UNIVERSITA DEGLI STUDI DI NAPOLI

Q ": g ) 'féi“
] %
I: \. / FEDERICO ll [ INFORMATION tECHNOLOGY

€eLECTRICALEeNGINEERING

UNIVERSITA DEGLI STuDI DI NAPOLI FEDERICO I

PH.D. THESIS IN

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

IN-PRODUCTION CONTINUOUS TESTING
FOR FUTURE TELCO CLOUD

UGo GIORDANO

TUTOR: PROF. STEFANO RUSSO

CO-TUTOR:
DR. MARINA THOTTAN, NOKIA BELL LABS
DR. CATELLO DI MARTINO, NOKIA BELL LABS

XXIX CicLo

ScuoLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE






IN-PRODUCTION CONTINUOUS TESTING FOR
FUTURE TELCO CLOUD

By
Ugo Giordano

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
“FEDERICO II” UNIVERSITY OF NAPLES
VIA CLAUDIO 21, 80125 - NAPOLI, ITALY
NOVEMBER 2017

(© Copyright by Ugo Giordano, 2017



“To my grandfather Ugo, the best man I have ever meet in my life.”

ii



Table of Contents

Table of Contents

List of Tables

List of Figures

Acronyms

Acknowledgements

1

Introduction

1.1 Context . . . . . . . . . . e
1.2 Motivations and contributions . . . . . . . ... ... ... ..
1.3 Thesis organization . . . . . .. .. ... Lo L.

Software-Defined Networks

2.1 Abstracting the Network: SDN . . . .. ... ... ... ...
2.1.1 Key Concepts . . . . . . . ..
2.1.2  SDN Architecture . . . . .. ... ... ... ...
2.1.3 Standards and technologies . . . ... ... ... ...
2.1.4 Intent-Based Networking . . .. ... ... ... ...

2.2 SDN Dependability . . . . .. .. ... oL
2.2.1 Basic Dependability Concepts . . . . . . . . ... ...
2.2.2  SDN Dependability Requirements . . . . . .. .. ..

2.3 SDN Resilience . . . . ... ... o

2.4 Open Challenges . . . .. .. ... ... .. ...,

iii

iii

vi

vii

xiii



3 Related work 35

3.1 SDN Performance and Resilience . . . . .. ... ... .... 35
3.1.1 Sources . ... 35
3.1.2 Related Work . . . . . .. ... oL 37

3.2 Fault Injection Testing . . . . . . . ... .. .. ... ... 44

3.3 Failure Injection Testing: the Netflix approach . . . . .. .. 46

4 SDN Control Plane CLoUd-based Benchmarking 49

4.1 Introduction. . . . . . . . . ... ... ... 49

4.2 State-of-the-art Progress . . . . . . . . ... .. ... ..... 51

4.3 The SCP-CLUB framework . . ... ... ... .. .. .... 54
4.3.1 Overview . . . . . ... e 54
432 Tool Suite . . . . . . . . ... 56

4.4 ONOS-based SCP-CLUB . .. ... ... ........... 59
4.4.1 The Open Network Operating System . . . . . .. .. 59
4.4.2 ONOS-based SCP-CLUB Architecture . . . . . .. .. 62
4.4.3 Campaign Manager . . . . ... ... ... ...... 63
4.4.4 Experiment Manager . . . . . . . ... ... ... ... 65
4.4.5 Topology Manager . . . . . ... ... ... ...... 68
4.4.6  Workload Generator . . . .. ... ... ........ 68
4.47 Workflow of an intent . . . . . .. ... ... 77
4.4.8 Capacity Measurement . . . . . . .. .. ... ... .. 81

4.5 Benchmarking a telco cloud SDN . . . ... ... .. ..... 86
4.5.1 Experimental Campaign . . . . . . ... ... ... .. 86
4.5.2 Telco Cloud Experimental Setup . . .. ... ... .. 88
4.5.3 System Configuration . . . ... .. ... ... .... 91

46 Results. . . . . . .. . 92
4.6.1 Experiments with Emulated Data Plane . . . . . . . . 92
4.6.2 Experiments with Real Data Plane . . . . . .. .. .. 101

4.7 Summary ... e e e e e 105

5 SDN Resilience Assessment: a Failure Injection Tool Suite109

5.1

5.2

Assessment Methodology . . . . . ... ... 109
5.1.1 Overview . . . . . . . .. 109
5.1.2  Failure Injection Methodology . . . . . . . .. .. ... 111
5.1.3 Failure Model . . . . . ... ... ... L. 114
5.1.4 Measurements . . . . ... ..o 119
Failure Injection Framework . . . . . . . .. . ... ... ... 123
5.2.1 Failure Injector Implementation . . . . . . . ... ... 125
5.2.2 Failure Implementation . . . .. ... ... ... ... 131

v



5.3 Experimental Evaluation. . . . . ... ... ... ... .. .. 140

5.3.1 Experimental Campaign . . . . . . . .. .. ... ... 141

54 Results. . . . . . .. 144
5.4.1 SDN Service-level Results . . . . . ... ... ..... 145

5.4.2 System Failures . . . . . ... ... ... ... 145

5.4.3 Network Failures . . . . . . . . ... ... ... .... 154

5.4.4 SDN Controller Failures . . . . . . . . ... ... ... 161

6 Conclusions 167
Bibliography 171



List of Tables

4.1

4.2

4.3

4.4
4.5

5.1
5.2
5.3

5.4

System and process metrics, and controller-related events col-
lected during an experimental campaign. . . . . . . .. .. .. 75
Levels of the DOE factors. The LOAD factor ranges between
1,000 and 5,000 requests/s with increments of 1,000 requests/s. 87

Telco cloud blade servers and VMs configuration. . . . . . . . 90
Operating system and ONOS parameters configuration. . . . 91
ONOS Intent Based Networking System Capacity (ISC) us-

ing different scaling methods. . . . .. .. .. ... ... .. 95
Failure model. . . . . . . . ..o 118
Experimental parameters adopted for failure injections. . . . 143

Failure free Intent requests’ Throughput for 3 and 5 controller
scenario under 1,000, and 3,000 Load Levels. . ... ... .. 144
Failure free Intent requests’ Latency for 3 and 5 controller

scenario under 1,000, and 3,000 Load Levels. . . . ... ... 145

vi



List of Figures

2.1
2.2
2.3
2.4
2.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

Separation of data and control in SDNs. . . . . .. ... ...
SDN architecture and interfaces. . . . . ... ... ... ...
Dependability attributes (Avizienis et al., 2004). . . . . . ..
System behavior in the occurrence of a disruptive event. . . .

A case for availability threat in SDN (Akella, 2014). . . . . .

The SCP-CLUB framework. . . . . ... .. .. ... ... ..
Sample SCP-CLUB experiments specification. . . . . . . . ..
ONOS distributed architecture. . . . . . . ... ... ... ..
Architecture of the ONOS-based SCP-CLUB framework. . . .
The ONOS internal workflow for an intent. . . . . .. .. ..
The ONOS service performance measurements. . . . . . . . .
The Nokia AirFrame testbed, running the SCP-CLUB tools
and the ONOS cluster. . . . . ... ... ... ... ... ...
Service throughput time series per VM flavour (VSCALE)
and deploy size (HSCALE) with a load of 2,000 requests/s.
Service throughput while scaling (up/out) ONOS with a small
data plane topology (T'SIZE = 10 switches). . . . ... ...
Service latency while scaling (up/out) ONOS with a small
data plane topology (T'SIZE = 10 switches). . . .. ... ..

vii

63
78
85



4.11

4.12

4.13

4.14

5.1
5.2
5.3
5.4
9.5
5.6
2.7
5.8
5.9
5.10

5.11

5.12

5.13

5.14

5.15

Tail service latency while scaling (up/out) ONOS with a
small data plane topology (T'SIZE = 10 switches) and 3,000

TEA/S. o v e e e e e e e e e e e 100
Service throughput while scaling (up/out) ONOS with a large

data plane topology (T'SIZE = 30 switches). . . .. ... .. 102
Service throughput while scaling out ONOS with a real data

plane topology. . . . . . . ..o 103
Service latency while scaling out ONOS with a real data plane

topology. . . . . . . L 104
In-production continuous testing in Telco Cloud. . . . . . .. 111
Steps of a failure injection experiment. . . . . . . . . ... .. 113
Architecture of the SDN failure injection framework. . . . . . 124
The Failure Injector architecture. . . . . . . . . ... ... .. 125
Design of the Failure Injector for the ONOS controller. . . . . 127
A user-provided specification for failure injection experiments. 129
Localization of failure injections. . . . . . . . ... ... ... 132
The Linux Traffic Control tool. . . . . . .. .. .. ... ... 136

Example of JMX-based procedure to inject a service failure. . 139
Service throughput with system failures injection; 3 and 5
controllers; workload 1,000 requests/s. . . . . ... ... ... 148
Service latency with system failures injection; 3 and 5 con-
trollers; workload 1,000 requests/s. . . . . . .. ... ... .. 149
Service throughput with system failures injection; 3 and 5
controllers; workload 3,000 requests/s. . . . . ... ... ... 151
Service latency with system failures injection; 3 and 5 con-
trollers; workload 3,000 requests/s. . . . . . .. ... ... .. 152
Service throughput with network failures injection; 3 and 5
controllers; workload 1,000 requests/s. . . . . ... ... ... 155
Service latency with network failures injection; 3 and 5 con-

trollers; workload 1,000 requests/s. . . . . . . ... ... ... 156

viii



5.16

5.17

5.18

5.19

5.20

0.21

5.22

X

Service throughput with network failures injection; 3 and 5
controllers; workload 3,000 requests/s. . . . . ... ... ... 158
Service latency with network failures injection; 3 and 5 con-
trollers; workload 3,000 requests/s. . . . . . . ... ... ... 159
Performance degradation due to network packet reject injec-
tion; 3 and 5 controllers; workload 3,000 requests/s. . . . . . 160
Throughput with controller failure injection; 3 and 5 con-
trollers; workload 1,000 requests/s. . . . . . . ... ... ... 162
Service latency with controller failures injection; 3 and 5 con-
trollers; workload 1,000 requests/s. . . . . . . ... ... ... 163
Throughput with controller failure injection; 3 and 5 con-
trollers; workload 3,000 requests/s. . . . . .. ... ... ... 165
Service latency with controller failures injection; 3 and 5 con-

trollers; workload 3,000 requests/s. . . . . . . ... ... ... 166



Acronyms

API Application Programming Interface.

