
+ Via Claudio, 21 - 80125 Napoli - ([+39] 081 76 83813 - 4[+39] 081 76 83816

	

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II
Dottorato di Ricerca in Ingegneria Informatica ed Automatica

MODEL-BASED VERIFICATION OF

OPERATING SYSTEMS DEVICE DRIVERS

FRANCESCO FUCCI

Tesi di Dottorato di Ricerca

(XXVII Ciclo)
Marzo 2015

Il Tutore
Prof. Domenico Cotroneo

Il Coordinatore del Dottorato
Prof. Francesco Garofalo

Dipartimento di Ingegneria Elettrica
e delle Tecnologie dell’Informazione

A.	 D.	 MCCXXIV	
	

Comunità	 Europea	
Fondo	 Sociale	 Europeo

	

MODEL-BASED VERIFICATION OF

OPERATING SYSTEMS DEVICE DRIVERS

By

Francesco Fucci

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

VIA CLAUDIO 21, 80125, NAPLES, ITALY

MARCH 2015

c© Copyright by Francesco Fucci, 2015

‘‘To my mother, for her constant support.”

Abstract

Critical systems depend on software more than ever. In particular, off-the-shelf operating

systems (OS) have a central role in the development of critical systems. Unfortunately, OS

are plagued by software defects that threaten their reliability, since verification techniques

are still not enough cost-efficient to prevent such defects. In particular, empirical studies

found that defective device drivers are the major cause of failures of operating systems.

Therefore, more sophisticated techniques are needed in order to make the verification of

device drivers more cost-efficient.

This thesis addresses this problem by proposing three solutions for detecting software

defects in device drivers. The thesis first proposes a methodology that enhances symbolic

execution with model-based verification. The idea is that the developer provides a model

of expected interactions between the device driver, the operating system and the device,

based on documentation and domain expertise about the OS and the device. We propose a

language (SLANG) and a run-time support (SymCheck) to ease the developer in specifying

behavioral models and checking them through symbolic execution.

The second contribution of this thesis is an enhanced platform for improving the speed

of symbolic execution. This platform is based on an efficient representation of intermediate

code, which can achieve an average speed-up of 3x compared to a state-of-the-art symbolic

execution platform.

Finally, this thesis provides an approach for run-time verification of the behavior of device

driver. The idea is that device drivers behave correctly in most cases, and that anomalies

in their behavior are symptomatic of failures. Therefore, the approach uses failure-free

execution traces of the device driver, to extract a model of the expected behavior. Then,

this model is used to generate a device driver monitor, which inspects the state of the device

iii

driver in order to detect divergences between the expected behavior and the actual one.

The proposed approaches have been applied on device drivers from the Windows and

Linux OS, showing their applicability and usefulness on real-world off-the-shelf OS.

iv

Table of Contents

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 State of the Art: Verification of Device Drivers 8

1.2.1 Device Drivers Testing . 8

1.2.2 Static Analysis . 10

1.2.3 Symbolic Execution . 12

1.3 Open Issues . 19

1.4 Thesis Contribution . 20

1.5 Thesis Organization . 23

2 Model-based Symbolic Execution for Device Drivers 24

2.1 Introduction . 24

2.2 Overview . 24

2.3 Specification . 26

2.3.1 The SLANG Language . 27

2.4 Checker Generation . 38

2.4.1 Translation of SLANG Resources . 39

v

2.4.2 Translation of SLANG Checkers . 42

2.4.3 Translation of SLANG Testsuites . 43

2.4.4 Translation of SLANG Verification Points 44

2.5 Instrumentation . 44

2.6 Verification . 45

2.6.1 Interceptor . 46

2.6.2 Event Dispatcher . 46

2.6.3 Exerciser . 47

2.6.4 Symbolic Execution Scheduler . 47

2.7 Implementation Details . 49

2.7.1 SLANG Implementation . 49

2.7.2 Runtime Support Implementation . 51

2.8 Evaluation . 52

2.8.1 Case 1: Resource Leak . 53

2.8.2 Case 2: Data Race . 54

3 Enhancing Performance of Symbolic Execution 60

3.1 Background . 61

3.1.1 Interpretation . 61

3.1.2 Dynamic Binary Translation . 63

3.1.3 Symbolic Execution Engines . 68

3.2 The Enhanced Symbolic Execution Platform 72

3.3 Evaluation . 77

3.3.1 Micro-benchmarks . 77

3.3.2 Windows XP Device Drivers . 80

4 Model-Based Run-Time Verification of Device Drivers 84

4.1 Background . 84

4.1.1 Runtime Verification . 85

4.1.2 Specification Mining . 86

4.2 The Proposed Methodology . 87

vi

4.2.1 Trace Collection Phase . 88

4.2.2 State Abstraction Layer . 89

4.2.3 Finite State Machine Generation . 92

4.2.4 Monitor Generation Phase . 95

4.3 Evaluation . 95

4.3.1 Overhead . 96

4.3.2 Effectiveness . 97

5 Conclusions 102

Bibliography 104

vii

List of Tables

3.1 Summary of performance enhancement in concrete execution. 78

4.1 Overhead of the monitor. 97

viii

List of Figures

1.1 Device driver defects taxonomy in the Linux kernel. 5

1.2 Harness for device driver testing. 9

1.3 SDV approach. 11

1.4 Carburizer approach. 11

1.5 A sample program for introducing symbolic execution tree. 13

1.6 Symbolic execution tree of the example in figure 1.5. 15

1.7 The design of the S2E platform. 17

1.8 A synthesis of the trade-off between cost-effectiveness and flexibility of current

approaches. 19

1.9 Overview of the model based verification approach for device drivers. 21

2.1 Symcheck workflow. 25

2.2 A part of the SLANG grammar. 27

2.3 Example of resource definition. 29

2.4 Example of checker definition. 31

2.5 Dynamic view of the multipath execution with checker enabled. 32

2.6 Example of testsuite definition. 33

2.7 Linux kernel structure net_device operations. 35

2.8 Memory mapped I/O. 35

2.9 Memory mapped I/O and symbolic hardware. 36

2.10 Example of testsuite definition. 38

2.11 Testsuite translated from SLANG to a configuration file used for instrumen-

tation. 43

ix

2.12 Verification points translated from SLANG to a configuration file used for

instrumentation. 44

2.13 Backend architecture. 45

2.14 A screenshot of the SLANG editor for specifying the language. 50

2.15 State machine of a DMA memory address space. 53

2.16 Example of a data race between device driver and device. 55

2.17 State machine of the DMA data race detector. 56

2.18 Message format to communicate events to the dispatcher. 56

2.19 Example of a DMA resource leak found in Linux pcnet32 device driver. 57

2.20 Device driver code instrumented with verification points 58

2.21 Fault injected in the Linux AMD pcnet32 driver. 59

3.1 Interpreter structure. 61

3.2 Interpreter loop for a PowerPC architecture. 62

3.3 Example of binary translation from x86 to PowerPC. 65

3.4 Symbolic execution of x86 code. 71

3.5 Enhanced platform design. 73

3.6 Guest x86 code sample. 74

3.7 The code translated in the TCG code format. 75

3.8 The LLVM translated code for the code in figure 3.6. 76

3.9 Translation x86 to TCI. 76

3.10 A micro benchmark used for estimating the overhead in concrete mode. . . . 78

3.11 Opening a symbolic file of 512 bytes with forking disabled. 79

3.12 Opening a symbolic file of 1 megabyte with forking disabled. 80

3.13 Speedup. 81

3.14 Breakdown of the time spent in each part of symbolic execution engine. . . . 82

3.15 Comparative performance on completed paths 83

4.1 Workflow of the monitoring methodology. 87

4.2 An example of Linux SCSI device driver execution trace 89

4.3 Abstract log entry. 90

4.4 Command queue flags. 91

x

4.5 Metamodel of the finite state machines. 92

4.6 Model extracted from the Linux SCSI driver execution traces. 94

4.7 Overhead introduced by the monitor. 96

4.8 Command queue flags. 98

4.9 Monitor log part 1. 99

4.10 Monitor log part 2. 100

4.11 Monitor log part 3. 101

xi

Acknowledgements

Molte persone mi hanno sopportato e “supportato” nel corso di questi tre anni. Sembrerá

superfluo dire che ho imparato molto in questi anni, non solo dal punto di vista scien-

tifico ma anche dal punto di vista umano. Forse un paio di pagine non sono sufficienti per

ringraziare tutte le persone che mi hanno aiutato a crescere e maturare sia dal lato lavora-

tivo e accademico sia lato di vita personale. In primis, ringrazio il mio advisor Domenico

che mi ha lasciato tutta la libertá che volevo, forse anche piú di quella che meritavo. Un

ulteriore ringraziamento va al prof. George Candea che mi ha ospitato nel suo labora-

torio a Losanna e mi ha reso partecipe di moltissime attivitá interessanti che ho trovato

estremamente formative. Un particolare grazie va a Roberto che mi ha seguito con estrema

pazienza, in particolare negli ultimi mesi di stesura della tesi. Grazie va anche ad Anto-

nio che mi ha dato molti consigli e ho scambiato molte opinioni nel corso di questi anni.

Ringrazio tutti i ragazzi del gruppo di ricerca che sono stati ottimi compagni di avventura

alcuni che conosco dall’inizio altri che si sono uniti alla squadra nel corso di questi anni:

Anna, Flavio, Domenico, Roberto, Fabio, Raffaele, Ugo, Luigi, Alma, Luca, Ken, Salvatore,

Mario, Daria, Emanuela. Spero di non dimenticare nessuno :)

Nella mio soggiorno in Svizzera ci sono state alcune persone fondamentali nella mia vita

di tutti i giorni. In primis, le mie cugine Maria Carmela,Consuelo e Caterina con Fabio ed

Enzo che con me sono stati fantastici. Poi ringrazio di cuore Matteo che é stato un ottimo

amico e compagno. Un altro sentito grazie va ai ragazzi del DSLAB dell’EPFL Cristian,

Silviu, Loic, Amer, Stefan, Baris, Jonas e Vova che mi hanno ospitato e coinvolto sin da

subito, ricordo con piacere le tante sfide a FIFA 2014 e cene in giro per Losanna. Ringrazio

in particolare Vitaly per avermi aiutato e insegnato molte cose per tutto il periodo della mia

internship.

1

2

Dal lato personale, devo ringraziare altrettante persone. Inizio con la mia famiglia che

mi ha aiutato a superare i momenti piú bui che ho attraversato soprattutto nell’ultimo anno

e mezzo. Mia madre che mi ha sempre ascoltato ed é stata sempre la prima a credere in

ogni mia iniziativa, mio padre che ha cercato sempre di farmi ragionare data la mia estrema

impulsivitá. I miei fratelli Luca, Cristina e Valentina che sono le risorse piú preziose che ho,

che mi sono sempre accanto. I miei amici di sempre Mario, Delio e Salvatore che insieme

a mio fratello hanno sopportato negli ultimi mesi la mia assenza e irritabilitá. Nonostante

tutto un grazie va anche a Claudia che mi ha ascoltato anche quando c’era tutt’altro nella

sua testa. Infine voglio ringraziare anche Alessia che negli ultimi mesi mi é stata molto

vicina.

Con affetto,

Francesco

Chapter 1

Introduction

1.1 Motivation

Modern critical systems differ considerably compared to critical systems developed twenty-

years ago. Nowadays, critical systems offer plenty of more sophisticated functionalities.

Smartgrids, which allow an intelligent and autonomous management of electrical energy

dispatching, are replacing old electrical infrastructure. Autonomous driving is becoming

a real opportunity and it is emerging progressively. Google estimated that in 2017-2020

self-driving car are going to be available on the market [1]. The implementation of such

sophisticated functionalities require more complex code that continuously grows in terms of

program size and interactions across components.

The augment of software complexity entails the increase of software defects. It seems

that the relationship between the program size and the number of software defects is roughly

linear, even in mature software [2]. Further studies reported the average number of software

defects in real code. In code used in business critical systems, the average number of errors is

1

Chapter 1. Introduction 2

about 15-50 errors per 1000 lines of delivered code. Microsoft reported about 10-20 defects

per KLOC during in-house testing, and 0.5 defect per KLOC in released product [3]. A

report shows that in spacecraft software the number of defects is 3 per KLOC during in-

house testing and 0.1 defect per KLOC in released products [4]. NASA reported an average

of 0.0004 defects per KLOC.

Despite the advances in verification methodologies and program verification tools, even

in safety critical systems, software defects still remain one of the main cause of computer

systems failures. For this reason, safety critical standards impose strict requirements about

software dependability, demanding very expensive verification activities to satisfy certifica-

tion criteria. The standards ISO26262 [5] and DO-178B [6] define strict verification require-

ments. The level C of DO-178B certification involves both coverage of low-level requirements

and exhaustive structural testing, that is, achieving 100% statement source code coverage.

For higher levels of certification the verification requirements are even more strict. System

testing is the most expensive development activity. Normally, this is about 40% of the total

development costs but for some critical systems it is likely to be at least 50% of the system

development costs [7].

To reduce the costs of reimplementing functionalities from scratch, the current trend

is to build safety critical system using OTS (off-the-shelf) components. In particular,the

operating system (OS) is one of the main OTS component used everywhere in all modern

Chapter 1. Introduction 3

software systems. Unfortunately, requirements dictated by the standards clash with the

huge complexity of modern OS. On the one hand, the application of formal methods to prove

software correctness is not practicable for the current needs: proving the correctness of seL4

OS required around 20 person years for 9,300 lines of code [8]. Hence, it is unrealistic to

scale such techniques to real world software, that is hundred times larger than seL4. Today,

the challenge is to devise more cost-efficient approaches to scale verification of OS. A study

reports that the test effort increases exponentially with test coverage, i.e, the cost required

to reach the 91% from the 90% of statement coverage is significantly higher with respect to

the required to reach the 51% from 50% of statement coverage [9].

Several studies analyzed the cause of failures in OS. An experimental study performed

on Windows XP shows that kernel extensions were responsible of the 85% of the entire

fraction of known crashes [10]. Kernel extensions are pluggable modules that enhance OS

capabilities, e.g., filesystems and device drivers. A further study reports that device drivers

cause more failures than faulty hardware [11]. Device drivers are indeed the Achilles’ heel

of operating systems reliability. An empirical study on the Linux kernel [12] estimated that

the number of defects in device driver code is 3-7 higher with respect to the other parts of

the kernel. An example that shows the impact of OS failures in critical systems involved

the famous Mars Pathfinder mission [13]. In the first week after the landing, the Pathfinder

onboard computer, that ran VxWorks, spontaneously reset itself about half dozen times.

Chapter 1. Introduction 4

From that moment, every time the Pathfinder reset itself, data was delayed by a day. After

three weeks of work, the team at NASA discovered that the failure was due to a priority

inversion phenomenon [14]. According to the report, the problem did not manifest in the

verification phase because the antenna, that sent data on Earth, behaved faster than was

expected in the design phase. The RTOS (Real-Time Operating System) was unable to give

the right priority to the thread that sent data on Earth.

Device drivers realize the layer interposed between devices and OS kernel. The OS

kernel communicates with devices through device drivers on the behalf of applications. To

abstract the functionalities of classes of devices, OS kernels define interfaces. Device drivers

use these interfaces to completely mask the implementation details. Thus, applications can

communicate with class of devices without knowing the details regarding how the device

internally works. Drivers code interacts with several kernel components such as memory

management, bus and DMA interface. From empirical studies, potential defects include :

• incorrect use of OS resources such as dynamic allocated memory areas, DMA memory,

spinlocks, work queues [15, 16, 17].

• mastering complex kernel API that are often not well documented [17, 18].

What makes device driver verification really complex is the dense interaction across

drivers, devices and kernel. Device drivers abstract the behavior of a family of devices. A

study in the Linux kernel shows that a significant portion of device drivers support dozens

Chapter 1. Introduction 5

of devices [19]. Device vendors offer interfaces that allows to program their products accord-

ing to a certain standard such as IEEE 1394, SATA, SCSI. Concerning the communication

between drivers and devices, we can imagine the device interface as a union of three types

of registers: (i) state registers , (ii) command registers and (iii) data registers.

Device drivers send commands to the devices to perform an operation. Commands, as

side effect, can modify the device state. Device drivers use data registers to send data on

the behalf of the OS kernel to the device. The operations that the device driver can issue

depends on the state of the device. Therefore, given two equal inputs the device driver can

can react differently depending on the state reached by the device.

23%

19%

20%

38% Device Protocol Violations
Software Protocol Violations
Concurrency Faults
Generic Programming

Figure 1.1: Device driver defects taxonomy in the Linux kernel.

A communication between device driver, hardware and OS must follow rules that estab-

lish the correct timing, order and format of interactions. In particular, the device protocol

regulates communication with the hardware device, and the software protocol regulates the

Chapter 1. Introduction 6

communication with the OS. Each device embeds a unique protocol defined by the manu-

facturer. OS provides a common interface to overcome the diversity of devices e.g, different

Ethernet vendors. Figure 1.1 shows a taxonomy of device drivers defects in the Linux ker-

nel [17]. The study was performed on a complete kernel development history for 13 device

drivers acting on PCI, IEEE 1394, and USB bus types. The total defect database consisted

of 498 defects. Device driver defects were classified in four categories:

• Device protocol violations: occur when the device driver violates the hardware pro-

tocol, and may lead in a failure of the hardware to provide its required service. Ex-

amples of such kind of defects are are such that put the device in an incorrect state,

mis-interpreting the device state, issuing a sequence of commands to the device that

violates the device protocol, specifying incorrect timeout values. Device protocol vio-

lations are the 38% of the defects stored in the database.

• Software protocol violations: occur when the device driver violates the required pro-

tocol with the OS. All violations of expected ordering,format or timing in interactions

between the OS and the device driver. Ordering violations ,for instance, include for-

getting to wait for a completion callback, forgetting to release a resource or releasing

a resource in the wrong order, and falsely returning a success status from an operation

that failed. Software protocol violations are 20% of the defects stored in the database.

An example of OS protocol is one required to use DMA addresses, which are a limited

Chapter 1. Introduction 7

resource of the OS [20]. When a device driver maps a DMA address space, it must

eventually unmap it, in order to avoid the waste of DMA addresses.

• Concurrency defects: occur when a device driver incorrectly synchronizes multiple

threads, causing a race condition or deadlock. These kind of defects are not related to

a particular aspect of the driver functionality, but rather to the model of computation

enforced by the OS on device drivers. All the device drivers are involved in concurrent

activities such as handling I/O requests, processing interrupts, and dealing with power

management and hot-plugging activities. Concurrency defects are the 19% of the

defects stored in the database.

• Generic programming defects: this category includes common coding errors, such as

memory allocation errors, typos, missing return value checks, and program logic errors.

Generic programming defects are the 23% of the defects stored in the database.

Concurrency is a further source of complexity. Typically a device driver stands in an

extremely concurrent environment. Subtle synchronization issues may lead to bugs such as

race conditions and deadlocks. These bugs appear in particular kernel thread interleavings.

Furthermore, device drivers are the major contributor of the entire OS kernel source code.

Latest version of the Linux kernel (3.19-rc5 reported at the time of this thesis) has over 10

million LOC code whereas the number of drivers LOC is around 6.6 million. Approximately

Chapter 1. Introduction 8

the 66% of the Linux kernel code is device drivers. All these aspects contribute in making

the development and the testing of device driver a stressful endeavor.

