, the control point invokes the 

GetAlgorithmsAndProtocols action on the target device. If 

GetAlgorithmsAndProtocols permits a “NULL” encryption algorithm, the CP does 

not need to encrypt all actions, otherwise it needs to do so. Confidentiality is achieved 

through a DeviceSecurity action called DecryptAndExecute, which allows a caller to 

encrypt the action invocation and to receive the reply also in encrypted form. The 

payload of the DecryptAndExecute message, as well as the reply from the device, are 

encrypted using one of the sessions keys established by the CP. Even if no encryption 

is required for the requested action, the CP must still digitally sign it in order to prove 

authorization. SOAP messages are digitally signed using the session key previously 

generated by the CP. 

With regards to security, the UPnP working group also discussed the problem 

of stealth, i.e. hiding the nature of the device, including the services it offers, from all 

but carefully authorized parties. The initial design was to allow devices to advertise 

themselves as secured devices, allowing only authorized CPs to obtain the device’s 

description document. This design choice was eventually dropped as it was believed 

that there were too many other ways for a device's nature to be betrayed..  

ACL or authorization certificates may be used in a secured device to assign 

permissions to specific CPs to use the services on the device. Such permissions 
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though do not define whether the services running on the secured device are meant to 

be discoverable by every CP on the network or only by authorized ones, leaving the 

secured device exposed to enumeration attacks where it is possible to discover not 

only the services it offers but also those that are secured. If a CP wants to access a 

service, it tries to do so. The action might reply that the CP is not authorized, in which 

case the CP learns that it needs to be authorized. 

Also, UPnP secure discovery is only meant to assure that a security console 

associates with the correct device(s) and that each device on the network associates 

with the correct SC. It doesn’t guarantee any confidentiality or authorizations. 

Besides, UPnP secure discovery is not automatic and involves human intervention. 

First the user must read the target device’s SecurityID (for example reading it from 

the device’s display); then the user’s SC discovers the target device in the normal 

ways using SSDP and obtains its public key by invoking the GetPublicKey action. 

Finally the SC computes a SecurityID from the so obtained public key and matches 

with the one the user obtained in the first step. If there is a match, the user can 

arbitrarily name the device, which from now on will be identified with that name  

Even though secured devices are not described in any detail except in response to 

requests from authorized Control Points, it is still possible for a determined attacker to 

take an inventory of a network just based on timing and length of messages. The latter 

was one of the reasons why securing SSDP was considered a low priority by the 

UPnP working group until significant new research results in anonymity protection 

were reached. 

2.1.2 Jini 

Jini (Sun Microsystems, 1998) is an extension of the Java programming language and 

was introduced by Sun Microsystems in 1998. It is a distributed system that aims to 

form a federation or a community of devices and resources, with the aim to make a 

network a dynamic entity that better reflects the dynamic nature of the workgroup by 

enabling the flexibly addition or deletion of services. Jini relies on the existence of 

reasonable speed connecting the devices on the network, and also the presence of Java 

Virtual Machine (JVM) on each device that uses or offers services. Latency is also 

required to be small. Jini was developed with the aim of enabling users to share 

services and resources over a network, and providing users easy access to resources 

anywhere on the network while allowing the network location of the user to change. 
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A further aim was to simplify the task of building, maintaining, and altering a network 

of devices, software, and users.  

The most important concept within the Jini architecture is that of a service. A 

service is an entity that can be used by a person, a program, or another service; it may 

be a computation, storage, a communication channel to another user, a software filter, 

a hardware device, or another user. Services in a Jini system communicate with each 

other by using a service protocol, which is a set of interfaces written in the Java 

programming language. The base Jini system defines a small number of such 

protocols which define critical service interactions. A set of Jini-based computing 

devices is called a djinn. 

The heart of the Jini system is a trio of protocols called discovery, join, and 

lookup. Discovery is used by the service provider to look for a lookup service with 

which to register its services. The lookup service provides a central registry of 

services available within the djinn. This lookup service is a primary means for 

programs to find services within the djinn, and is the foundation for providing user 

interfaces through which users and administrators can discover and interact with 

services in the djinn. A service provider locates a lookup service by multicasting a 

request on the local network for any lookup services to identify themselves.  

Join occurs when a service has located a lookup service and wishes to join it; a 

service object for the service is then loaded into the lookup service, along with a set of 

attributes describing the service, and a lease is issued by the lookup service. If the 

service provider fails to renew the lease then, when the lease expires, the lookup 

service removes the entry for it, and the service is no longer available. The service 

object loaded into the lookup service contains the Java programming language 

interface for the service including the methods that users and applications will invoke 

to execute the service, along with any other descriptive attributes. 

After a service has been registered with a lookup service it can be found using 

the lookup protocol. A service can be found by its interface type (written in the Java 

programming language) and possibly, other attributes that describe it. To interact with 

the lookup service, the client must first obtain a service registrar object via the 

discovery protocol. The service registrar object, which implements the 

net.jini.core.lookup.ServiceRegistrar interface, enables the client to interact with the 

lookup service. To find desired services, clients build a ServiceTemplate, an instance 

of class net.jini.core.lookup.ServiceTemplate, and pass it to the service registrar 
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object, whose lookup() method performs the query and returns matching service 

objects to the client. The client can then select an object and use the requested service 

by invoking on the service object the methods declared in the service interface. 

In situations where no lookup service can be found, a client could use a 

technique called peer lookup instead. In such situations, the client can send out the 

same identification packet used by a lookup service to request service providers to 

register. Service providers will then attempt to register with the client as though it 

were a lookup service. The client can select those services it needs from the 

registration requests it receives in response and drop or refuse the rest. 

Jini  Security Architecture is the outcome of Sun Microsystems’ Davis 

project3, which sets out to provide a new programming models and infrastructure 

needed for a secure Jini. The Jini security framework though, adds very few changes 

to existing Jini services, mainly defining security as a deployment-time option to offer 

some level of protection to security-unaware services.  

In the Jini Security Framework both the client and the service provider can 

impose constraints on the service object (or proxy). For instance, once a service’s 

proxy has been downloaded, it is possible to restrict which client (on the same device) 

can invoke which proxy’s methods. Similarly, the client may impose certain 

constraints on the service provider such as that it authenticates and that it achieves 

integrity and confidentiality. In order to apply such constraints, each proxy in Jini 

Security, must implement the net.jinni.constraints.RemoteMethodControl interface (in 

addition to the application specific interfaces). Both the client and the server can then 

apply their respective constraints by invoking the method 

setConstraints(MethodConstraints constraints). It is important to note, as the name of 

the above method suggests, that the granularity of the constraints injected is the 

method calls. When invoked, the setConstraints method returns a copy of the proxy, 

with the set of constraints injected into it. Both the server and client can inject 

constraints on a service proxy: the server, before exporting the proxy, and the client, 

after retrieving the proxy from the network. Some constraints express requirements, 

which can be also specified as preferred i.e. optional, whereas others might convey 

restrictions. When making decisions based on a proxy's constraints, all required 

constraints must be satisfied and both the client and server must understand a proxy's 
                                                 
3 The Davis Project homepage http://davis.jini.org/ 
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constraints. If either encounters an unknown constraint type, the method invocation 

fails. Also, conflicting constraints indicate a discord between the client and server's 

requirements and the method call will fail. 

Besides security-related requirements, the invocation constraint mechanism 

allows to specify additional constraints related to quality of service such as the 

maximum amount of time to wait for a proxy to establish a network connection to the 

remote service. 

Jini security also introduces a mechanism for a client to ascertain that the 

downloaded Jini service proxy is genuine, based on a trusted bootstrap proxy. In fact, 

if the code for that Jini service proxy originated from a malicious source, the proxy 

might not follow the constraints placed on it by the client. The bootstrap proxy is 

instantiated by the service proxy itself upon request from the client, which then 

checks to verify that the bootstrap proxy only contains local code, and that is therefore 

trusted. The client then uses the bootstrap proxy to contact the service provider – 

whose identity is known – as it is the only one who can possibly verify the 

trustworthiness of the downloaded service proxy. The service provider sends back a 

verifier object which verifies the downloaded service proxy. Jini provides a default 

verification algorithm where the verifier object sent to the client contains a canonical 

service proxy (trusted) against which the local service proxy is compared. The verifier 

can however adopt any algorithm to verify the service proxy. Ultimately the client 

relies on the service provider to ascertain the trustworthiness of the downloaded 

proxy, regardless on how this is done. As an extreme case, it is also possible to 

configure the system not to trust any downloaded code (Sun Microsystems, 2003). 

The client must also make sure that the verifier itself is trusted, and to this 

aim, Jini introduces a special form of HTTP URL, called HTTPMD, where the MD 

stands for the message digest of the verifier. SSL is not used by Jini both because it is 

considered an overkill and because of the trust infrastructure it would require. Once 

the verifier vouches for the integrity of the downloaded proxy, a Jini service client can 

decide whether to trust that proxy, and subsequently grant permissions to it according 

to the trust placed in the service provider. Access to services is based on the notion of 

principals and access control lists. All Jini services are accessed on behalf of some 

entity, called principal, which generally traces back to a particular user of the system. 

Services themselves may request access to other services based on the identity of the 
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object that implements the service. Whether access to a service is allowed depends on 

the contents of an access control list that is associated with the object. 

Jini Security architecture is still in its infancy and little is know about its 

weaknesses. However, we can make a couple of considerations. First, security in Jini 

cannot be enforced by the client if the service has not been implemented to support 

the application of constraints, i.e. if the service object does not implement the 

RemoteMethodControl interface. The integrity check of the verifier object is then 

based on the trust of the service provider’s identity, but such trust is not really 

justified. Most important though is that fact that the secure service discovery and 

delivery requirements have been left out of the new security framework. 

2.1.3 Bluetooth 

Bluetooth (Bluetooth SIG, 2001) is a technology developed by a consortium of 

companies to provide wireless interconnection between small mobile devices and 

their peripherals. The aim of the Bluetooth though was not to be yet another WLAN 

technology, but rather a wireless replacement for cables carried by mobile travellers, 

in terms of cost, security, and capabilities. The Bluetooth protocol stack contains a 

Service Discovery Protocol (SDP) which is used to locate services provided or 

available to a Bluetooth device. Bluetooth defines service any entity that can provide 

information, perform an action, or control a resource on behalf of another entity. A 

service may be implemented as software, hardware, or a combination of hardware and 

software. SDP supports searching by service type, attributes and browsing, without a 

prior knowledge of the service characteristics. SDP involves communication between 

an SDP server and an SDP client. The server maintains a list of service records that 

describe the characteristics of services associated with the server. Each service record 

contains information about a single service. A client may retrieve information from a 

service record maintained by the SDP server by issuing an SDP request. If the client, 

or an application associated with the client, decides to use a service, it must open a 

separate connection to the service provider in order to utilize the service. SDP 

provides a mechanism for discovering services and their attributes (including 

associated service access protocols), but it does not provide a mechanism for utilizing 

those services (such as delivering the service access protocols). There is a maximum 

of one SDP server per Bluetooth device. (If a Bluetooth device acts only as a client, it 

needs no SDP server.) A single Bluetooth device may function both as an SDP server 
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and as an SDP client. If multiple applications on a device provide services, an SDP 

server may act on behalf of those service providers to handle requests for information 

about the services that they provide. Similarly, multiple client applications may utilize 

an SDP client to query servers on behalf of the client applications. 

Service discovery in Bluetooth begins with the inquiry procedure, used to 

discover nearby devices, which are in a discoverable mode. A device can also be non 

-discoverable mode so that it cannot be found, or in a limited-discovery mode, which 

means that it can be discoverable only for a limited period of time, during temporary 

conditions or for a specific event. Even if a Bluetooth device is non discoverable, 

enumeration tools exist4 that allow to find out its MAC address, the class of device, 

the type of the device and its name. 

The design of the Bluetooth system has considered the security issue from the 

very beginning. The Bluetooth security architecture includes a set of cryptographic 

protocols to achieve authentication, integrity and confidentiality. Bluetooth Generic 

Acces Profile (Bluetooth SIG, 2003) defines three different modes of security. Each 

Bluetooth device can operate in one mode only at a particular time. This first mode is 

a nonsecure mode as no security whatsoever is provided, and is intended for 

applications for which security is not required. With the second mode, also called 

service-level security, the Bluetooth device does not initiate any security procedure 

before a channel establishment request has been received or a channel establishment 

procedure has been initiated by itself. Whether a security procedure is initiated or not 

depends on the security requirements of the requested channel or service. For this 

security mode, a security manager, as specified in the Bluetooth architecture, controls 

access to services and to devices. The centralized security manager maintains polices 

for access control and interfaces with other protocols and device users. Varying 

security polices and “trust” levels to restrict access may be defined for applications 

with different security requirements operating in parallel. Therefore, it is possible to 

grant access to some services without providing access to other services, based on 

authorization. The third security mode is instead called link-level security as the 

Bluetooth device initiates security procedures before the physical channel is 
                                                 

4 Redfang v2.5 is an application that finds non-discoverable Bluetooth devices by 

brute-forcing the last six bytes of the device's Bluetooth address and doing a 

read_remote_name(). 
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established, regardless of any application layer security that may exist. This mode 

supports authentication (unidirectional or mutual) and encryption. 

All security operations are based on a 128-bit secret key called link key which 

is shared between two or more parties. A link key is exchanged securely between two 

devices using the initialization key. This is derived in both devices from a random 

number (sent form one device to the other), a Bluetooth hardware address and a PIN 

code. The PIN may be a fixed number provided with the devices, or it can be selected 

by the user, and then entered in both devices that are to be matched (if the devices 

have a user interface). This can be a problem when the two devices are unknown to 

each other. After the devices have performed the link key exchange, the initialization 

key shall be discarded. Once a link key has been exchanged, the two devices are said 

to be paired and the link key can be used to perform authentication and 

confidentiality. Bluetooth authentication is in the form of a challenge-response where 

the verifier (the device that validates the identity of another device) verifies the 

knowledge of the link key from the claimant (the device being authenticated). The 

challenge consist in a random number that the verifier sends to the claimant (the 

claimant address is also used in the process to avoid impersonation) and is designed to 

be different on every transaction. 

It is important to note that service level security (security mode 2) is not part 

of the Bluetooth specifications and only described as an implementation reference in a 

white paper (Muller, 1999). Here, devices can be either trusted or untrusted; a trusted 

device, which has a fixed relationship (paired), is trusted and has unrestricted access 

to all services. An untrusted device on the other hand has restricted access to services 

The trust relationship is established during the pairing procedure, following link-level 

authentication. If the outcome of the authentication procedure is positive the device is 

marked as trusted, using the trusted flag. Trust relationship is maintained through the 

device database, which also stores the device name, its address and the link key. If a 

device doesn’t have an entry in the device database it is treated as unknown and the 

default security policy is to apply authentication and authorization to all incoming 

connection, and authentication to all outgoing connection 

Access to services is regulated by the information stored in the service database. 

Each service record contained in this database specifies the security requirements for 

accessing the service based on the values of three record attributes: 
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− Authorization Required – Access is only granted automatically to trusted 

devices or untrusted devices after an authorization procedure. Authorization 

always requires authentication to verify that the remote device is the right one.  

 

− Authentication Required – Before connecting to the application, the remote 

device must be authenticated. 

 

− Encryption Required – The link must be changed to encrypted mode, before 

access to the service is possible. 

 

Combined together, the device and service databases contain the necessary 

information to perform access control in Bluetooth. Details about these databases can 

be found in (Muller, 1999).  

The Security manager is the key component in the whole service-security 

architecture and has the responsibility of registering services and devices in their 

respective databases. All applications must register with the security manager before 

becoming accessible and the information could be stored in non-volatile memory or 

the services could just register at start-up time. Using the information in the service 

and device databases, the security manager decides whether the connection requests 

from client devices can be accepted and what kind of security functions should be 

applied. The service security architecture can also support link-level security (i.e. 

mode 3). The security manager can in fact command the link manager to enforce 

authentication before accepting a link connection 

With regards to the service discovery itself, SDP is a simple client-server 

protocol with only two types of messages, that is a request and a response, and is not 

inherently a secure discovery protocol. Also, the Bluetooth specifications do not 

address service registration because a standardized approach to service registration 

was not required for ensuring interoperability of Bluetooth devices from different 

manufacturers. Consequently, the mechanics of service registration were left for 

Bluetooth stack implementations to define. For this reason, we cannot consider 

service registration secure in Bluetooth, especially if we consider examples where 

service may be made available by desktop or laptop computers endowed with a 

Bluetooth dongle. SDP can however take advantage of Bluetooth security architecture 
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and run on secure links. In order for SDP to achieve a certain level of security both 

devices (running the SDP client and the SDP server) must be running in Security 

Mode 3 or 2, which means that before an L2CAP channel is established, both devices 

have authenticated and negotiated an encryption key (if confidentiality is required).   

In the end, Bluetooth specifications address authentication, authorization and 

confidentiality, but only with regards to devices and not users. The Bluetooth security 

architecture (through the security manager) allows applications to enforce their own 

security policies. The link layer, at which Bluetooth specific security controls operate, 

is transparent to the security controls imposed by the application layers. Thus it is 

possible to enforce user-based authentication and fine-grained access control within 

the Bluetooth security framework. Some weaknesses in Bluetooth cryptographic 

protocols have also been identified (Jakobsson & Wetzel 2001) 

2.1.4 Salutation 

The Salutation Architecture is a framework developed by the Salutation Consortium 

(1999) to solve the problems of service discovery and utilization among a broad set of 

equipment. The architecture consists of salutation managers (SLM) and Transport 

managers. The Salutation managers (SLM) are service brokers, isolated by transport 

managers from the details of specific network transport protocols. SLMs do the job of 

service brokering and services are required to register their capabilities with them and 

clients that need service query the SLMs. SLMs sit on the transport managers which 

are responsible for providing a reliable communication channel irrespective of the 

underlying network transports. The transport-independent interface available to server 

and client applications (SLM-API) includes service registration, discovery and access 

functions. Each SLM also discovers other SLMs and their registered services. So 

when a client requests a service, all the managers coordinate to perform the search. 