ASIC Application-Specific Integrated Circuit.
BER Bit Error Rate.

CAPEX CAPital EXpenditure.
CM Campaign Manager.

CPU Central Processing Unit.
CRC Cyclic Redundancy Check.

DC Data Collector.
DDoS Distributed Denial of Service.

DOE Design Of Experiments.

EJB Enterprise Java Beans.

EM Experiment Manager.

FEC Forward Error Correction.
FI Failure Injection, Failure Injector.

FIT Failure Injection Testing.

IBN Intent-Based Networking.



xi

IPC Inter-Process Communication.
IPS Intents operations per unit time.

ISP Internet Service Provider.

JMS Java Message Service.
JMX Java Management Extensions.
JSE Java Standard Edition.

JVM Java Virtual Machine.
LG Load Generator.

MTBF Mean Time Between Failures.
MTTF Mean Time To Failure.

MTTR Mean Time To Repair.

NBI Northbound Interface.
NFV Network Function Virtualization.
NFVI Network Function Virtualization Infrastructure.

NOS Network Operating System.

ODL OpenDayLight (registered trademark).

ONF Open Network Foundation.

ONOS Open Network Operating System (registered trademark).
OPEX OPerating EXpenditure.

OS Operating System.

OSGi Open Service Gateway Initiative.

Pub/Sub Publish/Subscribe.

REST Representational State Transfer.

RMI Remote Method Invocation.



SBI Southbound Interface.

SCP-CLUB SDN Control PlaneCLoUd-based Benchmarking.

SDN Software-Defined Networking, Software-Defined Networks.

SFI Software Fault Injection.
SLA Service Level Agreement.

SUT System Under Test.

TC Telco Cloud.
TCSP Telco Cloud Service Provider.

TM Topology Manager.

VM Virtual Machine.

VNF Virtualized Network Function.

WG Workload Generator.

xii



Acknowledgements

I would like to thank my advisor, Prof. Stefano Russo. I'm really thankful
for all the tips and advice he gave me during these three years, and for
having supported me in pursue the PhD.

Much of the work for this dissertation has been performed during a period
at the prestigious NOKIA Bell Labs in Murray Hill, New Jersey, USA, un-
der the supervision of Dr. Marina Thottan and Dr. Catello Di Martino.
I am very grateful to NOKIA for the opportunity to work in a top-level
research environment. I would like to thank specifically Dr. Thottan and
Dr. Di Martino for the inception of the ideas underlying the SCP-CLUB
benchmarking framework and the failure injector architecture, the useful
discussions, their patient support and their compelling stimuli. Working
with them at NOKIA Bell Labs has been as challenging as exciting.

I am also grateful to all friends (because we are friends, not just col-
leges) of the DEpendable Systems and Software Engineering Research Team
(DESSERT) at DIETI, Federico II University, and at the CINI “Carlo Savy”
laboratory in Napoli. Thanks to Stefano, Luigi, Flavio, Antonio, Roberto
P., Roberto N, Mario, Anna and Alma. A special thank goes to Raffaele,
Fabio and Salvatore (vaiiii vaiiilll). They always supported me during the
hard time of this PhD, and sharing a beer with them has always been a
pleasure. Really thanks guys, hoping to have been a good friend and sup-
porter for you too.

Thanks to my father, my mother, my bro, and my sisters, and my grand-
children Giulia and Michele (they always made you smile in all situations),

xiii



Xiv

to my family; because without their support I would never be able to ac-
complish this last step. Thanks for all!

Thanks to my Bernardo and Giovanna, my second family. Thanks for let-
ting me to be part of your family.

Thanks to YOU, Rosaria, my best friend, my greatest support, my biggest
comfort, my strongest motivation, my truest smile, my deepest love, my
favorite, my forever. Had it not been for her, I might still be in darkness,
or I would have invented her. Sincerely, today, I don’t know where I would
be if she wasn’t been on my side, where she has always been. There, close
to me, for me. I will love you until death do us part!!! I’ll always love you,
as if it were the first day, as if there was not a tomorrow (I love you).

Naples, Italy Ugo Giordano
October 4th, 2017

Disclaimer: The views and opinions expressed in this dissertation are
those of the author and do not necessarily reflect the official policy or posi-
tion of any person, organization or company other than the author.



Chapter

Introduction

1.1 Context

Computer networks are nowadays at the basis of most critical infrastruc-
tures, and of many services we access in our daily activities - be they busi-
ness, consumer, social or private. Software Defined Networking (SDN)
has emerged in the very last few years - from the initial work done at Uni-
versity of California at Berkeley and Stanford University in 2008 - as a
paradigm capable of providing new ways to design, build and operate net-
works. This is due to the key concept underlying it, namely the separation
of the network control logic (the so-called control plane) from the under-
lying equipment (such as routers and switches) that forward and transport
the traffic (the data plane) [1].

Thanks to the clear separation of the two abstraction levels - the logic
level, corresponding to the control plane, and the physical one, i.e. the
data plane - SDN is claimed, and by many experts strongly believed, to be
about to introduce a big revolution in computer networking [2]. Along with

Network Function Virtualization (NFV), SDN is expected to have a positive
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impact on network management costs [3]. Indeed, the logical level may
host the network control logic in a programmable and highly flexible way:
advanced network services become software defined, supporting much easier
enforcement of networking policies, security mechanisms, reconfigurability
and evolution than in current computer networks.

The SDN flexibility is due to the separation of concerns between net-
work configuration and policies definition and lower-level equipments for
traffic switching and routing, a direct consequence of the separation of ab-
straction layers. The many advantages promised by SDN in engineering and
managing computer networks and in operating their services are very attrac-
tive for network operators and Internet Services Providers (ISP). Network
operation and management are challenging, and providers face big issues
in configuring large networks, enforcing desired policies, and evolving to
new technologies - all in a very dynamic environment [4]. This is easily
comprehensible thinking, for instance, at the huge difficulties that major
technological changes encounter to be applied in large networks. The tran-
sition from the Internet network protocols IPV4 to IPVG6 is just an example:
started about a decade ago, it is probably still far to be completed. And
it has to be considered that protocols, which are at the heart of computer
networks, are basic blocks from the point of view of the highly demanding
modern and future fixed and mobile applications and services.

According to Allied Market Research, the SDN market is expected to
reach $132 billion by 2022 [5]. Players in this market include telecommu-
nication operators, ISPs, cloud and data center providers, and equipment

manufacturers. Beside the decoupling of service, software and hardware
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technology innovations in networking, there is probably a fundamental rea-
son for such big expectation raised in the networking industry. The history
of major advances in computer science and engineering is a history of raising
the level of abstraction. This is true for instance for programming languages,
for operating systems and middleware technologies, for software design (up
to modern model-driven techniques) [6]. Abstraction and separation of con-
cerns are fundamental engineering principles, which in the case of SDN may
well support its wide spread.

The logical entity hosting software-defined core network services in the
control plane (e.g. routing, authentication, discovery) is typically known in
the literature as SDN controller (or simply controller). Very recently, the
concept of controller has evolved to that of network operating system
(NOS), an operating system - which can possibly run on commodity hard-
ware - specifically providing an execution environment for network manage-
ment applications, through programmable network functions. In the logical
SDN architecture, the controller is below the application layer!, and atop the
data plane, that it controls enacting the policies and the services required
by applications. The separation of the planes is realized by means of well-
defined application programming interfaces (API) between them. Relevant
examples of SDN controllers are NOX [7], Beacon [8], OpenDaylight [9] and

ONOS® [10], while probably the most widely known APT is OpenFlow [11].

!The applications atop the control plane are actually management programs accessing
the controller programming interface to request network services or to enforce policies.
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1.2 Motivations and contributions

Today’s networks will need to adopt a new approach to support the pre-
dicted growth in scale, diversity and complexity of use cases [12]. With new
services and applications emerging continuously, devices will be connected
much more often, and consequently, a distinct competitive market advan-
tage could be created by those network operators capable of implementing
new services rapidly.

In order to meet evolving market demands, and increase the flexibility
and agility of networks promoting innovative solutions for future network
services, telco companies look with interest at migrating towards the emerg-
ing Telco Cloud (TC) paradigm [13] [12] [14], becoming so-called Telco
Cloud Service Providers (TCSPs). Telco Cloud is meant to provide a
dedicated cloud computing solution for a network operator, to shift net-
work functions away from dedicated legacy hardware platforms into virtu-
alized software components deployable on general-purpose hardware. This
logically allocates cloud and networking capabilities into a multi-service
programmable fabric built to precisely meet each of the different service
requirements, changing network conditions, unpredictable traffic patterns,
continuous streams of apps and services and short innovation cycles.