1.2 State of the Art: Verification of Device Drivers

Assessing device drivers is a stressful and error-prone task. Researchers developed several

approaches to augment the effectiveness of device drivers verification techniques. Verification

checks that a product i.e., OS component satisfies a set of design requirements, e.g., the driver

sends correctly a write command. Today, developers start using verification techniques that

mix static/dynamic analysis techniques to find in device drivers code bugs causing memory

leaks, null pointer dereferences, race conditions and deadlocks. In the following section we

describe the main approaches for assessing device drivers.

1.2.1 Device Drivers Testing

Device drivers accept inputs from two sources: (i) the OS kernel, (ii) the device. Figure

1.2 depicts how the device driver layer interacts with the OS kernel and the hardware layer.

Devices store commands and states inside their internal registers and trigger signals that

are accepted by the OS kernel and forwarded to the device driver. Conversely, OS kernel

invokes device drivers entry points to satisfy application requests. Thus, to test a device

driver, a developer should provide a set of inputs that come both from the device and the

OS kernel.

Chapter 1. Introduction 9

HW

Device driver layer

App

System call interface

File
System

Memory
Manager

Network
Stack

interrupts

memory!
allocation !
requests

commands

Figure 1.2: Harness for device driver testing.

Generally speaking, testing is not exhaustive and it is unsatisfying for several reasons.

The current state of the practice is to test the device driver behavior under high system

loads. The Linux Test Project [21], for instance, aims at delivering test suites to the open

source community that validate the reliability, robustness, and stability of Linux. LTP is

a joint project started by SGI, developed and maintained by IBM, Cisco, Fujitsu, SUSE,

Red Hat. Testsuite contains a collection of tools for testing the Linux kernel and related

features, e.g, disk stress test.

Other approaches, based on fault injection, simulate device faulty behavior. D-Cloud

[22] implements FaultVM that emulates faulty hardware. The fault injector of FaultVM

is implemented in the same layer of the virtual hardware. When a faulty instruction is

executed the system can inject faults in two ways: (i) placing I/O hooks on read/write

operations that modify the read/written value to a faulty one; (ii) the direct modification

Chapter 1. Introduction 10

within the virtual hardware device.

Testing techniques require a tremendous effort. The first factor is that use ineffectively

the resources because the test harness randomly chooses inputs and events. Thus, hours of

testing may lead in covering always the same code portions.

1.2.2 Static Analysis

The idea behind static analysis is to analyze all the paths of a program without actually

executing the code. By providing specifications about the behavior of a program, developers

achieve report with summaries about potential problems inside the code. Key approaches,

in the static analysis of device drivers area, are three: Metal [23], SDV [18], Carburizer [24].

Metal introduces meta-level compilation, a language that allows to specify rules at com-

piler level. The MC compiler extension checks the code and it verifies that the code obeys

to the declared rule. A prototype of MC was an extension of GCC with the capability of

extra functionalities that enable a custom plugin to attach to the abstract syntax tree and

verify protocols.

SDV engine checks temporal safety properties of sequential C programs. SDV uses SLAM

a static analysis engine to find kernel API usage errors. A temporal safety property is

violated iff. there exists a finite execution path in which the property is not valid. The

API usage rule is described through a model that has a static set of state variables and

a set of event and state transitions on event. To verify the device driver, SDV uses the

Chapter 1. Introduction 11

same trace seen before?

true bug?

yes

bug found?

yesno

yes

no

no (with refinement

information for

abstraction)

no

yesapplies?

Rule

failure

Abstraction

applicable

Buggy trace

found!

Instrument

Environment

model

check

Driver passes

code

Driver source

API usage

rule

Rule is not

Abstract

Check

Refine

Figure 5: SDV’s analysis engine’s architecture

ure 1(b). Figure 6(b) shows the instrumented version of the
code from Figure 6(a). Note that calls to the appropriate
functions (from Figure 1(b)) are introduced at labels A, B,
and C in Figure 6(b).

This serves to convert the API usage checking problem
into a reachability problem: the function error() is called
by the composite program (driver + rule + environment)
if and only if the device driver violates the API usage rule.
SDV’s task is then to check that error() is not reachable in
the composite program. If, during the instrumentation step,
we discover that no event that triggers a call to error()

can be instrumented, then we report that the rule is not
applicable to the driver.

Otherwise, SDV passes the instrumented program to the
abstraction module, called Abstract. Abstract automat-
ically constructs a Boolean program abstraction of the orig-
inal program with respect to a finite set of predicates. The
set of initial predicates are those appearing in the C code of
the API usage rule. In our example, this set of predicates
consists of the single predicate (state==Locked) (as the
other predicate is simply the negation of this predicate).

First, let’s consider the translation of the C code in Fig-
ure 1(b) to the Boolean program code in Figure 1(c). Be-
cause state is a global variable and we wish to track the
state of the predicate (state==Locked), Abstract intro-
duces a global Boolean variable b1 to track this predicate.
The variable is initialized to false because the variable state
is initialize to Unlocked. The translation of the other state-
ments is straightforward, as the state variable already is
acting as a Boolean variable. (We will see a more compli-
cated example of abstraction soon.) The predicates (state

==Locked) and !(state==Locked) are translated to (b1)

and (!b1), as expected.
Now, let’s consider the translation of the C code of Fig-

ure 6(b) to the Boolean program code of Figure 6(c). Note
that many of the assignment statements in the example C
procedure are abstracted to empty statements in the Boolean
program. The Abstract tool uses the points-to analysis to

determine whether or not an assignment statement through
a pointer dereference can affect the predicate (state ==

Locked). The points-to analysis of the C program shows
that no location in the example procedure can alias the
address of the global state variable. Therefore, none of
the assignment statements in the example procedure can
affect the value of the predicate (state==Locked). Fur-
thermore: a side-effect analysis shows that none of the pro-
cedures, with the exception of KeAcquireSpinLock return

and KeReleaseSpinLock return, can modify the variable
state, so calls to these procedures are eliminated.

Finally, because none of the conditionals in the example

are related to the state variable, they are replaced with calls
to the SdvMakeChoice function (which non-deterministically
returns an integer value). As a result of this abstraction of
conditionals, the Boolean program will have more behaviors
(feasible execution paths) than the original C program.

Once a Boolean program is constructed, SDV’s Check
module exhaustively explores all possible states of the Boolean
program and checks whether the model can ever reach the
error procedure. In the Boolean program of Figure 6(c),
there are many execution paths leading to the error pro-
cedure. Check outputs a shortest error path which ex-
ecutes the function KeAcquireSpinLock return twice in a
row without an intervening call to KeReleaseSpinLock return.
This is possible because all the conditions in the procedure
example have been abstracted to call SdvMakeChoice.

Because the C program and the Boolean program abstrac-
tions have identical control-flow graphs, the error path in
the Boolean program also is a path of the C program. Now,
this path may or may not be a feasible execution path of
the original program. The Refine module takes a C pro-
gram and a potential error path as an input. It then uses
verification condition generation to determine if the path is
feasible. The answer may be “yes” or “no” or “don’t know”
(since this problem is undecidable, in general). If the answer
is “yes” or “don’t know” then SDV displays the path in the
original driver code using a GUI that is similar to a visual

78 EuroSys 2006

Figure 1.3: SDV approach.

counterexample-guided abstraction refinement that automatically infers an abstract model

of the original program. This model has a sufficient degree of precision for proving the

program correctness with respect to an API usage rule.

Validation
Input validation. Check pointers, array indexes, packet
lengths, and status data received from hardware [41, 16, 20].
F
Unrepeatable reads. Read data from hardware once. Do not
reread as it may be corrupt later [41]
DMA protection. Ensure that the device only writes to valid
DMA memory [41, 20]
Data corruption. Use CRCs to detect data corruption if
higher layers will not also check [41, 20]
Timing
Infinite polling. Ensure that spinning while waiting on the
hardware can time out, and bound all loops [41, 20, 16]. F
Stuck interrupts. Handle interrupts that cannot be dis-
missed [17, 41]F
Lost request. Use a watchdog to verify hardware respon-
siveness [2, 16]F
Excessive delay. Avoid delaying the OS, busy waiting, and
holding locks for extended periods [2, 16]
Unexpected events. Handle out-of-sequence events [20, 16]
Reporting
Report hardware failures. Notify the operating system of
errors, log all useful information [2, 16, 20, 41]F
Recovery
Handle all failures. Handle error conditions, including
generic and hardware-specific errors [2, 16, 41]F
Cleanup properly. Ensure the driver cleans up resources
after a fault [41, 20]F
Conceal failure. Hide recoverable faults from applica-
tions [16]F
Do not crash. Avoid halting the system [2, 16, 20, 34]F
Test drivers. Test driver using fault injection [52, 17, 20]
Wrap I/O memory access. Use only wrapper functions to
perform programmed/memory-mapped I/O [41, 20, 34]

Table 1: Vendor recommendations for hardening drivers
against hardware failures. Recommendations addressed by
Carburizer are marked with aF.

2. Timeout. All interaction with a device should be
subject to timeouts to prevent waiting forever when
the device is not responsive.

3. Report. All suspect behavior should be reported to
an OS service, allowing centralized detection and
management of hardware failures.

4. Recover. The driver should recover from any device
failure, if necessary by restarting the device.

The goal of our work is to automatically implement
these recommendations. First, we seek to make drivers
tolerate and recover from device failures, so device fail-
ures do not lead to system failures. For this aspect of our
work, we focus on transient failures that do not recur af-
ter the device is reset. Second, we seek to make drivers
report device failures so that administrators learn of tran-
sient failures and can proactively replace faulty devices.

Execution ComponentsCompile-time Components

Original
Driver
Source

Hardened DriverCarburizer

Faulty
Device

Carburizer
Runtime

OS Kernel

Static Analysis and
Code Generation

Runtime Failure
Detection and

Recovery
Bug Lists

Figure 1: The Carburizer architecture. Existing kernel
drivers are converted to hardened drivers and execute with
runtime support for failure detection and recovery.

Carburizer addresses all four aspects of vendor recom-
mendations. Section 3 addresses bugs that can be found
through static analysis, including infinite polling and in-
put validation. Section 4 addresses reporting hardware
failures to a centralized service. Section 5 addresses run-
time support for tolerating device failures, including re-
covery, stuck interrupts, and lost requests. The recom-
mendations that Carburizer can apply automatically are
marked in Table 1. The remaining recommendations can
be addressed with other techniques, such as an IOMMU
for DMA memory protection, or cannot be applied with-
out semantic information about the device.

3 Hardening Drivers
This section describes how Carburizer finds and fixes
infinite polling and input validation bugs from Table 1.
These are hardware dependence bugs that arise because
the software depends on the hardware’s correctness for
its own correctness. The goal of our work is to (1) find
places where driver code uses data originating from a de-
vice, (2) verify that the driver checks the data for validity
before performing actions that could lead to a crash or
hang, and if not, (3) automatically insert validity or tim-
ing checks into the code. These checks invoke a generic
recovery mechanism, which we describe in Section 5.
When used without a recovery service, Carburizer iden-
tifies bugs for a programmer to fix.
Figure 1 shows the overall architecture of our system.

Carburizer takes unmodified drivers as input and with a
set of static analyses produces (1) a list of possible bugs
and (2) a driver with these bugs repaired, i.e. drivers that
validate all input coming from hardware before using it
in critical control or data flow paths. The Carburizer run-
time detects additional hardware failures at runtime and
can restore functionality after a hardware failure.
We implement Carburizer with CIL [30]. CIL reads in

pre-processed C code and produces an internal represen-
tation of the code suitable for static analysis. Tools built
with CIL can then modify the code and produce a new
pre-processed source file as output.
We next describe the analyses for hardening drivers in

Carburizer and our strategies for automatically repairing

3

Figure 1.4: Carburizer approach.

Carburizer [24] is a code manipulation tool with an associated runtime support that

Chapter 1. Introduction 12

modifies drivers to survive hardware failures. Figure 1.4 depicts the Carburizer approach

for hardening device driver code to tolerate device fault. It starts by analyzing driver code

to find where the device driver accepts input from the external word. The tool makes sure

that the input device data has checks for correctness, otherwise it rewrites the code to insert

input validation checks. Then, if the data is checked for correctness Carburizer inserts code

that returns an error if the data is incorrect. Runtime support detects stuck interrupts and

non-responsive devices.

The main drawback of static analysis approaches is the high number of false positives

and false negatives. Since static analysis requires a model of the environment e.g., memory,

I/O, OS API, the precision of the analysis depends on the precision of the model. Creating

a precise model is a complex and error-prone task. Today, those techniques are not widely

used because they require a lot of manual inspection to filter out false positives and false

negatives.

1.2.3 Symbolic Execution

A program provides outputs in relation with the input that receives from the external world.

Each input exercises a specific sequence of instructions, that executed, bring the program

state in a certain point of the set of all possible program states.

In a non-concurrent environment the instruction flow is sequential except into specific

decision points in which the execution changes according the input, namely branch points.

Chapter 1. Introduction 13

1 typedef enum States { S1, S2 , UNKNOWN };
2 static States var_state;
3 var_state = UNKNOWN;
4

5 int computeValue(int x){
6 if(x > 5){
7 var_state = S1;
8 return x − 1;
9 }else if(x < 1){

10 var_state = S2;
11 return x + 1;
12 }else{
13 var_state = UNKNOWN;
14 return 0;
15 }
16 }

Figure 1.5: A sample program for introducing symbolic execution tree.

Figure 3.10 depicts a sample program that has three execution paths. This function is

composed by two if statement in series, therefore the number of execution paths is three.

The first path is exercised when the value x ∈ [6,+∞[whereas the second path is exercised

when x ∈] − ∞, 0[and the third when x ∈ [1, 5]. On the first path the value of internal

variable var_state = S1, whereas on the second path var_state = S2 and on third remains

var_state = UNKNOWN . The number of execution paths grows exponentially with the

number of the program branch points.

Symbolic execution performs an enumeration of all the feasible paths in a program [25] .

A symbolic execution engine creates a symbolic execution tree that contains all the paths that

the program can execute. To generate the symbolic execution tree, the symbolic execution

engines treats input variables as union of all possible concrete values that x can assume φ,

that we denote with, this process is known as marking the variable as symbolic.

Chapter 1. Introduction 14

In figure 1.5 the variable x marked as symbolic, becomes the symbolic variable φ that

represent all the possible finite precision integers e.g., 32-bit and 64-bit. When the symbolic

execution engine reaches a branch point and the outcome of the decision depends on the

symbolic input , it forks. At this point we can ideally proceed along two paths, the first

exercised when the constraint is true and the second when the constraint is false. Forking

consists in making a copy of the entire program state i.e., constraints, program counter, reg-

isters, stack, etc into a new program state. The two states differ for a constraint. Thus, after

forking, if the constraint solver replies with the feasibility of the constraints, the symbolic

execution engine maintains two copies of the program state. At this point the execution

can continue along both paths. A scheduling policy determines the order in which those

paths are going to be executed. This process is repeated recursively through all the program

execution.

Figure 1.6 shows the symbolic execution tree for the program in figure 1.5. Each node

n ∈ N in the tree represent a program state, given N the set of all feasible states in a

program. A state m follows a state n, n → m, if the constraint in n is feasible. Leafs in

the symbolic execution tree are the points in which the program exits. The value of the

variable var_state changes according to which path is executed i.e. on each path we may

have different registers and memory location values.

Constraints collected during the execution are sent to a constraint solver to decide if a

Chapter 1. Introduction 15

X">"5"

X"<"1"
STATE"="S1"

STATE"="S2"STATE"="UNKNOWN"

x ∈ −∞,+∞] [

x ∈ −∞,5]] x ∈ 5,+∞] [

x ∈ −∞,0]] x ∈ 1,5[]

Figure 1.6: Symbolic execution tree of the example in figure 1.5.

branch is feasible or not. In figure 1.6 when the execution reaches the first branch point,

the symbolic execution engines queries the constraint solver creating two constraints with

the branch condition and its negated form and its negated form. In this case, since both

paths are feasible the constraint solver replies saying that the constraints x ≤ 5 and x > 5

are both feasible. When the engine reaches the second branch, it sends two queries to the

constraint solver the first is x ≤ 5 ∧ x < 1 and the second that is x ≤ 5 ∧ x ≥ 1. The

constraints are feasible also in this case, thus the engine can proceed in the exploration of

both paths. Finally, when the symbolic execution engine reaches an exit point such as a

return instruction,an assert; the solver can compute the concrete values that exercise the

terminated path.

Recently, symbolic execution gained a lot of attraction in the research community because

it has proved to be effective in finding serious errors in programs [26, 27, 28, 29]. A key

Chapter 1. Introduction 16

project in this area is S2E [30], a platform that performs multi-path in-vivo analysis of

binary executables. Selective symbolic execution was born from the idea that not all the

paths are interesting for an analysis. In the case of unit-testing, we are interested only in

exercising the paths of the component that is subject of our analysis. Thus, we do not want

to focus in exercising paths that are outside our unit. With consistency models S2E can

narrow the set of paths on a specific subset of interest for the analysis.

Several projects are based on S2E ([29, 31, 16, 15, 32, 33]), making it the de facto

standard for symbolic execution tools. In particular, two projects had a significant impact

in the context of device driver verification. DDT [16] found several bugs such as memory

leaks, race conditions on Windows closed source device drivers. DDT introduces the concept

of symbolic hardware, to enable testing the interaction of a device with the device driver along

multiple paths. In other words, this technique allows to treat devices as symbolic variable

source. Conversely, Symdrive [15] uses S2E to find bugs on several Linux device drivers.

The design of S2E is depicted in figure 1.7. S2E combines virtualization, dynamic binary

translation and symbolic execution to perform symbolic execution on real systems software

stack, e.g., Windows/Linux based. To reach this goal, S2E combines QEMU dynamic binary

translation with symbolic execution performed by KLEE [26]. Guest code is translated

into the QEMU intermediate representation, namely TCG (tiny code generator). Code is

partitioned in pieces named translation blocks. If a translation block accesses only concrete

Chapter 1. Introduction 17

36 CHAPTER 3. A PLATFORM FOR DEVELOPING ANALYSES

VM
Memory

Virtual
Devices

user-defined
analyzers

analyzers
S E stock2

user-defined
selectors

selectors
S E stock2

Drivers

Libraries

OS Kernel

Applications
selection
interface

analysis
interface

Intermediate
Representation

Concrete
Execution
Host CPU

Symbolic
Execution

KLEE

Dynamic
Binary
Translator

Shared State
Representation

Guest Machine Code

Execution
Engine

Instructions Access
Concrete Data

Instructions Access
Symbolic Data

Disassembly

Host
Machine Code

LLVM
Bitcode

O
n

 a
cc

es
s

to
sy

m
b

o
lic

 d
a

ta

Virtual
CPU

Emulation Helpers

Figure 3.1 – S2E architecture, centered around a custom VM. The VM dynamically dispatches
guest machine instructions to the host CPU for native execution, or to the symbolic execution
engine for symbolic interpretation, depending on whether the instructions access symbolic data or
not. The system state is shared between the code running natively and the code interpreted in the
symbolic execution engine; this enables S2E to achieve the level of execution consistency desired
by the user.

3.1 Dynamic Binary Translation

In this section, we first discuss the general idea behind dynamic binary translation and how it
enables building a platform such as S2E. We then illustrate it by looking at how S2E leverages the
dynamic binary translator offered by QEMU.

Binary translation in general is a powerful technique for code instrumentation and is therefore
a cornerstone of many tools. Static binary translation has been originally used to run software
compiled for one architecture on another, without recompiling it [116]. Dynamic binary transla-
tion has been used among others to simulate entire systems [106, 9], implement virtual machine
monitors [23], and instrument code [82].

Figure 1.7: The design of the S2E platform.