Salutation lite, also developed by the Salutation Consortium (1999b) is a lightweight 

flavor of Salutation targeted at mobile devices. It lends itself well to low bandwidth 

network such as IR and Bluetooth. 

Network Entities in a Salutation network may be subdivided by meaningful 

functionality called Functional Units. The functionalities offered by the Functional 

Units are defined through sets of attributes grouped into Functional Unit Description 

Records. Each Attribute describes an aspect of the capability of the Functional Unit. 

A Functional Unit may be an entire Client or a part of a Client. Additionally, a 
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Functional Unit may be an entire Service or part of a Service. For example, the [Print] 

Functional Unit may make up an entire Print Service or be grouped with a [Scan] 

Functional Unit and [Fax Data Send] Functional Unit to form a Fax Service. 

Commands, responses, and data may be exchanged between a Client and a Functional 

Unit, a Functional Unit and a Service, or a Functional Unit and another Functional 

Unit. The collection of Functional Units within a Network Entity defines the Services 

available. Each service is described by a Service Description Record, which is a set of 

zero or more Functional Unit Description Records.  

Each SLM contains a Registry to hold at least information about Services that 

reside in the local Salutation Equipment and optionally that are registered in other 

Salutation Managers. This way the registry maintains a ‘directory’ of Salutation 

Equipment that is important to the local environment. The limit on Registry 

implementation is the size of the storage reserved for the Registry function. Services 

are registered providing the SLM with the Functional Unit Description Records that 

describe the capabilities of the functional unit. Service registry is therefore distributed 

and service discovery is achieved through the cooperation of SLMs 

In order to discover a service, a client or functional unit uses the Salutation 

capability exchange  protocol to determine the attributes, or capabilities, of the 

service’s Functional Unit(s). The Service may reside in the same Equipment as the 

locating Client/Functional Unit, or it may be located in other Equipment.  

Before a client can use a service it has found, the Salutation Manager must 

establish a virtual data pipe between a Client and a Service, called service session. 

The latter is  operated  in  one  of  3  different  modes:  native mode, emulated mode, 

and salutation mode.  In the native mode, messages are exchanged through a native 

protocol and Salutation Manager is never involved in message exchange. In the 

emulated mode, the Salutation Manager Protocol is used to carry messages between 

client and service  but the Salutation  Manager  doesn’t  inspect  the  contents.  In  the  

salutation mode,  Salutation Managers not only carry messages, but also define the 

message formats to be used in the session.  

Salutation V2.0 Architecture (Salutation Consortium, 1999) addresses security 

from the point of view of users since some services may only be available to selected 

users. Specifically, the identification and authentication requirements are addressed, 

defining two parameters, called credential and verifier. The former is used to identify 

a particular user; the latter is used by the target Functional Unit to authenticate the 
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credential. Using these parameters it is possible to specify how user authentication is 

to be performed. The only two Authentication Flavors defined in the current 

specifications are NULL and UserID-Password. The former corresponds to no 

authentication while the latter is a simple UserID-Password mechanism with only a 

special user, the administrator, who is allowed to register/unregister UserIDs. 

Registration of Administrator’s UserID-Password is out of the Salutation V2.0 scope. 

Implementation may make appropriate design for the function.   

When a Client requests a service from a Functional Unit, it specifies the 

Credential and Verifier parameters. These parameters are passed to the target 

Functional Unit through the Salutation Manager(s) and used to authenticate the user 

associated with the Client. This way, authentication is performed solely on 

information provided by the client. A certain level of trust in the Client is therefore 

implied by the target Functional Unit. Nowhere in the specifications is this trust 

justified. Neither is described how authentication is to be performed other than using 

the credential and verifier parameters. Access control for the services is implicitly left 

to the target Functional Unit. 

With regards to the registration/deregistration procedure, this in not protected 

as any entity is able to register and deregister a service. However, when a Functional 

Unit Description Record is registered with the Salutation Manager two security 

related attributes are also added, which are the authentication flavour and the user ID. 

The authentication flavour specifies the types of authentication  supported by the 

Functional Unit and they can be No Authentication, Optional or Mandatory. In the 

first case no authentication is required to access the services; in the second case the 

client can choose to authenticate to the remote Functional Unit if it chooses to do so 

and in turn the Functional Unit can choose to restrict available services if the client 

does not to authenticate. Finally, when mandatory authentication is specified, the 

client must authenticate. Whenever a client uses authentication it does so by 

specifying the User ID and Password of the user associated with the Client. 

Service discovery is also not secure because with the capability exchange 

protocol, the client only specifies the service description record it is looking for and 

no authentication nor authorization is performed. Any client can discover any service. 

Security only comes into play at delivery time when a Client tries to access a service. 

When a service is found, a Client will know whether authentication is required and 

what flavour and if so it will provide the required user ID and password. 
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Salutation also addresses the availability requirement. The Functional Unit can ask the 

local Salutation Manager to periodically check the availability of a specific Functional 

Unit, registered at either the local Salutation Manager or a remote Salutation 

Manager. When the Salutation Manager finds that the specified Functional Unit is no 

longer available, it will sent out a notification message. Unfortunately, the 

communication is not authenticated and therefore the availability requirement cannot 

really be considered reliable. 

2.1.5 SLP 

The service location protocol (SLP) has been designed and developed by the SrvLoc 

working group of the Internet Engineering Task Force (IETF). It was first published 

in 1997 as an RFC 2165 (Veizades et al., 1997) and later developed into SLP v2, 

(Guttman, Perkins & Veizades, 1999). One of the motivations for developing SLP 

was to develop a solution that allowed clients to look for a certain service based on its 

type and obtain the software without having to prompt the user for further inputs. The 

new protocol also needed to be scalable. 

The SLP protocol is implemented by three agents called User Agent (UA), 

Service Agent (SA) and Directory Agent (DA). User Agents search for a service on 

behalf of the user or application; Service Agents provide the location and description 

of a service; Directory Agents work as a central repository for SLP information.  

Service are registered and deregistered with the DA by the SA. When 

registering the service the SA specifies the location of the service through a URL 

(Uniform Resource Locator) and a set of attributes that describe the service. Once 

registered, a service can be found by a UA running on the user device by sending a 

service request to the DA. Optionally, the user can specify some attributes that the 

service should have (e.g. color printer). If the DA finds a service in its repository that 

matches the request, it returns a reply message that informs the user about the URLs 

of the found services. 

The address of DAs to which send service requests and service registrations 

messages (and deregistrations) can be discovered actively or passively. In the active 

mode, UA and SA send a DA discovery  message to an SLP multicast address. All 

DAs in the network listen to this address and reply with a unicast message to the 

requesting agent. DAs can also advertise themselves by sending unsolicited multicast 

messages to announce their presence. This discovery method is called passive DA 
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discovery. Finally, it is also possible to obtain the address of a DA through static 

discovery via DHCP (Dynamic Host Configuration Protocol). 

The use of Directory Agents is not mandatory in all SLP implementations and 

only recommended for large networks with numerous services. When a DA is not 

present, SAs can advertise themselves to the multicast group and respond with unicast 

messages to service requests. 

Like most of the other service discovery protocols, SLP is administratively 

scoped. This means that the protocol locates resources (devices and services) 

available in a network within an administratively defined network domain. Users 

belonging to a certain scope may only discover services that are offered in this scope; 

other services are hidden by the DA.  

Security is an optional feature in SLPv2 and is based on digital signatures 

using public key cryptography. The sender of an SLP message includes a digital 

signature, which is calculated over selected parts of SLP messages. The trust 

relationship between SLP agents is established by the network administrator who 

supplies the agents with the correct public and private keys. This ensures the mutual 

trustworthiness between communicating agents. The scope of the trust relationship is 

also defined by the administrator by defining the distribution scope of the public and 

private keys.  

SAs can include a digital signature with all their registration messages thus 

making registration and deregistration secure. Unfortunately SLP does not prevent 

replay attacks and service registration (and deregistration) messages can be replayed 

with potential threats of DoS attacks or other. Vettorello et al. (2001) propose a 

solution to this problem based on the inspection of the timestamps used in SLP 

messages. Signatures can also be included in unicast service reply message addressed 

to User Agents, which can in turn verify it and trust that the service location (URL) is 

trustworthy. SLP does not address access control to services which is left to higher-

level protocols. SLP security is only for authenticating service advertisement 

messages and not the services that are advertised.  

2.1.6 JXTA 

The open-source Project JXTA is the industry leading peer-to-peer (P2P) platform 

originally conceived by Sun Microsystems Inc. JXTA technology (Gong, 2001) is a 

set of simple, open peer-to-peer protocols that enable any device on the network to 
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communicate, collaborate, and share resources. Each protocol is defined by one or 

more messages exchanged among participants of the protocol. Each message has a 

pre-defined format, and may include various data fields. The following protocols are 

currently defined: 

 

• Peer Discovery Protocol 

• Peer Resolver Protocol 

• Peer Information Protocol 

• Rendezvous Protocol 

• Pipe Binding Protocol 

• Endpoint Routing Protocol 

 

The Peer Discovery Protocol is the default discovery protocol for all peer groups and 

enables a peer to find advertisements on other peers, and can be used to find any of 

the peer or peer group. A JXTA advertisement is an XML-structured document that 

names, describes, and publishes the existence of a resource, such as a peer, a peer 

group, or a service. A peer in turn is defined as any entity that can speak the protocols 

required of a peer. As such, a peer can manifest in the form of a processor, a process, 

a machine, or a user. Importantly, a peer does not need to understand all the six 

protocols given above. Each Peer within a Peer Group has its own identity. A device 

participating within multiple Peer Groups will maintain separate identities, one for 

each peer instance. Peer discovery can be done through the peer discovery protocol 

specifying a name for either the peer to be located or the group to which peers belong. 

A name does not need to be specified, in which case all advertisements are returned.  

 Delivery in JXTA refers to the delivery of protocol messages and not to any 

service that may provided using JXTA as the overlay network. For this reason we do 

not find any service delivery protocol as such in JXTA, but rather pipe (JXTA 

asynchronous and unidirectional virtual channel) binding and routing protocols for the 

creation of channels between peers onto which messages can be exchanged. 

 In the JXTA virtual network, any peer can interact with other peers, regardless 

of location, type of device, or operating environment — even when some peers and 

resources are located behind firewalls or are on different network transports. Thus, 

access to the resources of the network is not limited by platform incompatibilities or 

the constraints of a hierarchical client-server architecture. 
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A network of JXTA devices is secured by implementing authentication, authorization 

and auditing services within each Peer Group and by restricting the types of 

information which may be published within each Peer Group. Associated to each Peer 

is a set of Credentials, used to prove a Peer’s membership within the Peer Group, to 

uniquely identify the Peer, and may be used to grant or restrict access to services or 

content available within the Peer Group. Every peer is then protected by a peer ID and 

password, which are used to decrypt the private key to a user’s personal security 

environment. This is quite a standard protection mechanism to defend against an 

attacker having physical access to the machine running the JXTA Peer). The choice of 

authentication and authorization schemes and Credential formats used to secure a Peer 

Group are left up to the Peer Group implementer.   

Currently, security support in JXTA is provided  through TLS, which allows 

to set up secure communication channels between peers. Each peer acts as its own 

Certification Authority (CA) and generates its own root certificate, whose related 

private key is used to sign service certificates that the peer issues for each service that 

it supports. The root certificate is distributed along with the peer’s advertisement. 

Therefore, every other peer can always verify that an advertisement is indeed from the 

peer who claims to have issued it.  Public Key Infrastructures that support this 

security model can be implemented in JXTA either with or without the use of 

commercial CAs.  Alternatively, participation within Peer Groups may be also 

secured  through an ad-hoc distributed trust model such as Poblano (Altman, 2003).  

The latter is a reputation trust model where the trust associated with each peer 

is based on the three parameters which are the confidence in the Peer, confidence in 

the Codat (this is JXTA’s term to define at the same time code and data), and risk, 

intended as the reliability of the peer from a performance viewpoint (accessibility, 

throughput, integrity of data) - does this peer distribute virus for example).Trust 

values in Poblano scale from Complete Distrust [-1] to Complete Trust [4]. Initial 

Trust values are specified by action or policy. Other reputation-based models for 

JXTA include the work by Damiani et al. (2002). 

From a security stand, P2P systems such as JXTA have certain intrinsic 

advantages. Confidentiality is better achieved since messages are sent between two 

peers without going through a centralized server. Also, as content can be replicated 

non-deterministically anywhere on a P2P network, there is no central point of 

knowledge which can be the target of denial-of-service attacks. Finally, when 
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searching for things, a peer will always ask another peer in its local domain first. As a 

result, bad behaviour is limited to neighbours or direct contacts as opposed to using a 

central server which, if contaminated, will affect all its client. 

2.2 Integrated Architectures 

2.2.1 Ninja’s Secure Service Discovery Service 

The Secure Service Discovery Service (SSDS) was developed as part of the Ninja 

project (Czerwinski et al, 1999) (Hodes et al., 2002). SDS is a scalable, fault-tolerant, 

and secure information repository providing clients with directory-style access to all 

available services. The SDS can store many types of information, including 

descriptions of unpinned services, which are available for execution, and pinned 

services, which instead run at specific hosts. The SDS supports both push-based and 

pull-based access; the former allows passive discovery, while the latter permits the 

use of a query model. Service descriptions and queries are specified in XML. 

Privacy and authentication is achieved through encryption using a hybrid 

symmetric-asymmetric model where a long-lived asymmetric key is used to deliver a 

per-session symmetric key. Associated with every component in the SDS system is a 

principal name and public-key certificate that can be used to prove the component’s 

identity to all other components. Services can be signed by such principals and clients 

can specify the principals that they both trust and have access to, and when they pose 

queries, a SDS server will return only those services that are run by the specified, 

trusted principals. This way only trusted services are discovered. Access control to 

services is achieved through a capability model where services can specify which 

“capabilities” are required to learn of a service’s existence. Capabilities are signed 

messages indicating that a particular user has access to a class of services. Whenever 

a client makes a query, it also supplies the user’s capabilities to the SDS server. The 

SDS server ensures that it will only return the services for which the user has valid 

capabilities. 

SDS organizes the service area into domains, defined as a list of CIDR address 

ranges that can change with time, and each domain is managed by a particular SDS 

server. If a particular SDS server is overloaded, a new SDS server can be spawned on 

a nearby machine (if available), assigned to be a child of the overloaded server, and 

allocated a portion of the network. Each server is responsible for sending 
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authenticated messages containing a list of the domains that it is responsible for on a 

well-known SDS multicast channel. These domain advertisements contain, among 

other things, the multicast address that service providers will use for sending service 

announcements, and the desired service announcement rate (i.e. how often services 

are required to announce themselves). The messages are sent periodically using an 

announce/listen communication model. Once an SDS server has established its own 

domain, it begins caching the service descriptions that are advertised in the domain.  

Services are announced using the secure one-way service broadcast protocol 

that provides service description privacy and authentication. With this protocol the 

service description is encrypted using a symmetric key, which is in turn encrypted 

with the SDS server’s public key. Once decrypted with its private key, the server can 

then cache the symmetric key for future service advertisements. After decrypting the 

service description the SDS server adds it to its database and updates the description’s 

timestamp. Services which do not send new announcements within a defined time 

limit are flushed. 

Service discovery is authenticated using the Authenticated RMI protocol 

(ARMI) (Welsh, 1999) developed within the framework of the Ninja project itself. 

ARMI allows authentication using public key certificates and encryption through an 

agreed symmetric key. Once contacted the server, the client will submit a query in the 

form of an XML template along with the client’s capabilities (access rights). 

Depending upon the type of query, the SDS server returns either the best match or a 

list of possible matches. In those cases where the local server fails to find a match, it 

forwards the query to other SDS servers based on its wide-area query routing tables. 

Two main security components are present in the SDS architecture and they are 

the Certificate Authority (CA) and the Capability Manager (CM). The former issues 

public-key certificate for the various principles and also encryption-key certificates, 

which bind a short-lived encryption key to a principal. Such encryption key is signed 

using the principal’s public key. The Capability Manager instead, is used to support 

the use of capabilities for access control. Each service contacts the CM, and after 

authentication, specifies an access control with the name of principals allowed to 

access the service’s description. The CM then generates the appropriate capabilities 

and saves them for later distribution to the clients. Capability distribution itself can be 

done without authentication because capabilities, like certificates, are securely 

associated with a single principal, and only the client possessing the appropriate 
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private key can use them. To aid in revocation, capabilities have embedded expiration 

times.  

2.2.2 Project Centaurus 

The Centaurus project (Kagal, L. et al., 2002) was carried out at the University of 

Baltimore (MD) with the main design goal of developing a framework for building 

portals to services using various types of mobile devices. Centaurus framework has 

then continued under the name of Centaurus2 (Undercoffer, J. et al., 2003) and 

Vigil/Secure Centaurus. Project Centaurus is responsible for maintaining a list of 

available services, and executing them on behalf of any user requesting them, which 

minimizes resource consumption on a user’s device by avoiding the need to have the 

services installed on each device that wishes to use them, which is advantageous for 

most resource-poor mobile Clients.  

Centaurus does not distinguish between users and services and they are both 

represented as Clients within the framework. This equality of users and services 

allows a Client to access services while at the same time providing some of its own 

services to others. Services are defined as objects that offer certain functionality to 

clients. Access to services is mediated by two architectural components called 

Communications Manager and Service Manager, using a language based on XML, 

called CCLM (Centaurus Capability Markup Language) as data exchange format. The 

Communication Manager provides a communication gateway between a Client device 

and a Service Manager. Its sole purpose is to abstract and translate communications 

protocols. The Service Manager brokers requests between registered user-Clients and 

service-Clients. Centaurus services are Java based but non-Java services can also be 

supported as long as they can use CCML and either communicate via sockets with the 

Service Manager or with the Communication Manager through some native protocol.  