This ability to focus on what is needed is achieved through the com-
bined use of Software Defined Networking (SDN) [1], Network Func-
tion Virtualization (NFV), and cloud technologies [15], [16] in telco cloud
infrastructures.

While the softwarization and cloudification of the network provides un-

paralleled level of automation and flexibility, and a drastic reduction of the
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network operating margins, it also presents significant challenges, mainly
due to the variety of knobs (e.g., SDN-, cloud-, and software- related pa-
rameters) to properly fine tune in [16] order to obtain specific levels of
service.

In the SDN world, performance it is not only related to the behaviour of
the data plane. As the separation of control plane and data plane makes the
latter significantly more agile, it lays off all the complex processing work-
load to the control plane. This is further exacerbated in distributed network
controller (e.g., ODL [9], and ONOS [10]), where the control plane is addi-
tionally loaded with the state synchronization overhead. Misconfiguration
of the control plane can negatively impact the overall network performance,
cause customer insatisfaction and, in more extreme cases, network unavail-
ability. Understanding the performance of the SDN control plane in a telco
cloud and the factors that influence it is fundamental for planning, sizing
and tuning SDN deployments.

Furthermore, the introduction of SDNs technologies has raised advanced
challenges in achieving failure resilience, meant as the persistence of ser-
vice delivery that can justifiably be trusted, when facing changes [17], and
fault tolerance, meant as the ability to avoid service failures in the pres-
ence of faults [18] (these definitions will be used hereafter to refer to the
resilience and fault-tolerance of SDN technologies). The decoupling of the
control plane from the data plane leads the dependency of the overall net-
work resilience on the fault-tolerance in the data plane, as in the traditional

networks, but also on the capability of the (logically) centralized control
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functions to be resilient to faults. Moreover, the SDNs are by nature suit-
able to be implemented as distributed system, introducing further threats
to the network resilience, such as inconsistent global network state shared
between the SDN controllers, as well as a network partitioning. In addi-
tion, compared to the legacy network appliances, which rely on dedicated
high-performance hardware, the adoption of technologies for virtualizing
network services, introduces performance and reliability concerns, e.g., high
overhead/latency and failures, due to new failure scenarios which periodi-
cally occur in data center [19] [20].

Consequently, as the controllers technology develops and progressively
becomes mature for the market, the need to engineer and to assess the
compliance of SDN solutions with non functional requirements — such as
scalability, high availability, fault tolerance and high resilience — becomes
more compelling. In such a context, the traditional software testing
techniques appear insufficient to evaluate the resilience and avail-
ability of a distributed SDN ecosystems. Indeed, although these tech-
niques are useful to validate specific system behaviours (e.g. the functional
testing), full operational testing may be possible only in production, due
to the impossibility to reproduce the entire ecosystem in a testing environ-
ment. Ultimately, even if a system can be reproduced in a test context, it
is impractical, or even impossible, to fully reproduce all aspects and failure
modes that can characterize complex distributed systems during produc-
tion hours [21]. On the other hand, a widely recognized effective way to
assess fault-tolerance mechanisms as well as to quantify system availability

and /or reliability is failure injection. Failure injection allows to assess fault
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tolerance mechanisms by reproducing multiple failure scenarios, such as a
latent communication, service failure, or hardware transient faults. Fur-
thermore, if applied in a controlled environment while the system is in
production, the failure injection can lead to discover problems in a timely
manner, without affecting the customers, and providing helpful insights to
build better detection, and mitigation mechanisms to recover the system
when real issues arise.

Therefore, along with the “softwarization” of network services, it is an
important goal in the engineering of such services, e.g. SDNs and NFVs,
to be able to test and assess the proper functioning not only in emulated
conditions before release and deployment, but also in-production [22],
when the system is under real operating conditions.

The goal of this thesis is to devise an approach to evaluate not only the
performance, but also the effectiveness of the failure detection, and miti-
gation mechanisms provided by SDN controllers, as well as the capability
of the SDNs to ultimately satisfy non functional requirements, especially
resiliency, availability, and reliability. The approach consists of exploiting
benchmarking techniques, such as the failure injection, to get continuously
feedback on the performance as well as capabilities of the SDN services to
survive failures, which is of paramount importance to improve the effective-
ness of the system internal mechanisms in reacting to anomalous situations
potentially occurring in operation, while its services are regularly updated
or improved.

To the best of our knowledge, there is no available approach or tool

that can be used to provide automation in the analysis of the SDN control
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plane. The literature on SDN performance and resilience assessment is still
at the beginning. The thesis aims to contribute to the advancement
in testing and evaluation of SDNs, trying to go beyond what can be
achieved by means of “traditional” software analysis and testing techniques.

Within this vision, this dissertation first presents SCP-CLUB (SDN
Control Plane CLoUd-based Benchmarking), a benchmarking frame-
work designed to automate the characterization of SDN control plane perfor-
mance, resilience and fault tolerance in telco cloud deployments. The idea
is to provide the same level of automation available in deploying NF'V func-
tion, for the testing of different configuration, using idle cycles of the telco
cloud infrastructure. Then, the dissertation proposes an extension of the
framework with mechanisms to evaluate the runtime behaviour of a Telco
Cloud SDN under (possibly unforeseen) failure conditions, by exploiting the
software failure injection.

Differently from software fault injection [23] - a nowadays consolidated
form of testing - failure injection focuses on deliberately introducing failures
in the components of the system under assessment, or in their execution en-
vironment, under real or emulated load conditions, to evaluate the ability of
the system internal mechanisms to react to anomalous situations potentially
occurring in operation.

Overall, the framework provides an approach to implement an auto-
mated methodology for characterizing the performance and resilience of
the SDNs, and consists of a configurable software infrastructure. The dis-
tributed infrastructure encompasses - as main components - a set of man-

agement tools, a workload generator, a failure injector, and data collectors.
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The experimental evaluation of the proposed framework is based on the
open source distributed network operating system, ONOS® [10] [24], which
is the very heart of the testbed. The ONOS® initiative is supported by sev-
eral major industrial partners, including AT&T, Cisco, Ericsson, Google,
Huawei, NOKIA.

In summary the main contribution of this thesis are:

e An automated and configurable distributed infrastructure (named SCP-
CLUB framework) for deploying and testing SDN controllers under
various configurations. The infrastructure encompasses tools to sup-
port the management of the experiments, the load generation, failure

injection and data collection tasks;

e An injection methodology, conceived for both development and in-
production stage assessment. The methodology envisages the steps of
(i) definition of the workload (according to the Intent Based Network-
ing model [25]) to emulate actual operating conditions of a controller;
(11) workload generation and actual injection of failures, selected from
the failure model, in the emulated load conditions; (7ii) data collection
and assessment analysis. Clearly, workload emulation (definition and
generation) is not necessary for in-production tests, yet it is impor-
tant at the current state of the practice given the limited availability

of SDN on-field deployments;

e The experimental evaluation, on a distributed testbed based on ONOS®

over Nokia AirFrame telco cloud technologies.
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1.3 Thesis organization

The dissertation is organized as follows.

Chapter 2 introduces the main concepts of Software-Defined Network-
ing, expected to become the paradigm underlying the next generation of
computer networks. It then presents a discussion on the current state of
art, and the identified open challenge, namely the resilience assessment of
SDN controllers.

Chapter 3 surveys the literature on SDN architectures and platforms,
and in particular on their resilience mechanisms, and on failure injection
testing techniques and tools for the assessment of software intensive systems.
It then discusses the opportunities envisaged in the proposed application of
failure injection methods to the problem of assessing the resilience of SDN
controllers.

Chapter 4 presents the SCP-CLUB (SDN Control Plane CLoUd-based
Benchmarking), a cloud-based benchmarking framework designed for per-
formance analysis of a telco cloud-based SDN control plane. SCP-CLUB
provides the automated tools to deploy and test SDN infrastructures, al-
lowing telco operator to perform the assessment of SDNs in controlled as
well as in-production environments. The Chapter describes the implemen-
tation of the proposed framework based on the ONOS® distributed SDN
controller. The results of extensive experiments in an industrial telco cloud
infrastructure are presented, showing the effectiveness of SCP-CLUB in au-
tomating performance evaluation campaigns.

Chapter 5 presents the vision of continuous and in-production testing,

and describes the improvements made to the SCP-CLUB framework for the
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resilience assessment of SDNs. The central idea is the use of failure injec-
tion to assess the failure detection and mitigation mechanisms of SDN con-
trollers. The failure injection methodology and the support infrastructure
are presented along with the underlying failure model, listing the variety
of injectable failure types at system, network and service level. Then, the
chapter presents the ONOS-based implementation of the proposed failure
injection framework, and discusses the experiments by injecting failures into
ONOS®,

Chapter 6 summarizes the problem addressed in this thesis and its

main contributions.
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The only joy in the world is to begin.

Cesare Pavese

Chapter

Software-Defined Networks

The Chapter introduces the concept of software-defined networking and its logic
architecture. It then presents the major dependability requirements for SDNs, pre-
ceded by a short introduction of the basic concepts of dependability. Finally, the
open challenges in SDN dependability - and in particular, SDN resilience - are
identified, which drive the work of this dissertation.