Chapter 1. Introduction 18

data the guest code is translated into host cpu binary code and then executed as it is on

the host CPU. Conversely, if there are accesses on symbolic data the translation block is

translated into LLVM bitcode and then symbolically interpreted by KLEE. To keep the

virtual machine state consistent, S2E forces synchronization QEMU and KLEE copies of

the registers that are stored in different memory areas. Also the virtual memory is shared

between QEMU and KLEE to allow the reading and the writing of symbolic variables.

Furthermore, S2E offers a plugin infrastructures that allows to make the system extensible

with the following kind of functionalities,: (i) searchers to implement ad-hoc searching

strategies, (ii) selectors to bound only parts of the code in which we are interested, (iii)

analyzers used to make per-path analysis of code.

The main advantage of symbolic execution is that every bug found by the engine

is “real” . In other words, there are no false positives. Conversely, there may be false

negatives because the symbolic execution engine can be unable to reach some paths in the

code. Symbolic execution suffers of the well known path explosion problem. The number of

paths that have to explored by the symbolic execution engine grows exponentially with the

size of the symbolic input and the number of branches inside the code. However, with smart

heuristics and selectors it is possible to effectively use symbolic execution in the verification

of complex software systems.

Chapter 1. Introduction 19

1.3 Open Issues

Above we discussed that most of the device driver defects are related to protocols violations.

Protocols are specifications of how the device driver, the OS resources and the device are

expected to interact.

Cost-efficiency

Flexibility

Static analysis

Testing

SDV Carburizer

Metal

LTP D-Cloud

DDT

SymDrive

Symbolic
Execution

Figure 1.8: A synthesis of the trade-off between cost-effectiveness and flexibility of current
approaches.

Figure 1.8 is a graphical illustration of the trade-off between cost-efficiency and flexibility

of existing solutions. With flexibility we mean the capability of the tool of finding a wide set

of defect types. On the other hand, cost-efficiency measures the capability of the approach

of finding an high number of defects with a reasonable amount of human effort and of

computational resources. Testing is not cost-efficient and flexible enough to find protocol

bugs for the following reasons: (i) testing requires significant effort and resources ; (ii)

Chapter 1. Introduction 20

testing is not able to detect a wide set of defect types because it frequently exercises the

same portions of code. Symbolic execution performs better than testing because it allows

the user to systematically explore paths in a program. Classic symbolic execution tries

to explore all the possible paths in a program. Modern verification approaches based on

symbolic execution significantly improve cost-efficiency because they focus the analysis only

on ”interesting” execution paths. However, the approaches based on symbolic execution are

not flexible enough because they focus on generic programming defects such as memory

leak, null pointer dereferences, race conditions since these bugs do not depend on a specific

product e.g., a specific OS or a specific device. Static analysis approaches like SDV and

Metal provide a high degree of flexibility, by allowing the user to customize the analyzer

and, potentially, to find protocol bugs. However, static analysis is not cost-efficient enough

because it requires a significant human effort for modeling the environment, e.g, OS API,

device model.

1.4 Thesis Contribution

This thesis proposes themodel-based verification of device drivers that allows to reach

a better trade-off between cost-efficiency and flexibility. The approach enhances symbolic

execution by enabling the user to control, using a model, the protocol that should be verified

by symbolic execution. In this way, the user can adapt symbolic execution to defect types

that apply to his own software, and can address protocol bugs that are not encompassed

Chapter 1. Introduction 21

by traditional symbolic execution. In this way, the approach can achieve a great degree

of flexibility, and at the same time can take advantage of the cost-efficiency of symbolic

execution.

Symbolic
Execution

Model

Device Driver Conformance
Check

Figure 1.9: Overview of the model based verification approach for device drivers.

This approach consists in describing at high level of abstraction the properties that the

device driver must hold and in verifying that the behavior of the driver complies with the

property previously described. The idea is to compare the execution of the device driver

with the model described at the first stage of the workflow. Divergence of the execution and

the model along one of the possible sequence of instruction of the program determines a bug

in the device driver. More specifically, the thesis makes the following contributions:

1. A methodology for model-based verification of device drivers through symbolic execu-

tion. In this context, this thesis proposes a language (SLANG) and an architecture

(Symcheck). The language describes the behavior that the developer expects with

respect to the API dependance, the hardware dependance. Chapter 2 provides the

language specification and several examples. The architecture allows the automatic

Chapter 1. Introduction 22

transformation of the expected behavior specification, in a checker that exhaustively

analyzes the conformance with the model.

2. Symbolic execution is a computationally intensive activity. Hence, new techniques are

needed to improve the overall process. Thus, in the context of this thesis, I developed

an enhanced symbolic execution platform that use a more efficient representation of

intermediate code in order to speed up the symbolic execution of code. OS binary

code is executed under a virtual machine (VM) environment and translated to the

intermediate representation. Then, an interpreter symbolically executes the translated

code. Tests on a pool of Windows device drivers showed that in this configuration we

are able to symbolically execute more code e.g., 2x in the same amount of time respect

with the current state of the art.

3. A methodology that aims at detecting protocol violations using behavioral models

of device drivers. A protocol of device driver/device interaction is extracted from

execution traces of device drivers under a set of workloads. The model of the protocol

is then translated into a monitor that is attached at runtime to the device driver under

test. If the device driver during its execution crosses state that do not belong to the

model, the monitor signals that something unexpected happened.

Chapter 1. Introduction 23

1.5 Thesis Organization

The thesis is organized as follows. Chapter 2 presents a methodology to perform model-

based verification of device drivers. Chapter 3 describes an approach to enhance symbolic

execution of binary code. Chapter 4 describes a methodology for run-time verification of

device drivers.

Chapter 2

Model-based Symbolic Execution for
Device Drivers

2.1 Introduction

This chapter introduces Symcheck, a system that performs model-based verification of device

drivers. Symcheck comes out with a language designed for simplifying the specification of

protocols and a runtime support that orchestrates symbolic execution with model-based con-

formance checking. Section 2.2 introduces the Symcheck approach through a brief overview

of the workflow.

2.2 Overview

This section provides a high-level overview of the approach. The overall approach aims at

enabling developers to specify rules that must hold in device driver execution. The first part

of the approach is SLANG, a language for specifying the logic of the protocol for the device

driver. A protocol is a specification of the expected interactions between the device driver,

24

Chapter 2. Model-based Symbolic Execution for Device Drivers 25

the OS kernel and the hardware device.

A checker is a protocol written in SLANG. The SLANG checker is translated into a

component that interacts with the symbolic execution engine, namely the checker plugin.

The checker plugin is a component written in a general purpose language such as C++

or Java, that interfaces with the symbolic execution engine API. The developer formalizes

the protocol in SLANG, a language tailored to model a wide range of protocols expressible

through finite state machines.

SLANG
specification

SLANG Code
Generator

Checker Plugin

Symbolic
Execution !
Platform

Conformance
Check Results

Checker !
generation

Specification

Verification

Device Driver
Code

Code!
Instrumenter

Instrumentation

Configuration!
files

Figure 2.1: Symcheck workflow.

Figure 2.1 depicts the overall Symcheck workflow. The workflow consists of the following

phases:

1. Specification: The developer specifies the protocol with SLANG language that ab-

stracts low-level platform-specific API calls. We describe SLANG in section 2.3.

Chapter 2. Model-based Symbolic Execution for Device Drivers 26

2. Checker generation: The specification is translated into the checker plugin that

uses platform-specific API. The process is described in section 2.4. Checker generation

produce two output files, (i) the plugin and (ii) a set of configuration files that feed

both the instrumentation and the verification subsystems.

3. Instrumentation: An instrumentation tool uses configuration files produced in the

previous phase to aid the verification phase.

4. Verification: Symbolic execution engine uses the checker plugin and the instrumented

device driver to assess the conformance to the specification. This phase of the workflow

is described in section 2.6.

2.3 Specification

SLANG provides the formalism to describe a protocol with a finite state machine semantics.

The SLANG language has been defined to support the specification of events and states of

device drivers’ behavior. The events can be tied to the execution of specific APIs in the

OS, and to accesses to OS key data structures. For instance, the device driver accesses to

hardware registers and to OS events such as start of the interrupt handling routine, work-

queues, spinlocks, etc., through an OS interface (such as the PCI or USB API): therefore,

the language must allow to define events in terms of OS-specific APIs.

Chapter 2. Model-based Symbolic Execution for Device Drivers 27

〈module〉 ::= 〈specification〉;

〈specification〉 ::= 〈resource〉 | 〈checker〉;

〈resource〉 ::= resource 〈name〉 { 〈member〉 };

〈member〉 ::= 〈attribute〉 | 〈event〉;

〈attribute〉 ::= 〈name〉 : 〈type〉 ;

〈type〉 ::= int | uint | ... | sym_expr

〈event〉 ::= event name catches signal 〈where〉

〈statement〉 ::= expression ; | 〈symbolic_val_decl〉

...

Figure 2.2: A part of the SLANG grammar.

2.3.1 The SLANG Language

The SLANG language aims at providing to the end-user a flexible way to specify protocols

in the form of finite state machine (FSM). The grammar, shown in figure 2.2, formalizes

SLANG.

Resource

Kernel components extensively use kernel facilities such as memory areas, semaphores, spin-

locks. The kernel offers these objects to device drivers, which they use them to implement

their functionalities such as allocate ring buffers, driver-specific data structures. A key aspect

of protocol verification is the interaction between the device drivers with kernel resources.

During execution, the device driver interacts with several instances of such resources, by

Chapter 2. Model-based Symbolic Execution for Device Drivers 28

accessing to them through APIs. Thus, we introduce in SLANG the concept of resource.

Resources can be seen as "classes" in the sense of object-oriented languages: a resource

specification describes the states of the resource from an abstract point of view; at run-time,

many resources will be involved, and each resource will be represented by an "instance" of

the general resource specification.

The user also defines the events that affect the resource, which can change the state

of a resource instance. Events resemble "methods" of object-oriented languages. They are

associated to the execution of key points in device drivers’ code, such as the invocations of

kernel APIs. When, at run-time, the driver executes a piece of code related to an event, the

resource state will be updated accordingly. Events can be triggered when a kernel function

or device-specific function (such as a read/write of a device register) is executed. Events can

have zero or more input parameters, and zero or one output parameter. The parameters of

an event are used in SLANG specification to update the state of the resource. Allocations

and deallocations are special types of event, that model the creation and the deletion of a

resource.

Figure 2.3 provides an example of resource specification. In this example, we model a

dynamically-allocated memory area that is identified by its address. The allocation event

kmalloc instantiates a new object. This object contains the address of the memory area

(as the "val" member variable, whose definition is marked by the "id" keyword), which is

Chapter 2. Model-based Symbolic Execution for Device Drivers 29

obtained from the output parameter of the function call to kmalloc. When a kmalloc event

occurs, a new instance of the AddressSpace resource is created. The "val" member variable

represents the identifier of the resource instance. Similarly, kfree is the deallocation event.

Kfree uses the “where” clause defined in SLANG to update the state of the specific memory

area that is being deallocated (i.e., among all AddressSpace resource instances, only the

instance related to the kfree event will be updated and deallocated).

1 resource AddressSpace {
2 id val : uint32;
3

4 //Events acting on the resource
5 alloc event AddressSpaceAlloc catches Kmalloc {
6 val = Kmalloc−>ret;
7 }
8

9 dealloc event free catches AddressSpaceFree where (val == Kfree−>arg0);
10

11 //States definition
12 state initial INIT{
13 when (alloc) => ALLOCATED;
14 };
15

16 state ALLOCATED {
17 when (free) => END;
18 };
19

20 state final END{
21 };
22 };

Figure 2.3: Example of resource definition.

Finally, the last part of resource definition describes the finite state machine (FSM)

model, that specifies how the resource reacts to events. Thus, the user formalizes with the

FSM how a resource instance switches from a state to another one. Figure 2.3 shows the

Chapter 2. Model-based Symbolic Execution for Device Drivers 30

formalization of the kmalloc/kfree usage protocol using SLANG. A kernel memory area, for

instance, can be allocated, used and finally deallocated. Each FSM has exactly one initial

state. The user decides whether the FSM should have one or more final states, according

to the protocol that he/she is modeling. Every state has one or more transitions towards

other states. The FSM switches from one state to another state when a guard condition is

satisfied. Guard conditions are expressed in form of boolean conditions, where the operands

are the events previously defined in the resource declaration.

One important aspect of the language is the management of the resources identities, since

several instances of resources can exist simultaneously during an execution. As mentioned

above, we keep track of the identity of a resource using member variables (such as "val" in

the example), and provide the id keyword to specifies which member variables are used to

identify resources. When events are defined, we require the user to specify how to map the

occurrence of an event to a specific resource instance. For instance, when a Kfree occurs,

when want to update the state of the specific resource that is being deallocated (among

the several resources that have been instantiated so far). So, the "where" clause must be

used to specify the mapping between an event and a resource instance, by comparing the

parameters of the event (inputs and outputs of the function call) to the member variables of

the resource instance. Using this approach, we can keep track of events and states of each

individual resource, and allow each resource to evolve independently.

Chapter 2. Model-based Symbolic Execution for Device Drivers 31

Checker

SLANG checkers specify the protocol properties (over events and states of resource instances)

that must be checked during the verification of device drivers. In other words, with checkers,

a developer specifies combinations of states and events that should be considered unexpected.

Figure 2.4 describes a simple protocol for the "AddressSpace" resource modeled in the

previous section. User can add assertions that evaluate the state of resources, to ascertain

the validity of a certain condition. The keyword assert specifies that the condition expressed

in the body must be true when the execution meets a verification point (to be discussed

later). Thus, if the condition is false, the checker detects a violation of the protocol.

1 checker KmallocProtocol {
2 addresses : AddressSpace[];
3

4 foreach a : addresses {
5 assert a.currState == END;
6 }
7 };

Figure 2.4: Example of checker definition.

The protocol described in figure 2.4 verifies that all instances of AddressSpace are in the

END state (i.e., there are no leaks of dynamic memory).

Figure 2.5 shows a dynamic view of the algorithm 2.4. The figure depicts the symbolic

execution tree and the state of every path that is symbolically executed. A state of symbolic

execution includes the set of resources that have been instantiated so far during the execution

of the path (e.g., AddressSpace instances that have been instantiated at a given time). Let

Chapter 2. Model-based Symbolic Execution for Device Drivers 32

suppose that in state S1 have been allocated N resources. The state of resources change

depending on kernel events that are triggered when executing a certain state. Supposing

that S1 executes a kmalloc, a new AddressSpace instance is created. The initial state of the

new resource will be ALLOCATED. After that, the symbolic execution creates the state S3,

in which N + 1 resources are allocated.

!
!

!
!

!
!

!
!

!
!

!
!

!
!

R2!

R1!

…!

RN!

I" A E

I! A E

I" A E

(>!
(>!

(>!S1!

S2! S3!

S4! S5! S6! S7!

R2!

R1!

…!

RN+1!

I" A E

I! A E

I" A E

(>!
(>!

(>!

Figure 2.5: Dynamic view of the multipath execution with checker enabled.

Verification Points

The verification of protocols is performed during the execution of the device driver. In

SLANG, the user can specify:

• The moment when the checker must be instantiated and enabled during execution.

The checker plugin is enabled when the device driver code point specified by the user

is executed (such as, the beginning of an I/O operation, or the initialization of the

device driver).

Chapter 2. Model-based Symbolic Execution for Device Drivers 33

• The moment when the checker must verify the validity of a protocol property. The

checker plugin performs a control over the current execution state to check that the

protocol property holds on a device driver code point specified by the user (such as,

the end of an I/O operation or the deactivation of the device driver). If the protocol

property is violated, the checker plugin reports a faulty execution.

The reason why we decided to demand to the user these aspects is because their definition

changes across device drivers and protocol properties. In the case of the kmalloc-kfree

protocol, for example, the lifecycle of a memory area should be within the lifecycle of the

module that allocates and uses that memory area. In other cases, the lifecycle of the resource

could be just one function, such as a function that performs an I/O operation.

1 checkpoints C {
2 check KmallocProtocol at begin pcnet32.c:pcnet32_interrupt;
3 check KmallocProtocol at end pcnet32.c:pcnet32_cleanup_module;
4 };

Figure 2.6: Example of testsuite definition.

The set of device driver code points in which we want to check the protocol is specified

with the construct checkpoints. Each checkpoint contains a set of point declared with the

keyword check. A check specifies both the name of the checker that we want to invoke, the

point of the code where we want to enable the checker (keyword begin), and the point where

we want to check the protocol (keyword end). The user can either specify these points in

terms of function entries/exits, or in terms of specific statement (i.e., a line of code within

Chapter 2. Model-based Symbolic Execution for Device Drivers 34

a source code file) where the checker should be enabled and triggered.

Symbolic Source And Test Suite

To leverage symbolic execution, verification needs to inject symbolic values during the ex-

ecution of device drivers. We opt to inject symbolic values at the interfaces of the device

driver under verification: by using symbolic inputs at drivers’ interfaces, we can exhaustively

explore the execution paths within the code of the device driver, where the symbolic inputs

represent the boundary conditions in which the driver operates. In particular, there are two

driver interfaces that need to be considered: (i) the interface between the device driver and

other kernel components (such as filesystem and the TCP/IP stack), and (ii) the interface

between the device driver and the hardware. The former interface (towards the kernel) is

a set of API functions exported by the device driver, and invoked by the OS to initiate an

I/O transfer.

Figure 2.7 shows an example of interface for a network device driver in Linux, which

exports functions for transmitting a network frame (e.g., hard_start_xmit), initializing

the network interface card, gathering network statistics. The latter interface (towards the

hardware) is represented by memory areas and I/O ports that must be read/written by the

device driver to access to registers and buffers of the device controller. Memory locations

are linked to device controller registers, so when there are memory operations (e.g., mov

and load) the values are written directly into the device controller registers. For instance,

Chapter 2. Model-based Symbolic Execution for Device Drivers 35

1 struct net_device
2 {
3 char name[IFNAMSIZ];
4 int ifindex; /∗ inteface index ∗/
5 unsigned int mtu; /∗ maximum transmission unit ∗/
6 unsigned char dev_addr[MAX_ADDR_LEN]; /∗ hardware address ∗/
7 void ∗ip_pointer; /∗ points to IF?s IPv4 specific data ∗/
8 unsigned int flags;
9 unsigned long trans_start; /∗ time (in jiffies) of last transmission ∗/

10 struct net_device_stats stats; /∗ a default set of device statistics ∗/
11 ...
12 // some function-pointers (i.e., these are virtual functions)
13 int (∗open)(struct net_device ∗);
14 int (∗stop)(struct net_device ∗);
15 int (∗hard_start_xmit)(struct sk_buff ∗, struct net_device ∗);
16 int (∗get_stats)(struct net_device ∗);
17 ...
18 };

Figure 2.7: Linux kernel structure net_device operations.

MMU

0x4004!

DR1 (0x10)

DR2 (0x20)

DR3 (0x40)

DR4 (0x32)!

DRN (0x21)!

PC

CPU

MEMORY
DEVICE

READ/
WRITE

0x4000

0x8000

0x8004

CONTROLLER

0x4004

0x10!R0

mov r0,$0x8000

DR1 (0x10)

DR2 (0x20)

DR3 (0x40)

DRN (0x21)!

DR4 (0x32)

Figure 2.8: Memory mapped I/O.

Chapter 2. Model-based Symbolic Execution for Device Drivers 36

figure 2.8 depicts how a device performs memory mapped I/O operations. Suppose that the

CPU starts with a program counter 0x4000. CPU fetches and decodes the instruction mov

r0, 0x8000. Then when the CPU executes the mov instruction issues the address 0x8000

on the bus. The bus circuitry enables the register r0 and queries for the value stored in r0.