Clients talk to the Communication Manager and register themselves with a Service 

Manager. On registration, the Client receives a list of current services (updated 

dynamically); it can then select a service from the list and access the service 

functionalities. Centaurus does not envisage service delivery in the strict sense of term 

as no real service is actually delivered to the client. Once services are found they are 

instead executed on behalf of the client that sends execution commands and receive 

service updates via the Service Manager. The latter validates these commands (i.e. it 

performs access control) and forwards them to the intended service. Command 
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execution causes the service to change its state, and so it sends a status update to the 

Client via the Service Manager. In this sense we can say that service delivery refers to 

the delivery of service commands and service updates.  

Centaurus security is based on public key encryption, using a simplified PKI. 

The security architecture is based on two components. The first one is the Certificate 

Authority, which is responsible for generating X.509v3 digital certificates for each 

entity (Service Managers and Clients) in the system and for responding to certificate 

validation queries from Service Managers. The second component is the Capability 

Manager, which maintains a database of the group membership of entities in the 

system and answers requests for group membership. Instead of maintaining a CRL 

(Certificate Revocation List), the Capability Manager(s) has an entry for each valid 

user on the system. The absence of an entry blocks that entity from any and all 

accesses to the system. The absence of CRLs is the reason for Centaurus’ simplified 

PKI. 

When a client (either user or service) registers with a Service Manager it 

transmits, along with its certificate, an access list containing the group memberships 

that are required for access to the client. Also, the list of accessible services that a 

client receives from the Service Manager upon registration depends on the client’s 

groups membership. Generally, a user-Client will send an empty access list indicating 

that no other Client may be granted access to it, whereas a service-Client will include 

a list of groups where membership in one of the listed groups is required for access to 

that Client’s service. As part of the registration, the Service Manager queries the 

Capability Manager to find out the group memberships of the registering Client. This 

membership information, along with the access list and the client’s certificate is then 

stored in the Service Manager database of Client profiles. 

After the registration, the service relies upon the Service Manager to which it 

is registered to enforce security, access control, and to broker requests for the service. 

Each Service Manager determines the entity’s access rights based upon group 

membership (obtained from the Capability Manager) and forwards requests to Clients 

based on those rights. The Client, however, has ultimate jurisdiction on responding to 

those commands and may, for some reason, choose to ignore the service request. 

Service de-registration is secured via public key encryption and so is service 

discovery, achieving both authentication and integrity. Public key encryption is only 

used in Centaurus to meet the authentication and access control requirements. No 
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consideration is given to confidentiality and all protocol messages are sent 

unencrypted, albeit digitally signed. Therefore no confidentiality is achieved in 

service discovery nor in service delivery 

2.2.3 Proxy-based Security Protocols 

This architecture was designed and implemented by Burnside et al. (2002a) and is 

based on the use of proxies. All objects in the system, e.g. appliances, wearable 

gadgets, software agents and users have associated trusted software proxies that either 

run on the appliances hardware or on a trusted computer. Security and privacy is 

enforced using two protocols: the first one is used for secure device-to-proxy 

communication; the second one is used for proxy-to-proxy communication. In the 

case of the proxy running on an embedded processor on the appliance, it is assumed 

that device to proxy communication is inherently secure. The architecture envisages 

three component types: devices, proxies and servers. A device refers to any type of 

shared network resource, either hardware or software. A resource may be location-

aware and has an associated trusted software proxy. A proxy runs on a network-

visible computer and its primary function is to execute commands on behalf of the 

resources it represents, and to allow communication between devices. The servers 

provide naming and discovery facilities to the various devices. Finally a one-to-one 

correspondence is assumed between devices and proxies. Each device communicates 

with its own proxy over the appropriate protocol for that particular device. Thus the 

device-side portion of the proxy must be customized for each particular device. 

The proxy’s primary function is to make access control decisions on behalf of 

the device it represents. Proxies are grouped into farms for ease of administration. 

When a new device is added to the farm, the device’s proxy is automatically given a 

default ACL by the administrator who can manually change it at a later stage if  

desired. Anti-virus scanning software can also be installed on the proxies to scan code 

before it is downloaded onto the device. 

 In this system, each user wears a special badge which identifies the user and is 

location aware (it knows the wearer’s location within a building). User identity and 

location information is securely transmitted to the user’s software proxy using the 

device-to-proxy protocol. 

The resource discovery used in this architecture is similar to the one used in 

Jini. When a device comes online, it instructs its proxy to repeatedly broadcast a 
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request for a server to the local subnetwork. Such requests however, are neither 

authenticated nor encrypted. When a server receives one of these requests, it issues a 

lease to the proxy by adding the device’s name/IP-address:Port-number pair to its 

directory. The lease request must be continuously broadcast lest the expiration of the 

lease. The proxy and the device communicate through a secure channel that encrypts 

and authenticates all the messages. HMAC-MD5 is used for authentication and 

message integrity; a modified version of RC5 is used for encryption. The proxy and 

the device share a 128-bit secret key. 

Resource discovery in this architecture is based on the Intentional Naming 

System (INS) (Adjie-Winoto et al., 1999). The Intentional Naming System (INS) is a 

resource discovery and service location system intended for dynamic networks. INS 

provides users with a layer of abstraction so that applications do not need to know the 

availability or exact name of the resource (as for the DNS) they are looking for but 

only their characteristics.  

The core protocol of the architecture is the proxy to proxy protocol, which is 

based on SPKI/SDSI (Simple Public Key Infrastructure/Simple Distributed Security 

Infrastructure).  SPKI/SDSI provides fine-grained access control using a local 

namespace architecture and a simple, flexible, trust policy model. Interaction between 

devices (i.e. services) is mediated by the proxies which forward the requests and 

process the replies. Resources on a server device are either public or protected by 

SPKI/SDSI access control lists. An SPKI/SDSI ACL consists of a list of entries. Each 

entry has a subject (a key or group) and a tag which specifies the set of operations that 

that key or group is allowed to perform. To gain access to a resource protected by an 

ACL, a requester must include, in his request, a chain of certificates demonstrating 

membership of a group in an entry on the ACL. If a requested resource is protected by 

an ACL, the principal’s request must be accompanied by a “proof of authenticity” that 

shows that it is authentic, and a “proof of authorization” that shows the principal is 

authorized to perform the particular request on the particular resource. The proof of 

authenticity is a signed request, and the proof of authorization is a chain of 

certificates. The principal that signed the request must be the same principal that the 

chain of certificates authorizes. 

Requests to services are initially sent unauthenticated and unauthorized. If the 

requested resource is protected, the server responds with the ACL protecting the 

resource, and a Tag formed from the client’s request. The client then uses the received 
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ACL and Tag to produce a certificate chain, using the SPKI/SDSI certificate chain 

discovery algorithm. It then sends the certificate chain and the signed request in a 

second request to the server proxy. The signed request provides proof of authenticity, 

and the certificate chain provides proof of authorization. Requests are also time-

stamped by the client to avoid replay attacks. The details of how access control is 

achieved using SPKI/SDSI are described by Burnside in (Burnside et al, 2002b). 

The architecture proposed by Burnside et al. (2002a) has then been improved 

by Raman et al. (2003) who have adapted INS to store ACLs in the INS name-trees so 

that access decisions can be made at search time (i.e. discovery). In the new 

architecture the proxy presents the user’s authorization rule (i.e. the chain of 

certificates) with the user’s query. When INS has completed its search and returned 

the addresses of the resources found, the proxy can use a secure authentication and 

authorization protocol to contact the resource. While the security requirement of this 

new architecture is an obvious advantage, making the access decision at discovery 

time also improves scalability and efficiency especially when the number of available 

resources is high. Experimental results by Raman et al. show a reduced time for 

resource retrieval, which is paid though in terms of additional storage needed for the 

ACLs. 

2.3 Ongoing Research 

2.3.1 Splendor 

Zhu et al. (2003) propose a location-aware architecture with support for user privacy 

and non-repudiation. The specific problem scenario that Splendor addresses is one 

where services may be discovered, but mobile users may not have accounts in the 

infrastructure systems. Typical examples are represented by public environment such 

as shopping malls. The security protocols in Splendor enable all parties to mutually 

authenticate each other, no matter if users have accounts in the network infrastructure 

systems or not. The service discovery model adopted by Splendor is based on the use 

of a client-service-directory model with the addition of a fourth component, the proxy, 

used to achieve privacy for service providers, offload mobile service’s computational 

work, and facilitate the processes of authentication and authorization. Mobile services 

authenticate with proxies and may ask proxies to handle service registration, and key 

management for them. Alternatively, mobile services may do all the work for 
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themselves. Proxies also manage mobile devices stability problems (they may have 

poor wireless connection, or people may just turn them off) and cache soft state 

information of mobile services. At the same time services represented by proxies are 

stored as hard state in directories. This means that proxies explicitly register and 

unregister services with directories. 

  Splendor is inspired by the HP’s Cooltown project, which introduces the idea 

of tagging things, people and places and associate them with their “web presence”. 

Similarly, the Splendor service discovery protocol uses tagging to allow location-

aware discovery, so that based on where they are, users can discover the relevant 

services they are interested in.  

Splendor’s security is based on the classic hybrid model of symmetric and 

asymmetric encryption, where public-key encryption is used to exchange 

computationally more convenient symmetric session keys. In particular, Splendor 

assumes that existence of a PKI with a CA that signs public key certificates for all 

four components of the architecture (i.e. clients, directories, proxies, and services). 

Directories are used to store service description and for look up operations. 

Service registration and look up operations are both secured through encryption. Each 

directory periodically sends an advertising message to a well-known multicast address 

specifying the directory’s certificate, the unicast address to be used for further 

communication and a timestamp (against replay attacks). When mobile clients or 

services move to a new place, they may solicit directories for announcements. When a 

service provider has a service to be registered it does so via the proxy. First, the proxy 

and the directory, using their respective public-key certificates, authenticate each 

other and exchange two session keys; one key is set by the proxy while the other is set 

by the directory. During the service discovery phase the client and the directory 

authenticate each other using their respective public key certificates. In response to a 

service request by the client, a directory sends a list of matching services along with 

the certificates of the proxies representing the service. The client chooses a service 

and verifies the corresponding proxy’s certificate. Before the service can be accessed, 

the client and the proxy mutually authenticate and exchange a session key, generated 

by the proxy. For non-repudiation purpose, data is hashed and the hash is signed 

before encryption. Access control to services is performed by the proxy. On the 

downside, the client must perform all proxies’ certificate validation, which is known 

to be a computationally intense activity, as discussed in chapter one. Also, the authors 
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of Splendor do not really consider access control, neither in terms of policies (i.e. who 

is in charge of setting them and how it is done), nor in terms of how it is achieved. For 

the latter, the protocol specifications seem to assume the use of simple access control 

lists placed on the Proxies. Zhu et al. (2004) also propose a protocol for the secure ad 

hoc discovery of services in public environments. 
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3 Security Requirements for SOAs in Nomadic 

Computing 

The main reason why security is so difficult to address in pervasive computing is the 

lack of a formal definition of the security requirements that need to be met. The 

definition of such requirements is affected by both the intrinsic functionalities of a 

SOA and the lack of clear use cases from which one can possibly infer the security 

concerns. Ultimately but foremost, we identify a problem with regards to the correct 

definition of service, which is security unaware in the great majority of examples 

studied, making the SOA itself not security-aware from the outset.  

In this chapter we identify a number of security requirements for SOAs in 

ubiquitous computing and evaluate the way these requirements are met by current 

architectures and technologies. Among these, we pay special attention to the privacy 

requirement which is critical for the success and adoption of ubiquitous computing. In 

particular we review the existing literature in the area of information privacy for 

ubiquitous computing. 

3.1 Security in Service Discovery and Delivery Protocols 

Traditionally, security is identified with a number of basic requirements such as 

authentication, confidentiality and integrity. With regards to service discovery and 

delivery protocols, the above requirements are two low-level to reflect the threats and 

the need for security in service-oriented architectures. Saying that we need 

authentication, confidentiality and integrity does not say anything about what we are 

really trying to secure and which threats we aim to mitigate. As we described earlier, 

the three basic mechanisms underlying a SOA are service registration, service 

discovery and service delivery. Associated to each one of such mechanisms there are 

a number of security issues, which need to be addressed and which can be better 

visualized if referring to the sample scenarios presented in chapter one     

3.1.1 Service Registration and Deregistration 

Before services can be discovered and delivered, they must be registered, either on a 

central repository or on the device where the service resides. If a new service is to be 

registered it is important that authentication, authorization, integrity and 
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confidentiality are maintained. In other words only authorized service providers 

should be allowed to register and deregister a service from the repository. It is 

important that the service being registered maintains its integrity (while it is being 

registered) and that only the intended repository is communicated the registered 

service (confidentiality). No other entity should know about the registered service if 

not through the discovery phase, which must be secured in its own way. The same 

applies to when a service is deregistered 

With regards to service registration and deregistration replay prevention is also 

important. An attacker may eavesdrop a registration message and replay it later after 

the service has been deregistered, or vice-versa, thus achieving some form of Denial 

of Service attack (DoS). Replaying an authentic, but old, service registration request 

may also restore an old, and deemed not secure, service after this has been patched by 

the original service provider and just recently registered. Similarly, a service may be 

made available outside allowed times. 

Security of the registry must also be addressed. In fact, failing to address the 

security of the registry may invalidate the security addressed for service 

registration/deregistration. 

The requirement for secure service (de)registration is less stringent where the 

service registry is embedded into the device, as in Bluetooth, because little or no 

communication takes place between the service provider and the registry itself. 

Conversely, the requirement is much more important when services are registered on 

external repositories. 

3.1.2 Service Discovery 

Service discovery is the primary service of ubiquitous computing onto which all other 

services are layered. If the discovery phase is compromised, then the security of all 

other relying services is compromised too. Secure discovery can be related to both 

devices and services in the sense that we can have secure discovery of devices but not 

of services or vice-versa. Here though, we will disregard the security of devices and 

concentrate on the secure discovery of services. We will assume that security of the 

device is already addressed by the security of the service registry that is hosted by the 

device. Secure service discovery can be divided into the following areas: 
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Discovery Authentication –. This is intended as mutual authentication between the 

entity performing the discovery and the registry responding to the search query. The 

former can thus verify the identity of the service registry while this can authenticate 

the querying entity to better control the services that it can discovery.  

 

Authorized Discovery – It is important that only authorized entities are allowed to 

discover existing services. Only authorized entities must be allowed to use the 

discovery protocol/and or the registry where the services are registered. This is 

required to prevent malicious users from building an inventory of available services 

(e.g. the number of policemen in the area) and devices. If authentication is performed, 

this could be used to enforce authorization or a default authorization policy may be 

defined for non-authenticated entities. 

 

Controlled Discovery – This is a special case of authorized discovery where the 

discovery is controlled so that not every service is discoverable by every entity. 

Entities may be authorized to perform a service discovery but they may only have a 

controlled visibility of available services, based on their set of credentials. In the more 

general sense, controlled discovery refers to controlling the information that is 

retrieved while discovering services. The way controlled discovery is achieved may 

depend on the way access control is performed. The limitation achieved with this 

requirement may be one of service description (e.g. only retrieve service description 

of certain services), time availability (e.g. certain services can only be discovered at 

specific times) or even identity (e.g. it might be allowed to discover a service but not 

the device and/or service provider that offers it.  

 

Confidential Discovery – Service discovery requests should be confidential to the 

device/registry which services the requests.  For instance, if services are held in a 

registry which devices can query to retrieve services, only the registry should know 

about that particular query and not other devices too, unless specified. For example, 

any discovery protocol which uses unencrypted broadcast messaging suffers from 

lack of confidentiality as attackers may in principle eavesdrop the communication and 

know which services are sought; the attacker could also perform an inventory of the 

services available on the network, based on responses by the service registry. For the 

latter reason, also responses to service requests need to be confidential. Confidential 
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discovery is easier to achieve with discovery protocols that use a central registry to 

which discovery requests are sent. This way no other entity on the network, apart 

from the registry, will know when or what service is being requested. 

 

Genuine Discovery – The service being discovered must be genuine, i.e. it must be as 

intended by the service provider and the client. Ultimately, what the genuine 

discovery requirement means is that the service that we find must be trustworthy. This 

requirement prevents the client from discovering phoney services which may 

compromise the security of the client. This is an important requirement because, 

failing that, it would be then pointless to seek the secure delivery of the service. This 

requirement is related but different to the one of secure service registration. A service 

may be securely registered but undergo accidental or voluntary changes by the time it 

is discovered. Where a central registry is used, this might be tampered with or just 

simply corrupted. It is important to note that the trustworthiness we refer to here is 

related to the service description and not the service itself.  

It is also important to distinguish between the two possible ways a service 

discovery protocol may operate. In the first case, a service discovery query returns 

just a list of service descriptions but the actual service is not delivered until the client 

has made a choice. Alternatively, second case, when performing a service discovery, 

the client is returned a list of matching services from which it chooses one or more. In 

our study, where the discovery protocol behaves as in the latter way (e.g. Jini), we 

will assume the genuine service requirement to be addressed by the secure delivery 

requirement. In other words, secure discovery will mean secure delivery of the 

discovered service, where secure delivery entails integrity and authenticity to ensure 

that the service has not undergone any changes and that it is authentic. 

 

Anonymous Discovery – This requirement ensures the anonymity of the entity 

performing the service discovery. Anonymity can be intended either in terms of 

location anonymity or in terms of identity anonymity. The former refers to the 

anonymity of the location of the devices which is issuing the service discovery 

request. The latter refers instead to the anonymity of the entity requesting the service. 
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3.1.3 Service Delivery 

After a service has been found, it can be delivered securely provided a number of 

requirements are met. Delivery of a service may be a very delicate issue depending on 

the type of service being delivered. Again, here it helps visualizing real people (e.g. a 

doctor) as possible service providers, rather than just devices offering standard 

services. As for the discovery phase, also service delivery must be secured, by 

addressing the requirements listed below. 