2.1 Abstracting the Network: SDN

2.1.1 Key Concepts

Software Defined Networking (SDN) is an emerging paradigm to design,
build and operate networks. It originated from work started at University of
California at Berkeley and Stanford University in 2008, and it has increas-
ingly gained momentum from both the research and industrial viewpoints
in the computer networking sector.

The driving motivation was the need for a major shift in networking

technologies in order to support much easier configuration, management,

13
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operation, reconfiguration and evolution than in current computer net-
works. Indeed, network operation and management are challenging tasks,
and telecommunication operators and Internet and cloud service providers
face big issues in configuring large networks, enforcing desired policies, and
evolving to new technologies [4]. Computer networks are nowadays at the
basis of most critical infrastructures, and of the many services we access in
our daily activities - be they business, consumer, social or private. Large
network’s configuration and management is very difficult because enforcing
high-level policies requires specifying them in terms of low-level commands
of many proprietary, vertically integrated devices of different vendors [4].
These difficulties hamper the development and rapid provisioning of new
advanced protocols and services to the highly demanding modern and fu-
ture fixed and mobile applications. This motivation led to the definition of
a new paradigm, envisaging a layered network architecture.

The key concept (Figure 2.1) is the separation of the network control
logic from the network equipments that forward and transport the traffic [1].
Traditional networks are hardware-centric, and most network equipments
(e.g., routers and switches) are closed, in the sense they incorporate both
the control and data parts (Figure 2.1a), and have their own vendor-specific
interfaces. Replacing or simply updating protocols and services is very

complex because all equipments have to be replaced /updated [26]. In SDN
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Figure 2.1: Separation of data and control in SDNs.
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(Figure 2.1b), network devices are simply packet forwarding devices residing
in the so-called data plane, while the “brain” (the programmable control
logic) resides in the control plane, distinct and above the data plane;

network equipments are programmed via the control layer.

2.1.2 SDN Architecture

As shown in Fig. 2.2, the separation of the layers is realized by means of
open application programming interfaces (API), called Northbound In-
terface (NBI, towards applications) and Southbound Interface (SBI,
between the control and data planes). This concept allows co-existence of
the new paradigm with the traditional one; indeed, several current com-
mercial network equipments are hybrid, supporting both the new SBI and
traditional protocols. This should ease the transition to SDN architectures.

The logical entity hosting software defined core network services in the
control plane (e.g. routing, authentication, discovery) is known as SDIN
controller (or simply controller). It is responsible for enacting the policies
and the services required by applications, by issuing commands are receiving
events and status information from devices in the data plane (referred to as
SDN-enabled switches) through the SBI.

Much effort in the scientific and technological SDN literature has been

put on the Southbound Interface. The main southbound API is OpenFlow
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Figure 2.2: SDN architecture and interfaces.

[11], standardized by the Open Networking Foundation [27] (see Section

2.1.3), and supported by many leading network equipment vendors (such as

IBM, NetGear, NEC, HP).

Less emphasis has been put so far on the northbound interface and

protocols. The NBI is responsible to provide means to specify and request

network policies and services in an abstract way, independent from way they

are actuated by the controller. A promising proposal for the northbound

interface is the Intent-Based Networking (IBN) model [28] [25], adopted

in the ONOS project; it is described in Subsection 2.1.4.
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2.1.3 Standards and technologies

From a technological and industrial viewpoint, several initiatives have started
in the recent years to foster SDN development. A major initiative is the
Open Networking Foundation (ONF), a non-profit organization launched
in 2011 by Deutsche Telekom, Facebook, Google, Microsoft, Verizon, and
Yahoo!. ONF currently counts tens of partner companies and it has as mis-
sion the “promotion and adoption of Software-Defined Networking through
open standards development” [27]. Another relevant non-profit initiative is
the Open Networking Lab (ON.Lab), established by service providers,
network operators and network equipment vendors with the main goal of
building open SDN tools and platforms. ONF and the ON.Lab announced
in late 2016 they will join in 2017 under the ONF name to accelerate the
adoption of SDN.

The first ONF achievement is the OpenFlowTM Standard, enabling
remote programming of the forwarding plane [29]. OpenFlow provides the
interface between the control and data planes, enabling a seamless com-
munication between components in the two levels. OpenFlow was initially
proposed for technology and application experimentation in a campus net-
work [11]. It then gained momentum, up to be defined as an ONF standard

for the southbound interface between the control and the data plane.
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The ONOS project has been established to develop an open SDN-
based vision of the next generation networks, to go beyond current networks,
which are “closed, proprietary, complex, operationally expensive, inflexible”
[30]. The explicit goal is “to produce the Open Source Network Operating
System that will enable service providers to build real Software Defined
Networks” [30]. This goal is pursued by a community of partners including
many of the major industrial players in the field, be they network operators,
Internet service providers, cloud and data center providers, and vendors,
including AT&T, Cisco, Ericsson, Google, Huawei, NOKIA, NEC, NTT
Communications, Samsung, Verizon.

The project has promoted the development of ONOSs™ (Open Net-
work Operating System), claimed to be the first open source SDN net-
work operating system. ONOS is not the first open source SDN controller,
yet it is the first targeting scalability, high availability and high performance.
It has been conceived to overcome the limitations of previous controllers
such as NOX [7] and Beacon [8], which were closely tied to the OpenFlow
API and provided applications with direct access to OpenFlow messages -
in this sense, they did not provide the proper level of SDN abstraction to

applications, hence the need for a real SDN network operating system'.

Note that the term network operating system (NOS) some decades ago referred to
operating systems with networking features (such as the one by Novell); this obsolete
usage has been changed in [7] “to denote systems that provide an execution environment
for programmatic control of the network”. This is what is currently still meant with the
term in the context of SDN, which is probably why nowadays the terms SDN controller
and network operating system are often used interchangeably.
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2.1.4 Intent-Based Networking

In the ONOS view, the Intent-Based Networking model plays an important
role in specifying the network needs through a policy-management service
[24]. The idea of IBN is that applications should send requests or policies
to the control plane in the form of intents, specified in terms of what and
not in terms of actions to be taken in controlling the network, i.e. of how
they should be actuated (the slogan is: “tell me what you need not how to
do it!”). A simple example of an intent is the request to establish a point-
to-point interconnection between two nodes, complemented by performance
or service requirements, such as minimum bandwidth and duration.

An intent can be regarded as an object containing a request to the

network operating system to alter the network behavior. It may consist of:

Network Resources, the parts of the network affected by the intent;

Constraints, such as bandwidth, optical frequency and link type re-

quested;

Criteria, describing the slice of traffic affected by the intent;

Instructions, i.e. actions to apply to the slice of traffic of interest.

The IBN model abstracts the specification of the needs of workloads
consuming network services (the “what”), from the way the network in-

frastructure satisfy those needs (the “how”). This is meant to be achieved




Chapter 2. Software-Defined Networks 21

through a policy-management service at the northbound interface of the
SDN controller; the latter is in charge of translating the network policies
into corresponding control actions, e.g. flow rules installation.

The intents specify at a logical level the actions requested, then the
SDN is in charge of satisfying them by directly interacting with the physical
devices. By doing so, the IBN framework abstracts the network complexity
allowing network operators and applications to describe policies rather than

low level instructions for the devices.

2.2 SDN Dependability

2.2.1 Basic Dependability Concepts

Dependability of a system or a service is a concept encompassing several
quality attributes (Fig. 2.3), namely availability, reliability, safety, confi-
dentiality, integrity and maintainability, with confidentiality, integrity, and

availability being part of the composite attribute security [18].

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Dependability Security

Figure 2.3: Dependability attributes (Avizienis et al., 2004).
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Reliability expresses the continuity of correct service. It is the proba-

bility that the system functions properly in the time interval (0, ¢):

R(t) = P(!failure in (0,1)). (2.1)

Typically, reliability is evaluated through widely spread metrics such as
Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF)
and Mean Time To Repair (MTTR).

Availability expresses the readiness for correct service. It is the prob-

ability that the system functions properly at time :

A(t) = P(!failure at t)) (2.2)

and it is often expressed as uptime divided by total time (uptime plus down-

time); often, it is computed as the ratio:

A MTTF B 1 (2.3)
 MTTF+ MTTR 1+ MITE ’

which shows that for improving availability, it is important to reduce the
ratio between MTTR and MTTF, by increasing the mean time to failure
and/or by reducing the mean time to repair.

Safety is the absence of catastrophic consequences for the users and
the environment. Confidentiality is an information security property; it
is the property of a system to be able of not making available or disclosing
or making understandable (protected) information to unauthorized indi-

viduals, entities or processes. Integrity is the property representing the
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absence of improper alterations, may they concern - for instance - system,
messages or data. Maintainability is the ability of a system to undergo
modifications and repairs.

In this dissertation, we do not deal with safety, confidentiality, integrity
and maintainability, and in the next Section we will focus on the dependabil-
ity requirements placed on software-defined networks concerning availability,

reliability and scalability.

2.2.2 SDN Dependability Requirements

In a software-defined network, although logically centralized, the controller
is a physically distributed entity. This is because dependability require-
ments - mainly on scalability, availability and reliability - demand for its
engineering in a distributed architecture. If, as claimed, SDN is going to
become the technology of future networks, it has to fully address these
requirements. Telecommunication operators, for instance, are unlikely to
adopt SDN to replace existing carrier-grade networks unless SDN is proved
to be able to provide at least the same quality-of-service, while providing
greater flexibility and ease of management [16].