Finally, the value read from DR1 i.e., 0x10 is written into R0 and the CPU can update the

program counter to the next word.

MMU

0x4004!PC

CPU

MEMORY
SYMBOLIC DEVICE

READ/
WRITE

0x4000

0x8000

0x8004

0x4004

“X”!R0

mov r0,$0x8000

DR1

DR2

DR3

DRN !

DR4

Figure 2.9: Memory mapped I/O and symbolic hardware.

To inject symbolic values at driver’s interfaces, we adopt the following approach:

• To inject symbolic values at driver invocations from the kernel, the user specifies the

Chapter 2. Model-based Symbolic Execution for Device Drivers 37

entry points of the device driver in the SLANG language. In this way, the checker

plugin will intercept the invocation of these entry points at run-time, and will replace

the input parameters of the function calls with symbolic values. These symbolic values,

in turn, will exercise the code paths within the device driver.

• To inject symbolic values from the hardware device, the checker plugin will intercept

read operations to device registers and buffers, and will turn the data from the hard-

ware into symbolic values. In this case, the user does not need to specify these sources

of symbolic values, as they are automatically introduced by the symbolic hardware in

the symbolic execution engine [16]. Symbolic hardware leverages memory mapped I/O

mechanism used to support PCI or ISA devices to inject symbolic values at the de-

vice/driver interface. Figure 2.9 describes how symbolic hardware works. Let suppose

that the CPU starts with a program counter 0x4000. On instruction execution, the

symbolic execution engine catches read at the memory address 0x8000 and writes a

symbolic value in the r0 register. Whenever an instruction tries to read at a MMIO

memory range the symbolic execution engine returns a symbolic value. Conversely,

writes are discarded because on every read the symbolic hardware returns an uncon-

strained symbolic value.

The user specifies a device entry point in SLANG using a language keyword named

source. With this keyword, the user selects where to inject a symbolic value, in terms of the

Chapter 2. Model-based Symbolic Execution for Device Drivers 38

location address (e.g., structure field, global variable) which must be executed.

1 testsuite T1 {
2 source pcnet32_start_xmit {
3 symbolic skb−>len;
4 symbolic skb−>data;
5 };
6

7 };

Figure 2.10: Example of testsuite definition.

Figure 2.10 shows an example of a test suite with two test cases for the driver pcnet32

in Linux. The keyword testsuite defines a set of symbolic sources. The name of the source is

the entry point of the driver where we want to inject symbolic values. Each source contains

a set of parameters that define which values are going to be marked as symbolic. In this

example, the first source describes that when the pcnet32_start_xmit is called, the fields

len and data of the packet parameter must be turned into symbolic data.

2.4 Checker Generation

Even if symbolic execution engines provide APIs to extend their functionalities, it is still

a very onerous task to manually introduce a driver-specific protocol verification. For this

reason, we automatically generate a tool (checker plugin) for extending a symbolic execution

engine from the SLANG specification provided by the user. The automatically-generated

checker plugin uses the APIs of the symbolic execution engine to inject symbolic values, and

to verify protocol properties over the current state of driver’s execution. More precisely,

Chapter 2. Model-based Symbolic Execution for Device Drivers 39

the checker generator translates the specification in a plugin for the target platform (i.e.,

the symbolic execution engine). The translator takes as input the file with the checker

description in SLANG language. The code generator creates an object tree, which is a

hierarchy of objects representing each entity in the SLANG specification (events, states,

resources, ...). The generator parses the protocol specification, and then populates the object

tree according to a metamodel of the SLANG language, following the general approach of

domain-specific languages. We refer the interested reader to [34, 35] for further details about

domain-specific languages. Checker generation produces in output a set of programs and

configuration files that are used by the runtime support.

2.4.1 Translation of SLANG Resources

The most natural translation of a resource is into a class. An instance of the resource is

created as a consequence of an allocation event. Listing 2.1 shows an example of translation

of resource from the definition depicted in 2.3. As one can notice allocation events are

translated into a factory method. Deallocation events are used in the finite state machine

to decide when it is safe to deallocate the resource. The FSM manages resources lifecycle.

On allocation event, the checker creates a new resource otherwise signals an error because

the resource has been already allocated with the same id.

1 using boost::multi_index_container;
2 using namespace boost::multi_index;
3
4 //Stream to print messages
5 static llvm::raw_ostream∗ os;
6

Chapter 2. Model-based Symbolic Execution for Device Drivers 40

7 class AddressSpaceResource {
8 private:
9 ref<Expr> m_val;

10
11
12 AddressSpaceResource(uint32_t val) : m_val(val){}
13
14 public:
15
16 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
17 /∗ Events declaration ∗/
18 /∗ ∗/
19 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
20
21 /∗∗∗∗∗ Kmalloc ∗∗∗∗∗/
22 static boost::shared_ptr<AddressSpaceResource> EventKmalloc(S2EExecutionState∗ state,

S2E_SYMINT_ARGS args){
23 /∗ Statement compilation ∗/
24 uint32_t val = state−>readMemory(args.ret,Expr::Int32);
25 return boost::shared_ptr<AddressSpaceResource>(new AddressSpaceResource(val));
26 }
27
28
29 /∗∗∗∗∗ Kfree ∗∗∗∗∗/
30 void EventKfree(S2EExecutionState∗ state,S2E_SYMINT_ARGS args){
31
32 }
33
34 bool whereKfreeCondition(S2EExecutionState∗ state,S2E_SYMINT_ARGS args){
35 ref<Expr> var_0 = state−>readMemory(args.arg0,Expr::Int32);
36 return ∗m_val == ∗var_0;
37 }
38
39 };
40
41 //Initial states flags
42 struct FlagINIT {};
43
44 //Terminal states flags
45 struct FlagEND {};
46
47 //State machine
48 struct AddressSpaceDetector_ : public msm::front::state_machine_def<AddressSpaceDetector_>
49 {
50 //State machine resources
51 boost::shared_ptr<AddressSpaceResource> internal_ptr;
52
53 //Constructor
54 AddressSpaceDetector_(){}
55
56 //States
57 struct Init : public msm::front::state<>{
58 template <class Event, class FSM>
59 void on_entry(Event const&,FSM&) {
60 ∗os << "Entering Init" << ’\n’;
61 }
62
63 template <class Event, class FSM>

Chapter 2. Model-based Symbolic Execution for Device Drivers 41

64 void on_exit(Event const&,FSM&) {
65 ∗os << "Leaving Init" << ’\n’;
66 }
67 };
68
69
70 //Initial state typedef
71 typedef Init initial_state;
72
73 struct Allocated : public msm::front::state<>{
74 template <class Event, class FSM>
75 void on_entry(Event const&,FSM&) {
76 ∗os << "Entering Allocated" << ’\n’;
77 }
78
79 template <class Event, class FSM>
80 void on_exit(Event const&,FSM&) {
81 ∗os << "Leaving Allocated" << ’\n’;
82 }
83 };
84
85 struct End : public msm::front::state<>{
86 typedef mpl::vector1<FlagEND> flag_list;
87 template <class Event, class FSM>
88 void on_entry(Event const&,FSM&) {
89 ∗os << "Entering End" << ’\n’;
90 }
91
92 template <class Event, class FSM>
93 void on_exit(Event const&,FSM&) {
94 ∗os << "Leaving End" << ’\n’;
95 }
96 };
97
98
99 //Transitions
100 void __eventKmalloc(EventArgs const & ea){
101 internal_ptr = AddressSpaceResource::EventKmalloc(ea.state,ea.args);
102 }
103 void __eventKfree(EventArgs const & ea){
104
105 }
106
107
108 //Guards
109 bool guardKmalloc(EventArgs const & evt){
110 return true;
111 }
112
113 bool guardKfree(EventArgs const & ea){
114 if(!internal_ptr−>whereKfreeCondition(ea.state,ea.args)){
115 ∗os << "Transition not possible" << ’\n’;
116 return false;
117 }
118 return true;
119 }
120
121

Chapter 2. Model-based Symbolic Execution for Device Drivers 42

122
123 //Transition table
124 typedef AddressSpaceDetector_ d;
125
126 struct transition_table : mpl::vector<
127 row<Init,EventArgs,Allocated,&d::__eventKmalloc,&d::guardKmalloc>,
128 row<Allocated,EventArgs,End,&d::__eventKfree,&d::guardKfree>
129 >{};
130
131 //When a transition doesn’t exist
132 template <class FSM,class Event>
133 void no_transition(Event const& e, FSM& fsm,int state) {
134 ∗os << "no transition from state " << state
135 << " on event " << typeid(e).name() << ’\n’;
136 }
137 };
138
139 #endif

Listing 2.1: Code translated from SLANG to C++.

The translator generates two classes: one that models the resource (e.g., AddressSpac-

eResource), the other that model the finite state machine on the resource usage protocol

(AddressSpaceDetector_). An allocation event the detector creates a new instance of the

resource AddressSpace. When the AddressSpaceDetector receives an event, if a guard is

triggered, the detector changes the state of the resource. All the feasible transitions are

stored into a transition table which contains also the guards that trigger the state change.

2.4.2 Translation of SLANG Checkers

Checkers are translated into procedure that access to the resources dynamically allocated

during the system’s evolution. Despite the case of canonical programming languages, the

line 2 in code snippet in figure 2.4 means that we access at runtime into an array of AddressS-

pace elements. The procedure depicted in figure 2.2 shows an example of the specification

translation from SLANG to C++ .

Chapter 2. Model-based Symbolic Execution for Device Drivers 43

1 for(DetectorsByAddr::iterator it = byAddr.begin(),
2 ite = byAddr.end(); it != ite; it++){
3 PciMapWrapper wp = (∗it);
4 bool isTerminated = wp.det.is_flag_active<FlagEND>();
5 if(isTerminated){
6 DEBUG_S() << "[PciMap] Everything seems fine on path_id " << state−>getID() << "\n

";
7 }else{
8 WARNING_S() << "[PciMap] There is at least one protocol violation on path_id " << state

−>getID() << ’\n’;
9 DEBUG_S() << "[PciMap] Finding an example that triggers this protocol violation..." << ’\n

’;
10 s2e()−>getExecutor()−>terminateStateEarly(∗state,"PciMap");
11 }
12 }

Listing 2.2: Snippet of checker specification translation for the DMA map protocol.

The iteration over AddressSpace elements becomes a loop in C++ over the AddressSpace

resource instances. Then, the assert statement is translated into a check on the current

AddressSpace instance state. If the check fails then the procedure emits an error string and

terminates the current state.

2.4.3 Translation of SLANG Testsuites

Testsuites are converted into a configuration file that is used during the code instrumentation

phase. Let consider testsuite defined in section 2.10, that model a testsuite for the functions

pcnet32_start_xmit.

1
2 T1 − [pcnet32_start_xmit : skb−>len , skb−>data]

Figure 2.11: Testsuite translated from SLANG to a configuration file used for instrumenta-
tion.

In this case, the checker generator produces for this input the output shown in 2.11. The

configuration file can contain sets of testsuite declarations that consists of testsuite name

Chapter 2. Model-based Symbolic Execution for Device Drivers 44

and square brackets. Each configuration line contains the name of the target function and

the names of the arguments that we want mark as symbolic.

2.4.4 Translation of SLANG Verification Points

As we mentioned in section 2.3.1, verification points are selected through the checkpoints

keywords. Similarly to testsuite generation the checker generator produces a configuration

file that encodes the points in which the instrumented should insert the call to the proto-

col checker. Referring to the figure 2.6, the checker generator translates the checkpoints

producing the configuration file shown in figure 2.12.

1 C − [b@pcnet32_interrupt : KmallocProtocol; e@pcnet32_cleanup_module : KmallocProtocol;]

Figure 2.12: Verification points translated from SLANG to a configuration file used for
instrumentation.

2.5 Instrumentation

This section describes how we perform instrumentation of device drivers. Configuration

files establish which entry points the instrumentation tool must instrument according to

the SLANG specification. Instrumentation can be performed modifying the source code or

introspecting the virtual machine state at runtime. Introspection consists in inspecting a

virtual machine from the outside for the purpose of analyzing the software running inside

it [36]. However, since we assume that device driver code is available for testing and verifi-

cation purposed we choose a code rewriting approach. Thus, the code rewriter tool during

Chapter 2. Model-based Symbolic Execution for Device Drivers 45

CPU+ I/O+ Memory+

VIRTUAL+HW+

OS+

Device+Driver+
Layer+

FS+Layer+

Event+
Dispatcher+

Exerciser+

In
te
rc
ep

to
r+

APP+

Checker+1+

Checker+2+

Checker+N+

SYMCHECK+
Test+applica(ons+

State++
Selector+

Figure 2.13: Backend architecture.

the analysis uses the informations provided by the configuration files to insert call to the

interceptor module, explained in section 2.6.1. The instrumented device driver code aids

the verification phase: (i) guiding symbolic execution, (ii) inserting calls to the interceptor.

Figure 2.20 depicts the code instrumented with checks. In the instrumentation phase, the

system inserts call at the code points defined in specification.

2.6 Verification

This section describes the verification architecture that uses the generated checker plugin

during symbolic execution. The design of the architecture is showed in figure 2.14. In the

following, we discuss in more detail each individual component of this architecture.

Chapter 2. Model-based Symbolic Execution for Device Drivers 46

2.6.1 Interceptor

The operating system, together with the device driver under verification and with user-space

applications, are executed on a virtual machine. User applications executes on top of the

OS kernel, and they interact with it using system calls. Since events related to verification

are associated with kernel functions, we need a mechanism to map such functions with

events. The most natural approach is to statically instrument the driver code: every call

to interested function is rewritten as a function calls to the interceptor layer (IL) within

the symbolic execution engine. This invocation is performed by instrumenting the driver’s

code with special opcodes (i.e., new machine instructions not already used by the emulated

hardware architecture) that are intercepted and forwarded by the virtual machine. The

interceptor layer is the part of the system preposed to collect such “interesting” events, that

is, the set of functions and instructions that are specified by the user in SLANG for protocol

verification purposes.

2.6.2 Event Dispatcher

When the Interceptor issues an event, it is collected and dispatched by the event dispatcher

(ED) component. It sends signals to the checker object: for instance, a call to kmalloc

in the device under verification is translated into an internal kmalloc signal in the checker

plugin, which is dispatched to the checker object that verifies the kmalloc/kfree protocol.

Each checker subscribes to events of interest, and receives a signal when the event occurs

Chapter 2. Model-based Symbolic Execution for Device Drivers 47

during the execution of a device driver. For instance, a checker interested in the kmalloc

event subscribes to the dispatcher Kmalloc event.

2.6.3 Exerciser

To perform symbolic execution of the driver’s code, we need to inject symbolic values at

specific points of the component interface that we want to test. The Exerciser injects

symbolic values at the kernel/driver interface and at driver/device interface. The Exerciser

consists in a code rewriting tool that instruments the points of the code starting from the

configuration file generated in the phase described in 2.3.1. Thus, the exerciser injects the

call to the function that makes symbolic value directly into the code. We opted to let the

user choose, through the use of symbolic source 2.3.1, the point of the code in which he/she

want to inject symbolic values, to give a high flexibility in the creation of test suites. The

Exerciser interacts with the symbolic execution engine to introduce a symbolic variable in

the current state of the execution: from that point on, every access to that symbolic variable

will trigger a fork of the current execution state, following the general approach of symbolic

execution (see also section 1.2.3).

2.6.4 Symbolic Execution Scheduler

In general, symbolic execution leads to the exploration of a huge number of paths, where

each of them consumes computational resources such as CPU and memory. In almost all

real-world software systems (device drivers are not an exception on this regard), it is not

Chapter 2. Model-based Symbolic Execution for Device Drivers 48

feasible to exhaustively explore all these paths. For this reason, there is a need for heuristic

rules that focus the symbolic execution only on the most important and "error-prone" paths

of the driver under verification. An heuristic selects which path (among all the paths viable

at a given time) must be executed next, and has a tremendous impact on the effectiveness of

symbolic execution. Branch heavy code (e.g., chip selection code that chooses the right chip

in a probe function), and polling loops, are among the main sources of the state explosion

problems for device drivers. State explosion for loops and initialization code has been widely

explored in [15] and [16]. Our Symcheck approach inherits from Symdrive the heuristics for

handling polling loops and device initialization code.

For polling loop handling, Symcheck implements loop elision, which gives priority to

paths that quickly exit the loop. For instance, suppose an execution path E, when E

reaches a loop instruction the symbolic execution engine will fork two paths the first that

enters the loop and the second that exits the loop. Loop elision tries to select the path that

exits earlier the the loop. The strategy is greedy, at each iteration of the loop the path that

forks new paths is deprioritized. If there is a complex chain of loops the approach randomly

selects a path with the hope of exiting the loop. An alternative strategy, adopted by DDT,

is to introduce a plugin that kills edges in the binary control flow graph. However, this

solution is too cumbersome since needs to explicitly mark the binary offset where the victim

edge is located, but those offsets change at each recompilation of the device driver and need

Chapter 2. Model-based Symbolic Execution for Device Drivers 49

to be reconfigured at each run. To further improve the effectiveness of these heuristics, these

user can annotate driver code to give lower priority to paths in which symbolic execution

execution gets stuck, such as algorithms that compute checksums.

To address path explosion problem due to branch heavy code, we used the favor-success

heuristic. Symbolically execute device driver initialization code entails path explosion be-

cause the code often has many branches to support multiple chips and configurations. Favor-

success prioritizes paths that do not return errors. A simple way is to kill paths that corre-

spond to hardware error configuration. Since we are interested in verifying the driver only

when the device is correctly configured, this approach enforce the symbolic execution engine

to execute in interesting portions of device driver code (e.g., network packet send, block

read).

2.7 Implementation Details

This section describes the implementation details of Symcheck. In section 2.7.1 we describe

the implementation details regarding the SLANG whereas in the section 2.7.2 we cover more

deeply how we implemented the backend.

2.7.1 SLANG Implementation

The front-end is implemented using the Xtext infrastructure in the Xtend programming

language. Xtext [37] is a framework for the development of programming languages and

Chapter 2. Model-based Symbolic Execution for Device Drivers 50

domain specific languages. It handles all the aspects of a complete language infrastructure

process such as parsing, compiling and linking and interpretation. Xtext allows to describe

the grammar of the language in EBNF form. The Xtext engine uses this grammar to

automatically generate a parser for the language and an infrastructure used for add language-

specific mechanism such as scoping and type checking and code generation.

Figure 2.14: A screenshot of the SLANG editor for specifying the language.

The code generator translates the checker expressed in SLANG into C++. The SLANG

state machines are translated into C++ using the Boost meta-state machine library [38]. A

translated SLANG checker interfaces with S2E plugin API to inject symbolic value and to

Chapter 2. Model-based Symbolic Execution for Device Drivers 51

observe events. It is straightforward adding the support for the API of a different symbolic

execution engine such as KLEE. It requires only the modification of the platform-specific

API invocations.

2.7.2 Runtime Support Implementation

Conversely, the back-end is built in C++ on top of S2E. Symcheck uses the S2E plugin

infrastructure to provide functionalities. A first plugin named “LinuxKmInterceptor” inter-

cepts some kernel events such as module loading and module unloading, those events are

useful to start the monitoring. We require only a modification to the kernel function that

loads the kernel module (i.e., load_module). The kernel send the name of the loaded driver

to the plugin that parses the ELF (Executable and Linkable Format) sections of the file

itself. From these sections, the plugin creates a module object that is dynamically added

to the pool of modules tracked by S2E. Then, the plugin emits a signal that notifies that a

kernel module has been loaded to other plugins. A kernel module implements the interceptor

layer that is named symmod. The instrumented device driver under test invokes the entry

points of the interceptor layer, that forwards the call to internal functions of the Symcheck

guest API.