 

Delivery Authentication – the recipient of the service and the provider need to 

mutually authenticate. Through authentication the service provider can make sure that 

the service is delivered to the intended recipient. This in turn can make sure that the 

service comes from a known source. 

 

Authorized Delivery – As for the discovery phase, one may want to control the 

delivery of services only to authorized entities. In some instances such requirement 

may overlap with the authorized and controlled discovery requirements. In fact two 

possible approaches are possible here. First, one may assume that if an entity is 

allowed to discover a service, that entity is also allowed to use that service. 

Alternatively, an entity may be allowed to discover a service but it may be limited in 

how to use the service, depending on its set of credentials.  

 

Delivery Confidentiality – This requirement guarantees that the service is only 

delivered to the intended recipient. This is an important requirement especially if the 

service is a commercial one.  

 

Delivery Integrity – Even if the communicating parties have authenticated each other 

and the service is delivered in a confidential way, the service can still be tampered 

with or be subject to accidental modification before it reaches the intended recipient. 

The integrity requirement assures that the service is delivered as intended by the 

source, without accidental or active (by an attacker) modifications. 
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Anonymous Delivery – This requirement ensures the anonymity of the entity to which 

the service is delivered. As for the discovery phase anonymity is also referred to 

location anonymity and identity anonymity. 

3.1.4 Application Security 

After a service has been discovered it is then delivered. In many instances the service 

delivered is supposed to run on the end device and/or interact with the device’s 

operating system. The service may for example be a device driver and device 

configuration for the use of services available from nearby peripherals or even a small 

application required to interact with the service provider.  Much of the security issues 

related to application and more generally to services running on the end device is 

catered for by other security requirements, which make sure that the service is 

genuine and has not been tampered with. This prevents us from downloading a rogue 

drive which, in addition to being a driver, also installs malicious software that could 

compromise our privacy. 

When applications run on the target device it is important to grant them rights 

based on their credentials, rather than, based on the user (of the device) privileges. 

However, limiting the privileges of the running application so that, for instance, a 

downloaded printer driver cannot also read the user’s address book and send it to a 

remote device, depends on the way a service is defined and the device operating 

environment. 

3.1.5 Availability 

One important function of a service oriented architectures is to quickly react to faults. 

A service for example may not be available anymore due to server’s failure or user 

mobility. Also, the user may simply switch off the device on which the service is 

running in order to save the battery life. Availability can be defined as the property of 

a system which always honours any legitimate requests by authorized entities. It is 

violated when an attacker succeeds in denying service to legitimate users, typically 

using all the available resources. In the context of security of a SOA then, we want to 

ensure that a malicious user cannot prevent legitimate users from having reasonable 

access to existing services. It is in this respect that the term Denial of Service (DoS) is 

used, which can be defined as the prevention of authorized access to resources or 

delay of time critical operations (ISO, 1989). The issue of availability is very much 
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felt in the mobile computing domain where devices may adopt a power conservation 

strategy, trying to sleep as often as possible to conserve the already limited energy of 

their batteries. Keeping a device awake until its energy runs out can be an effective 

DoS attack. Once the battery is flat, the attacker can walk away, leaving the device 

disabled and unable to provide any service. Authentication may help preventing such 

attacks, but not always. In certain traditional cases, such as for a Web server, 

applications cannot refuse to serve unknowns and identifying repeat offenders doesn’t 

help either, both because source information can easily be faked, and because a villain 

might subvert multiple “innocent” principals into cooperating in the attack (the so-

called distributed denial-of-service attack or DDOS). Alternative approaches may be 

based on the resolution of cryptographic puzzles, which would be easy to solve only 

to authorized entities. 

3.2 Protecting Access to Services 

3.2.1 Access Control 

In a SOA, service provision must be protected and requests by a client entity should 

only be honoured if the client possesses sufficient access rights for that requests. The 

process of verifying a client entity’s rights to access a specific service is referred to as 

access control. The process of granting access rights is referred to as authorization. 

With regards to SOAs for nomadic computing though, the issue of access control is 

more complicated than in traditional distributed computing. As we discussed earlier, 

in a SOA for ubiquitous computing, not only we need to secure access to services, 

which is what have referred to as delivery, but also service registration/deregistration 

and service discovery. These also needs to be protected through access control. 

Another issue is the granularity level of both the client entity and the service 

being requested. With regards to the client, in some cases, such as Bluetooth and 

UPnP, the access control model identifies clients with devices. In some other cases 

instead, such as in Jini, access control is performed on a human or software subject 

running on the device; so we could have more client entities per device. In traditional 

distributed computing, the adopted granularity level is the latter one.  With regards to 

services, the granularity level highly depends on the way the service has been defined. 

In the context of a SOA, a service can be generally defined as a course-grained and 

self contained software entity interacting with applications and other services (Brown, 
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Johnston & Kelly, 2002).  In a traditional distributed computing and with regards to 

SOA for Internet applications, a service can offer a number of functionalities, each of 

which may need access control. With regards to ubiquitous computing instead, 

services tend to offer a single functionality and therefore the level of access control 

needed by each single service is lower. This is especially true for small devices.   

In order to better discuss the issues of access control we can introduce a 

widely accepted model of access control which envisages three distinct components, 

which are the subjects, i.e. the client entity issuing the service request, the services 

and the reference monitor. The latter is also known as policy-enforcement-point 

(PEP) or resource-manager and is in charge of controlling access to the service from 

unauthorized subjects. When a subject issues a request to a service, the request is 

mediated by the reference monitor which records which subject may do what, and 

decides whether a subject is allowed to access the service, i.e. obtain information, 

have an action performed or control a resource. This monitor is called each time a 

service is invoked. Consequently it is important that the reference monitor is itself 

secure and in particular tamperproof. In large distributed systems a policy 

enforcement point is often associated to a Policy Decision Point or PDP. In this 

extended architecture the PEP collects information about the subject, the request, the 

target service, and some context attributes and passes it onto the PDP which in turn 

makes the access decisions. In small systems PDP and PEP are usually merged into 

what we referred to earlier as reference monitor or resource manager. However, 

different security models exist which differentiate on where the PDP and PEP are 

placed with regards to the application and the middleware (Beznosov, 2002).  

With regards to the access control itself, several models have been proposed to 

address the requirements of distributed applications. Traditional access control models 

are broadly categorized as discretionary access control (DAC) and mandatory access 

control (MAC) models. New models such as role-based access control (RBAC) or 

task based access control (TBAC) models have also been proposed to address the 

security requirements of a wider range of applications.  

DAC models control the access to the information explicitly specifying the 

authorization for each subject to each object in the system. The access control is at the 

discretion of the object's owner or anyone else who is authorized to control the 

information object's access. The most traditional way of implementic DAC is by using 

an access control matrix (Naldrug & Campbell, 2003) where each subject is 
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respresented by a row and each object is represented by a column. The entries in the 

matrix contain the subjects access rights to the corresponding objects. There are two 

main variations with regards to the access control matrix, referred to as access lists 

and capability lists, respectively Krager (1978). Access lists store lists of (subject, 

method) pairs for each object and define what methods subjects can use on a specific 

object. Each object is therefore associated to its own ACL of the access rights of 

subjects that want to access the object. Capability lists on the other hand, store lists of 

(object, method) pairs for each subject and correspond to a list of objects and methods 

that the subject can access. The (object, method) pair is also referred to as a 

capability, and equates to an entry in the access control matrix. In this model when 

the subject makes a request on the target object, it includes the required capability. 

The server where the object resides is not anymore interested in whether it knows the 

client or not; the capability says enough and not having a capability for a specific 

object means that the subject has no right for that object.  Other variations of the DAC 

model are based on how subjects grant and revoke access to the objects they own to 

other subjects (Krager, 1978) and (Osborn et al., 2000)  

In MAC, access control decisions are made beyond the control of the 

individual owner of the object. A central authority determines what information is to 

be accessible by whom, and the users cannot change the rights. The advantages of 

MAC models derive basically from their suitability to some kinds of environment 

(usually military) in which the users and objects can be assigned to a security 

clearance or a security level.  

In large distributed systems, the number or objects and subjects can be 

extremely high. Access control lists (or capability lists) may become enormous in size 

and their maintenenace would be difficult and costly. The RBAC framework (Sandhu 

et al., 1996) solves this problem by introducing the concept of roles. Users are 

grouped into roles, and they access objects using the access privileges associated to 

their role. The notion of role is an enterprise or organizational concept, i.e., a role 

represents a job function in an organization and embodies a specific set of 

authorizations and responsibilities for the job. System administrators can create roles, 

grant permissions to those roles, and then assign users to roles on the basis of their 

specific job responsibilities (Ferraiolo & Kuhn 1995). RBAC greatly reduces the 

complexity and cost of security administration and simplifies the management of 

access rights. 
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3.2.2 Authorization Management 

While access control takes care of ensuring that services are only accessed by 

authorized entities, rights must first be granted and then managed properly through a 

process also known as authorization management.  In mobile computing, 

authorization management is complicated by the fact that each client entity may 

potentially have access to services that are spread across a number of geographically 

distributed devices. If one were to use a traditional approach to granting access rights 

to entities, one would have to modify the access control matrix on each device. This 

would pose scalability problems with the number of users and devices often not 

known in advance. Furthermore, each device would need to host an access control 

matrix capable of holding information on possibly an extremely large number of 

client entities. A simple and often used approach is based on the use of a central 

server, where a single account is created. The server is consulted each time a user 

accesses certain resources or devices. Two better approaches are based on capabilities 

and attribute certificates. 

A capability, introduced earlier, can be better defined as an unforgeable data 

structure for a specific resource (or service), specifying exactly the access rights that 

the holder of the capability has with respect to that resource. A capability can be 

described as containing two parts (Levy, 1984): 

 

− an identifier or name for an object 

− some access rights or privileges to that object 

 

By giving a user capabilities only to the objects we wish he/she to have access to, 

finer control over the processes/rights that can be performed on the object is obtained. 

The fact that capabilities can specify what actions can be performed on an object 

allows greater control over the users access rights to an object, limiting the users 

access where necessary. Capabilities can be managed through a special Capability 

Manager, examples of which have been described in chapter two. 

 A generalization of capabilities that is used in modern distributed systems is 

the attribute certificate. Compared to traditional public key certificates, attribute 

certificates are used to list attribute-value pairs that apply to a specific entity. In 

particular, attribute certificates can be used to list access rights that the holder of a 
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certificate has with respect to the identified objects. Like other certificates, attribute 

certificates are handed out by special certification authorities, called attribute 

certification authorities.  

3.2.3 Trust Management 

Trust management addresses the problem that a secure SOA should not just provide 

authentication and authorization for known entities but also allow them to delegate 

their rights to other non-registered entities and have a flexible mechanism for this 

delegation. In other words it should be possible to trust foreign and not directly 

known entities. Blaze, Feigenbaum & Lacy (1996, p. 1) first addressed the trust 

management problem defining it as the “..intellectual framework needed for the study 

of security policies security credentials, and trust relationships”. Humans use trust 

every day in their interaction with people and other entities. However, it’s commonly 

agreed that trust is subjective and based on available evidence, it is contextual 

dependant (i.e. it depends on the situation) and it is also dynamic (i.e. it evolves as 

new information becomes available). This is particularly true in ubiquitous 

computing; trust in one environment does not transfer to another environment. 

Existing trust models for ubiquitous computing typically represent trust using 

a security policy which explicitly permits or prohibits actions. These policies are not 

well suited to dynamic environments, in which participants have only partial 

trustworthiness, and trust assessments must constantly change. To avoid this, a better 

approach is based on the use of recommendations. English et al. (2002) for instance, 

describe a dynamic trust model for ubiquitous computing which would give 

interacting entities the ability to operate and make autonomous decisions. The model 

combines recommendations consistently, by formally ordering them according to 

information content. 

Trust in dynamic environments such as that of nomadic computing is an on-

going research topic. However, it is worth questioning, as Langheinrich (2003) does, 

the actual benefits of introducing the concept of trust into computational frameworks, 

and should maybe leave trust assessment in ubiquitous computing environments up to 

humans. 
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3.3 Privacy and Anonymity 

Technologies for locating and tracking individuals are becoming increasingly 

commonplace, and they will become more pervasive and ubiquitous in the future. 

Such technologies allow the development of location aware applications, required for 

the fulfilment of the ubiquitous vision. Unfortunately, the location of an individual 

can be used to infer highly private information. Traditionally, privacy of personal 

location information has not been a critical issue, albeit an important one, but with the 

development of location tracking systems capable of following user movement 24 x 7, 

location privacy has become important. In a nomadic computing scenario, location-

based applications track people’s movements so they can offer various useful 

services. Some of these services can be accessed in complete anonymity, such as 

“alert me when I walk past a shop which sell the shoe model I am looking for”. Some 

other services instead do require some form of identity to work, either real or 

fictitious (pseudonym), such as a presence service that notifies other people of our 

location. 

Information privacy can be defined as “..the claim of individuals, groups, or 

institutions to determine for themselves when, how, and to what extent information 

about them is communicated to others” (Westin, 1967). Privacy information regards 

primarily the identity and the location of an individual. Further to that, Beresford and 

Stajano (2003) define location privacy as “the ability to prevent other parties from 

learning one’s current or past location”. However, other more traditional properties of 

an individual such as interests, behaviour, or communication patterns could lead to the 

identity and location by inference or statistical analysis.  

In the literature there exist several approaches to protect the privacy of a user, 

most of which try to prevent disclosure of unnecessary information by explicitly or 

implicitly controlling what information is given to whom, and when. Some solutions 

as the one proposed by Myles et al. (2003) provide identity anonymity through 

pseudonyms, either short-term or long-term ones. However, Beresford and Stajano 

(2003) stress how long-term pseudonyms cannot really offer sufficient protection 

against location privacy. In fact, certain locations such as an office desk, act as a 

“home” space for the user and an application could identify users by following the 

footsteps of a pseudonym to or from such a home area. Instead, they propose a 

solution based on mix zones and application zones (Beresford & Stajano, 2004). Mix 
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zones are unregistered geographical regions where no application can trace user 

movements; because applications do not receive any location information when users 

are in a mix zone, the identities are effectively mixed. The degree of anonymity a mix 

zone offers depends on the size of the anonymity set, which is defined as the “the set 

of all possible subjects who might cause an action” (Pfitzmann & Köhntopp, 2000). 

Users might then decide to refuse to provide location updates to an application until 

the mix zone offers a minimum level of anonymity.  

The pawS system (Langheinrich, 2002) is a privacy awareness system for 

ubiquitous computing environments, based on the Platform for Privacy Preferences 

(P3P) (Cranor, Langheinrich, Marchiori, 2002). When a user enters an environment in 

which services are collecting data, a privacy beacon announces the privacy policies of 

each service in the environment. A user’s personal privacy proxy (similar to P3P’s 

user agents) checks these policies against the user’s predefined privacy preferences; if 

the policies agree, the services can collect information and users can utilize the 

services. If the policies don’t agree, the system notifies the user, who can choose not 

to use the service in question or, in extreme cases, leave the area in which the 

information collection is occurring. 

Myles et al. (Myles et al., 2003) propose another architecture, shown in figure 

3-1 (Myles et al., p. 4), based on location servers, validators and policies, also 

expressed using the P3P specification.  

 

In order to obtai

which in turn 

registration, use

component calle

 

Figure 3-1 Myles et al's Anonymity Architecture 

n location-aware services, users must register with a location server, 

answers applications’ queries concerning users’ location. Upon 

rs also specify their privacy requirements by registering a special 

d validator, which can either reside on the location server itself as a 
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self-contained middleware service or be available externally. A user can specify a 

privacy policy to limit the release of privacy information, according to time bounds 

(e.g. only make the information available at certain time of the day), or location 

bounds (i.e. the user is happy to let a shopping center track his/her position while s/he 

is shopping there but not when the user leaves the center). A user may even want to 

limit the level of accuracy that location information is released to an application (e.g. 

it is ok to know we are in shopping center but not in which shop we actually are). 

When an application requests the location or location related information about a 

specific user, it does by providing its privacy policy. In turn, the location server 

invokes the validator which, based on the application’s policy and on the user privacy 

preferences, determines whether the requested information can be released. The 

validator can also protect the user identity (if requested by the user) so that it is not 

disclosed if the system receives a location request that requires it to divulge it. 

Depending on the user’s policy the validator will return the user’s long-term 

identifier, a short-term identifier associated with the user, or a new randomly 

generated identifier. Such a scheme however does not provide complete anonymity 

because applications might be able to deduce the mapping between temporary and 

permanent identifiers by observing movement patterns. 

A more proactive approach to anonymity is achieved in the Cricket Location-

Support System (Priyantha, Chakraborty and Balakrishnan, 2000). The latter uses 

radio and ultrasonic waves to determine distance and thus location. Unlike in other 

systems, such as AT&T Active Badges (Want et al., 1992) or the Cambridge Bat 

(Ward, Jones and Hopper, 1997), mobile devices never transmit their position at all; 

instead, they passively listens to the environment. In this way, the device knows its 

location, while the environment does not.  

 More examples of work in location awareness and privacy-aware initiatives 

can be found in  (Beresford & Stajano, 2003), (Gorlach, Heinemann, Terpstra, 2004). 

The most interesting one is by Juels, Rivest and Szydlo (2003) which addresses the 

privacy issues associated to Radio Frequency Identification (RFID) systems which, 

thanks to manufacturing advancements are slowly being introduce as “smart” 

replacements for omnipresent optical barcodes. People carrying objects which contain 

RFIDs might not even be aware of the existence of these devices because of their 

size2 and their passive nature. Also, due to their inability to do any computation (e.g. 

encryption), RFIDs require their own measures for privacy protection. The above 
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authors propose the development of a special RFID tag, called Blocker Tag, which 

can selectively block attempts of readers to identify it. 

3.4 Technologies and Protocols Evaluation 

Having clearly defined the security requirements for Service Oriented Architectures in 

nomadic computing, it is now possible to better evaluate the technologies and 

architectures presented in chapter two. The results of our evaluation are summarized 

on table 3-1.  