Scalability is not strictly a dependability attribute in the current clas-
sification, yet it is a major concern for SDNs. While certainly it is a fun-

damental design consideration for SDN controllers, this concern is often
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overlooked. It is a common belief that - differently from current networks,
where devices are often realized with specialized application-specific inte-
grated circuits (ASICs) - a logically centralized but physically distributed
software defined controller may not scale as the network grows. However,
this appears to be a wrong belief. As argued by Yeganeh et al [31], “there is
no inherent bottleneck to SDN scalability”. The issues of scalability in SDN
are similar as in any distributed system, and scalability is not inherently
harder to achieve than in traditional networks. That is, if a distributed
SDN is required to provide a unified network-wide view, solutions need to
incorporate distributed consistency protocols. If there exist limits for dis-
tributed systems, they are probably those stated in the famous Brewer’s
Conjecture [32], claiming that it may not be always possible to achieve
strong consistency, high availability and partition tolerance all together.
As for availability, the requirements on SDN are very stringent; these
are not different from those of current networks. If SDN have to be used
for basic yet critical services such as telephony, they are required to pro-
vide an end-to-end availability of five “nines” (i.e., 99,999%)? as in today
carrier-grade networks [33]. In current networks, this is achieved at the
cost of manual configuration and long deployment times [16]. The flexibil-

ity of SDN is very appealing from the point of view of telecommunication

2A five “nines” availability amounts to about five minutes of downtime per year.
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networks operators, but they are not going to sacrifice availability for main-
tainability. Achieving such high levels of availability when the network is
software defined may be hard and it requires careful design and accurate
implementation, but it is possible. However, recent work by Akella and Kr-
ishnamurthy [34] has shown that availability issues for SDNs systems are
more deeply rooted than those stemming from their complexity (see also
Sections 2.4 and 3.1.2.2).

Fault-tolerance is (along with fault prevention, removal and forecast-
ing) a means to increase the dependability of a system. It is clearly of
paramount importance for SDN, since in the event of a controller failure
the whole network can be compromised, because all applications and ser-
vices depend on it. All SDN controllers are engineered with mechanisms to
tolerate such events, and clearly fault-tolerance is one of the major tech-
niques used to ensure a high level of resilience. This dissertation proposes
failure injection as a testing technique to intentionally introduce failures,
representative of failure events which can actually occur at various levels
in SDN networks, so as to evaluate the controller’s fault-tolerance mecha-
nisms, and more in general to assess the extent to which a controller is able

to provide the desired level of resilience.
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2.3 SDN Resilience

The concept of resilience (or resiliency) has multiple definitions, as it has
developed in different disciplines, including physics, psychology, ecology, en-
gineering. Very likely, the term originally referred to a property of a physical
material or of an entity, but the concept is now applied also to networked
systems or organizations. Despite the different definitions, quoting from [35]
there are “three elements present across most of them: the ability to change
when a force is enacted, [to] perform adequately or minimally while the
force is in effect, [to] return to a predefined expected normal state whenever
the forces relents or is rendered ineffective”.

In engineering, the term somehow intuitively conveys the notion of the
ability to survive to unintentional or malicious threats (failures, attacks,
etc.) and to resume normal operating conditions; we can say that the re-
silience of a system is often thought as its ability to provide and maintain
an acceptable level of performance or service in presence of failures. It is
worth to explicitly point out that resilience is a macroscopic-scale property
of a system, i.e., a property of the system as a whole [35].

According to [36], computer network resilience is the ability to provide
and maintain an acceptable level of service in the face of faults and chal-
lenges to normal operation. In [37] network resilience is defined as the ability

of a network to defend against and maintain an acceptable level of service in
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the presence of challenges, such as malicious attacks, software and hardware
faults, human mistakes (e.g., software and hardware misconfigurations), and
large-scale natural disasters threatening its normal operation.

In [38] the resilience of systems has been evaluated by means of a time-
dependent indicator, known as figure-of-merit F'(e), which is a quantifiable
indicator of the performance of the system. As depicted in Figure 2.4, the
state of a system is characterized by a value of F'(e), directly affected by
the two events (the disruptive event and the corresponding recovery action).
Multiple indicators can be defined to provide a measurement of resilience,
concerning reliability, network connectivity paths, flows, etc.

In Figure 2.4, the system is initially “functional” at time tg, and this
state remains constant until the occurrence of a disruptive event at time
te, bringing the value of the delivery function of the system from its initial
value F'(tp), to the lower value F'(tg). Thus, the system is assumed to

function in a degraded mode from t. to t4, when it reaches the point where
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Figure 2.4: System behavior in the occurrence of a disruptive event.
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the functionality is considered to be entirely lost. The system remains in
such state until a recovery/repair action is initiated at time ¢, when the
system regains functionality, although in a degraded mode. As a result of
the resilience action, the system is considered recovered and fully-functional
at time ty, with delivery function value F(t). However, the final state,
reached by the system after the recovery action, does not necessarily have to
coincide with the original state of the system, i.e., the figure-of-merit F'(ty)
can be equal, grather, or smaller than F'(tg). Finally, the value of resilience

corresponding to a specific figure-of-merit function can be computed as:

A(t) = F(t) = F(ta)Flto) — F(tq) (2.4)

where 0 < A(t) > 1 for t € (t,,t) assuming that the recovery action
succeeds in restoring the functionality.

In recent years, the concept of resilience has been broadened to incor-
porate a notion of dependability also with respect to changes; indeed, it is
increasingly conceived as the capability of a system to remain dependable in
the present of changes. This probably comes from the work by Laprie [39],
who pointed out the need to address the growth of complexity of today
so pervasive computing systems, a need deriving from changes which can
be functional, environmental and technological. Laprie introduced scalable
resilience as a concept of “survivability in direct support of the emerging

pervasiveness of computing systems” [39].
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For the purpose of this thesis, the following definition - essentially pro-
vided in [40] - will be used: Network resilience is the ability to provide
and maintain an acceptable level of service in the face of failures.

Nowadays, resilience is a major requirement and design objective for
computer networks. This is due to the fact that computer networks are
at the basis of most critical infrastructures, subject to both unintentional

faults/failures and to malicious (cyber-)attacks.

2.4 Open Challenges

Notwithstanding the large literature on SDNs, there are several still open
problems related to the fulfillment of dependability and resilience require-
ments by SDNs. One of the reasons for this is that - quoting from [40] -
“there is almost no practical way to experiment with new protocols in suf-
ficiently realistic settings (e.g. at the scale carrying real traffic) to gain the
confidence needed for their widespread deployment”.

Availability may pose more threats to SDNs than those posed to
generic distributed systems. Akella and Krishnamurthy [34] have shown
that availability issues for SDNs systems are more deeply rooted than those
stemming from the complex and critical inter-dependencies among the var-
ious network and distributed systems protocols they use. The authors pro-

vide a case for this, which is worth presenting here.
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Let us consider the network in Fig. 2.5 (reproduced from [34]), where
C1 to C5 are controller replicas in a distributed control plane, and S1 to
S9 are switches in the data plane. Let us also point out that distributed
controllers incorporate consensus protocols such as Paxos [41] to ensure they
have a consistent view of network topology and data plane state even in the
presence of failures or disconnections. When the links between S4 and S6
and S4 and S8 fail, a network partition occurs. In this case, switches in the
data plane partition on the right cannot be updated since they can contact
only a minority group (C4 and C5) of the replicated controllers. If the path
between S6 and S8 managed by the control plane prior to the partitioning is
not wholly contained in the right partition, S6 and S8 cannot communicate
even if there is a path between them not affected by the failure. Such critical
situations undermine high availability. Clearly, legacy network protocols
do not suffer from this issue: when partitions happen, routers re-converge
to new intra-partition routes. Quoting the authors, the case they provide
shows that “current SDN designs fail to provide important fault-tolerance
properties, which renders SDNs less available than traditional networks in
some situations”. While there exist solutions to the problem described (e.g.
using partitioned consensus), they may address it only partially; specifically,
there may be consistency pitfalls in case of concurrent events. The authors

themselves proposed a solution - although they did not prove it - based on
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Figure 2.5: A case for availability threat in SDN (Akella, 2014).

a combination of the Chandy-Lamport snapshot algorithm [42], of reliable
flooding and of whole quorum consensus. However such mechanisms are
expensive, and while they appear to be sufficient, it is not clear if they are
all necessary.

Sharma et al. focus on fault tolerance and failure recover in Open-
Flow for deployment it in carrier-grade networks [40], as means to improve
SDN resiliency. Carrier-grade networks pose a strict requirement that the
network should recover from a failure within a 50 ms interval. They show
that OpenFlow may not be able to satisfy this requirement, and they pro-
pose a recovery action in the switches without involving the controller. As
for reliability, they briefly discuss as future work some possible approaches.

Di Martino et al. [16] present the resiliency challenges for future
carrier-grade networks based on SDN. They build on an analysis of outages
of current carrier-grade networks to identify three main factors impacting

the effectiveness of their failover mechanisms, namely: untested operational
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context, multiple failures during the failover window, and human/procedural

errors. Based on this, the implications drawn include:

e The need for new resiliency techniques and for new in-production ap-
proaches to testing (the authors mention those used in the Chaos
Monkey approach by Netflix [22] [43]). This is because SDNs are ex-
pected to reduce the service deployment time down to the order of

seconds; this in turn may imply reduced testing and assessment.

e The need for new failover mechanisms. This is because many mech-
anisms are programmed in today’s network devices, while in SDNs
failover will demand for interaction between various layers and among

different domains.

e Service business models driven by Service Level Agreements (SLA)
will require richer resiliency specifications and validation. This is be-
cause SDN will allow high flexibility, service provisioning will be more
dynamic (for instance, due to migration for resources’ optimization),

and service level will need to be validated dynamically.