The guest API populates the message described in figure 2.18 with the addresses of

the arguments and of the return value. Then, plugins parse this data structure to read

concrete/symbolic values that are stored in memory. Symcheck executes special opcodes

Chapter 2. Model-based Symbolic Execution for Device Drivers 52

x86 to communicate with the host-side infrastructure. The “SymCheckDispatcher” plugin

is responsible of dispatching kernel events, sent by the interceptor, towards checkers. This

plugin accepts messages sent from the guest side through the Symcheck guest API. Checkers

react to events dispatched by the “SymCheckDispatcher” plugin. When a checker receives an

“interesting” event it changes the internal state according to the model specified in SLANG.

CheckProtocol is a special event that is triggered when the code execution reaches the points

specified using the construct checkpoints.

The “Exerciser” is a source code rewriter written in C++ built with the Clang framework

[39]. Clang is an open-source compiler for the C family of programming languages. Clang is

built upon the LLVM infrastructure. LLVM offers a versatile framework to design a broad

class of analysis, such as source code transformations, code optimization, static analysis etc.

There are many projects built with LLVM and Clang [40] with tools targeted for software

verification [41, 27] and enforcing run-time safety rules such as API integrity enforcement [42]

, memory safety [43], deterministic execution [44, 45]. The “Exerciser” takes the configuration

file generated by the frontend and it injects code in the points of the device driver code

defined in the configuration file.

2.8 Evaluation

This section describes the results of applying model-based symbolic execution of device

drivers on a real Linux device driver. The following paragraphs show two cases of defect

Chapter 2. Model-based Symbolic Execution for Device Drivers 53

types. The section 2.8.1 analyzes a case of a DMA resource leak while the section 2.8.2

shows an example of a detector of device driver/device data race.

2.8.1 Case 1: Resource Leak

MAPPED

pci_map_single pci_unmap_single

ENDINIT

Figure 2.15: State machine of a DMA memory address space.

The case analyzed in this section regards resource leaks of DMA address on PCI device

drivers . According to the documentation [20] every call of the function pci_map_single

must be followed by a call to the pci_unmap_single. The presence of a protocol violation can

cause incorrect use of bus addresses, when the bus address are exhausted they may cause

unexpected behavior. Figure 2.15 describes a finite state machine of the DMA mapping

protocol. We model each DMA memory area as a finite state machine that can transit in

the following states: (i) INIT; (ii) MAPPED; (iii) END.

When a dynamic memory area owned by the driver is mapped into a bus address through

the pci_map_single function, the finite state machine transits from the INIT state towards

the MAPPED state. Whenever the device driver calls the pci_unmap_single o previously

mapped area the finite state machine transits in the END state. The finite state machine

Chapter 2. Model-based Symbolic Execution for Device Drivers 54

signals the user of violation when the device driver send events that are not present in

the model. Figure 2.19 represents a bug that we found with Symcheck that pcnet32 device

drivers. We configured as protocol verification points the end of the send and the kernel mod-

ule deallocation points. The analysis showed that areas allocated by the pci_map_single

function are not deallocated neither in the interrupt handler nor when the kernel cleans up

the module.

2.8.2 Case 2: Data Race

In this section, we describe an example of data race between device driver and device. Device

drivers manipulate DMA buffers using both virtual and bus addresses. For example, the

virtual address is used to read/write the DMA buffer, while the bus address is used to

synchronize the cache and memory copies of a DMA buffer to avoid coherence issues (e.g.,

dma_sync_single for cpu). An example of data race during a DMA operation is depicted

in figure 2.16 [46]. The device driver at one point of its execution maps buffers to DMA

transfer area. Then, when the device driver does not need the DMA area anymore executes

an unmap. During the interval between a map and the next unmap , only the device can

access the mapped area in order to asynchronously perform the DMA transfer from memory

to the device. Thus, an eventual write of the device driver on the mapped area could generate

races.

The state machine describing the protocol is depicted in figure 2.17. In this case, each

Chapter 2. Model-based Symbolic Execution for Device Drivers 55

DMA map operation
on address x

DMA unmap operation
on address x

…

device driver
accesses x

execution
time

race

Figure 2.16: Example of a data race between device driver and device.

DMA memory are can transit in each of the following states: (i) INIT; (ii) MAPPED;

(iii) END; (iv) RACE. The transition INIT to MAPPED happens when the device driver

performs a call to the pci_map_single function. In this case, we have two final states: the

END state represents a correct unmap i.e., the device driver invokes pci_unmap_single

when it does not need anymore the DMA memory area. The RACE state represents the

condition when the device driver writes data to the DMA memory mapped I/O area before

that the device driver unmaps it. The checker reacts if the device driver violates the protocol,

writing on a memory area that is still mapped.

We performed experiments using this checker on the Linux device driver pcnet32. In

order to force complex interleavings we injected interrupts randomly. Injecting interrupts

randomly may lead in the generation of spurious interrupts, i.e., interrupts that a functioning

device cannot issue. However, the device driver must be tolerant to situations in which the

device is faulty.

In order to test the correct behavior of the checker we injected a fault in the function

Chapter 2. Model-based Symbolic Execution for Device Drivers 56

MAPPEDINIT END

pci_map_single pci_unmap_single

RACE

memory write

Figure 2.17: State machine of the DMA data race detector.

pcnet32_purge_rx_ring as shown in figure 2.21. In this case, the device driver did not

unmap the area that belongs to the ring buffer. The checker detected a protocol violation

when the operating system tried to reuse the mapped area. Furthermore, we were able

to reconstruct the interactions on the use of DMA buffers between the OS and the device

driver.

1
2 struct S2E_SYMINT_ARGS{
3 uint32_t arg0;
4 uint32_t arg1;
5 uint32_t arg2;
6 uint32_t arg3;
7 uint32_t ret;
8 } __attribute__((aligned(8)));;
9

10 struct S2E_SYMINT_COMMAND {
11 S2E_SYMINT_COMMANDS Command;
12 union {
13 S2E_SYMINT_ARGS args;
14 };
15 } __attribute__((aligned(8)));;

Figure 2.18: Message format to communicate events to the dispatcher.

Chapter 2. Model-based Symbolic Execution for Device Drivers 57

1 static netdev_tx_t pcnet32_start_xmit(struct sk_buff ∗skb,
2 struct net_device ∗dev)
3 {
4 ...
5
6 /∗ Caution: the write order is important here, set the status
7 ∗ with the "ownership" bits last. ∗/
8
9 lp−>tx_ring[entry].length = cpu_to_le16(−skb−>len);

10
11 lp−>tx_ring[entry].misc = 0x00000000;
12
13 lp−>tx_skbuff[entry] = skb;
14 lp−>tx_dma_addr[entry] =
15 pci_map_single(lp−>pci_dev, skb−>data, skb−>len, PCI_DMA_TODEVICE);
16 lp−>tx_ring[entry].base = cpu_to_le32(lp−>tx_dma_addr[entry]);
17 wmb(); /∗ Make sure owner changes after all others are visible ∗/
18 lp−>tx_ring[entry].status = cpu_to_le16(status);
19
20 lp−>cur_tx++;
21 dev−>stats.tx_bytes += skb−>len;
22
23 /∗ Trigger an immediate send poll. ∗/
24 lp−>a.write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_TXPOLL);
25
26 dev−>trans_start = jiffies;
27
28 if (lp−>tx_ring[(entry + 1) & lp−>tx_mod_mask].base != 0) {
29 lp−>tx_full = 1;
30 netif_stop_queue(dev);
31 }
32 spin_unlock_irqrestore(&lp−>lock, flags);
33 return NETDEV_TX_OK;
34 }

Figure 2.19: Example of a DMA resource leak found in Linux pcnet32 device driver.

Chapter 2. Model-based Symbolic Execution for Device Drivers 58

1 /∗ The PCNET32 interrupt handler. ∗/
2 static irqreturn_t pcnet32_interrupt(int irq, void ∗dev_id) {
3 symmod_check_protocol("KmallocProtocol");
4 struct net_device ∗dev = dev_id;
5 struct pcnet32_private ∗lp;
6 unsigned long ioaddr;
7 u16 csr0;
8 ...
9 spin_lock(&lp−>lock);

10
11 csr0 = lp−>a−>read_csr(ioaddr, CSR0);
12 while ((csr0 & 0x8f00) && −−boguscnt >= 0) {
13 if (csr0 == 0xffff)
14 break; /∗ PCMCIA remove happened ∗/
15 /∗ Acknowledge all of the current interrupt sources ASAP. ∗/
16 lp−>a−>write_csr(ioaddr, CSR0, csr0 & ~0x004f);
17
18 netif_printk(lp, intr, KERN_DEBUG, dev,
19 "interrupt csr0=%#2.2x new csr=%#2.2x\n",
20 csr0, lp−>a−>read_csr(ioaddr, CSR0));
21
22 /∗ Log misc errors. ∗/
23 if (csr0 & 0x4000)
24 dev−>stats.tx_errors++; /∗ Tx babble. ∗/
25
26 ...
27 return IRQ_HANDLED;
28 }
29
30
31 static netdev_tx_t pcnet32_start_xmit(struct sk_buff ∗skb, struct net_device ∗dev) {
32 struct pcnet32_private ∗lp = netdev_priv(dev);
33 unsigned long ioaddr = dev−>base_addr;
34 u16 status;
35 int entry;
36 unsigned long flags;
37
38 spin_lock_irqsave(&lp−>lock, flags);
39
40 netif_printk(lp, tx_queued, KERN_DEBUG, dev,
41 "%s() called, csr0 %4.4x\n",
42 __func__, lp−>a−>read_csr(ioaddr, CSR0));
43
44 ...
45
46 lp−>tx_ring[entry].length = cpu_to_le16(−skb−>len);
47
48 lp−>tx_ring[entry].misc = 0x00000000;
49
50 lp−>tx_dma_addr[entry] =
51 pci_map_single(lp−>pci_dev, skb−>data, skb−>len, PCI_DMA_TODEVICE);
52 if (pci_dma_mapping_error(lp−>pci_dev, lp−>tx_dma_addr[entry])) {
53 dev_kfree_skb_any(skb);
54 dev−>stats.tx_dropped++;
55 goto drop_packet;
56 }
57 lp−>tx_skbuff[entry] = skb;
58 lp−>tx_ring[entry].base = cpu_to_le32(lp−>tx_dma_addr[entry]);
59 wmb(); /∗ Make sure owner changes after all others are visible ∗/
60 lp−>tx_ring[entry].status = cpu_to_le16(status);
61 ...
62
63 drop_packet:
64 spin_unlock_irqrestore(&lp−>lock, flags);
65 symmod_check_protocol("KmallocProtocol");
66 return NETDEV_TX_OK;
67 }

Figure 2.20: Device driver code instrumented with verification points

Chapter 2. Model-based Symbolic Execution for Device Drivers 59

1 static void pcnet32_purge_rx_ring(struct net_device ∗dev)
2 {
3 struct pcnet32_private ∗lp = netdev_priv(dev);
4 int i;
5
6 /∗ free all allocated skbuffs ∗/
7 for (/∗i = 0∗/ i = 1; i < lp−>rx_ring_size; i++) {∗/
8 lp−>rx_ring[i].status = 0; /∗ CPU owns buffer ∗/
9 wmb(); /∗ Make sure adapter sees owner change ∗/

10 if (lp−>rx_skbuff[i]) {
11 s2e_printk("−−−−DMA unmap @ line %d\n",__LINE__);
12 symmod_pci_unmap_single(lp−>pci_dev, lp−>rx_dma_addr[i],
13 PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
14 dev_kfree_skb_any(lp−>rx_skbuff[i]);
15 }
16 lp−>rx_skbuff[i] = NULL;
17 lp−>rx_dma_addr[i] = 0;
18 }
19 }

Figure 2.21: Fault injected in the Linux AMD pcnet32 driver.

Chapter 3

Enhancing Performance of Symbolic
Execution

This chapter describes an enhanced symbolic execution platform with emphasis on per-

formance, in terms of speed of program state-space exploration. The enhanced platform

addresses a key performance bottleneck in symbolic execution: translating a binary pro-

gram (encoded using a "source ISA”) into another representation ("target ISA”) amenable

to symbolic execution. The enhanced platform introduces a translation-efficient code repre-

sentation that improves the performance of the symbolic execution engine. Before introduc-

ing the enhanced platform, we give an introduction about how a symbolic execution engine

internally works, in order to understand the phases that impact significantly on symbolic

execution performance.

60

Chapter 3. Enhancing Performance of Symbolic Execution 61

3.1 Background

In this section, we briefly recap the basic concepts on binary translation and interpretation

that are required to understand how symbolic execution engines work.

3.1.1 Interpretation

Interpretation is a technique that mimics the behavior of a CPU. An interpreter fetches,

analyzes and executes a set of instructions in a loop. In the history of computer science,

interpretation was born very early. Popular languages such as LISP, Perl and Java were based

on interpretation. This section gives a brief overview about how interpretation techniques

are applied to binaries. An interpreter operates on a in-memory representation of the source

machine state. Figure 3.1 depicts the structure of a generic interpreter. The address

Code area

Interpreter !
code

Data

PC

Condition codes

Reg 0

Reg 1

…

Reg n

Stack

Context

Figure 3.1: Interpreter structure.

Chapter 3. Enhancing Performance of Symbolic Execution 62

space in which is stored the interpreter also contains a table referred as context block, that

maintains the various components of the source machine state, such as general-purpose

registers, the program counter, condition codes, and additional control registers.2.1 Basic Interpretation 9 31

w h i l e (! h a l t && ! i n t e r r u p t) {
i n s t = code [PC] ;
opcode = extract(inst,31,6);
s w i t c h (o p c o d e) {

case LoadWordAndZero : LoadWordAndZero(inst) ;
case ALU: ALU(inst);
case B ranch : Branch(inst);

 9 , ,}

Figure 2.3

Instruction function l i s t

LoadWo rdAndZe ro (i n s t) {
RT = extract(inst,25,5) ;
RA = extract(inst,20,5);
d i s p l a c e m e n t = extract(inst,15,16);
i f (RA == O) s o u r c e = O;
e l s e s o u r c e = r e g s [R A] ;
a d d r e s s = s o u r c e + d i s p l a c e m e n t ;
r e g s [R T] = (d a t a [a d d r e s s] < < 32) >> 32;
PC = PC + 4;

A L U (i n s t) {
RT = extract(inst,25,5);
RA = extract(inst,20,5) ;
RB = extract(inst,15,5);
s o u r c e 1 = r e g s [R A] ;
s o u r c e 2 = r e g s [R B] ;
e x t e n d e d _ o p c o d e = extract(i n s t , 1 0 , 1 0) ;
s w i t c h (e x t e n d e d _ o p c o d e) {

case Add: Add(inst);
case A d d C a r r y i n g : AddCarrying(inst);
case A d d E x t e n d e d : AddExtended(inst);

 9 ,}
PC = PC + 4;

Code for Interpreting the PowerPC Instruction Set Architecture. A decode-and-dispatch loop uses
a switch statement to call a number of routines that emulate individual instructions. The extract(inst,
i, j) function extracts a bit field of length j from inst, beginning at bit i.

extended opcodes. For instructions of this type, two levels of decoding (via
switch statements) are used. The decode-and-dispatch loop is illustrated here
in a high-level language, but it is easy to see how the same routines could be
written in assembly language for higher performance.

In Figure 2.3, the architected source program counter is held in a variable
called PC. This variable is used as an index into an array that holds the source
binary image. The word addressed by this index is the source instruction that
needs to be interpreted. The opcode field of the instruction, represented by

Figure 3.2: Interpreter loop for a PowerPC architecture.

The interpreter executes the source binary instruction by instruction, the instructions

can read and modify the state stored in the context block according to their semantics . This

kind of interpreter is referred as decode-and-dispatch interpreter, because there is a main loop

that decodes an instruction and then dispatches it to an handler that mimics its behavior.

Figure 3.2, extracted from [47], shows a decode-and-dispatch interpreter for a PowerPC

Chapter 3. Enhancing Performance of Symbolic Execution 63

architecture. The main interpreter loop starts fetching an instruction from memory ,at the

address code[PC], and then it extracts its opcode. The switch construct selects based on

the opcode which operation must be performed. The Load Word and Zero instruction loads

a 32-bit word in a 64-bit register and zeroes the most significant registers. Conversely, the

set of instructions that exercise the ALU emulate all the arithmetic and logic operations

such as addition, subtraction, multiplication etc. At the end of each instruction handler the

program counter is incremented by 4, that is the instruction size. An approach to make

interpretation faster is to let the common case as fast as possible.

3.1.2 Dynamic Binary Translation

Interpretation suffers of performance overhead. The issue is that a single source ISA op-

eration costs up to thousands of target CPU cycles. The mapping each individual source

instruction to its own customized target code minimizes the number of target ISA instruc-

tions needed to emulate a source ISA instruction. This process of converting a source binary

into a target binary is known as binary translation. A binary translator divides the source in-

struction stream in instruction chunks named basic blocks. Basic blocks contains a sequence

of instructions where the last instruction is an operation that modifies the control-flow, such

as branch, a call or a return.

A static binary translator translates source ISA binary code to target ISA binary code

without having to run the code. On the other hand, dynamic binary translation [47] selects

Chapter 3. Enhancing Performance of Symbolic Execution 64

and executes basic blocks during the code execution. This section focuses on dynamic

binary translation. Dynamic binary translation has been used for several purposes such as

virtualization [48], testing/verification [49], debugging [50], profiling [51], sandboxing [52].

A dynamic binary translator can be imagined as a program that performs the following steps

continuously (interrupt handling is omitted in this description):

1. fetch instructions from an instruction stream

2. translate the basic blocks from source ISA to the target ISA

3. execute the basic block on the execution engine either by direct execution on the host

CPU or by interpretation.

4. return to step 1

Regarding step 3, it must be noticed that symbolic execution takes advantage of both

direct execution and interpretation. Direct execution is adopted to quickly execute, on the

physical processor, the parts of a program that do not involve symbolic execution, thus

lowering overhead. Interpretation is adopted to execute parts of the program that require

symbolic execution, such as instructions that access to symbolic operands and to symbolic

hardware. To achieve good performance in symbolic execution, it is indeed very important

to optimize the performance of interpretation. S2E uses dynamic binary translation for

different reasons [53] such as symbolic value creation, notify memory and register accesses,

Chapter 3. Enhancing Performance of Symbolic Execution 65

symbolic hardware and plugins notification.

50 9 Chapter 2--Emulation: Interpretation and Binary Translation

addl
movl
add

%edx, 4 (%eax)
4 (%eax), %edx
%eax, 4

(a)

Figure 2.16

r l points to IA-32 reg is ter context block
r2 points to IA-32 memory image
r3 contains IA-32 ISA PC value

lwz r4,0(r l)
addi r5,r4,4
lwzx r5, r2, r5
lwz r4,12 (r l)
add r5,r4,r5
stw r5,12(r1)
addi r3 , r3 ,3

;load %eax from reg is ter block
;add 4 to %eax
;load operand from memory
;load %edx from reg is ter block
;perform add
;put resu l t in to %edx
;update PC (3 bytes)

lwz r 4 , 0 (r l)
addi r5 , r4 ,4
lwz r4,12 (r l)
stwx r4, r2, r5
addi r3 , r3 ,3

;load %eax from reg is ter block
;add 4 to %eax
;load %edx from reg is ter block
;store %edx value in to memory
;update PC (3 bytes)

lwz r 4 , 0 (r l) ;load %eax from reg is ter block
addi r4, r4,4 ;add immediate
stw r4,0(rZ) ;place resu l t back in to %eax
addi r3 , r3 ,3 ;update PC (3 bytes)

(b)
Binary Translation from an IA-32 Binary to a PowerPC Binary. (a) Intel IA-32 source binary
sequence. (b) PowerPC target binary.

state mapping that is a basic part of the virtualization process, as discussed at
the beginning of Chapter 1.