The first observation that is possible to make is that no technology addresses 

security with respect to all the above defined requirements. This does not come as a 

surprise in as much the same way that perfect security does not exist and that the most 

secure computer is one which is not connected to a network and locked in an 

underground bunker, protected by three sets of steel doors; a computer which is not 

much use either, by the way. However, it is possible to make a number of important 

observations which are listed below. 

3.4.1 Inconsistent approach 

Security is not addressed consistently among existing SOAs, and each one perceives 

security in its own way. Some SOAs such as Bluetooth have been designed with 

security in mind more than others and therefore address it more thoroughly. However, 

not all SOAs address the same security requirements discussed earlier and even when 

they do, it is not to the same extent. In Bluetooth for instance, secure discovery is 

limited to the actual devices but once a device becomes discoverable so are all the 

services it offers. In other words one can perform an inventory of available services 

and carry out a selective attack on the devices which offer a particular service, such as 

a dial-up networking. Looking at SSDS, while service discovery is more thoroughly 

dealt with, the protocol fails to address the genuine service requirement. As the 

outcome of the service discovery is a list of matching service description records it is 

important to make sure that these have not undergone accidental or intentional 

modification. For other self-explanatory examples the reader can refer to table 3-1.  

An inconsistent approach is not a problem per se, and it is to be expected that 

each technology would only address those security requirements that arose from the 

threat modeling. Unfortunately, for none of the technologies presented in chapter two 

was such modeling made explicit in the sense that it is not clear why certain security
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requirements were addressed over some others. Besides, even for those requirements 

that were addressed it has not been justified why certain aspects were left out (e.g. the 

genuine discovery)  

3.4.2 Service Registration 

Apart from SLP no other standard technology addresses secure service registration 

and deregistration which means that any entity could register and deregister 

potentially malicious services. Besides, even standard SLP suffers from replay attacks 

so that the same service registration (service deregistration) messages can be replayed 

thus enabling (disabling) a previously disabled (enabled) service.  

Secure service registration is not necessarily a problem in those cases where 

the service registry is embedded in the service provider (e.g. Bluetooth) and an 

implicit trust exists between the device offering the services, and the embedded 

registry. However, in those very same instances where service registration is trusted is 

not always possible to verify that trust via out-of-band means (e.g. human physical 

presence). With Bluetooth for instance, where service registration is trusted, it is 

usually possible to verify the trustworthiness of a service by visual contact with the 

device offering the service, in turn carried by a trusted entity (i.e. a known person). In 

some cases though, such verification is not possible and there is no way of telling a 

malicious service from a genuine one. 

3.4.3 Service Discovery and Delivery 

While service discovery and delivery may be secured in their own way by each 

different technology, one important consideration can be drawn by looking at table 1. 

All standard technologies address security from the point of view of service delivery 

rather  t han service discovery. This is extremely worrying as it raises two problems. 

First, by eavesdropping the service discovery protocol it is possible to obtain an 

inventory of available services. Second, insecure service discovery also violates the 

privacy of service seekers. If one looks at what type of services those technologies 

were designed to support (e.g printers, projectors, networked appliances etc.), one 

may also fail to appreciate fully the relevance of these security threats.  However, 

there are application scenarios, as those described in chapter one, where information  
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privacy is of utmost importance, and we would not want to allow an inventory of 

available services. If we think of a police agent as a service, who is registered in a 

nomadic neighbourhood, we can then appreciate the importance of keeping the 

confidentiality and anonymity of service discovery requests, as well as the responses 

(i.e. how many policeman there are in the neighbourhood)Still, from a more 

traditional viewpoint (where services are still offered by either software or hardware) 

achieving secure delivery on top of insecure discovery is also a contradiction; secure 

delivery of service discovered insecurely cannot be considered secure. This is for 

instance the case of UPnP where the secure discovery is based on the assumption that 

all available hardware on the network is legitimate and that there are no false UPnP 

devices.With regards to secure discovery we must also address the difference between 

the discovery of devices and the discovery of services that may be available on those 

devices. In UPnP for instance, as just highlighted, as well as for other cases, devices 

are assumed trusted, and a misplaced trust can undermine the security of service 

discovery. 

3.4.4 OSI Mismatch 

Not only security is addressed differently by the various SOAs, it is also addressed at 

different layers of the OSI network model. As we can see from the table below, 

service discovery and delivery protocols run on top of various transport mechanisms, 

dictated by the design of the specific architecture. In particular, most protocols are 

layered directly on top of TCP/IP, with the exception of UPnP and JXTA which use 

HTTP for their protocols. At the end of the scale we find Bluetooth, whose discovery 

and delivery runs on a proprietary protocol, which is positioned below the TCP/IP 

layers and can provide confidentiality and authentication directly at the physical layer 

of the OSI networking model. 

 
 UPnP Bluetooth Salutation SLP Jini JXTA SSDS Centaurus Proxy Splendor 

Discovery HTTP L2CAP Any 
TCP

/IP 
Any 

TCP/IP 

or 

HTTP 

TCP/IP TCP/IP TCP/IP TCP/IP 

Delivery HTTP L2CAP Any 
TCP

/IP 
Any 

TCP/IP 

or 

HTTP 

TCP/IP TCP/IP TCP/IP TCP/IP 

Table 3-2 OSI mismatch in SOAs 
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3.4.5 Anonymity 

While research on information privacy is producing its first results, it is also 

developing in parallel and not in integration with service discovery and delivery 

protocols. None of the SOAs examined addresses anonymity neither at discovery time 

nor at delivery time so that privacy of information can be provided. As ubiquitous 

devices permeate the every-day lives of ordinary people, privacy protection measures 

will have increasing impact on their lives. Even though the privacy issue can be dealt 

with from a technical viewpoint, it is also the subject of a still open social debate. In 

actual fact the debate on privacy has been open ever since the term privacy was 

introduced and chances are it will never end. However, it is the author’s opinion that 

the ability to support information privacy will be a discriminating factor in the success 

of future service oriented architectures and it should be therefore considered as one of 

the guiding design criteria of any SOA.  

On the other hand, even if clever anonymization technology for ubiquitous 

computing becomes readily available as it is already for the current and traditional 

distributed computing, one should question its implication on our social interactions. 

Unless we want to forsake our current way of interacting with the world and deal only 

behind digital pseudonyms in virtual reality with each other, we must realize that our 

real-world presence cannot be completely hidden, nor perfectly anonymized.  

3.4.6 Service Definition 

All SOAs are built around the definition of service, which represents the starting point 

for the design of the discovery and delivery protocols. In the context of a SOA, a 

service is defined as a “…course-grained, discoverable software entity that exists as 

single instance and interacts with applications and other services” (Brown, Johnston 

& Kelly, 2002). In other words a service is “..well-defined, self-contained, and does 

not depend on the context or state of other services” . Ultimately, service descriptions 

are required to provide discovery, selection, binding, and composition of services. 

Service descriptions are used to describe a service with regards to its capabilities, 

interface, behaviour, and quality (Papazoglou & Georgakopolous, 2003). In particular, 

the service capability description states the conceptual purpose and expected results of 

the service (by using terms or concepts defined in an application-specific taxonomy). 

The service interface description publishes the service signature (its input/output/error 
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parameters and message types). The expected behaviour of a service during its 

execution is described by its service behaviour description (for example, as a 

workflow process). Finally, the Quality of Service (QoS) description publishes 

important functional and non-functional service quality attributes, such as service 

metering and cost, performance metrics (response time, for instance), security 

attributes, (transactional) integrity, reliability, scalability, and availability. 

Initially developed for Internet-scale environments, SOAs have been gradually 

adopted in more and more domains and the initial definition of service has gradually 

evolved and been re-defined slightly by the various architectures emphasizing the 

already existing integration issues. Service availability across coexisting SOAs greatly 

depends, among other factors, on the service definition itself. Existing definitions of 

services vary from strict ones to very encompassing ones.  

From looking at the service definitions of the service architectures presented 

in chapter two, it is clear to see how the initial concept of service as a software entity 

has in some cases evolved into the more general concept of entity that can provide 

information or perform an action. A service is not necessarily a software entity 

anymore but it can be of hardware or even human nature. We could for example 

define a mobile medical service provided by doctors on the move in shopping centres, 

as described in first scenario presented in chapter one. The service is the one provided 

by the doctor, but we would still need a SOA to locate the service and deliver it (i.e. 

the doctor must be able to find the patient). 

 It is also surprising that all definitions but one, used in Salutation, do not 

addresses security directly. In other words security is added on top and achieved 

through the discovery and delivery protocols independently of service definition. 

However, if we were to define a service regardless of security and only deal with 

security afterwards we would be making a classic software engineering mistake. 

Security is a process and not a patch and must be taken into consideration right from 

the outset of any software design. The reason why security must be addressed when 

defining a service is that the design of a SOA is driven by the definition of the 

service(s) that the SOA provides. Therefore, if we want to design a secure SOA, we 

must start from a security-aware definition of service. But security is just one aspect 

of service definition; one more issue relates to defining the correct level of service 

granularity. While this is a fairly subjective thing, we can make a distinction between 

component or atomic services and composite services. We can define atomic a service 
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that is self-contained, that performs an atomic action and that does not depend on any 

other service. A composite service, on the other hand, involves and orchestrates the 

functionality of other services, which can in turn be atomic or composite. The level of 

granularity will depend on how low level is the functionality provided by an atomic 

service. 

Another issue in defining a service relates to whether the service is pinned or 

unpinned. An unpinned service is a service which can be executed or used on any 

host. For instance, an unpinned service might be a device driver or software agent or 

mobile code which provides a service by running on the local host. A pinned service 

is instead located and running on a specific (remote) host. Examples of pinned 

services may be a coffee dispenser or vending machine for the purchase of candy bars 

or concert tickets, an interactive map running on a portable device etc. 

3.4.7 Access Control 

When looking at access control, the heterogeneity of existing SOAs really comes to 

light. We have analyzed all the architectures presented in chapter two and compared 

the way they address access control. The results of our evaluation are summarized in 

the following table 3-3. In particular, we have focused on four evaluation parameters, 

listed below. 

 

� Access Control Type – Approach followed to perform the access control. As we 

discussed earlier, access control can be achieved in many ways. 

� Policy Enforcement Point (PEP) – This is where access control is performed, and 

it is either by the device offering the services or by an external entity. 

� Policy Maker – This is the entity in charge of defining the access control policy, 

which is then enforced by the PEP. A policy maker is not to be confused with the 

more traditional policy decision point (PDP), described earlier.  

� Granularity – This is the granularity of the access control systems and refers to 

both the type of resources we can control, such as services and the devices from 

which the services are available, and the entities trying to gain access to those 

resources, such as simple users or just other services.  
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The first observation we can make regards the access control types, which for all 

standard protocols, made exception for UPnP, is based on the use of access control 

lists (ACL) alone. Even though such ACLs are implemented differently among the 

various SOAs (from simple userID and password in Salutation up to authorization 

certificates in UPnP), policy enforcement is always performed by the devices 

themselves. This fact alone poses great computational constraints on the device, 

which in some cases need to perform public-key certificate verifications in order to 

control access to their services. Furthermore this architectural choice limits the 

scalability of access control to only a limited number of known entities. As the 

number of potential service users increases, so does the size of the ACLs and the 

authorization management associated to it, as we must add/delete entries to the ACL 

on each device to account for new/past users. Also, still for the standard technologies, 

access control policy is decided at the device level. The only technology that differs in 

that respect is UPnP which allows for better management of multiple devices through 

the Security Consoles (SC). 

Finally, also the granularity level is different. In the majority of cases, access 

control is applied to devices, apart from Salutation where it addresses users 

specifically. Only with Jini does granularity get down to the object level, thus being 

very fine and detailed. The general approach however is quite coarse and it stops at 

the device level, following the assumption that in a mobile world most devices are 

personal and can be associated to specific users. Only the Centaurus architecture 

(along with Jini as already mentioned) addresses also other services as entity against 

which to apply access control. 

 It is only when we analyze the integrated architectures such as Centaurus and 

SSDS that a capability approach to access control is used, apart from Splendor, which 

is under-specified in that respect, and from the Proxy protocol, which addresses 

scalability through its ACL-controlled INS-based discovery protocol. Still for both 

Centaurus and SSDS, the access policy is defined by the device even though it is 

implemented by a third party, called Service Manager and SDS respectively. As seen 

in chapter two, both architectures use capability managers to perform authorization 

management. The use of capabilities is particularly useful as it allows scalable access 

control without having to refer to a remote authorization server. A capability can be 
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issued by a capability server and verified by a reference monitor (PEP). With UPnP 

for instance, capabilities are verified locally. 

3.5 New Application Domains 

The fact that none of the analyzed SOAs addresses all the defined security 

requirements is not necessarily due to bad design. Some technologies such as 

Bluetooth, which were designed with security in mind, did not aim to address certain 

security threats in the first place. Bluetooth in fact, simply aimed to be a wireless 

replacement for cables and therefore it addressed the security issue so that it could 

offer a cable-like type of security. Similarly, other service-oriented technologies were 

conceived with specific application domains in mind, each characterized by specific 

types of users and threats. While such technologies have become more widespread, 

personal devices have also developed to the point of enabling more advanced 

application scenarios of anytime-anywhere type. At the same time, new uses of the 

same technologies have brought about new security threats, as the same service 

technology is now being used beyond its original design context. For instance, while 

it is reasonable to expect that a Bluetooth-enabled phone only belong to one person, it 

is not similarly acceptable to expect that more general purposes and powerful 

Bluetooth-enabled devices are also associated to a single entity; the same assumption 

of trust no longer holds. Similarly, with mobility comes the need of anytime-

anywhere access to service technologies, which were only conceived to operate with 

more static environments. 

While we cannot stop the adaptation of existing technologies for the 

realization of more and more advances and ubiquitous application scenarios, we must 

also not disregard the new security threats that we introduce by doing so.  

3.6 Integration Issues 

As service oriented technologies become more widespread and the number of 

available services increases, integration will become the key to everywhere-anytime 

computing. Also, but foremost, integration is dictated by the diffusion of the nomadic 

computing paradigm which also works as the environment in which all standard and 

bespoke technologies can coexist and communicate with one another. 

One way of reaching out to all available services would be for each device to 

support multiple discovery and delivery protocols. This approach strongly clashes 
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with the design principles of modern middleware, as it would entail a fat mobile 

platform. Support for heterogeneous service technologies could be achieved by either 

having multiple client platforms running on the same device or just one, which 

integrates all existing protocols. The complexity however, in this latter case would be 

far more than we could expect from most modern mobile devices.  

As a matter of fact, integration of existing service technologies is still beyond 

reach and only experimented within the framework of a handful of research 

initiatives. The only wide-scale service oriented architecture that are around have 

“reinvented the wheel” by introducing yet another set of protocols, which do not 

interoperate with existing ones. For this reason, while the need for integration is 

evident one must also highlight the issues that make it difficult to achieve. And when 

we look at end-to-end integration of such SOAs we cannot escape the security 

implications, especially with regards to application scenarios as the ones presented in 

chapter one.  

The security issues discussed so far with regards to existing SOAs have further 

emphasized the existing heterogeneity.  In particular, we can list the following 

integration issues with regards to secure service provision in an integrated domain: 

 

� Different access control models – As we have seen, different SOAs use different 

access control model, usually a choice between ACLs and capabilities. And there 

are also implementation differences. As a result, the same credentials cannot be 

used across different SOAs. 

� Different access control granularity – This diversity creates problems too as the 

credentials must support both device and user information in order to cater for all 

types of granularity. 

� Scalability – As users move around in an integrated environment they expect to 

have access to a wider range of services. Unfortunately, most current SOAs are 

not scalable from the point of view. As access control is performed locally by the 

device using ACLs, there is a physical limit, due to the nature of the device, to 

how many entities we can support. 

� OSI mismatch – Security is addressed at different layers of the OSI model, from 

the physical one up to the application one. The same security requirements 

identified earlier can be therefore met in various ways, which again, creates 
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mapping problems from a single set of credentials to be used in an integrated 

environment.  

� Inconsistent approach to security – When integrating security solution, the overall 

security is limited by the weakest link. As security is addressed inconsistently, the 

end result can be very poor. 

� Different authorization management – Access rights are granted to users in 

different ways, which means that if we want to allow service access to a new user 

we must do it in as many ways as required.  

� No existing security-aware definition of service – Current definitions of service 

are not capable of modelling future nomadic scenarios which present security 

requirements (as presented in chapter one). A service is the building block of any 

SOAs and correct service definition should be address from the outset; a security-

aware definition must also include support for information privacy. Besides, 

current definitions are not even consistent across SOAs to promote 

interoperability. 

� Need of a security administration infrastructure – An integrated architecture will 

be characterized by a large number of mobile devices, services and people. 

Security administration is of utmost importance. For instance, while in many 

SOAs the access control policy is currently defined at device level, an integrated 

environment should provide for better policy management according to contextual 

information. 
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4 SeNCA: a Secure Nomadic Computing 

Architecture 

As discussed in chapter one, integration and interoperability of existing SOAs is more 

and more needed to support current and future needs of nomadic scenarios. The two 

sample scenarios, also discussed in chapter one, emphasize the need for the 

integration to be also secure. However, as concluded in chapter three, secure 

integration of existing SOAs is challenged by a number of factors, first of which the 

high level of heterogeneity of the security models supported by each SOA. In this 

chapter we present an architectural model, called Secure Nomadic Computing 

Architecture (SeNCA) for the secure integration of existing SOA in a context of 

nomadic computing.  A crucial part of the architecture design is the security-aware 

definition of service and related data structure for its description. The whole 

architecture is based on such definition and, as the definition of service is security 

aware, the SOA model we are presenting is also security-aware. 