Jain et al. [21] present B4, a practical example of a large scale imple-
mentation of an SDN-based WAN connecting the Google©’s data centers
around the globe. The authors provide implementation details about one of

the first and largest SDN deployments, which has shown to be efficient in
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meeting both performance, and reliability requirements. However, despite
the outstanding performance, B4 experienced an outage due to a human
error. Indeed, during a planned maintenance activity two physical switches
were configure with the same ID causing substantial link-flap errors, i.e.
their network interfaces continuously went up and down, and more proto-
col processing activities to discover the network topology. This has lead to
subsequent failures of the Google’s public network, affecting the network
connectivity of their customers.

Unpredictable events underlines that, as long as a system has been shown
to be robust as a result of testing activities, nevertheless it can fail in a pro-
duction environment, where operating conditions change and evolve over
time. Moreover, traditional software-testing tools are inadequate to
verify the resilience of such complex distributed systems against all potential
failure scenarios that can span across the whole system stack.

In summary, new approaches are needed for the automated verifi-
cation of SDN resilience while exercised by real workload conditions,
namely in production. Innovative approaches would allow to discover fail-
ure points otherwise difficult to detect by means merely of software testing,
helping to design better detection techniques, and building the right miti-

gation means to recover the system when real issues arise.
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Chapter

Related work

This Chapter surveys the literature on performance and resilience of software de-
fined networks and on software fault injection (SFI). First, it analyzes existing work
on the design of mechanisms for SDN controllers dependability, and on metrics and
techniques for the evaluation of their performance, reliability, fault tolerance an re-
silience. It then introduces SFI, the technique proposed in this thesis for resilience
assessment of SDN. Rather than providing a Systematic Literature Review, the goal
is: 1) to investigate the state of research on performance evaluation of SDNs as well
as techniques to ensure controllers’ resilience; ii) to provide a short background on
SFEI and on its application to dependability assessment.

3.1 SDN Performance and Resilience

3.1.1 Sources

Despite the fact that Software-Defined Networking is still a relatively young
field, the literature is rather large. This is due to the great appeal it has
encountered in both the academic and industrial sectors.

From a scientific viewpoint, at its beginning the SDN literature spread

35
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in publication venues traditional of the computer network and software de-

pendability fields, such as the IEEE/IFIP Conference on Dependable Sys-

tems and Networks (DSN), the IEEE Symposium on Software Reliability

Engineering (ISSRE), and all major journals and conferences on computer

networks, and on systems/software dependability. Currently, specific con-

ferences, conference series and journal special issues on SDN are really pro-

liferating. The main ones include:

The ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN); the series started in 2012 in Helsinki (FN);

The IEEE Conference on Network Softwarization (NetSoft), whose
first edition was held in London (UK) in April 2015;

The IEEE Conference on Network Function Virtualization and Soft-
ware Defined Networking (NFV-SDN) (from 2015, and in 2017 the
SDN-NFV Track in SAC Symposium at the IEEE International Con-
ference on Communication (ICC 2017);

The Research Track of the Open Networking Summit (ONS, since
2014 in conjunction with USENIX, the Advanced Computing Systems
Association);

The IEEE/IFIP Network Operations and Management Symposium
(NOMS);

The First International Workshop on Software Defined Networks and
Network Function Virtualization (SDN-NFV), in conjunction with

The Fourth International Conference on Software Defined Systems
(SDS-2017);

The European Workshop on Software Defined Networking (EWSDN),
whose first edition was held in Darmstadt (D) in April 2012;

The Special Issue on “Software Defined Networking”, September 2015,
and the upcoming Special issue on “SDN and NFV based 5G Hetero-
geneous Networks” of IET Networks;
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e The Special Issue on “Future network: software-defined networking”
of Frontiers of Information Technology & Electronic Engineering, July
2016;

e The Special Issue on “Management of Softwarized Networks”, Septem-
ber 2016, and the (upcoming) Special Issue on “Advances in Manage-
ment of Softwarized Networks” of IEEE Transactions on Network and
Service Management (TNSM);

e The Special Issue on “Software-Defined Networking and Network Func-
tions Virtualization for flexible network management” of the Interna-
tional Journal on Network Management (IJNM), November 2016;

e The Special Issue on “Management of SDN/NFV-based Systems” of
the International Journal on Network Management (IJNM).

e The (upcoming) Special Section on “Network Virtualization, Network
Softwarization, and Fusion Platform of Computing and Networking”
of IEICE Transactions on Communications (IEICE TC);

The existing literature on the evaluation of performance, reliability and
fault tolerance of SDN controllers has been searched in the above sources in
the networking and dependability research fields, and more in general in all
major scientific computer science and engineering databases, including IEE-
Explore, ACM Digital Library, Scopus, ISI Web of Science, Google Scholar.

It is described in the following subsection.

3.1.2 Related Work

Despite the bulk of work in the scientific literature, the research on SDN

performance and dependability can be considered still at the beginning.
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Clearly, the decoupling of control plane from the network devices and the im-
plementation of controllers as distributed systems inevitably make software-
defined networks inherit the weaknesses associated with reliable distributed
systems [34]. As recently stated in [16], “the specific benefits and risks that
SDN may bring to the resilience of carrier-grade networks remain largely
unezxplored”, and according to [44] “the dependability of SDN itself is still
an open issue”. The related work can be broadly categorized in SDN
benchmarking (i.e., the evaluation of performance and scalability of SDN
platforms), and SDN dependability (i.e., the mechanisms to ensure desired

dependability features by proper design choices).

3.1.2.1 SDN Benchmarking

SDN performance benchmarking is addressed in several studies [45]
[46] [47] [48].

Cbench [45] is a benchmarking tool of this type based on simulating a
configurable number of OpenFlow switches; it used in [46] to compute vari-
ous controller performance metrics (response time, throughput, latency) of
four controllers (NOX, NOX-MT, Beacon, and Maestro) based on Open-

Flow, probably the most widely known southbound APT [11].
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Jarschel et al. [47] proposed a flexible OpenFlow controller benchmark-
ing tool (OFCBench) to overcome various limitation of Cbench and previ-
ous tool (single threading, use of one controller connection for all emulated
switches). They also proposed an analytic (queueing) model for predicting
the performance of an OpenFlow architecture, in terms of packet sojourn
time and probability of lost packets [49].

Cbench is also used by Zhao et al. [48], who presented an evaluation
of five open-source controllers. However, it considers mainly centralized
controllers; distributed controllers, which are gaining momentum also for
addressing scalability, have more complex performance problems, ranging
from the placement of the replicas to their synchronization.

Prior to [48], Tootoonchian et al. [46] presented a study of four publicly-
available OpenFlow controllers, based on their Cbench tool [45]. This tool
measures the number of flow setups per second that a controller can handle,
and it supports two modes of operation: latency and throughput mode. A
further experience including the evaluation of performance in a wide-area
SDN is described in [21].

A crucial performance aspect for SDNs is latency. As pointed out
in [50], critical SDN mechanisms such as fast failover and traffic engineering
demand for the ability to program the data plane state at fine time-scales. In

their study, He et al. state that “timeliness is determined by: (1) the speed of
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control programs, (2) the latency to/from the logically central controller, and
(3) the responsiveness of network switches in interacting with the controller
[50]. While the first two factors are already being overcome by advances in
distributed controllers, the authors’ measurements show that the third one
may be critical even with most modern switches. The inbound and outbound
latencies (those concerning events generated by switches and those in the
execution of rules provided by the controller, respectively) are high and
variable. The study thus highlights the need for “careful design of future
switch silicon and software in order to fully utilize the power of SDN” .
Scalability metrics for the the SDN control plane are proposed in [51]
and [52]. The first metric specific for SDNs appears to be the one by Hu et
al. [51], who propose to compute scalability when the network scale varies

from N2 to N1 as:

o
Scalability U(N1,N2) = =5 (3.1)

where ¢(N) is the throughput of the control plane in processing network
requests, T (N) is the average response time per request, and C'(N) is the
cost to deploy the control plane. The authors evaluate the metric with
reference to three SDN control plane architectures — centralized, distributed
and hierarchical - by building performance models for the response time,
based on which they evaluate the scalability of the three structures.

While the previous metric considers throughput, average response time
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and cost, the metric proposed in [52] does not consider the deployment cost,
and assumes that the average flow processing time has to remain the same

when scaling. The metric they propose is:

Scalability f(W,0) = —, (3.2)

SIE=

where W and O are the workload and overhead, respectively; the former
is the number of flows entering the data plane, the latter is the number of

messages processed by the controller(s).

3.1.2.2 SDN Resilience and Dependability

Several research groups have coped with the problem of defining proper
mechanisms to ensure resilience and dependability for SDN controllers.
Heller et al. [53] have formulated the Controller Placement Problem,
the one of deciding - given a network topology - how many controllers need to
be used and where to place them to satisfy performance and fault tolerance
requirements. They are concerned specifically with wide-area networks and
with the minimization of propagation delays. Their study shows that the
answers to the two questions depend on the topology and on the metric
(a tradeoff has to be found between optimizing for worst-case or average-
case latency), that for most topologies adding controllers provides almost

proportional delays’ reduction, but surprisingly, in medium-size networks
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one controller location can be sufficient to meet current typical real-time
requirements. Clearly, one is not enough for fault tolerance.