Figure 2.17 compares predecoding (with threaded interpretation) and
binary translation. In both cases, the original source code is converted to
another form. But in the case of predecoding, interpreter routines are still
needed, while in binary translation the converted code is directly executed.

As shown in Figure 2.16, binary translated code may keep the target reg-
isters in a register context block held in memory, just as with interpretation.
However, because each instruction translation is customized, state mapping
can be used to map the registers in the source ISA directly to target ISA registers.
By enabling the direct access of registers in the target code, memory accesses

50 9 Chapter 2--Emulation: Interpretation and Binary Translation

addl
movl
add

%edx, 4 (%eax)
4 (%eax), %edx
%eax, 4

(a)

Figure 2.16

r l points to IA-32 reg is ter context block
r2 points to IA-32 memory image
r3 contains IA-32 ISA PC value

lwz r4,0(r l)
addi r5,r4,4
lwzx r5, r2, r5
lwz r4,12 (r l)
add r5,r4,r5
stw r5,12(r1)
addi r3 , r3 ,3

;load %eax from reg is ter block
;add 4 to %eax
;load operand from memory
;load %edx from reg is ter block
;perform add
;put resu l t in to %edx
;update PC (3 bytes)

lwz r 4 , 0 (r l)
addi r5 , r4 ,4
lwz r4,12 (r l)
stwx r4, r2, r5
addi r3 , r3 ,3

;load %eax from reg is ter block
;add 4 to %eax
;load %edx from reg is ter block
;store %edx value in to memory
;update PC (3 bytes)

lwz r 4 , 0 (r l) ;load %eax from reg is ter block
addi r4, r4,4 ;add immediate
stw r4,0(rZ) ;place resu l t back in to %eax
addi r3 , r3 ,3 ;update PC (3 bytes)

(b)
Binary Translation from an IA-32 Binary to a PowerPC Binary. (a) Intel IA-32 source binary
sequence. (b) PowerPC target binary.

state mapping that is a basic part of the virtualization process, as discussed at
the beginning of Chapter 1.

Figure 2.17 compares predecoding (with threaded interpretation) and
binary translation. In both cases, the original source code is converted to
another form. But in the case of predecoding, interpreter routines are still
needed, while in binary translation the converted code is directly executed.

As shown in Figure 2.16, binary translated code may keep the target reg-
isters in a register context block held in memory, just as with interpretation.
However, because each instruction translation is customized, state mapping
can be used to map the registers in the source ISA directly to target ISA registers.
By enabling the direct access of registers in the target code, memory accesses

translated into

(a) (b)

Figure 3.3: Example of binary translation from x86 to PowerPC.

Figure 3.3 depicts an example of binary translation from a x86 source ISA to a PowerPC

target ISA. The register values of the x86 architecture are maintained in a register context

block stored in memory and then fetched into registers of the target PowerPC ISA. Fre-

quently used registers guest registers are assigned to host machine registers. Other registers

are stored directly in memory in the interpreter address space. In this example, r1 points

to the first byte of the register control block, r2 points to the memory image of the source

machine, and r3 contains the program counter. The mapping of source registers into target

registers concretizes the state mapping between guest state and host state, that is necessary

for virtualization. As shown in figure 3.3, the first instruction lwz loads the word starting at

the first byte of the context block into r4, so the x86 register eax is mapped into r4. In the

Chapter 3. Enhancing Performance of Symbolic Execution 66

example, the program counter is contained into the PowerPC register r3 that is incremented

at the end of each basic block.

In order to minimize the number of required translators, dynamic binary translators con-

vert the source ISA code into an intermediate representation. This representation consists

of a set of micro-operations that are operations simpler to emulate. Simpler instructions,

such as mov and ld are translated into their equivalent counterpart. More complex instruc-

tions (e.g., instructions that are more complex to translate) are translated into call to helper

functions. The latter emulates the behavior of the source ISA complex instruction.

From an architectural perspective, a dynamic binary translator consists of two main

blocks: (i) the dispatcher and (ii) code cache. The dispatcher translates guest code into

basic blocks. A translation table converts each guest instruction into the intermediate rep-

resentation and then into the host ISA code. After the execution of each translation block

the dispatcher regains control and selects the next block to execute.To reduce translation

overhead, the dynamic binary translator contains also a code cache. The code cache imple-

ments fast-lookup of translated code, i.e, an hash table that maps program-counters into

translated blocks.

Direct branch chaining allows the translated code to jump from one block to another

within the code cache, improving the performance. To direct chain blocks, the dispatcher

checks, before looking-up in the code cache, if the previous executed block performed a

Chapter 3. Enhancing Performance of Symbolic Execution 67

direct branch to the current translation block. Then, if the previous block jumps directly

into the current block the dynamic binary translator modifies the end of the previous block

with a jump to the current translation block.

QEMU

In this paragraph, we describe how QEMU [54] performs dynamic binary translation. S2E

uses QEMU as a building block in its design. QEMU translates the guest code into an inter-

mediate representation, named TCG (Tiny Code Generator) [55]. Guest code is translated

into TCG and finally translated into the host architecture. A TCG "function” is a QEMU

translation block. Temporaries are variables that only live within a translation block. Each

function allocates explicitly temporaries. A local temporary is a variable that only lives in a

function. On the other hand a global is a variable that is live in all the functions (equivalent

of a C global variable). Globals are defined before function definitions. A TCG global can

be a memory location (e.g. a QEMU CPU register), a fixed host register (e.g. the QEMU

CPU state pointer). Instructions operate on temporaries, local temporaries or globals. In

TCG, instructions are strongly typed and they can assume 32-bit value and 64-bit value.

Pointers are alias to 32 bit or 64 bit integers. The pointer size is configured with the target

word size. Instructions have a fixed number of output and input operands; except for the

call instruction that can have a variable number of inputs and outputs. For instance, the

Chapter 3. Enhancing Performance of Symbolic Execution 68

instruction add_i32 t0, t1, t2 puts in t0 the sum of t1 and t2. TCG has the following in-

struction classes: (i) register transfer operations (ii) arithmetic and logical operations, (iii)

memory operations. The first class consists of instructions used to transfer values from one

register to others. The arithmetic and logical operation class contains all the instructions

that perform math operations such as add, subtract, division, bitwise or, etc. Memory op-

erations class allows to load and store values into the host and the guest memory. Further,

QEMU performs constant folding and liveness analysis optimizations on TCG code in order

to minimize the translation block size [56].

3.1.3 Symbolic Execution Engines

Interpretation of the bytecode allows to symbolically execute code. The interpreter fetches

instructions from memory, decode them and then execute as mentioned in section 3.1. In

this context, the memory is seen as an array of bytes that can be concrete or symbolic that

are stored in data structures named memory objects. Memory is an array of memory objects.

Figure 1 depicts the interpreter loop for a symbolic execution interpreter. The interpreter

runs in a loop that fetches instruction and extracts concrete or symbolic operands and

from memory, and it executes operations such as arithmetic operations, logical operations,

forking. As discussed in section 3.1 a symbolic execution engines must keep track of the

execution state of each path, i.e., the registers state, memory and the path constraints.

Execution states are used for updating registers as well memory locations on a per-path

Chapter 3. Enhancing Performance of Symbolic Execution 69

Algorithm 1 Interpreter loop for a symbolic execution interpreter: reg and memory can
contain both concrete and symbolic values, state represent the execution state captured by
the symbolic execution engine
procedure InterpreterLoop(state, program_counter)

while !halt or !interrupted do
opcode← Fetch(program_counter)
switch (opcode)
case load: . Load instruction: ld reg, mem_addr
(reg,mem_addr)← ExtractOperands(load, state, program_counter)
reg = state.memory[mem_addr]
end case
case mov: . Mov instruction: mov reg0, reg1
(reg0, reg1)← ExtractOperands(mov, state, program_counter)
state.regs[reg0] = reg1
end case
case store: . Store instruction: st reg, mem_addr
(reg,mem_addr)← ExtractOperands(store, state, program_counter)
state.memory[mem_addr] = reg
end case
case arith_op: . Arithmetic instruction: arithm_op reg0, reg1, reg2
(reg0, reg1, reg2)← ExtractOperands(arith_op, state, program_counter)
expression← PerformOperation(arith_op, reg1, reg2) . Expression can be

both a concrete value and a symbolic expression
state.regs[reg0] = expression
end case
case branch_op: . Branch with condition instruction: brcc label
destination← ExtractDestination(program_counter)
program_counter ← ForkAndSchedule(state)
end case

...
end switch
updatePc(program_counter)

end while
end procedure

Chapter 3. Enhancing Performance of Symbolic Execution 70

basis, i.e., each state is modified independently to the others. Symbolic execution engines

use copy-on-write mechanism to avoid redundant copies of the same memory objects, that

significantly reduces overhead [30]. The procedure uses several helper functions that are

explained later in this section. Algorithm 1 shows the symbolic interpretation routine. The

variable state represent the current execution path selected by symbolic execution engine

scheduler. The procedure ExtractOperands selects the operands according to the opcode

passed as argument. The arguments are the operation type (e.g., load,store,add,sub, bcc,

etc.), the execution state and the program counter that the procedure use to fetch operands

from memory.

In the case of load/store instruction the symbolic interpreter read/write the value in

the memory object located from/at the memory address mem_addr. Registers transfer

operations simply copy concrete/symbolic data from a register to others. Arithmetic and

logical operations build symbolic expressions. Symbolic expressions are concatenation of

operations that are expressed in a format compatible for constraint solvers. When the

interpreter executes an arithmetic or logic operation simply concatenates the left and the

right operand of the operation and produces an expression that can be then transformed in

format compatible for the constraint solver queries. The recursive generation of expression

produces expression tree that encodes the expression. The procedure PerformOperation

executes an arithmetic or logic operations, it takes in input one or two expression trees

Chapter 3. Enhancing Performance of Symbolic Execution 71

(e.g.,unary or binary operations) and produces a new expression tree that encodes the result

of the arithmetic or logic operation. An example are KLEE [26] expressions, when the

symbolic execution interpreter executes add reg1, 100 with reg1 symbolic, KLEE produces

an object that represents the expression that is encoded as AddExpr(x, 100).

Branch instructions involve state forking. When the interpreter reaches a branch instruc-

tion it controls if the condition code is dependent on a symbolic variable. If positive, the

branch instruction causes the call to the procedure ForkAndSchedule(state) which does

the following operations: (i) it computes the negated branch condition, (ii) it sends the

combination of all constraints computed since that point to the constraint solver to see if it

is feasible, (iii) if the constraint is feasible then the procedure forks a new state and selects

which state execute next, otherwise it simply continues in the execution of the current state.

1 mov eax, dword ptr 0xAB120890 ; load the value stored at AB120890 in eax
2 add eax,100 ; eax = eax+ 100
3 je true_branch ; if eax == 0 then goto true_branch else continue
4 mov ebx, 1 ; ebx = 1
5 ret
6
7 true_branch:
8 mov ebx, 2 ; ebx = 2
9 ret

Figure 3.4: Symbolic execution of x86 code.

Figure 3.4 shows an example of Intel x86 assembler code that performs the following

operations : (i) load the value stored at the address 0xAB120890 in the eax register; (ii)

add the value 100 to the value stored in the eax register and rewrites the eax register; (iii)

Chapter 3. Enhancing Performance of Symbolic Execution 72

if eax is equal zero jumps to the label true_branch otherwise it continues the execution at

the next instruction. Let suppose that at the address 0xAB120890 is stored a symbolic

value. The symbolic interpreter executes the mov instruction that loads the symbolic value

stored at 0xAB120890 in the eax register, that we denote with x. Then, the add instruction

read x from eax and generates a symbolic expression x+100. When the symbolic execution

interpreter reaches the je (i.e., jump if equal zero) it forks two states: the first with the

constraint x+100 == 0 and the second x+100! = 0. At this point the state scheduler decides

which state must be executed first. In the case of depth-first search, the scheduler selects

the path that allows to explore inner block, e.g., the path where the condition x+100 == 0

holds. Then the control goes to the symbolic execution interpreter that executes the code

for the scheduled path. The scheduler can preempt the symbolic interpreter and invoke

the InterpreterLoop routine to execute code of a different path (i.e., to avoid that a path

starves other paths). Interpretation is interrupted when virtual hardware triggers interrupt

that is served by the dynamic binary translator.

3.2 The Enhanced Symbolic Execution Platform

As mentioned above, S2E analyzes translation blocks to decide whether a block can be ex-

ecuted natively or symbolically , i.e., when there is a read/write of a symbolic variable in

a translation block. Translation blocks that access symbolic data need to be symbolically

Chapter 3. Enhancing Performance of Symbolic Execution 73

interpreted. Thus, the intermediate representation is translated into a bitcode that is inter-

preted as discussed in section 3.1.3. S2E uses QEMU for dynamic binary translation, LLVM

as target bitcode and KLEE for symbolic interpretation as shown in figure 3.5.

Concrete
Execution

(Native host CPU)

Symbolic
Execution

(KLEE)

Emulation Helpers

Guest Machine

IR

Host Machine
Code LLVM Bitcode

Shared State Representation

Guest Machine Code

Virtual
CPU

VM
Memory

Virtual
Devices

Symbolic
Execution

(TCI)

TCI
Bytecode

DBT

Execution
engine

Figure 3.5: Enhanced platform design.

In order to leverage LLVM , S2E adds to QEMU a new translation layer. This layer

translates the code from the QEMU intermediate representation (TCG) to LLVM. The choice

of target representation has impact on translation performance. The total code execution

time in symbolic mode is the sum of the translation time, the interpretation time and the

constraint solving time. In this context, we are interested in minimizing the translation time

from the guest code the the final host code when performing symbolic execution.

Research on virtualization spent time to optimizing dynamic binary translation process

Chapter 3. Enhancing Performance of Symbolic Execution 74

[57]. However, only today research on symbolic execution face similar problems, and it was

never subject of studies regarding how the translation can be made efficient.

0x000f0098: addr32 mov (%eax),%ebx
0x000f009c: add $0x4,%ebx
0x000f00a0: cmp $0x0,%ebx
0x000f00a4: jne 0xf00ad

Figure 3.6: Guest x86 code sample.

We need to take into account translation block caching effect that have impact on the

overall performance measures. Now we describe an example of x86 to LLVM translation.

The process consists of two translation steps: the first that translates x86 code to the TCG

intermediate representation and the second that translates TCG code to LLVM code. The

code in figure 3.6 performs an addition of a symbolic value λ contained in the register eax

with the value 4. At the end of this operation the value contained in the register eax is

the expression λ+4. Figure 3.7 shows the translation of the code in the TCG intermediate

representation. The code contains operations performed on x86 registers stored in memory.

Besides the dynamic binary translator uses temporary registers to store intermediate results.

Finally, figure 3.8 shows the original x86 code translated into LLVM bitcode. The

important thing to remark is that the code produced in each phase is equivalent to the

initial guest code, which means that the code produce the same effects on a virtual machine

with the same registers of the original guest machine.

Figure 3.5 shows the new platform based on S2E enhanced with the support for a new

Chapter 3. Enhancing Performance of Symbolic Execution 75

00: movi_i64 tmp5,$0x7f93ce2e3588
 01: st_i64 tmp5,env,$0x760
 02: mov_i32 tmp2,eax
 03: ld_i32 tmp4,env,$0x478
 04: add_i32 tmp2,tmp2,tmp4
 05: qemu_ld32 tmp0,tmp2,$0x0
 06: mov_i32 ebx,tmp0
 07: movi_i32 tmp1,$0x4
 08: mov_i32 tmp0,ebx
 09: add_i32 tmp0,tmp0,tmp1
 10: mov_i32 ebx,tmp0
 11: mov_i32 cc_src,tmp1
 12: mov_i32 cc_dst,tmp0
 13: movi_i32 tmp1,$0x0
 14: mov_i32 tmp0,ebx
 15: mov_i32 cc_src,tmp1
 16: sub_i32 cc_dst,tmp0,tmp1
 17: movi_i32 cc_op,$0x10
 18: movi_i32 tmp12,$0x0
 19: brcond_i32 cc_dst,tmp12,ne,$0x0
 20: movi_i32 tmp4,$0xa6
 21: st_i32 tmp4,env,$0x430
 22: goto_tb $0x0
 23: exit_tb $0x7f93962dfa48
 24: set_label $0x0
 25: movi_i32 tmp4,$0xad
 26: st_i32 tmp4,env,$0x430
 27: goto_tb $0x1
 28: exit_tb $0x7f93962dfa49

Figure 3.7: The code translated in the TCG code format.

bytecode which supports an instruction set that is ”semantically” closer to the intermediate

representation instruction set. Figure 3.9 shows the translation process that translates

the intermediate code in a new code format named TCI. LLVM uses SSA (static-single

assignment), that is a form that arranges for every value computed by a program to have

a unique assignment [56]. SSA is widely used in compilers because it simplifies a wide

range of code optimizations. Conversely, TCI bytecode is very similar with respect to the

intermediate representation.

The platform depicted in figure 3.5 reuses most of S2E components. We start modify-

ing the dynamic binary translator to produce TCI bytecode. Afterwards, we plugged the

Chapter 3. Enhancing Performance of Symbolic Execution 76

define i64 @tcg-llvm-tb-f0098-e-c9-f0000-44(i64*) {
entry:

 %1 = getelementptr i64* %0, i32 0
 %env_v = load i64* %1

 %2 = add i64 %env_v, 1888
 %3 = inttoptr i64 %2 to i64*

 store i64 140272796054920, i64* %3
 %4 = add i64 %env_v, 1072
 %5 = inttoptr i64 %4 to i32*

 store i32 152, i32* %5
 %6 = add i64 %env_v, 0

 %eax_ptr = inttoptr i64 %6 to i32*
 %eax_v = load i32* %eax_ptr
 %7 = add i64 %env_v, 1144
 %8 = inttoptr i64 %7 to i32*

 %tmp4_v = load i32* %8
 %tmp2_v = add i32 %eax_v, %tmp4_v

 %tmp0_v = call i32 @__ldl_mmu(i32 %tmp2_v, i32 0)
 %9 = add i64 %env_v, 12

 %ebx_ptr = inttoptr i64 %9 to i32*
 store i32 %tmp0_v, i32* %ebx_ptr

 %10 = add i64 %env_v, 1072
 %11 = inttoptr i64 %10 to i32*

 store i32 156, i32* %11
 %tmp0_v1 = add i32 %tmp0_v, 4

 store i32 %tmp0_v1, i32* %ebx_ptr
 %12 = add i64 %env_v, 1072
 %13 = inttoptr i64 %12 to i32*

 store i32 160, i32* %13
 %14 = add i64 %env_v, 32

 %15 = inttoptr i64 %14 to i32*
 store i32 8, i32* %15

 %16 = add i64 %env_v, 36
 %cc_src_ptr = inttoptr i64 %16 to i32*

 store i32 0, i32* %cc_src_ptr
 %17 = add i64 %env_v, 40

 %cc_dst_ptr = inttoptr i64 %17 to i32*
 store i32 %tmp0_v1, i32* %cc_dst_ptr

 %18 = add i64 %env_v, 1072
 %19 = inttoptr i64 %18 to i32*

 store i32 164, i32* %19
 %20 = add i64 %env_v, 32

 %21 = inttoptr i64 %20 to i32*
 store i32 16, i32* %21

 %22 = add i64 %env_v, 32
 %cc_op_ptr = inttoptr i64 %22 to i32*

 store i32 16, i32* %cc_op_ptr
 %23 = icmp ne i32 %tmp0_v1, 0

 br i1 %23, label %label_0, label %24

; <label>:24 ; preds = %entry
 %25 = getelementptr i64* %0, i32 0

 %env_v2 = load i64* %25
 %26 = add i64 %env_v2, 1072
 %27 = inttoptr i64 %26 to i32*

 store i32 166, i32* %27
 store i8 0, i8* inttoptr (i64 27730344 to i8*)

 ret i64 140271856515656

label_0: ; preds = %entry
 %28 = getelementptr i64* %0, i32 0

 %env_v3 = load i64* %28
 %29 = add i64 %env_v3, 1072
 %30 = inttoptr i64 %29 to i32*

 store i32 173, i32* %30
 store i8 1, i8* inttoptr (i64 27730344 to i8*)

 ret i64 140271856515657
}

Figure 3.8: The LLVM translated code for the code in figure 3.6.