4.1 Architectural Goals 

SeNCA assumes that different users will be carrying different mobile devices. Each 

one of such devices will support one or more service oriented technologies for the 

discovery of services in the nomadic environment. An example of such nomadic 

environment would be a university campus scattered throughout the town, with user 

moving from one site or department to another. When moving around, users will be 

looking for services, which are available using the service technologies supported by 

their own devices. User may even be interested in discovering services which are 

available via other technologies; for instance, the user might be carrying another 

device which is currently switched off but, if turned on, could allow the use of a 

particular service only available through that device. As a result, users will need 

access to a service discovery mechanism, which is technology-independent but is at 

the same time aware of the technologies available to the user. All this must be 

provided while assuring a number of security requirements. 

SeNCA does not aim to provide security where it not natively supported by the 

service technology. For instance, if the discovery protocol doesn’t provide 

confidential discovery, SeNCA will not be able to provide it. Interoperability cannot 
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provide security. We cannot translate from one technology to another otherwise we 

lower security to lowest common denominator. However we aim for integration with 

the nomadic environment. This way we support the security of existing service 

technologies and add security administration and scalability on top of it. Following on 

from the requirements defined in chapter three, The Secure Nomadic Computing 

Architecture (SeNCA) aims to meet the following:  

 

� Secure service registration of heterogeneous service technologies – For instance is 

should be possible to securely register Bluetooth or UPnP services, which do not 

support secure registration natively 

� Secure service discovery of heterogeneous service technologies – The discovery is 

meant to be secure from the point of view of authentication, authorization, 

confidentiality and anonymity. However these requirements will only be 

supported as far as the local technology allows. SeNCA discovery will be service 

technology-independent but device technology aware. In other words, a search 

query for a printer will discover both Bluetooth and Jini enabled printers but it 

will be know that the user device only supports Bluetooth 

� Scalable access control – SeNCA will provide scalable access control, beyond the 

limitations of the various service technologies.  

� Security administration of policy and trust – This is required to manage large 

number of devices and services through properly managed policies, and also to 

add trust and authorization management to limited-resources devices. 

 

The following architectural goals are also considered: 

 

� Scalable discovery – As integration increases the number of possible services that 

can be discovered, the architecture must be scalable to cope large numbers of 

services 

� Non invasive – SeNCA does not aim to change any of the service technology 

protocols that are being integrated. Nor does it aim to develop software 

components that need to be installed on every client device.   
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Having defined the needed security functionalities and architectural goals, these must 

be met taking into consideration at the same time the middleware design goals 

identified in chapter one. 

4.2 Architectural Overview  

Integration introduces new technologies, new services and adds overall complexity to 

the discovery process. In order to manage the increased complexity and also address 

issues of scalability it is useful, if not mandatory, to use a hierarchical approach.  

Figure 4-1 SeNCA architectural model 
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Examples of useful hierarchies include those based on administrative domains, 

network topology, network measurements (e.g. bandwidth and QoS) and geographic 

locations. SeNCA hierarchies are dictated by technology constraints, scalability 

problems and security requirements. In particular SeNCA identifies two categories of 

domains, shown in figure 4-1. 

 

� technology domain – this type of domain represents a specific service oriented 

technology such as Bluetooth, JINI etc. Each technology domain is under a 

specific administration, which in turn can be responsible for more than one 

technology domain.  

� administrative domain – this type of domain identifies a geographical area (e.g. a 

building) under a single administrative authority. SeNCA adopts a hierarchical 

administration model with two levels of administration domains. The topmost 

level is called the root domain, and it contains one or more local domains. A local 

domain can contain one or more technology domains, which are all under the 

same administration. There is only one root domain and it serves as a trusted 

domain for communications between local domains.   

 

Compared to administration domains, technology domains can overalap (figure 4-1 

shows some building floors with two technology domains). Administrative domains 

cannot overlap as each service can only be under one administration. When moving 

around in the nomadic environment, it is assumed that a user will have access to one 

or more wireless communication technologies, which will allow the user to connect to 

the SeNCA network infrastructure. The latter in turn, is based on IP and all SeNCA 

architectural components are assumed to have an assigned IP address. In particular, a 

local administration domain will also represent a range (not necessarily continuous) of 

IP addresses. 

4.2.1 Architectural Components 

The following is a detailed description of SeNCA architectural components: 

 

� Secure Technology Domain Proxy (STDP) – Performs local discovery and import 

services into SeNCA (proactive discovery). STDP have two communication 
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interfaces, one towards the technology domain (e.g. Bluetooth) and one to the 

SeNCA domain to communicate with the SLDP. Each STDP performs a semi-

automated import procedure in the sense that before a service can be registered it 

must be verified. As we said, each technology domain is associated to a specific 

administration, which specifies the rules for verifying and trusting the services 

discovered (technology dependant). This way the service is securely registered. 

An STDP also manages access control for local services, applying the security 

policies dictated by the SLDP and mapping credentials from the user profile to 

technology-specific credentials.  

� Secure Adaptation Agent (SAA) – This component sits on each technology domain 

device and manages access control on the device. For instance, a SAA may be 

running on a Bluetooth device and change the content of the device database of 

the device in order to grant trust to a new device that wants to gain access to the 

services provided. 

� Secure Local Domain Proxy (SLDP) – This component maintains a registry of all 

the services available in the local domain, interacting with all SLTPs in the local 

domain. Each SLDP then runs the SeNCA Discovery protocol (SDP) and 

forwards service requests from the local domain to other SLDPs in SeNCA; it also 

responds to service discovery queries coming from other SLDPs. It then manages 

the security policies for the local domain communicating them to the STDP that 

enforces them on the local technologies. 

� Secure Local Client Proxy (SLCP) – A SLCP is a Web agent, accessible by the 

user, which performs queries on behalf of the user and bears all the complexity 

required to perform secure discovery, based on the use of cryptographic 

operations. User-to-SLCP communication is protected through a hybrid 

encryption system (symmetric-asymmetric). 

� User Profile Registry (UPR) – This is a registry of user profiles defined in the root 

administration domain. User profiles are registered at root level, for example 

using an LDAP directory. Local administrative domains on the other hand, decide 

the access control policy for local services. 
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4.3 SeNCA – A  Three-Phase Service Oriented Protocol  

SeNCA must allow a discovery of services, which is at the same time technology and 

location independent within a set nomadic environment. Certain service technologies 

such as Bluetooth only allow local discovery and are not geographically scalable 

(because of technology limitations). Other technologies such as SLP may also be 

locally scoped (because multicast-based).  

Given the heterogeneity of service technologies it is not possible to use one 

technology-specific discovery protocols to discover all available services. Two 

possible approaches could be followed then, which allow the discovery of services 

independently from the technology and the location (which is our aim). The first 

approach is to achieve interoperability by importing services of one technology into 

other technologies. However, this approach cannot work for all combination of 

services and technologies and has strong implications for the security requirements 

we want to meet, unless we are prepared to modify the legacy protocols5.  The second 

approach, which is the one followed by SeNCA, is based on service technology 

integration. Figure 4-2 shows and architectural overview of SeNCA. 

Figure 4-2 SeNCA architectural components 

                                                 
5 Example: we want to import services available from a Bluetooth domain into a JINI domain. 

However, in Bluetooth we can only discover services if we are an authorized Bluetooth device. 

Importing Bluetooth services into JINI means that we either lower the security by allowing all JINI 

client to discover the imported services, or that we modify the JINI discovery protocol to only allow 

authorized clients. 
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In order to discover all existing services, these must all be published on the SeNCA 

registry before we make explicit service requests. SeNCA adopts a proactive service 

discovery paradigm. In particular, associated to each technology domain is a secure 

technology domain proxy (STDP), which performs a service discovery using the 

specific domain technology discovery protocol (e.g. Bluetooth service discovery). All 

discovered services are exported to SeNCA but kept in the local administrative 

domain. In particular, each local administrative domain contains a secure local 

service registry (SLSR), maintained by a secure local domain proxy (SLDP), which 

receives service discovery updates by all STDPs in that domain, and communicates 

with other SLDPs of SeNCA using the SeNCA Discovery Protocol (SDP). This way 

SeNCA maintains a distributed service registry. The discovery protocol itself is a 

hybrid proactive-reactive one. It is proactive as services are discovered by the STDPs 

and exported to SeNCA; it is reactive because users only discover the actual services 

at search time, as the query is sent across the NSCA network. In order to offload user 

devices from the computational complexity required by cryptographic operations, 

SeNCA adopts Secure Local Client Proxy (SLCP), which are entities trusted by the 

user device. Each local administrative domain defines the access control policy for its 

services and may decide to grant access to users as they move around the nomadic 

environment. SeNCA manages authorization through special components, called 

Secure Adaptation Agent (SAA). Finally, all secure discovery and delivery operations 

are based on the use of user profiles, centrally managed and stored in the User Profile 

Registry (UPR). User profiles contain information regarding the user available 

devices, and personal privacy preferences, needed for anonymous service discovery 

and delivery. 

4.3.1 Service Registration 

Service registration is a semi-automated process, which involves the STDP and the 

SLDP. The following steps describe the service registration: 

 

1. The STDP performs a local discovery of devices using the specific discovery 

protocols of the technology domain.  
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2. Each discovered service is verified or automatically trusted according to a service 

acceptance policy, which is set by the technology domain administrator, who has 

the responsibility of vouching for services in that domain.  

3. After the service has been verified the STDP builds a SeNCA Service Description 

Record (SSDR), based on service information obtained from the local discovery, 

and adding descriptors to specify the security requirements of the service. Such 

security requirements are defined in a service security policy, which the STDP 

inspects before creating the SSDR.  

4. The STDP sends a secure service announcement message to the SLDP 

(authenticated and confidential and guaranteed for integrity), containing a list of 

the SSDRs of the services found. 

5. The SLDP verifies the service announcement and stores the SSDRs in the service 

registry of the local domain 

 

Figure 4-3 shows a sequence diagram of the SeNCA registration protocol.  

 

Figure 4-3 SeNCA service registration 
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In particular, the following security functionalities are achieved: 

 

� Only trusted services are registered in the SeNCA distributed registry 

� Secure registration and deregistration is achieved using the secure service 

announcement between the STDP and the SLDP. Even if a new service is 

registered in the local technology domain, it will not be registered in SeNCA 

automatically.  

 

For some of the service technologies, the STDP must be authorized to perform local 

discovery. SeNCA assumes that each STDP is authorized using the technology-

specific mechanism, either manually or programmatically. For instance, in a 

Bluetooth domain, the STDP will need to be authorized by the Bluetooth devices in 

the domain to discover the services they offer. Also, before registering a service, the 

STDP must make sure that each service offered locally has a different name. For 

example, it would be quite legitimate for two Bluetooth devices to have the same 

name and be offering the same service. However, given SeNCA two-phase discovery 

protocol, it is not secure to allow the latter possibility.  

4.3.2 Service Discovery – First Phase 

In order to achieve secure service discovery, SeNCA uses a two-phase discovery 

protocol. The main components involved in the first phase of the discovery are the 

Secure Local Client Proxy (SLCP), the User Profile Registry (UPR) and all the 

SLDPs of the SeNCA domain. The following steps, shown also in figure 4-4, describe 

the first phase of the discovery protocol: 

 

1. User logs on the SLCP; this is a Web proxy available in every local domain. User 

and SLCP mutual authentication is achieved through SSL and the user device 

must only be able to verify the public key certificate sent by the SLCP. A 

symmetric key is also agreed in the process, which is going to be used to secure 

all communications between the user and the SLCP. In order to perform user 

authentication the SLCP retrieves the user profile from the UPR and compares the 

credentials given by the user with those kept in the user profile. 
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2. A user searches for services (e.g. a printer). Optionally, the user can specify to 

only discover services that are available through the user device-supported service 

technology (e.g. Bluetooth). 

3. The SLCP filters user requests on the basis of the personal privacy preferences 

contained in the user profile. For instance, the user may only want to discover 

services which do not require any user information (identity anonymity). A 

service discovery request message is then sent to the local SLDP along with a 

partial user profile (based on the privacy preferences), and from there to all other 

SLDPs in the SeNCA domain.  

4. Each SLDP that receives a service discovery request message performs a 

matching between the user credentials and the security requirements of the 

services registered in the local registry. The user profile is also needed to filter 

service matches against the service technologies available to the user. Each SLDP 

is authorative for the services held in the local service registry and decides 

independently whether to allow the service discovery for a particular user. 

5. All matching records are sent to the SLDP of the local domain where the query 

was initiated; here they are collated and sent to the SLCP and finally to the user, 

ordered according to service technologies available to the user device. 

Figure 4-4 SeNCA service discovery phase one  
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SeNCA first phase discovery protocol allows to achieve the following security 

functionalities: 

 

� Confidential discovery – all service discovery messages can be sent encrypted 

from the SLCP to the SLDPs does achieving the required confidentiality 

� Authenticated discovery – this is also achieved through encryption for the 

communication between the SLCP and the SLDP and between the local SLDP and 

all other ones. 

� Controlled discovery – By looking at service security requirements in the SSDRs, 

each SLDP can control the discovery of service to authorized users only, and limit 

visibility according to time restrictions, for instance, or other parameters. 

� Information privacy – The user profile contains the user’s privacy preferences. If 

the user wants to maintain anonymity, the SLCP will forward anonymous service 

discovery messages by just sending a cut-down version of the user profile 

� Service availability – Once a service has been registered it can be found using the 

first phase of SeNCA discovery protocol. This approach also improves service 

availability as we do not perform technology-specific service discovery, which in 

some cases such as in Bluetooth may deplete the battery of the device. We only 

perform local discovery when we are ready for the delivery. 

4.3.3 Service Authorization 

Services found during the first phase of the SeNCA discovery are not necessarily 

local services and they may be available in other administrative domains to the one 

where the discovery was initiated. Services in SeNCA are delivered using the native 

delivery protocol and therefore they must be ultimately discovered through the native 

discovery protocol. The second phase of SeNCA discovery protocol in fact uses the 

discovery protocol of the technology domain itself. However, depending on the 

specific technology domain, the service discovery might be natively secured and need 

specific credentials. Therefore in order to be able to perform a local discovery, the 

user must obtain some credentials that can be used locally. The following steps, 

shown in figure 4-5, explain the service authorization procedure. 
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Figure 4-5 SeNCA service authorization 

 

1. The user chooses one or more services from the list of matches returned by the 

SLCP. 

2. Upon choosing a service, the SLCP begins an authorization request procedure on 

behalf of the user. This procedure is needed to obtain technology-specific 

credentials that can be used for the local discovery (if this is natively secured) and 

eventually for the delivery. The SLCP forwards authorization requests to all 

relevant SLDP (according to the chosen service). 

3. Each SLDP that receives an authorization request, forwards it to the relevant 

STDP 

4. Upon receiving an authorization request, each STDP does three things. The first is 

to create a technology specific set of credentials for the remote user, using 

information contained in the user profile (e.g. device network identifier); second it 

instructs the SAA on the device offering the service to add a new user to its ACL 

(or similar depending on the access control model). Finally, the STDP sends the 

new credentials to the SLCP, which in turn adds them to the user profile, for later 

use during the second phase of discovery and/or the delivery. In other words the 

STDP takes care of authorization management. 

 

It is important to stress that in order to use a service, the user must still possess a 

device enabled with the technology specific service technology. This is because, 

SeNCA does not provide service interoperability but service integration; services 

from one technology are not imported into other technologies and therefore it is not 
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required to perform credentials mapping between different service technologies. 

However, service authorization is likely to generate some tokens such as an 

authorization certificate or a PIN. Such tokens need to be delivered to the user and are 

therefore stored in the user profile. 

4.3.4 Service Discovery – Second Phase 

Once the user has chosen the service to be delivered, his/her profile is updated with 

the needed credentials. In order to use the intended service, the user must move to the 

physical location where the service is available. Directing the user to the exact 

location may be part of another service offered via SeNCA or service technology 

available within it. Here we will therefore assume that the user knows how to get to 

the location where service is going to be delivered. We will also assume that SeNCA 

will be able to monitor the user movements from one local domain to another, using 

for example RFIDs or other technologies. The following is the list of steps involved in 

SeNCA second phase of the discovery, also represented in figure 4-6. 

Figure 4-6 SeNCA service discovery phase two 

 

1. The user moves to the physical location where the service is available.  

2. The user logs onto the local domain’s SLCP to obtain the needed credentials. 

3. The SLCP retrieves the user profile 

4. The user selects the service that he wants to use 
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5. The SLCP displays the associated credentials to the user. Before doing that 

though, the SLCP makes sure that the service is still available. In fact, between the 

first and second phase of the discovery, an attacker might have placed a new 

device in the local technology domain, offering a service with the same name. 

Therefore, the SLCP asks the SLDP to verify the validity of the service. The 

SLDP then instructs the relevant STDP to perform a new local discovery as the 

one performed at registration time. Each local service must have a different 

identifier so that, if performing the new local search, the STDP discovers two 

services with the same name and it will know that something is wrong and issue 

an error. Similarly, an error is also issued if a service with the right name is found 

but coming from a different service provider6. 

6. The user performs a local discovery using the new set of credentials if this is 

needed; the local discovery in fact may not need any credential.     

 

SeNCA second phase discovery protocol achieves the following security 

functionalities: 

 

� Scalable access control – It is possible to achieve a controlled service discovery 

beyond the initial set of trusted client entities. 

� Discovery of trusted service – SeNCA performs behind-the-scene checks to verify 

that the service found with the local discovery is still trusted from when it was 

discovered with phase one.  

 

In practice, the SeNCA second phase discovery protocol does not add any security to 

the native discovery protocol. If confidentiality is not natively supported it will not be 

achieved. The same applies for other requirements. However, this is because SeNCa 

does not add anything or modify the technology specific discovery protocol. 