SDN fault tolerance is addressed by Fonseca et al. [54], who propose
a primary-backup mechanism to provide resilience against several types of
failures in a centralized OpenFlow-based controlled network. In primary-
backup replication [55], one or more secondary (backup) replica servers are
kept consistent with the state of the primary server, and as the primary
server enters in a failure state, one (warm) backup replica is chosen to replace
the primary server. Hence, this approach is well suited where there is a
centralized control concentrating in one point of the network the information
that need to be replicated. The approach has been implemented in the NOX
controller, and has been shown to work in several failure scenarios, namely
abrupt abort of the controller, failure of a management application (client
running atop the controller), Distributed Denial-of-Service (DDoS) attack.
The authors conclude that the OpenFlow protocol proved to be appropriate
to support ease implementation of primary-backup replication.

Ross et al. [56] build on the previous work by Heller et al. formulating
the Fault Tolerant Controller Placement Problem, as the problem of
deciding how many controllers are needed, where they have to be deployed,

and what network devices are under control of each of them, in order to
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achieve at least five nines reliability at the southbound interface (the typi-
cal reliability level required by carrier-grade networks). They also propose
a heuristic to compute placements with such reliability level. Again, the
answers depend on the topology (rather than on the network size). How-
ever, it is possible to achieve fault tolerance in SDN by careful selection of
the placement of controllers.

SDN availability design issues are addressed by Akella and Krishna-
murthy [34]. They show that there may be situations where link failures
can compromise the proper functioning of portions of a SDN. This is due to
the fact that controller internal modules - specifically, distributed consensus
protocols, mechanisms for switch-controller or controller-controller commu-
nication, and transport protocols for reliable message exchange - can have
cyclical dependencies. This means that link failures can cause transient dis-
connections between switches and controllers or controller instances, which
in turn undermine high availability. What appears to be particularly critical
in SDN is the lack of robustness to failures which partition the topology of
controllers. In fact, it has to be noted that - since in SDN the control has
been taken out of switches and logically centralized in the control plane - it
may happen for two switches to be unable to communicate even if a physical
path between them does exist. The authors argue that current SDNs may

be unable to offer high availability, and they should be re-architected by
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including advanced mechanisms from the distributed systems theory, such

as reliable flooding and global snapshots.

3.2 Fault Injection Testing

Fault injection [57] is the technique of introducing faults in a system to as-
sess its behavior and to measure the effectiveness of fault tolerance or other
resilience mechanisms. Although much more recent than hardware fault in-
jection, Software Fault Injection (SFI) is today widely used too [23]. SFI
developed as it became clear that software faults were becoming a major
cause of systems’ failures. It proved to be effective for fault-tolerance and
reliability assessment for several classes of systems, such as distributed sys-
tems, operating systems, Data Base Management Systems, and it is nowa-
days recommended by several standards in critical systems domains [23].
SFT consists of applying small changes in a target program code, in a
way similar to mutation testing (a well-known software testing technique),
with the goal of assessing the system behavior in the presence of (injected)
faults, which clearly have to be representative of potentially real faults - or,
specifically, of residual faults, those which escape testing and debugging be-
fore software product release and may be activated in execution on-field [58].
In a SFI experiment, a fault is injected in the program, which is executed

under a workload, in turn representative of real operating conditions.
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Fault injection has been proposed by Cotroneo et al. [59] for dependabil-
ity evaluation and benchmarking of Network Function Virtualization Infras-
tructures (NFVIs). NFV is a field closely related yet different from SDN.
SDN and NFYV share the goal of fostering innovation in networking by means
of a shift to software-based platforms, that it to network programmability.
NFV refers to the virtualization of specific in-network functions (e.g., fire-
walls and VPN gateways) in order to reduce the dependency on underlying
hardware; this eases resource management, provides faster service enable-
ment and lowers OPEX (Operating Expenditures) and CAPEX (Capital
Expenditures). NFV solutions can operate in SDNs. While SDN is more
concerned with control plane programmability, NF'V mainly focuses on data
plane programmability. As for SDNs, NFV inherits performance and reli-
ability requirements from telecommunication systems. In their paper, the
authors define some key performance indicators for Virtualized Network
Functions (VNF), namely latency, throughput and experimental availabil-

ity, and propose fault injection for evaluation and benchmarking of VNFs.

Differently from the fault injection approach pursued in [59] for NFV,
we propose the use of failure injection for the assessment of the resilience
mechanisms SDN distributed controllers. The aim it to devise a methodol-

ogy suited for in-production assessment. In-production testing is gaining
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importance in all those dynamic contexts where traditional software testing
techniques in fabric (i.e. before deployment) are not deemed to be suited
anymore: one famous such case is represented by Netflix [22]. In the frame-
work of this dissertation, it means injecting failures at system, network or
service level during executions under a workload (which is not emulated but
real, in case of in-production testing), failures which have to be representa-
tive of events typically occurring in normal operation. The proposed failure

injection methodology is described in the next Chapter.

3.3 Failure Injection Testing: the Netflix approach

In defining a methodology to assess the resilience and the failover mecha-
nisms of SDN platforms we take inspiration from the failure injection ap-
proach proposed by Netfliz®. It is a multinational company providing
streaming and on demanded multimedia services to a wide range of users
around the world. In doing so, they engineered a very complex ecosys-
tem according to a “micro-services” architecture pattern, i.e. with multiple
small and independent services working together to fulfill a specific goal.
This leads to a dynamic operational context, where services are updated
or added at runtime without ever interrupting the system, making it im-
practical, or even impossible, to perform testing activities aimed to assess

possible system’s deficiencies and identify potential failure modes.




Chapter 3. Related work 47

Consequently, a methodology has been proposed to find possible weak-
nesses in a production system by observing its behaviour under the de-
liberate injection of failures. The execution of failure injection experiments

within a live production environment has three main advantages:

e [t allows a better assessment of the system by verifying its correct

behaviour in realistic production deployment and load conditions;

e It helps making the the system immune to possible failures;

e [t helps preventing outages that can affect system availability.

The methodology falls under the umbrella of the broader concept of
“Chaos Engineering” [22], [60], which is defined as the “discipline of experi-
menting on a distributed system in order to build confidence in the system’s
capability to withstand faulty conditions in production”. Specifically, this
discipline provides few practical principles meant to facilitate the testing

activities to uncover system weaknesses, namely:

e Definition of what is a normal system’s behaviour, i.e. the system

“steady state”, considering some measurable output of the system;

e Build a control system and an experimental one, with the latter used

for the failure injection experiment;

e Introduce disruptions on the experimental system to simulate real-

world events, such as server crashes, network failures etc.;
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e Compare the steady states of the experimental and control systems
to find possible deviations from the normal behaviour and build con-

fidence on system resilience.

Along with these chaos principles, Netflix proposes a Failure Injection
Testing (FIT) platform to automate [61] [62] the injection and monitoring of
arbitrary failures scenarios into specific targeted services or system subset,
aiming to support the implementation of systems that are resilient to failure.

Though inspired by the Netflix’s approach, the failure injection assess-

ment methodology proposed in this dissertation differs in several aspects:

(i) It targets distributed SDN platform to perform a resilience assess-
ment under failure scenarios, aiming to verify if such systems provide

suitable failover mechanisms;

(ii) The framework reproduces failure scenarios which are representative
for SDN ecosystems, e.g. faulty communications between SDN con-

trollers, or a faulty controller’s service;

(iii) It is meant to perform both offfine, and in-production assessment,
since the SDN technologies are still in very early stages to be deployed

in a real production environment;

(iv) It provides measurements which give valuable insights into the perfor-

mance and resilience of the SDNs.




What cannot be assessed
cannot be claimed.

Chapter

SDIN Control Plane
CLoUd-based Benchmarking

This chapter presents SCP-CLUB, a benchmarking framework for performance
analysis of a telco cloud-based SDN control plane. First, an overview of the generic
framework and its tool suite is given. Then, a detailed description is provided of the
design and implementation of an ONOS-based instance of the framework. After-
words, an experimental campaign is presented, showing the effectiveness of the pro-
posed framework in automating very long sessions of experiments for benchmarking
a telco cloud SDN. The last section presents and discusses the experimental results.

4.1 Introduction

Telco Cloud is an emerging paradigm in the engineering of telecommunica-
tion infrastructures and services, which promises to make their management
much more agile [12] [15]. Telecommunication (telco) operators are expected
not only to be more and more software driven - with the adoption of soft-
warization technologies, such as SDN and NFV, in replacing the dedicated
telco hardware boxes - but also to increasingly adopt a cloud computing ap-

proach to automate the management of their infrastructures and services.
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The combined use of these softwarization technologies [1] [63], cloud
and virtualization technologies has the potential to support in meeting the
requirements of future networks in terms of elasticity, scalability, and re-
siliency to mutable network conditions, unpredictable traffic patterns, and
continuous streams of services. However, it is still not clear for telco op-
erators how these technologies can be best leveraged to meet such highly
demanding requirements with carrier-grade service-level guarantees [16].

In a virtualized and cloud-based operational context for SDNs, there
are several software layers and thousands of different setups, configurations,
and parameters to be properly fine tune in order to obtain specific levels
of service. For instance, Telco Cloud Orchestrators (such as XAAS, EC2
and VCLOUD) need automated tools and procedures to decide when to
scale up or down the resources running the telco-cloud control (e.g., virtual
machines and SDN controller instances). The ability of automating the
performance analysis of these emerging technologies, combined to the cloud-
based infrastructures is fundamental in the telco cloud scenario. No proper
techniques and tools are available so far to address this task.