16

 00: movi_i64 tmp5,$0x7fac9ec5b588
 01: st_i64 tmp5,env,$0x760
 02: mov_i32 tmp2,eax
 03: ld_i32 tmp4,env,$0x478
 04: add_i32 tmp2,tmp2,tmp4
 05: qemu_ld32 tmp0,tmp2,$0x0
 06: mov_i32 eax,tmp0
 07: movi_i32 tmp1,$0x4
 08: mov_i32 tmp0,eax
 09: add_i32 tmp0,tmp0,tmp1
 10: mov_i32 eax,tmp0
 11: mov_i32 cc_src,tmp1
 12: mov_i32 cc_dst,tmp0
 13: movi_i32 cc_op,$0x8
 14: movi_i32 tmp12,$0x0
 15: brcond_i32 cc_dst,tmp12,eq,$0x0
 16: movi_i32 tmp4,$0xa2
 17: st_i32 tmp4,env,$0x430
 18: goto_tb $0x0
 19: exit_tb $0x7fac9ec5b588
 20: set_label $0x0
 21: movi_i32 tmp4,$0xaa
 22: st_i32 tmp4,env,$0x430
 23: goto_tb $0x1
 24: exit_tb $0x7fac9ec5b589

addr32 mov (%eax),%eax
add $0x4,%eax
je 0xf00aa

0x41add650: movi_i64 r0,
r136(0x7ff3a00bb588) st_i64 r0, r0 ,
0x760
0x41add665: call helper0
0x41add66e: ld_i32 r1 , 0x4780e
0x41add677: add_i32 r0, r0, r1
0x41add67d: qemu_ld32r0, (0x98), 0x0
0x41add68a: add_i32 r0, r0, r255
0x41add694: mov_i64 r1, r0
0x41add699: movi_i32 r2, r16(0x10)
0x41add6a1: st_i32 r2, r2 ,0x20
0x41add6aa: movi_i32 r2, r0(0x0)
0x41add6b2: st_i32 r2, r2 ,0x24
0x41add6bb: st_i32 r1, r1 ,0x28
0x41add6c4: st_i32 r0, r0 ,0xc
0x41add6cd: brcond_i32 to-> 0x41add702
if - r1 != r255
0x41add6df: movi_i32 r0, r166(0xa6)
0x41add6e7: call helper1
0x41add6f0: goto_tb: 0x0
0x41add6f7: exit_tb 0x7ff3a00bb588
0x41add702: movi_i32 r0, r173(0xad)
0x41add70a: call helper2
0x41add713: goto_tb: 0x0
0x41add71a: exit_tb 0x7ff3a00bb589

(c)(b)(a)

Figure 3.9: Translation x86 to TCI.

Chapter 3. Enhancing Performance of Symbolic Execution 77

interpreter into the execution engine to symbolically execute code. We leverage the S2E

abstraction of the execution state to store the program state and constraints. To implement

forking functionalities we reused the existing procedures already available in S2E. To re-

duce implementation effort of building a new compiler for TCI code, we reused also LLVM

emulation helpers.

3.3 Evaluation

This section explains the results obtained using the TCI bytecode representation. Section

3.3.1 describes results obtained with micro-benchmarks whereas the section 3.3.2 shows the

results obtained for real Windows device drivers.

3.3.1 Micro-benchmarks

In this section we estimate the performance benefits obtained from the adoption of the TCI

representation using two metrics:

1. Concrete overhead: that is the time spent in translating and interpreting only

manipulating concrete data.

2. Symbolic interpretation along a single path: this metric measures the time spent

executing the code with symbolic expression without switching states (e.g., following

just one path).

Chapter 3. Enhancing Performance of Symbolic Execution 78

To evaluate the concrete overhead metric we followed this procedure: (i) we created a

bootloader that contains the assembly code of the micro benchmark, (ii) we activated the

option that all the code executed must be interpreted by either the KLEE interpreter or the

TCI interpreter.

1 void microbenchmark(){
2 s2e_message("===================== Microbenchmark");
3 int i = 2e5;
4 int temp;
5 int a = 4;
6 int b = 5;
7 while(i > 0){
8 temp = a;
9 a = b;

10 b = temp;
11 i--;
12 }
13 s2e_kill_state(0,"End of the microbenchmark");
14 }

Figure 3.10: A micro benchmark used for estimating the overhead in concrete mode.

Figure 3.10 shows a micro-benchmark that consists in swapping 200000 times two vari-

ables. This code stimulates both memory usage and caching effects.

KLEE TCI SPEEDUP

Interpretation 317 sec 3,4 sec 100x

Translation 30 ms 95 us 310x

Table 3.1: Summary of performance enhancement in concrete execution.

As shown in table 3.1 the performance improvements with the new interpreter for the

micro-benchmark depicted in figure 3.10 are around 100x for interpretation time and 310x

for translation time.

Chapter 3. Enhancing Performance of Symbolic Execution 79

To evaluate symbolic interpretation along a single path, we measured the time to open

symbolic files of different sizes with forking disable both, to force the collection of constraints

and to allow the overhead of just interpreting code.

Symbolic file size: 512 bytes

N
um

be
r o

f T
Bs

 (s
ym

bo
lic

 m
od

e)

0

4000

8000

12000

16000 15.999

4.266

KLEE
TCI

Tr
an

sl
at

io
n

Ti
m

e
(s

)

0,000

0,000

0,001

0,001

0,002

1,5E-05

1,6E-03

KLEE
TCI

Figure 3.11: Opening a symbolic file of 512 bytes with forking disabled.

Figure 3.11 - 3.12 show the results about the time for opening of a 512/1024 bytes

symbolic file. In both cases the translation time is several order of magnitude better. Fur-

thermore, the number of translation blocks executed in symbolic mode are more because

TCI translates more blocks that go into the symbolic execution interpreter. In all these

experiments, forking is disabled because we want to force the execution just along a single

path. When the interpreter reaches a fork point, the execution proceeds along a path and

Chapter 3. Enhancing Performance of Symbolic Execution 80

Symbolic file size: 1MB

N
um

be
r o

f T
Bs

 (s
ym

bo
lic

 m
od

e)

0

10000

20000

30000

40000

32.152

6.812

KLEE
TCI

Tr
an

sl
at

io
n

Ti
m

e
(s

)

0,000

0,002

0,004

0,005

0,007

2E-05

7E-03

KLEE
TCI

Figure 3.12: Opening a symbolic file of 1 megabyte with forking disabled.

the states are not forking. This configuration allows to evaluate how the interpreter performs

with symbolic expressions, without involving the constraint solver.

3.3.2 Windows XP Device Drivers

This section shows the evaluation of three network Windows XP device drivers. The metrics

that we choose for the analysis are the following:

1. Speedup: how many times TCI interpreter reduces the translation time.

2. Completed paths: the number of paths that terminate and that are killed by the

symbolic execution engine.

Chapter 3. Enhancing Performance of Symbolic Execution 81

Sp
ee
du
p

0

1,5

3

4,5

6

dlh5xnd5.sys rtl8029.sys tbatm.sys

6x

3x

4x

Figure 3.13: Speedup.

Figure 3.13 shows the ratio between the LLVM translation time and the TCI translation

time. In these experiments, we compared the LLVM translation time with the TCI transla-

tion time. To leverage symbolic execution, we injected symbolic values at the device driver

and OS interface (e.g., when a device driver entry point is called). We run the experiments

for 120 minutes both for KLEE interpreter and for TCI interpreter. What emerges is that

the average speedup is 3x with respect to the baseline.

Figure 3.14 depicts a comparative performance of the time spent in each phase of the

symbolic execution process. The translation time is not took into account because is several

order of magnitude less with respect to the time spent in code interpretation. In each case

the interpretation time is less in the TCI case, that is, less time is spent in interpreting

the code. Furthermore,TCI interpreter spends more time in constraint solving compared to

Chapter 3. Enhancing Performance of Symbolic Execution 82

0%

25%

50%

75%

100%

dlh5xnd5 rtl8029 tbatm155

29,2%21,0%22,4%

12,6%

47,4%65,1%

58,2%

31,7%

12,5%

Constraint Solving Time (KLEE)
Interpretation Time (KLEE)
Other (KLEE)

0%

25%

50%

75%

100%

dlh5xnd5 rtl8029 tbatm155

20,9%28,3%14,9%

0,4%

31,0%

35,4%
78,7%

40,8%

49,7%

Constraint Solving Time (TCI)
Interpretation Time (TCI)
Other (TCI)

Figure 3.14: Breakdown of the time spent in each part of symbolic execution engine.

KLEE, that happens because more code is executed and then more queries are sent towards

the constraint solver.

Figure 3.15 shows a comparative performance measure on the number of completed paths

with KLEE and TCI. The experiments were performed using the same heuristics for both

cases. For the drivers dlh5xnd5 and rtl8029, the number of completed paths with TCI

interpreter is above 2x more than KLEE. The tbatm55 was a pathological case in which the

state selection algorithm was unable to find a path that explores new code.

Chapter 3. Enhancing Performance of Symbolic Execution 83

Completed paths

0

12500

25000

37500

50000

dlh5xnd5 rtl8029 tbatm155
201880

40443

20872

13661

KLEE TCI

~2.2x

~3x

Number !
of completed

paths

Figure 3.15: Comparative performance on completed paths .

Chapter 4

Model-Based Run-Time Verification
of Device Drivers

This chapter describes a methodology that allows to automatically generate monitors for

device drivers. Such monitors are used at runtime to detect anomalies in device drivers

behavior. In section 4.1, we give a brief overview of the needed background. Then, section

4.2 provides a detailed description of the monitoring methodology. Finally, section 4.3

concludes this chapter with results obtained applying the methodology on a real class of

device drivers.

4.1 Background

This section introduces main concepts required for understanding the details of the method-

ology. Section 4.1.1 describes runtime verification whereas section 4.1.2 gives a brief overview

about specification mining.

84

Chapter 4. Model-Based Run-Time Verification of Device Drivers 85

4.1.1 Runtime Verification

Runtime verification is a system analysis and execution approach based on extracting in-

formation from a running system to detect and possibly react to observed behaviors when

they satisfy or violate certain properties. Developers desire that their systems respect some

particular properties such as datarace and deadlock freedom. Sometimes such properties are

suitable to be best implemented algorithmically. Other properties can be more conveniently

captured as formal specifications.

Runtime verification specifications are expressed in trace predicate formalisms, such as

finite state machines, regular expressions, context-free patterns, linear temporal logics, etc.,

or extensions of these. Any mechanism for monitoring an executing system is considered

runtime verification, including verifying against test oracles and reference implementations.

When formal requirements specifications are provided, monitors are synthesized from them

and infused within the system by means of instrumentation. Runtime verification can be

used for many purposes, such as security or safety policy monitoring, debugging, testing,

verification, validation, profiling, fault protection, recovery. Runtime verification is com-

plementary with respect to the traditional formal verification techniques, such as model

checking and theorem proving. Runtime verification analyzes only one or a few execution

traces and then scales up giving more confidence in the results of the analysis at the expense

of less coverage. A main advantage of runtime verification is that can be made an integral

Chapter 4. Model-Based Run-Time Verification of Device Drivers 86

part of the target system, monitoring and guiding its execution during deployment.

4.1.2 Specification Mining

One of the most fascinating things in computing is the possibility of making the machine able

to learn something such as automatically classifying objects such as text, voices, images, etc.

The concept of specification mining [58, 59] is related to discovering formal specifications

of the protocols that code must obey, from execution traces. Specification mining can

be compared to learning the rules of English grammar by reading essays written by high

school students; specification mining propose to focus on the essays of passing students and

be skeptical of the essays of failing students. The specification miner observes program

execution and builds a model (e.g., state machine, LTL logic predicate) that summarizes

its behavior. These state machines are often called behavioral models and they describe

the relationship between methods that change the state named ”mutators”, and methods

that keep the state unchanged named ”inspectors”. Mining learns a finite-state automaton

whose transitions are labeled with method names. Such an automaton approximates all

legal functions call sequences and serves as a temporal specification. It must be noted that

learned automata are not necessarily meant to be human-readable, as they are unlabeled

[60] and are not guaranteed to be minimal [61].

Chapter 4. Model-Based Run-Time Verification of Device Drivers 87

4.2 The Proposed Methodology

This section describes the device driver monitoring process. The goal of the methodology

is to automatically generate device drivers monitors from specifications mined on already

existing device drivers. Such monitors can be useful to detect anomalies at runtime on device

drivers e.g., to detect transient failures.

Trace
Collection

State
Abstraction

FSM Model
Generation

Monitor
Generation

(a) (b)

(c) (d)

Device
Drivers

Monitors

Figure 4.1: Workflow of the monitoring methodology.

Figure 4.1 depicts the workflow of the monitoring methodology. The process consists

of four phases: (i) trace collection; (ii) state abstraction; (iii) finite state machine model

generation ; (iv) model generation. In the trace collection phase, the system collects traces

extracted from the execution of the device driver of a certain class such as network or disk.

The state abstraction phase links the device-specific data, i.e., the state stored in device

registers, to the abstract name as found on the specification standard. In other words, the

raw execution data is converted in labeled data. The finite state machine model generation

phase uses the extracted labeled execution trace to generate the finite state machine. Finally

Chapter 4. Model-Based Run-Time Verification of Device Drivers 88

the monitor generation phase generates from the finite state machine a monitor that can be

attached to a real device driver of the same class of the mined device driver.

4.2.1 Trace Collection Phase

The trace collection phase gathers traces executing the device driver code. In order to collect

traces, we place invocations to tracing functions in device drivers points of interest. The

idea is to place tracing functions in points of the device drivers code that modify the state

of the device registers. Each time the device driver code modifies the state of the device

register, the event is logged into the execution trace.

Since device drivers maintain in their state also the device state, we look for function

calls that modify the value of these variables. The format of a log entry is the following:

• timestamp: the time when the event happened.

• process: the process identifier of the process that is in execution.

• function: the name of the intercepted function.

• state variables: the value of the state variables.

• event type: this field allows to understand if an event happened before and after a

certain call.

An example regards Linux SCSI driver [62, 63]. We selected as intercepted functions the

ahci_qc_issue, ahci_qc_complete. These two functions modify the state of a SCSI port.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 89

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica Rilevazione di malfunzionamenti nei device driver del disco nel kernel Linux

• QC_FLAGS è una bitmask che indica lo stato del qc corrente;

• TASKFILE_FLAGS è una bitmask che indica lo stato del taskfile;

• PROTOCOL indica il protocollo utilizzato dal comando corrente;

• COMMAND_TYPE indica il tipo di comando;

• TAG indica il tag del comando;

• SG_POINTER indica il valore dell’indirizzo del primo elemento della scat-

terlist utilizzata dal comando.

La generazione del log è stata fatta e�ettuando il probing delle funzioni su citate

durante l’esecuzione di test che stressassero in maniera considerevole il disco (vedi

sez. 6.1.2). Lo script SystemTap è composto essenzialmente da quattro funzioni

di probe che leggono le variabili su descritte stampando un messaggio formattato

secondo quello descritto in precedenza.

Dopo aver eseguito lo script per il probing delle funzioni, durante i test su citati,

è stato ottenuto un file di log. Nella Figura 5.2 è mostrato una parte del log generato

con lo script Systemtap.

Figura 5.2: Parte del log generato con SystemTap

180

Figure 4.2: An example of Linux SCSI device driver execution trace

Figure 4.2 depicts an execution trace for the SCSI device driver. We choose as state variables

the following: (i) PxSACT register value; (ii) PxCI register value; (iii) QC_FLAGS that is

a bit mask of the command queue state; (iv) TASKFILE_FLAGS that is a bit mask of the

task file state; (v) PROTOCOL that indicates the protocol used by the current command;

(vi) COMMAND_TYPE that represents the SCSI command type; (vii) TAG a value to

identify the command.

4.2.2 State Abstraction Layer

At this point execution traces contain only raw data, i.e., the binary value of each register

and parameter. The abstraction layer is needed because several raw states can collapse in

one state. The mapping of the raw data entries to the abstract state is many to one, i.e.,

several states represent a single state. We name this process’ output file abstract log file.

This process is inspired to the Adabu model mining algorithm [60]. The device driver model

Chapter 4. Model-Based Run-Time Verification of Device Drivers 90

is built starting from the concrete state, that contains only numeric elements. Then, the

state is abstracted using abstraction functions that allow to map each concrete state values

to a label. The next phase of the process is to extract the transition function, that map one

state into another.

<source state>,<transition function>,<destination state>

Figure 4.3: Abstract log entry.

At the end of this process the output trace file contains the entry depicted in figure 4.3.

Returning to the example of the Linux SCSI device driver, two registers PxSACT and

PxCI are in charge of sending commands towards the disk. However, the transition func-

tion depends also on the TAG field. When the field is defined to a value different to the

magic value ATA_TAG_POISON the state depends on which bit is high in the registers

PxSACT and PxCI. If the PxSACT register bit in the TAG position is high, the value of

the state is marked NCQ_COMMAND_ISSUED because the device drivers is sending an

NCQ command. On the other hand, if the PxCI register bit in the TAG position is high,

the value of the abstract state is marked NON_NCQ_COMMAND_ISSUED. Otherwise,

the state is marked with a ”don’t care” value.

The field QC_FLAGS contains a bitmask that describes he state of the command queue.

The flags associated to a command queue are depicted in figure 4.4. In the case of the SCSI

Chapter 4. Model-Based Run-Time Verification of Device Drivers 91

1 /* struct ata_queued_cmd flags */
2 ATA_QCFLAG_ACTIVE = (1 << 0), /* cmd not yet ack’d to scsi lyer */
3 ATA_QCFLAG_DMAMAP = (1 << 1), /* SG table is DMA mapped */
4 ATA_QCFLAG_IO = (1 << 3), /* standard IO command */
5 ATA_QCFLAG_RESULT_TF = (1 << 4), /* result TF requested */
6 ATA_QCFLAG_CLEAR_EXCL = (1 << 5), /* clear excl_link on completion */
7 ATA_QCFLAG_QUIET = (1 << 6), /* don’t report device error */
8 ATA_QCFLAG_RETRY = (1 << 7), /* retry after failure */
9

10 ATA_QCFLAG_FAILED = (1 << 16), /* cmd failed and is owned by EH */
11 ATA_QCFLAG_SENSE_VALID = (1 << 17), /* sense data valid */
12 ATA_QCFLAG_EH_SCHEDULED = (1 << 18), /* EH scheduled (obsolete) */

Figure 4.4: Command queue flags.

device driver we are interested only in the ATA_QCFLAG_ACTIVE. This bit is high when

the command is queue has not been notified yet to the SCSI subsystem, i.e., the command

queue is still active. On the other hand, when the bit is low the command queue has been

processed by the SCSI layer. The abstraction function maps three values:

1. QC_SCSI_COMPLETE : if the command has been both completed and notified to

the SCSI subsystem the abstract state is called .