                                                 
6 Two Bluetooth services with identical names, offered by two different devices that also have the same 

name, will appear identical to a user who has no way to tell which one is the service discovered during 

phase one of the protocol    
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4.3.5 Service Delivery – Third Phase 

Once a service has been found it will need to be delivered. This is the stage where 

most service technologies address the security requirements and this is where then, we 

find most of the integration issues. As we saw in chapter three, secure delivery can be 

addressed from many angles such as authentication and authorization. However, 

secure service provision can be achieved in two possible ways. The first is by 

following the principle of least authority. In other words, client entities are only 

allowed to discovery what they are allowed to use, which means that authorized 

discovery also implies authorized delivery. The other approach is to allow service 

discovery first and to perform authorization at delivery time. The first approach can 

be followed to prevent enumeration attacks that could be performed to find out what 

services are available in the environment. The second approach can be adopted for 

less critical services, which still have security requirements but do not need to be 

hidden from users, such as m-commerce services. In the latter case the service 

provider would want the service to be found but only deliver it to end users who could 

meet the specified security requirements. We call the second approach post-discovery 

access control. SeNCA can support both approaches by using appropriate service 

descriptors. 

In SeNCA service delivery assumes that the user has already performed secure 

discovery and is now prepared for the delivery. Therefore the secure integration of 

service technologies is actually achieved when the user chooses the services after 

phase one of the discovery. With regards to the secure delivery requirements SeNCA 

does not achieve any more that already supported by the native technology. The added 

secure functionality regards the scalable access control as a local service could be also 

provided to client entities from other administrative domains. Also, it could be used in 

principle to provide anonymous delivery if the local credentials mapping does not 

require knowledge of the user identity. 

4.4  SeNCA Services 

The possible services that SeNCA aims to cater for are all the service types that are 

available through the various technology domains. Besides, SeNCA aims to support 

the extended notion of people services, i.e. services offered by human entities. 
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However a more formal definition of service is required which, for the reasons 

discussed in the previous chapter, must be security aware. 

Service definition in SeNCA follows a capability approach. In their research 

on capability-based security Miller & Shapiro (2003) define an object as the “.. finest-

grain unit to which separate direct access rights may be provided, such as a file, a 

memory page, or another subject, depending on the system”.  Similarly, restricted 

access to an object is modelled as access to an object whose behaviour embodies the 

restriction. Without loosing in generality we could apply Miller and Shapiro’s 

definition of an object to define an atomic service, or simply a service, as the finest-

grain service to which separate access rights may be provided.  In the context of 

SeNCA we will use the following definition:  

 

A service is any self-contained entity, pinned or unpinned, to which specific 

security requirements may be applied, which can provide information, perform an 

action, or control a resource on behalf of another entity. A service may be 

provided by either a software, hardware, or a human entity or by any combination 

of such entities.  

 

As we can see, the above definition is security-aware in the sense that no service can 

be regarded as such if no specific security requirements can be applied to it. In other 

words, we can only have a service if we can protect it. The reader should also notice 

how encompassing the above definition is; not only does it cater for traditional type of 

services but also for those provided by hardware and human entities.   

4.4.1 SeNCA Service Description Record (SSDR) 

A SeNCA Service Description Record (SSDR) must allow the description of services 

so that we can perform secure discovery and delivery. The structure of the SSDR aims 

to describe:  

 

1) legacy services – First an SSDR must allow us to describe any type of legacy 

service that is available through the various technology domains 

2) people services – Service description should also support the concept of services 

offered by human entities rather than just the traditional types 
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3) security requirements – This is needed to both capture the security requirements 

of native service technologies, and to enable secure service discovery at SeNCA 

level (discovery phase one). Where the service being described is a people service, 

this field will also contain the personal privacy preference of the person offering 

the service.    

 

In order to meet the first two design goals the SSDR must contain enough information 

to be able to represent any type of legacy service. A simple but inefficient approach to 

follow would be to include in the SSDR a union of all possible legacy service 

descriptors. Alternatively one could try to extract semantically equivalent information 

across different service descriptors and only include that in the SSDR. Based on the 

way services are described by the various SOAs presented in chapter two, we can 

define the structure of the SSDR to include the following three fields. 

 

− Basic Information (BI) – This field contains attributes (mostly mandatory) that 

uniquely identify and describe the service, such as an identifier, a name and some 

keywords. This field must include support for people services, and to this end 

SeNCA should contemplate integrating with the vCard standard (Howes, Smith 

and Dawson, 1998)  

− Service Profile (SP) – This field contains attributes, some mandatory and some 

optional, which specify the class (or category) the service belongs to, such as 

printing services or video services. This field can be also used to specify the 

category of people services. 

− Device Capabilities (DC) – This field contains attributes describing the physical 

requirements of the client device onto which the service will be running, such as 

minimum memory requirements, CPU type, and I/O devices. In particular, this 

field is used to capture the name of service technology through which the service 

is available (e.g. JINI, SLP etc.). This field should not normally be used for people 

services which are not meant to be delivered on any client device 

  

In order to describe the security requirements of a service SeNCA defines a fourth 

field in the SSDR, called Service Security Requirements (SSR). In particular, SeNCA 

follows the approach adopted by the CSIv2 architecture, where associated to each 
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secured objects is a data structure called CSI compound security mechanism, which 

describes the security requirements that a client must meet on all three of the CSIv2 

layers, so that it can access the object. As for CSIv2, also for the SSR, the security 

requirements are structured in a number of layers. However, the layers identified must 

take into consideration the mobile context of application. Therefore SeNCA identifies 

a new layering structure called Service Secure Interoperability (SSI), shown in figure 

4-7. SSI layer structure is dictated by the design goal to support different types of 

service and not only legacy ones. Future services will be layered on top of diverse 

communication technologies, using different transport protocols and delivered using 

new protocols.  

 

Service Security Interoperability 

Service Layer 

Transport Layer 

Communication Layer 

Figure 4-7 Service Secure Interoperability 

 

Compared to the CSIv2 architecture, which starts from the transport layer, the SSI 

architecture includes the lower wireless communication technologies, which 

compared to traditional layer one technologies address security requirements. Using 

the SSI structure allows SeNCA to support post-discovery access control.  The service 

secure interoperability information is contained in the SSR field, whose structure is 

shown in figure 4-8.  

 

Service Security Requirements 

Service Security Interoperability 

Availability 

Information Privacy Preferences 

Figure 4-8 SeNCA service security requirements field 

 

Besides the service security requirements, the SSR field also contains information 

regarding service time availability, i.e. times when the service is available. In fact a 

service may be available for users in the local domain but not to users coming from 
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other administration domains apart from certain times of the day.  If a service is not 

available it means that the authorization procedure performed by the STDP cannot be 

applied. Last in the SSR data structure, we find the service information privacy 

preferences, which allow to specify restrictions on the SSDR that can be sent back to 

the user as outcome of the discovery. In other words, a user may be allowed to 

discover a service but only have limited visibility of the service description record. 

This is particularly relevant to people services where a person may want to restrict 

disclosure of personal information. A doctor may allow to be found by potential 

patients but may not like to disclose his personal telephone number. Figure 4-9 shows 

the high level structure of the SeNCA Service Description Record. 

 

SeNCA Service Description Record 

Basic Information 

Service Profile 

Device Capability 

Service Security Requirements 

Figure 4-9 SeNCA Service Description Record (SSDR) 

 

4.5 SeNCA Client Profiles 

Client profiles are a key component of the SeNCA model as they are used to achieve 

secure service discovery and delivery. So far we have used the term user profile to 

identify the data structure describing a human client entity and the associated security 

requirements and credentials. However, a client entity is not necessarily human and a 

user profile must be in fact more generally defined so to encompass also other types 

of client entities. In particular, the design of the SeNCA client profile is driven by the 

following goals:  

 

1) capture general information of a client entity – A profile must include general 

information about a user or device or any other type of client entity 

2) capture information privacy – The profile must allow to capture privacy 

preferences so that just enough private information is disclosed to achieve service 
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discovery and delivery. The degree of information disclosure may depend on the 

service  

3) store client credentials – Access control to service discovery is performed based 

on the client credentials such as the local administrative domain the client belongs 

to, the role etc. Credentials also relate to the specific communication technology, 

transport and service protocol. 

 

As regards the first design goal, the profile must allow for the description of different 

types of client entities. As we saw in chapter three, access control granularity varies 

across service technologies, ranging from devices to subjects invoking a software 

object. For this reason the client profile must contain information that identifies not 

just a human entity but also another service or software agent. 

Client profiles in SeNCA should follow the approach taken by W3C with their 

Composite Capabilities/Preference Profiles (CC/PP) recommendation (W3c, 2004), 

and by the WAP forum with their User Agent Profile (UAProf). A CC/PP profile 

provides description of device capabilities and user preferences that can be used to 

guide the adaptation of content presented to that device. The WAP User Agent Profile 

is concerned with capturing classes of device capabilities and preference information, 

including (but not restricted to) the hardware and software characteristics of the 

device as well as information about the network to which the device is connected. 

Compared to CC/PP and UAProf though, SeNCA profiles could happily lose content 

preference information and be more “service oriented”. Also, SeNCA profiles are 

held in a central repository in the nomadic infrastructure and not by the devices 

themselves. This choice is based on two motivations. First, a SeNCA client profile is 

much more dynamic in nature as it can store other information than just device 

capabilities, such as personal preferences and temporary authorization tokens required 

for service access. Second, if a user loses a device there is no loss of sensitive 

information and no authorization leakage. 

Client profiles are pre-registered in the SeNCA domain; there is one profile 

per user. Each profile should contain a general section with the user credentials, and a 

section describing the capabilities of the devices used by the user. Figure 4-10 shows 

the structure of the SeNCA Client Profile 
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SeNCA Client Profile 

Client Basic Information 

Device Capabilities 

Client Credentials 

Privacy Preferences 

Service Security Interoperability 

Figure 4-10 SeNCA Client profile 

 

The first field contains basic information about the client, and varies according to the 

type of client entity. For human entity it is conceivable to use a vCard data structure. 

For most user devices, the second field could be populated with information taken by 

UAProf profiles. Generally speaking, the device capabilities field mirrors the 

homonymous field in the service description record and is used by the SLDP to filter 

the service description records that match the client requests. 

The Client Credentials part of the profile contains technology-specific 

credentials, related to the device and/or supported service technologies; also contained 

here are other client security attributes that are used by the SLDP to make access 

control decisions.  

The privacy preferences part is interpreted by the SLCP when sending service 

discovery queries to the SLDPs. Depending on the content of the privacy preferences 

field, the SLCP will only send a sub-part of the client profile. For instance, using this 

field it would then be possible to achieve identity anonymity. 

Finally, the SeNCA client profile also contains a Service Security 

Interoperability part (SSI), which mirrors the SSI field in the service description 

record. Here, the SSI field is used to capture the client security requirements, which 

must be met by a service provider in order for the client to accept the service delivery. 

A security requirement may be for instance that of authentication and confidentiality 

at the communication technology layer. When performing service discovery, the SSI 

field of the client profile are matched against the SSI field in the service description 

record. 
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4.6 Implementation strategies 

SeNCA represents an architectural model for the secure integration of service oriented 

technologies in nomadic computing systems. The model is based on the use of 

information rich descriptors of services and client entities, also known in other 

contexts as metadata or data about data. The use of metadata to improve information 

discovery is extensively recognized. In particular, the authors have experimented with 

Quality of Service (QoS) metadata to improve wide area information discovery 

services (Graziano et al., 2002); figure 4-11 shows a high level diagram of the 

architecture for wide area information discovery and delivery. 

 

 

Figure 4-11 QoS-enhanced information discovery architecture 

 

Here too we find user profiles, and information objects are described using metadata 

enriched with QoS information to describe the delivery requirements. User profiles on 

the other hand contain a description of the device capabilities and user preferences, 

using CC/PP.  In the resource discovery phase, search engines and/or mediators acting 

as information brokers use QoS metadata to customize search capabilities according 

to the user preferences and needs, matching these against the characteristics of both 

the service provider and of the digital resources. In the delivery phase, distributed 

multimedia applications, that are part of a QoS-aware information management 

system, exploit the extra QoS-metadata to negotiate the quality-of-service with 

network equipments, according to QoS network protocols, such as the Resource 

ReserVation Protocol (RSVP).  
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The above architectural model presents itself as an ideal candidate for developing 

SeNCA. In fact, service discovery in SeNCA is for all intent and purposes a problem 

of information discovery over a wide area, whose result is a set of service description 

records. Also, SeNCA itself does not aim to develop a platform for service delivery, 

which is instead left to the specific service technologies. 

With regards to the actual security, this can be achieved using public key 

cryptography with X509.v3 certificates, similarly to other secure discovery protocols. 

However, compared to these very same protocols, SeNCA does not use public key 

certificates to identify each individual user and service in the system but rather to 

identify only the architectural components of the nomadic domain that are supposed 

to communicate securely and trust each other. Service discovery is performed by 

proxy components which also manage the registration of services. Therefore, only 

these components need to be trusted as they vouch for the security of services and the 

users they represent. Choosing to associate public key certificate only to the 

architectural components would greatly improve the scalability and implementation 

issues, traditionally associated to the use of PKIs. 

With regards to the actual SeNCA service protocols (registration and 

discovery), these can be authenticated and encrypted using a classic hybrid encryption 

model, with session keys established between communicating proxies (possibly 

cached for improved performance). In particular, all communication could be 

administratively scoped using multicast. Each SLDP in a local administrative domain 

sends authenticated messages on a well-known multicast address, containing the 

multicast address that STDPs will use for sending service announcements, the range 

of IP addresses that SLDP is responsible for, and the desired service announcement 

rate (i.e. how often services are required to announce themselves). The messages are 

sent periodically using an announce/listen communication model. Once an SLDP has 

established its own local domain, it begins caching the service descriptions that are 

advertised by the STDPs in the domain. The message sent by the STDP can be 

encrypted with the SLDP public key to guarantee confidentiality; service registration 

messages must also be secured against replay attacks. 

Finally, also user devices would be required to perform a bare minimum of 

public key operations when connecting to the SLCP. However, such operations are 

not required each time as caching of the symmetric key for limited period of time 

could be used. 
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5 Designing Secure SOAs for Nomadic Computing  

Security requirements in pervasive computing depend on the types of application we 

want to address and is contextually dependent on both the physical and organizational 

(human) environment. The physical environment dictates the technological 

infrastructure and limitations in which the mobile device operates. The organizational 

environment on the other hand, dictates the trust level among the various entities. 

Both contextual factors affect the way the identified security requirements are met.  

In this chapter we present an object oriented methodology for the design of 

secure SOAs for nomadic computing systems. The methodology uses UML 

extensions for the formalization of security requirements. In particular it is shown 

how the design of secure SOAs can address the new threat models described in 

chapter one. The methodology presented can be generalized and applied to the design 

of secure applications in general, and for the evaluation of existing service oriented 

architectures. The first part of the chapter gives an overview of existing 

methodologies for secure software and system engineering, reflecting upon their 

applicability to the ubiquitous domain. 

5.1 Methodologies for the Development of Secure Systems 

As widely discussed so far, the requirement for security is both expanding and 

changing. Again, the expansion is due to the increasingly interconnected nature of 

systems, and new types of distributed system, especially pervasive ones, that use this 

interconnectivity to support more forms of social collaboration. As the requirement 

for security has evolved and become more pervasive, the challenge is still on as to 

how to integrate security, or more generally non-functional requirements, into the 

requirements development process and into the practical software engineering 

context. A number of methodologies exist which allow the integration of security with 

the design process. Here we list the state of the art in security requirements 

engineering and security design 

5.1.1 Misuse Cases 

Use cases (Jacobson, 1992) have proven helpful for the elicitation of, communication 

about and documentation of requirements. Some research (Weidenhaupt et al., 1998) 

also indicates that they may be more successful in capturing the user needs than 
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textual requirements. On the other hand, because they typically describe functions that 

the system should be able to perform, use cases are better suited for the so-called 

functional requirements than they are for the extra-functional ones, such as security.  

Recent work has applied use case modelling to requirements analyses other 

than the purely functional ones. In particular, McDermott (1999, 2001) and Sindre & 

Opdahl (2000) propose abuse and misuse cases as means to capture and analyse 

security requirements. McDermott & Fox (1999) define an abuse case as a 

“specification of a type of complete interaction between a system and one or more 

actors, where the results of the interaction are harmful to the system, one of the actors, 

or one of the stakeholders in the system”. Figure 5-1 (Sindre & Opdahl 2000, p. 2) 

 

 

Figure 5-1 Misuse cases 

 

In order to be complete, an abuse case must produce harm. Misuse cases can be 

described in the same say way as traditional use cases, i.e. using use case diagrams 

and use case descriptions. With regards to the latter, Sindre & Opdahl (2001) propose 

a specific template that supports representation of information relevant for security 

considerations during requirements determination. With regards to misuse cases, 

Sindre, Firesmith & Opdahl (2003) also propose a reuse-based methodology for 

misuse case analysis and the subsequent specification of security requirements. 

Development with reuse involves identifying security assets, setting security goals for 
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each asset, identifying threats to each goal, analysing risks and determining security 

requirements, based on reuse of generic threats and requirements from the repository.  

5.1.2 CORAS 

The EU-funded CORAS project (IST-2000-25031) has developed a new UML profile 

(Houmb et al., 2002) and a tool7-supported model-based methodology for UML-based 

security (risk) analysis. The profile has also been recently standardized by the Object 

Management Group (OMG) as part of the “UML Profile for Modeling Quality of 

Service and Fault Tolerance Characteristics and Mechanisms”. CORAS profile is 

based on a meta-model, whose classes are mapped to UML modelling elements as 

stereotypes. It also introduces a number of new icons for representing the stereotypes 

in UML diagrams. 

The metamodel of the profile is divided into six submodels that support 

different stages of the risk management process. The security assessment starts with 

identifying the context of the assessment. A strengths, weaknesses, opportunities and 

threats (SWOT) analysis may be part of this. After the context has been established, 

the reminder of a risk assessment can be divided into the identification and 

documentation of unwanted incidents, risks and related treatments. The unwanted 

incident model is concerned with organising and documenting the threats and 

vulnerabilities that open for incidents that may harm the system. The modelling of a 

threat is inspired by already existing work on misuse cases, and uses threat agents (the 

malicious actor) and threat scenarios. An additional submodel, called ThreatAgent, is 

used to model threats through a number of well-known threat agents, namely human 

threats, system threats and malicious software. The risk model quantifies unwanted 

incidents with respect to the reductions of asset value that they may cause. A risk is an 

unwanted incident that has been assigned consequence and frequency values. Similar 

risks are categorized into risk themes. The treatment model supports documenting 

ways of treating the system and quantifying the effect of treatments with respect to 

reducing the potential harm of risks. Compared to other UML profiles targeting 

security, i.e. UMLsec (Jurjens, 2002) and Secure UML (Lodderstedt et al., 2002), 

CORAS UML profile provides specialized support for security risk analysis. 