This chapter presents SCP-CLUB, an automated benchmarking frame-
work for performance analysis of a telco cloud-based SDN control plane.

SCP-CLUB provides the following features:

e a configurable load generator for SDNs benchmarking;
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e cloud automation and orchestration tools to enable parallel bench-
marking experiments for computing relevant performance assessment

metrics using idle cycles of a telco cloud.

The load generator is based on the Intent-Based Networking (IBN)
approach (see §2.1.4). Cloud automation supports performance evaluators
in the many tasks of orchestrating and running benchmarking experiments
and collecting data at various software levels for the analysis, with the ulti-
mate aim of extracting actionable intelligence that can be used to manage

(e.g., scale up or down) the cloud resources running the control network.

4.2 State-of-the-art Progress

As we have seen in Section 3.1.2.1, several authors have dealt with the
problem of benchmarking SDN controllers. However, the literature focuses
essentially on measuring the intrinsic performance of single controller in-
stances with faked interactions with switches, or the performance at the
southbound interface.

Probably the most widely used tool is Cbench [45], and the most com-
prehensive evaluation of the major open-source SDN controllers is carried
out by Zhao et al. [48]. Their focus is on benchmarking one controller
managing a variable number of switches. They consider Cbench suited to

provide accurate results, in that it fakes switches just as “kind of traffic
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generators able to send packet_in messages as fast as possible”. Moreover,
measurements are taken sending traffic through the local loopback interface,
to eliminate also the link bottleneck.

Rather than focusing on the performance of single instances of con-
trollers without significant requests from applications and with faked inter-
actions with switches, SCP-CLUB takes a different perspective. It considers
really distributed controllers in a cloud-based and virtualized deployment;
by generating and submitting synthetic yet realistic work loads in terms of
intents to be actually processed, it allows to investigate the performance of
the control plane related to the whole workflow of installing and translating
application requests, up to sending commands with flow rules to the data
plane and checking their successful processing by the controlled switches.
To this aim, both intent installation and withdraw requests are generated
and submitted to the control plane at the northbound interface. SCP-CLUB
allows also to evaluate the impact on performance of the main configuration
parameters, so as to derive hints for their proper configurations.

SCP-CLUB has some similarities with the approach used in the Per-
formance and Scale-out Test Plan [64] designed to characterize ONOS la-
tencies, throughput and capacities (again with Cbench): both use a load
generator producing self-adjusting intent install and withdraw requests, and

both make measurements as the number of controllers instances in a cluster
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scales up. There are however substantial differences.

First, the ONOS performance test plan and results described in [64] are
based on “a set of Null Device Providers at the adapter level to interact
with the ONOS core. The Null Providers act as device, link, host producers
as well as a sink of flow rules”. Using such dummy stubs, the ONOS per-
formance figures typically reported in the literature intentionally disregard
Openflow adapters and interactions with real or emulated switches. From
the point of view of telco operators, this means that such figures can not
be trusted to assess the suitability of a controller for use in a carrier-grade
SDN. Moreover, the ONOS performance metrics available in the literature
are made generating a load to the highest rate ONOS can sustain with
synchronous requests. SCP-CLUB is designed to assess actual controller
performance with concrete intent requests, complete processing of requests
by the controller (intent compilation, installation and removal), and real
or emulated topologies considering failures in the data plane (which indeed
occur in reality). Finally, SCP-CLUB is based on cloud and virtualiza-
tion technologies, and it is designed to analyze performance figures such as
throughput and latency in real industrial SDN cloud testing datacenters.

The next section introduces the generic SCP-CLUB framework, while
Section 4.4 presents an implementation based on the ONOS open source

SDN controller [10]. Section 4.5 shows the results of experiments with a
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No amount of experiments can prove
that I am right; a single experiment
can prove me wrong.

Albert Einstein

Chapter

SDN Resilience Assessment:
a Failure Injection Tool Suite

The Chapter describes the failure injection methodology and a framework for con-
tinuous assessment of the reliability and resilience of SDN technologies. To this
aim, the already presented SCP-CLUB framework is extended with a configurable
and distributed software infrastructure for failure injection. The Chapter then de-
scribes the steps of the methodology, which encompasses the definition of a workload
to bring the SDN platform under assessment in a state where to inject failures ac-
cording to the failure model; the workload is based on the Intent-Based Networking
model. A failure model is presented, describing the variety of injectable failure types
at system, network and controller level. Then the Chapter describes the logical ar-
chitecture and components of the distributed software, along with its implementa-
tion details. Finally, the Chapter terminates with the experimental campaign, and
results, aimed to evaluate the resiliency of the Open Network Operating System

(ONOS,).

5.1 Assessment Methodology

5.1.1 Overview

The knowledge on how failures may affect software systems is of paramount
importance to improve their resilience and reliability. With the complex-

ity of modern distributed systems, the design of effective detection and
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mitigation mechanisms can no longer rely exclusively on software testing
techniques in controlled environments. Indeed, it is impractical to fully re-
produce a complex operational context. In SDNs, for instance, it has been
shown that a faulty SDN application can compromise or crash the whole
SDN network [86]: while SDN controllers software is likely to stabilize, even
the application plane may be a vehicle for dependability threats. Therefore,
in the engineering of software network services, it is a key goal to be able
to test the proper functioning not only in controlled environments, but also
in-production, under real operating conditions.

Figure 5.1 depicts a high-level view of the approach, where failure injec-
tion is exploited to continuously assess the reliability and resilience of the
network services against a wide range of failure scenarios. This will provide
continuous feedback on the capabilities of the softwarized network services
to survive failures, which is of fundamental importance for improving the
system internal mechanisms to react to anomalous situations potentially oc-
curring in operation, while its services are regularly updated or improved.
To this end, failures are injected in different layers of the telco cloud infras-
tructure (Figure 5.1), namely: (i) at data-plane level, to emulate faulty
network appliances, e.g. by injecting Bit Error Rate (BER) or packet la-
tency and corruption at switchs’ port level; (ii) at infrastructure level,

to emulate faulty physical nodes or virtualized hosts; and (7ii) at control
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Figure 5.1: In-production continuous testing in Telco Cloud.

plane level, to emulate faulty network controllers.

With this approach in mind, the chapter’s aim is pursued through the
use of software failure injection to deliberately introduce failures in the com-
ponents of the system under assessment, or in their execution environment,
under real or emulated load scenarios, to evaluate the system behaviour
under (possibly unforeseen) disruptive conditions. Specifically, it focuses
on the resilience of the control plane layer, and proposes a methodology
and a tool suite to validate the reliability and resilience of distributed SDN

platforms.

5.1.2 Failure Injection Methodology

The proposed methodology aims to assess the effectiveness of the failure

detection and mitigation mechanisms provided by the SDN technology by
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That’s all folks.

Popular TV cartoons closing

Chapter

Conclusions

We summarize the research problem addressed and the main contributions provided
by this dissertation.

In the era of the highly and always connected information society, Softw-
are-Defined Networking is a very hot research area, and SDN are foreseen to
have a huge potential market in the forthcoming years. Among the several
open issues, this dissertation has identified two still open research problems:
i) assessment of SDN performance and i) in production assessment of SDN
failure resilience, with reference to real industrial telco cloud data centers.
Their relevance is due to the fact that network operating systems (SDN
controllers) are very complex distributed systems - subject to performance
and dependability requirements as severe as those of current carrier-grade
networks - for which current experimental evaluations cannot be trusted
by telco operators, and traditional software testing techniques appear in-

sufficient for dependability assessment, given the difficulty to reproduce the
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many potential failures which can actually occur in operation and may affect
at all levels their many software components.

The thesis has contributed to these research issues with a twofold pro-
posal. The presented SCP-CLUB framework automates experimental cam-
paigns for SDN performance evaluation in real telco cloud data centers.
As for the assessment of SDN failure resilience, the proposal extends SCP-
CLUB with the use of software failure injection. A methodology has been
devised for in-fabric test, as well as for in-production assessment, with the
aim of continuous testing. The methodology in complemented by an in-
frastructure specifically designed to be integrated with limited intrusiveness
into distributed SDN controllers, in order to support the execution of failure-
injection experiments.

The resilience assessment methodology and the infrastructure are con-
ceived to be usable in a controlled test environment, as well as in a normal
operational environment for future SDN platforms (including virtualized
and container-based SDN controllers). For in-fabric test, a workload con-
sisting of intents may be generated and then submitted to the platform.
Failures are injected during the execution, which is monitored so as to gather
data of interest for analysis. Failures belong to a failure model representa-
tive of typical classes of events occurring in operation at network, system

and service level. For in-production assessment, failures are injected when
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the controller under assessment is subject to normal operating conditions
(under the real load). A set of metrics to evaluate controllers’ resilience to
failures have been proposed, too.

The proposed SCP-CLUB framework and the failure injection infras-
tructure have been implemented and experimented with reference to the
open-source ONOS™™ network operating system. The workload is auto-
matically generated based on the Intent-Based Networking (IBN) model.
The implementation is based on the Linux, Java, Apache ActiveMQ and
Apache Karaf technologies.

The experimental evaluation has shown that the framework can be ef-
fectively applied to assess the performance of SDN deployments in telco
clouds, and the controllers’ resilience mechanisms (for failure detection and
mitigation), as well as to quantify system availability and reliability. The
experiments have been performed at the prestigious Murray Hill NOKIA
Bell Labs in New Providence, New Jersey, USA, in the framework of a
continuous and in-production testing strategy for the future generation of

network solutions.
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