2. QC_ACTIVE : if the ATA_QCFLAG_ACTIVE is high.

3. QC_NOT_ACTIVE : if the command queue is considered neither active nor com-

pleted.

The PROTOCOL field contains a set of flags that determine how the data in transferred

to the device , e.g., DMA, PIO. Finally the COMMAND_TYPE field contains the values

of the possible commands that can be sent to the device that are compliant to the SCSI

Chapter 4. Model-Based Run-Time Verification of Device Drivers 92

protocol.

4.2.3 Finite State Machine Generation

The abstract log file contains all the information needed to reconstruct the behavioral model

of the interaction device driver/ device.

Figure 4.5: Metamodel of the finite state machines.

A metamodel that describes finite state machines is depicted in figure 4.6. The finite

state machine generator uses the FSM metamodel to encode the state machine in a format

suitable for the automatic code generation. we developed an algorithm that generates finite

state machine from the abstract log file. The algorithm pseudocode is depicted in algorithm

Chapter 4. Model-Based Run-Time Verification of Device Drivers 93

2 . The procedure analyzes each log entry of the abstract log file. For each line the algorithm

controls whether the source or the destination states have been already discovered. If so, it

adds simply an entry of the outgoing/incoming transition for the source/destination state.

If the state has not been created yet, the algorithm creates a new node with the name of

the just discovered state.

Algorithm 2 State machine mining algorithm
1: procedure CreateFiniteStateMachine(abstract_log)
2: FSM = createNewStateMachine()
3: for each line in abstract_log do
4: transition_name = getTransition(line)
5: if transition_name /∈ Transitions then
6: transition = createNewTransition(transition_name);
7: Transitions.addTransition(transition)
8: end if
9: source_state_name = getSourceState(line)

10: target_state_name = getTargetState(line)
11: if source_state_name /∈ States then
12: source_state = createNewTransition(source_state_name);
13: States.addState(source_state)
14: end if
15: if target_state_name /∈ States then
16: target_state = createNewTransition(target_state_name);
17: States.addState(target_state)
18: end if
19: entry = [source_state, transition, target_state]
20: if entry /∈ FSM then
21: FSM.addEntry(entry)
22: end if
23: end for
24: end procedure

We applied the algorithm 2 to Linux disk SCSI device driver execution traces and we

obtained the model depicted in figure 4.6.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 94

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica Rilevazione di malfunzionamenti nei device driver del disco nel kernel Linux

Figura 5.4: FSM associata al modello comportamentale del driver per i comandi
FPDMA

193Figure 4.6: Model extracted from the Linux SCSI driver execution traces.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 95

4.2.4 Monitor Generation Phase

The finite state machine generated in the previous phase describes the behavior that the

device driver should manifest while communicating with a certain device type. The finite

state machine is then translated into a monitor that checks whether the device driver behaves

as expected at runtime. Whenever the monitor detects a transition that is not present in the

model, it emits a warning message which informs the user that something strange happened.

The model generator creates a piece of code that can be plugged into the kernel such as

SystemTap [64] scripts or a kernel module. For each transition in the finite state machine

the generator creates a probe point that is invoked before and after the call of the function.

Before calling the transition function, the probe point function body selects, based on the

current process and the current state, if this is a feasible transition. After the calling of the

transition function, the probe point selects if given the current process id if the destination

state is feasible. If the destination state does not belong to the model, the monitor triggers

a warning.

4.3 Evaluation

This section describes the experiments performed to evaluate: (i) the overhead that the

monitor introduces when the driver is running; (ii) a simple fault injection campaign to

validate the monitor capability of detecting incorrect behavior.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 96

4.3.1 Overhead

To evaluate the overhead introduced we emulated the concurrent database access, and then

we measured the execution time of the sent query. We compared the average execution time

for the sent queries when the monitor is enabled and when the monitor is disabled. The test

configuration provides the following features:

• automatic generation of SQL queries.

• balanced load distributed between table insertion and deletion.

• growing the number of concurrent clients that access to the database.

100 300 500
0

5

10

15

20

25

30
Overhead introduced by the monitor

Concurrent clients

Av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

]

Without monitoring
With monitoring

Figure 4.7: Overhead introduced by the monitor.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 97

Concurrent clients number h p-value
100 0 0.5077
300 0 0.6299
500 0 0.3485

Table 4.1: Overhead of the monitor.

We repeated each test one hundred times. The results depicted in figure 4.7 show that

the overhead introduced by the monitor is at most the 1.2%. We performed further statis-

tical tests to estimate the similarities between the cumulative distributions of the average

times. To evaluate the statistical equivalence, we applied the T-test. The null hypothesis is

that the cumulative distribution of the difference between the distribution with monitoring

and without monitoring is a Gaussian distribution with null expected value and unknown

variance.

We performed the test with a level of significance that is 0.05. The table 4.1 shows that

in every case the null hypothesis is rejected and therefore is valid that the distribution are

equivalent with a confidence level of the 95%.

4.3.2 Effectiveness

This section evaluates the effectiveness of the driver by injecting faults inside the device

driver. We performed our analysis on a virtual machine that emulates the behavior of the

SCSI controller.

We injected a defect into the function ahci_qc_issue as shown in figure 4.8 . The defect

Chapter 4. Model-Based Run-Time Verification of Device Drivers 98

1
2 static unsigned int ahci_qc_issue(struct ata_queued_cmd ?qc) { .
3 ...
4 if (qc?>tf.protocol == ATA_PROT_NCQ){
5 //writel(1 << qc?>tag, port_mmio +PORT_SCR_ACT);
6 writel (0 , port_mmio + PORT_SCR_ACT) ;
7 }
8 return 0;
9 }

Figure 4.8: Command queue flags.

consisted in substituting the write of a register value from the correct value to zero. We

configured our tests on virtual machine with two disks: (i) an IDE disk, (ii) a SATA disk

where we perform the monitoring. The results of the tests depicted in figure 4.9 show that

the monitor is able to identifies the wrong behavior, i.e. read FPDMA operations. Figure

4.10 shows a message log of the device driver error handing routine recognizes that there are

continuous failures in the sending of NCQ commands. In this case the device driver simply

refuses to send other NCQ commands and disables the NCQ mode. Then, the device driver

continues to work using normal DMA setup as depicted in figure 4.11.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 99

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica Rilevazione di malfunzionamenti nei device driver del disco nel kernel Linux

Figura 6.5: Kernel Log parte 1

205

Figure 4.9: Monitor log part 1.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 100

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica Rilevazione di malfunzionamenti nei device driver del disco nel kernel Linux

Figura 6.6: Kernel Log parte 2

206

Figure 4.10: Monitor log part 2.

Chapter 4. Model-Based Run-Time Verification of Device Drivers 101

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica Rilevazione di malfunzionamenti nei device driver del disco nel kernel Linux

Figura 6.7: Kernel Log parte 3
207

Figure 4.11: Monitor log part 3.

Chapter 5

Conclusions

This dissertation investigated the problem of improving operating system reliability focusing

on techniques for detecting device drivers defects.

The dissertation first investigated a methodology to find device drivers defects based on

the definition of the expected interaction between the device driver, the operating system

kernel and the device. Symbolic execution has proven to be effective in the process of device

driver defect detection, but the state-of-the-art techniques are not flexible enough to be

adopted for detecting protocol bugs. The state of the art techniques require effort to be

adapted for different kind of defects. For this reason, this thesis proposed a language for

modeling expected interactions between device driver, operating system and device. The

analysis was performed on a real device driver on two types of protocol bugs for the DMA

API of the Linux kernel, namely DMA resource leaks and DMA race conditions.

Then, this thesis proposed an enhanced symbolic execution platform. This platform has

a more efficient translation mechanism which reduces the gap between the code of the OS

102

Chapter 5. Conclusions 103

under verification (e.g., represented by x86 instructions), and the internal representation of

the symbolic execution tool (e.g., using a custom ISA). The platform has been analyzed on

several micro-benchmarks and on a set of three real device drivers. Results showed that in

all the cases analyzed the enhanced platform that is on average 3x faster than the current

state of the art.

Finally, this thesis described an approach to detect anomalies in device driver behavior.

The approach extracts a model the expected behavior of the device driver under real work-

load. Then, the model is used to generate a monitor that inspects the state of the device

driver in order to detect possible divergences from the expected behavior. The proposed

approach was able to infer a model of the SCSI protocol implemented in the device driver.

At the best of our knowledge nobody was able to verify with symbolic execution such a

complex driver. This proves the complementarity of the approach with symbolic execution.

Bibliography

[1] Furhaad Shah. Google’s self-driving cars expected in 2017, February 2015.

[2] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large industrial
software system. SIGSOFT Softw. Eng. Notes, 27(4):55–64, July 2002.

[3] Steve McConnell. Code Complete: A Practical Handbook of Software Construction. Microsoft
Press, Redmond, WA, USA, 2004.

[4] Richard H. Cobb and Harlan D. Mills. Engineering software under statistical quality control.
IEEE Softw., 7(6):44–54, November 1990.

[5] International Standards Organization. ISO 26262 Functional Safety Standard.

[6] Radio Technical Commission for Aeronautics. DO-178B, Software Considerations in Airborne
Systems and Equipment Certification. 1992.

[7] NIST. Software errors cost u.s. economy 59.5 billion annually, October 2002.

[8] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. sel4: Formal verification of an os kernel. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 207–220,
New York, NY, USA, 2009. ACM.

[9] A. Mockus, N. Nagappan, and T.T. Dinh-Trong. Test coverage and post-verification defects: A
multiple case study. In Empirical Software Engineering and Measurement, 2009. ESEM 2009.
3rd International Symposium on, pages 291–301, Oct 2009.

[10] Archana Ganapathi, Viji Ganapathi, and David Patterson. Windows xp kernel crash analysis.
In Proceedings of the 20th Conference on Large Installation System Administration, LISA ’06,
pages 12–12, Berkeley, CA, USA, 2006. USENIX Association.

[11] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince Orgovan, Greg
Nichols, David Grant, Gretchen Loihle, and Galen Hunt. Debugging in the (very) large: Ten
years of implementation and experience. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages 103–116, New York, NY, USA, 2009. ACM.

[12] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems code. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, SOSP ’01, pages 57–72, New
York, NY, USA, 2001. ACM.

[13] Micheal Jones. What really happened on mars?, February 1997.

104

Bibliography 105

[14] Risat Mahmud Pathan. Mars pathfinder: Priority inversion problem, February 2015.

[15] Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. Symdrive: testing drivers without
devices. In OSDI’12.

[16] Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. Testing closed-source binary
device drivers with ddt. In USENIXATC’10.

[17] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: Taming device drivers. In
Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys ’09, pages
275–288, New York, NY, USA, 2009. ACM.

[18] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg, Con McGarvey,
Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner. Thorough static analysis of
device drivers. SIGOPS Oper. Syst. Rev., 40(4):73–85, April 2006.

[19] Asim Kadav and Michael M. Swift. Understanding modern device drivers. In Proceedings of
the Seventeenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 87–98, New York, NY, USA, 2012. ACM.

[20] Linux Kernel Developers. Dynamic dma mapping using the generic device.

[21] LTP developers. Linux test project.

[22] T. Hanawa, H. Koizumi, T. Banzai, M. Sato, S. Miura, T. Ishii, and H. Takamizawa. Customiz-
ing virtual machine with fault injector by integrating with specc device model for a software
testing environment d-cloud. In Dependable Computing (PRDC), 2010 IEEE 16th Pacific Rim
International Symposium on, pages 47–54, Dec 2010.

[23] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Proceedings of the 4th Conference
on Symposium on Operating System Design & Implementation - Volume 4, OSDI’00, pages 1–1,
Berkeley, CA, USA, 2000. USENIX Association.

[24] Asim Kadav, Matthew J. Renzelmann, and Michael M. Swift. Tolerating hardware device
failures in software. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 59–72, New York, NY, USA, 2009. ACM.

[25] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, July
1976.

[26] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’08, pages 209–224, Berkeley,
CA, USA, 2008. USENIX Association.

[27] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. Verifying systems rules using rule-
directed symbolic execution. In Eighteenth International Conference on Architecture Support
for Programming Languages and Operating Systems (ASPLOS ’13), 2013.

[28] Suhabe Bugrara and Dawson Engler. Redundant state detection for dynamic symbolic execu-
tion. In Proceedings of the 2013 USENIX Conference on Annual Technical Conference, USENIX
ATC’13, pages 199–212, Berkeley, CA, USA, 2013. USENIX Association.

Bibliography 106

[29] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping symbolic execution engines
for interpreted languages. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’14, pages 239–254, New
York, NY, USA, 2014. ACM.

[30] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The s2e platform: Design,
implementation, and applications. ACM Trans. Comput. Syst., 30(1), February 2012.

[31] Radu Banabic, George Candea, and Rachid Guerraoui. Finding trojan message vulnerabilities
in distributed systems. SIGPLAN Not., 49(4):113–126, February 2014.

[32] Mihai Dobrescu and Katerina Argyraki. Software dataplane verification. In 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 14), pages 101–114, Seattle,
WA, April 2014. USENIX Association.

[33] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. Avatar: A Framework
to Support Dynamic Security Analysis of Embedded Systems’ Firmwares. In Network and
Distributed System Security (NDSS) Symposium, NDSS 14, February 2014.

[34] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander, Lennart
C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering - Designing, Implementing
and Using Domain-Specific Languages. dslbook.org, 2013.

[35] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.

[36] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture for
intrusion detection. In In Proc. Network and Distributed Systems Security Symposium, pages
191–206, 2003.

[37] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. 2013.

[38] Christophe Henry. Boost meta state machine library, February 2015.

[39] Clang : a c language family frontend for llvm, February 2015.

[40] LLVM. Low-level virtual machine related publications, February 2015.

[41] B. Bartels and S. Glesner. Formal modeling and verification of low-level software programs. In
Quality Software (QSIC), 2010 10th International Conference on, pages 200–207, July 2010.

[42] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and M. Frans
Kaashoek. Software fault isolation with api integrity and multi-principal modules. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 115–128, New York, NY, USA, 2011. ACM.

[43] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn
Song. Code-pointer integrity. In Proceedings of the 11th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’14, pages 147–163, Berkeley, CA, USA, 2014. USENIX
Association.

[44] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Coredet: A
compiler and runtime system for deterministic multithreaded execution. SIGARCH Comput.
Archit. News, 38(1):53–64, March 2010.

[45] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng Yang. Efficient deter-
ministic multithreading through schedule relaxation. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 337–351, New York, NY, USA,
2011. ACM.

Bibliography 107

[46] Olatunji Ruwase, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry. Guardrail: A
high fidelity approach to protecting hardware devices from buggy drivers. In Proceedings of
the 19th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 655–670, New York, NY, USA, 2014. ACM.

[47] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes
(The Morgan Kaufmann Series in Computer Architecture and Design). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[48] Keith Adams and Ole Agesen. A comparison of software and hardware techniques for x86
virtualization. SIGARCH Comput. Archit. News, 34(5):2–13, October 2006.

[49] Santosh Nagarakatte, Sebastian Burckhardt, Milo M.K. Martin, and Madanlal Musuvathi. Mul-
ticore acceleration of priority-based schedulers for concurrency bug detection. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 543–554, New York, NY, USA, 2012. ACM.

[50] Qin Zhao, Rodric Rabbah, Saman Amarasinghe, Larry Rudolph, and Weng-Fai Wong. How to
do a million watchpoints: Efficient debugging using dynamic instrumentation. In Proceedings
of the Joint European Conferences on Theory and Practice of Software 17th International Con-
ference on Compiler Construction, CC’08/ETAPS’08, pages 147–162, Berlin, Heidelberg, 2008.
Springer-Verlag.

[51] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong, and Saman Amarasinghe.
Dynamic cache contention detection in multi-threaded applications. In Proceedings of the 7th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’11, pages 27–38, New York, NY, USA, 2011. ACM.

[52] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via program
shepherding. In Proceedings of the 11th USENIX Security Symposium, pages 191–206, Berkeley,
CA, USA, 2002. USENIX Association.

[53] Vitaly Chipounov. S2E: A Platform for In-Vivo Multi-Path Analysis of Software Systems. PhD
thesis, EPFL, 7 2014.

[54] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’05, pages 41–41, Berkeley, CA,
USA, 2005. USENIX Association.

[55] Tiny code generator manual, February 2015.

[56] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[57] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and Edward Y. Wang.
Bringing virtualization to the x86 architecture with the original vmware workstation. ACM
Trans. Comput. Syst., 30(4):12:1–12:51, November 2012.

[58] Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining specifications. In Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’02, pages 4–16, New York, NY, USA, 2002. ACM.

[59] Westley Weimer and George C. Necula. Mining temporal specifications for error detection. In
Proceedings of the 11th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’05, pages 461–476, Berlin, Heidelberg, 2005. Springer-Verlag.

Bibliography 108

[60] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and Andreas Zeller. Mining object
behavior with adabu. In Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, WODA ’06, pages 17–24, New York, NY, USA, 2006. ACM.

[61] E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, June 1978.

[62] Serial ATA International Organization. Serial ATA Revision 3.0. www.sata-io.org.

[63] Intel Corporation. Advanced Host Controller Interface for Serial ATA. http://www.intel.
com/content/www/us/en/io/serial-ata/ahci.html.

[64] SystemTap. Systemtap, February 2015.

www.sata-io.org
http://www.intel.com/content/www/us/en/io/serial-ata/ahci.html
http://www.intel.com/content/www/us/en/io/serial-ata/ahci.html

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	State of the Art: Verification of Device Drivers
	Device Drivers Testing
	Static Analysis
	Symbolic Execution

	Open Issues
	Thesis Contribution
	Thesis Organization

	Model-based Symbolic Execution for Device Drivers
	Introduction
	Overview
	Specification
	The SLANG Language

	Checker Generation
	Translation of SLANG Resources
	Translation of SLANG Checkers
	Translation of SLANG Testsuites
	Translation of SLANG Verification Points

	Instrumentation
	Verification
	Interceptor
	Event Dispatcher
	Exerciser
	Symbolic Execution Scheduler

	Implementation Details
	SLANG Implementation
	Runtime Support Implementation

	Evaluation
	Case 1: Resource Leak
	Case 2: Data Race

	Enhancing Performance of Symbolic Execution
	Background
	Interpretation
	Dynamic Binary Translation
	Symbolic Execution Engines

	The Enhanced Symbolic Execution Platform
	Evaluation
	Micro-benchmarks
	Windows XP Device Drivers

	Model-Based Run-Time Verification of Device Drivers
	Background
	Runtime Verification
	Specification Mining

	The Proposed Methodology
	Trace Collection Phase
	State Abstraction Layer
	Finite State Machine Generation
	Monitor Generation Phase

	Evaluation
	Overhead
	Effectiveness

	Conclusions
	Bibliography