                                                 
7 The CORAS platform can be downloaded from http://coras.sourceforge.net/ and is distributed under 

the Lesser GNU Public License (LGPL) 
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5.1.3 UMLsec  

Jan Jürjens (2002) defines a number of extensions that allow expressing security-

related information within the diagrams in a UML system specification. The proposed 

extensions are defined through a number of new stereotypes and tags; constraints are 

also defined to give the criteria that determine whether the security requirements are 

met by the system design. All such extensions are grouped into the UMLsec profile.  

With UMLsec Jürjens defines a formal semantics for a simplified fragment of UML, 

which includes the most common diagram types (class, statechart, sequence, activity 

and deployment) and the subsystems component (a certain kind of package). 

Although simplified, the choice of the given subset of UML has proven to be more 

than adequate for modelling in several industrial case studies, as described in (Jürjens, 

2003, 2004) and (Houmb & Jürjens, 2003). 

Use case diagrams, along with collaboration and component diagrams are 

instead not formalized in UMLsec as they are deemed to present information that 

could already be contained in the chosen subset of UML. For some of the constraints 

used to define UMLSec extensions, a precise semantic has also been defined. 

UMLsec defines a model to specify the types of adversaries of a system and 

the threats that they can pose. Possible threats envisaged by the UMLsec model are 

delete, read, insert and access. Threats arise from the specification of the physical 

layer of the system under consideration using deployment diagrams, and are only 

applicable to links or nodes. The types of possible threats depend on type of link 

(node), which in turn is defined through a set of stereotypes. UMLsec defines four 

stereotypes for the link and they are Internet, encrypted, LAN, wire; three stereotypes 

are instead defined for the node and they are smart card, POS device, issuer Node. A 

node can only be subject to the access threat; a link can be subject to the delete, read, 

insert threats.  

Using the defined formalism, each component is associated to an input/output 

state machine, and communicates with other system components by exchanging 

messages, through input/output queues. The behaviour of an adversary then is also 

modelled as a state machine, which can alter in a non-deterministic way the contents 

of the link queues of the system. The execution of each object is performed in 

parallel, subject to a possible interference from an attacker. This interference is 
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determined by the threat scenario arising from the physical environment of the system 

and is expressed in UML as a deployment diagram. 

Based on the defined formalism, a tool has also been developed for the 

analysis and validation of a model developed with UMLsec. The tool offers several 

possible degrees of functionality, depending on which stereotype should be verified. 

First, it is possible to verify security properties included as stereotypes in structure 

and deployment diagrams. The, it is also possible to validate the security requirements 

defined on the behaviour level through the statechart and sequence diagrams. Finally 

it is also possible to validate complex dynamic features; the UMLsec model 

describing dynamic behaviour is translated into the input language of an analysis tool 

(such as a temporal logic formula in the case of a model-checker), and thus can be 

verified against even subtle dynamic properties.  

5.1.4 Model-driven security 

Model-driven software development is an approach where software systems are 

defined using models and constructed, at least in part, automatically from these 

models. A system can be modelled at different levels of abstraction or from different 

perspectives. The syntax of every model is defined by a metamodel. Many enterprises 

are implementing service-oriented architecture (SOA) using Web services, and are 

designing those services according to the principles of Model Driven Architecture 

(MDA). Because the UML used to express MDA lacks model elements for indicating 

the security needs of business processes, system architects are forced either to ignore 

security concerns in their models, or to indicate their intentions in ways that are 

implementation-specific. The integration of security engineering into a model-driven 

software development approach has the advantage that the security requirements can 

be formulated and integrated into system designs at a high level of abstraction. In this 

way, it becomes possible to develop security aware applications that are designed 

with the goal of preventing violations of a security policy. Two initiatives are worth 

mentioning with regards to model-driven security. The first one is called SecureUML 

and has been developed by Lodderstedt et al. (2002). SecureUML is based on the 

role-based access control model with additional support for specifying authorization 

constraints and it can be used in a model-driven software development process to 

automatically generate complete access control infrastructures. It is based on the 

RBAC model with additional support for specifying authorization constraints. 
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SecureUML defines a vocabulary for expressing different aspects of access control, 

like roles, role permissions and user-role assignments. A permission represents the 

authorization to a user to execute an operation on one or more protected objects or 

resources. Users can have one or more roles. A role is a job or function within an 

organization and combines all privileges needed to fulfil the respective job or 

function. Privileges are expressed as permissions. SecureUML has been successfully 

used to implement a prototype generator for the component architecture Enterprise 

JavaBeans (EJB) (Lodderstedt et al., 2002). Epstein and Sandhu (1999) also propose a 

UML based notation for access control, which is not intended though for a model-

driven software development process. 

Still in its infancy is then Johnston’s proposed UML profile (Johnston, 2004), 

which contains yet still a limited number of security-related intent elements, 

expressed as stereotypes, that business users and software architects can apply to 

capture business requirements. Specifically, the proposed security intents are: audit, 

authenticate, authorize, private, signed, tamperproof and trusted.  It is then assumed 

that the high-level models are transformed into implementation-specific models 

through an MDA approach, In particular, Johnston proposes the development of 

patterns that represent technology-specific implementations for each of the intents in 

the model. Ideally, one should be able to choose different implementation patterns 

from a catalogue, based on different characteristics such as performance. 

5.2 Methodologies evaluation 

When looking at methods for security requirements engineering, we can surely say 

that they have traditionally not been use case based (Kirby, Archer & Heitmeir, 1999), 

and looking at misuse and abuse cases, these have yet to be put into large-scale 

industrial use. Nevertheless, Alexander (2003) claim that they can be applied to elicit 

security requirements, and to elicit safety requirements from failure cases; they have 

been successfully used in trade-off requirements analysis (Alexander, 2002). 

However, given that the success criteria for a misuse case is a successful attack 

against an application, misuse cases are highly effective ways of analyzing security 

threats but are inappropriate for the analysis and specification of security 

requirements. 

One of the most pressing shortcomings of current design methodologies is the 

possibility to model malicious users or adversaries and reflect the threats they pose in 
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the design model so that we can design secure systems. In this regard UMLsec 

presents itself as the best candidate for solving the problem, with its capability to 

model adversaries. On the other hand though, UMLsec alone does not suffice, as it is 

only a modelling language with extensions for dealing with security requirements and 

a validation tool for assessing the validity of the design. In other words UMLsec does 

not provide for a way of feeding threats into the adversary models so that we can then 

specify and address the right security requirements. As discussed earlier in this work, 

mobile computing is potentially exposed to different types of threats and in particular 

to different types of adversaries. Traditional secure design methodologies are based 

on a static adversary model and therefore are unsuitable for modern mobile computing 

systems. Achieving security means to be able to cope with such threats and address 

them at design stage. Another problem with UMLsec, and in fact with the other 

methodologies examined, is the fact that the same adversary model is applied to the 

whole design. However, when designing systems in mobile computing, especially 

complex ones, the adversary models is dynamic and contextually dependant, which 

then means that the systems security requirements are also contextually dependant. 

This fact alone has tremendous implications in the system design and must be 

addressed somehow.  

Maintaining that misuse cases are more adequate to analyze and specify 

threats, Firesmith (2003) proposes instead the use of security use cases to specify a 

system security requirements, as shown in figure 5-2 (Firesmith 2003, p. 54). In a 

security use case the actor is still the intended user and the success criteria is that 

application succeeds (not that the misuser succeeds). Still, security use cases are only 

a piece of the puzzle and do no address secure design and validation. 

 

Figure 5-2 Misuse cases vs Security use cases 
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Out of the solutions evaluated in this work, the one the best of all addresses the 

modelling of adversaries and related integration in the design process is UMLsec. Not 

only it allows to model adversaries but also to address the security requirements at 

design level. However, UMLsec lacks the possibility of modelling threats to the 

system, which instead can be done by applying misuse cases.  

5.3 SDOOM – Secure Design O-O Methodology 

Based on the consideration made in the previous section we can better characterize a 

potential methodology that was suitable for the design of secure systems in ubiquitous 

computing. Firstly, the methodology would need to address the issue of dealing with 

different threat models; we proposed a classification in chapter one and we maintain 

that any other possible classification would include more than just the traditional 

static model.  Second, the methodology would need to address contextual 

dependencies and the fact that as users move with their devices, the threats to which 

they are exposed may change. Third, but most important of all for certain aspects, the 

methodology would need to be able to feed changes in the threat models back into the 

design in order to identify possible design changes and in particular, to assess whether 

the system can be still considered secure under the new conditions. 

 The proposed methodologies is an O-O one and draws upon exiting tools and 

methodologies. Figure 5-3 shows a diagram model of the methodologies. As we can 

see, the methodology adopts misuse cases to analyze and specify the possible threats 

to the system. The novelty here is that the notion of mobile adversary and mobile 

victim are forced into the misuse cases as possible misactors. The attentive system 

designer may autonomously and intuitively includ support for mobile misactors. 

However, the purpose of a design methodology is to address the needs of a more 

common, and possibly less expert, designers. 

 Each misactor is modelled using the UMLsec adversary model; for each link 

or physical node we can define the possible actions or rights of the misactor. In other 

words for a misactor to succeeds in his misuse case it must perform a certain action, 

and in order to perform that action it must be able to either access, read, insert or 

delete on the links and nodes defined in our system.  

We can then proceed onto designing our secure system using UMLsec to 

formalize the security requirements that we think the system should address in order 

to face the threats posed by the various adversaries. The last step of the methodology 
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involves the use of the UMLsec validation tool to verify that the system we have 

designed does indeed protect from the identified threats. 

 

Figure 5-3 Secure design methodology 

 

When performing the design validation, the UMLsec tool reveals possible flaws in the 

design by listing the threats which are not covered by the current design.  

The proposed methodology addresses different types of threat models and 

feeds them directly into the system design. SDOOM also addresses the third 

characteristic of a suitable methodology. If the context of application changes or the 

adversary capabilities change raising new threats, it is quickly possible to verify if the 

current design still holds and/or identify which parts of the design are now flawed. 

Similarly, it is also possible to assess the extent to which we can use our systems, 

which was initially designed to address specific threats. The latter is an extremely 

valuable capability; as discussed in chapter three, new communication paradigm and 

application domains are driving the use of legacy technologies and systems beyond 

the initially intended purpose. Assessing the system security in changing context has 

become more than ever necessary. 

Unfortunately, the methodology shown in figure 5-3 does not address 

contextual dependency well. This is because the UMLsec validation tool applies the 
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same adversary model to the whole design, while it would be desirable to apply 

different threat models to different parts of the system. This is not really a limitation 

as one could use SDOOM to parts of the system design which are exposed to the same 

threats. However, that requires an iterative use of SDOOM; improvement to the 

validation tool, in the way it associates threat models to system design, would greatly 

improve the usability of SDOOM.  
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Conclusions 

In recent years we have witnessed a paradigm-shift in distributed computing from 

middleware-oriented architectures to Service Oriented Architectures (SOAs). The 

concept of service is becoming crucial, since a distributed system consists of a 

collection of interacting services, each providing access to a well-defined set of 

functionalities. In the context of SOA, a service can be defined as a course-grained, 

discoverable software entity that exists as single instance and interacts with 

applications and other services. A service can be implemented on a single machine, 

distributed on a local area network or even across several company networks. In all 

instances, a service must first be found and then it can be accessed. To this aim each 

SOA relies on two distinct infrastructures called service discovery and service 

delivery. Initially developed for Internet-scale environments, SOAs have been 

gradually adopted in more and more technology and application domains, driven by 

the mobile computing revolution; along with such widespread adoption, the notion of 

service has evolved too with the related discovery and delivery protocols. 

Specifically, the definition of service has recently become more encompassing as to 

include also people, who can also be thought as service providers (e.g. a doctor or a 

policeman).  

Of the different mobile computing paradigms, the nomadic computing one 

best models the way people work and interact with each other every day. Often called 

a hybrid model, nomadic computing is characterized by the existence of a service 

infrastructure, available through fixed nodes interconnected through a permanent 

network. Given its characteristics, a nomadic computing domain will also contain 

many communication and service oriented technologies, which a mobile user can 

have access too. When moving around in a nomadic environment, a user will require 

the ability to discover and use available services, making integration of existing 

service oriented protocols a clear requirement. However, the rapid growth and 

diversification of such service protocols has added further complexity to the 

integration goal. Thinking about people as possible service providers also changes the 

perspective on things and security suddenly becomes a stronger requirement to 

address in a SOA.  
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In this work the author addresses the existing research gap regarding the security of 

service oriented architectures and their integration in the context of nomadic 

computing. Specifically, the research work presented here targets the following 

questions: 1) what does it mean for a service oriented architecture to be secure? 2) 

Can existing SOAs support secure service provision as needed by modern application 

scenarios? And ultimately 3) is it possible to achieve secure service provision in a 

nomadic environment, characterized by a collection of legacy service technologies 

and architectures?  

In order to answer the first question it was deemed necessary to first address 

the lack of suitable application scenarios. The literature of ubiquitous computing is 

full of application scenarios which range from simple “find the nearest printer” 

scenario to the more futuristic ones where the people involved hardly press any button 

and everything is transparently and intelligently guessed by the pervasive 

environment. Therefore two scenarios where introduced, which show the relevance of 

security requirements when providing services in a nomadic domain. 

The state of the art of SOAs has then been thoroughly investigated to 

understand what secure service provision means for different SOAs and whether an 

established notion of secure SOA existed. The results of the analysis performed are 

quite revealing but also consistent with the way security is traditionally addressed. In 

fact, as for traditional distributed systems, security means different things to different 

people. This is particularly true for SOAs in ubiquitous computing where not only a 

common concept of secure provision does not exist, but also security is addressed at 

different layers of the traditional OSI networking model. The results of the analysis 

have shown a number of issues that undermine the secure integration required in a 

nomadic environment. Specifically, SOA differentiate with regards to the access 

control models, the level of granularity to which access control is applied and way 

authorization is managed. Also some SOAs have been designed to address scalability 

more than others, which also has security implications. 

Based on the above extensive analysis, a number of security requirements 

were defined that would allow secure service provision. The requirements address the 

security of service registration and that of the discovery and delivery phases. Another 

requirement which is also discussed is that of anonymity. The above SOAs were then 

evaluated in the light of the defined requirements. From the evaluation it has been 

possible to make a number of interesting observations. First, the great majority of 
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SOAs does not address secure service registration and deregistration which means 

that any entity could register and deregister potentially malicious services. Service 

delivery seems to have been given a preferential treatment with regards to security, 

disregarding the in most cases the discovery phase. This is extremely worrying as it 

raises two problems. First, by eavesdropping the service discovery protocol it is 

possible to obtain an inventory of available services. Second, insecure service 

discovery also violates the privacy of service seekers. If one looks at what type of 

services those technologies were designed to support (e.g printers, projectors, 

networked appliances etc.), one may also fail to fully appreciate the relevance of these 

security threats. However, future nomadic application scenarios will envisage a more 

encompassing definition of service, which includes people services. As a result, none 

of the SOAs examined can be considered suitable for the secure provision of future 

“enhanced” services. Finally, the evaluation reveals how none of the existing SOAs, 

made exception for one, addresses security from the point of view of the service 

definition. In other words security is added on top and achieved through the discovery 

and delivery protocols independently of service definition. However, security must be 

addressed from the outset, when defining a service because this in turn drives the 

design of the whole SOA. If the service definition is not security aware neither will 

the SOA be security aware. 

The second part of this work addresses the research issue of achieving secure 

service provision in a nomadic computing characterized by a number of 

heterogeneous service oriented architectures. A solution is presented in the form of an 

architectural model, called SeNCA. The model is based on the use of information rich 

descriptors of services and client entities, also known in other contexts as metadata or 

data about data. In particular, SeNCA proposes a novel three-phase discovery-

delivery protocol which allows the enforcement of a number of security requirements, 

identified earlier in the work. When trying to achieve secure service provision in 

nomadic computing systems, we must address the integration of legacy technologies 

and protocols, which deal with security differently and in a way which is insufficient 

for the needs of future application scenarios. Therefore, the “patches” that need to be 

applied to each individual technology to make them more security-aware would be 

different in each case. Security though, is a process and not a patch, and improving 

the security of existing technologies and protocols would actually need to go through 

a complete redesign. For this reason, SeNCA proposes a non-invasive approach to 
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security-enhance legacy protocols, while at the same time providing a secure SOA for 

the support of future scenarios. The model proposed with SeNCA is also extensible to 

cater for new SOAs that might need to be integrated in the future nomadic 

environment. To date, SeNCA is the first architectural model that addresses secure 

provision of services while also addressing the integration issues with legacy 

technologies. 

Finally, while providing some implementation strategies for the development 

of the SeNCA architectural model, we also address the issue of how to best design 

secure SOAs in nomadic computing systems. New communication, collaboration and 

working paradigms have brought about fundamental changes in the assumption made 

about systems and their users. This has translated into new threat models, of which we 

propose a categorization, and a need for reappraisal of current systems to assess how 

they meet the new changes. Specifically, the security requirements that must be 

addressed depend on the types of application we run and are contextually dependent 

on both the physical and organizational (human) environment. In order to address the 

design of secure SOAs we propose an O-O methodology called SDOOM (Secure 

Design O-O Methodology). The methodology uses UML extensions for the 

formalization of security requirements and allows feeding new threat models into the 

design of secure systems for nomadic computing. The methodology presented can be 

generalized and applied to the design of secure applications in general, and for the 

evaluation of existing service oriented architectures. 
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