
 via Claudio, 21- I-80125 Napoli - [#39] (0)81 768 3813 - [#39] (0)81 768 3816

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
Dottorato di Ricerca in Ingegneria Informatica ed Automatica

SERVICE DISCOVERY AND DELIVERY IN INTEROPERABLE
NOMADIC COMPUTING SYSTEMS

CRISTIANO DI FLORA

Tesi di Dottorato di Ricerca

Novembre 2004

Dipartimento di Informatica e Sistemistica

 Comunità Europea
Fondo Sociale Europeo A. D. MCCXXIV

 via Claudio, 21- I-80125 Napoli - [#39] (0)81 768 3813 - [#39] (0)81 768 3816

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
Dottorato di Ricerca in Ingegneria Informatica ed Automatica

SERVICE DISCOVERY AND DELIVERY IN INTEROPERABLE
NOMADIC COMPUTING SYSTEMS

CRISTIANO DI FLORA

Tesi di Dottorato di Ricerca

(XVII Ciclo)

Novembre 2004

 Il Tutore Il Coordinatore del Dottorato
 Prof. Stefano Russo Prof. Luigi P. Cordella

 Il Co-Tutore
Prof. Kimmo Raatikainen
 (University of Helsinki)

Dipartimento di Informatica e Sistemistica

 Comunità Europea
Fondo Sociale Europeo A. D. MCCXXIV

“You are never given a wish without being given the power to make it true.

You may have to work for it, however.”

(Richard Bach, “Illusions, The Adventures of a Reluctant Messiah”)

iv

Table of Contents

Table of Contents v

List of Tables viii

List of Figures ix

Acknowledgements i

Introduction 1

1 Service Provisioning in Nomadic Computing systems 4

1.1 Nomadicity and modern mobile computing 4

1.2 Nomadic computing scenarios . 7

1.2.1 Introduction: The Nomadic Computing Environment 7

1.2.2 Networked Services: The Smart Airport 9

1.2.3 Smart environments: A Digital Home Environment 10

1.2.4 Ad-hoc Community: Interaction between Personal Digital As-

sistants . 10

1.2.5 Personal Domain: Managing and connecting personal devices . 11

1.3 Requirements of nomadic Environments 11

1.4 Issues in realizing heterogeneous nomadic environments 13

1.4.1 Interoperability issues . 17

1.4.2 Scalability issues . 18

1.4.3 Unpredictability issues . 19

1.4.4 Context-awareness issues . 19

1.5 Contribution . 20

2 Service Platforms for Nomadic Computing 22

2.1 Traditional platforms . 22

v

2.1.1 Jini . 22

2.1.2 Salutation . 23

2.1.3 Bluetooth . 25

2.1.4 Universal Plug’N’Play (UPNP) 27

2.1.5 Universal Description, Discovery and Integration of business for

the web (UDDI) . 28

2.1.6 Service Location Protocol (SLP) 28

2.1.7 Cooltown . 29

2.1.8 JXTA . 29

2.2 Novel platforms . 30

2.2.1 CARISMA and REMMOC: exploiting reflection 30

2.2.2 Konark . 30

2.2.3 Aura . 31

2.2.4 Sahara . 32

2.2.5 Open Mobile Alliance and the Wireless Village 32

2.3 Comparing service platforms: the need for interworking 32

2.3.1 Service platforms and nomadic computing domains 32

2.3.2 The need for interworking . 34

2.4 Interworking solutions . 36

3 The Proposed Architectural Framework 42

3.1 Conceptual model . 42

3.2 The Interworking Infrastructure . 45

3.2.1 The overall architecture . 45

3.2.2 Managing and updating service lists 47

4 Addressing Interoperability: the Interworking Infrastructure 51

4.1 Preliminary definitions . 52

4.2 Designing Domain Specific Agents . 55

4.2.1 Designing a Slave Domain Specific Agent 55

4.2.2 Designing Master DSAs and building Federations 59

4.3 Proactive filtering of Service Advertisements 62

4.3.1 The filtering algorithm . 62

4.3.2 Evaluating the stability of the filtering mechanism 64

4.3.3 Using the proactive mechanism for importing external services 67

4.4 Implementation Issues . 68

4.4.1 Implementing a Slave DSA for Bluetooth domains 70

4.4.2 Using the JXTA technology to build domain-federations . . . 73

4.4.3 Master DSAs and inter-agent communication 75

vi

4.5 Putting all the pieces together: the interoperable printing service . . . 77

5 Addressing Unpredictability and Context-awareness: two case-studies 81

5.1 Addressing the unpredictable behavior of Nomadic Multimedia Services 82

5.1.1 Dependable Multimedia and Unpredictability 82

5.1.2 Preliminaries . 84

5.1.3 Failure modes of multimedia services 85

5.1.4 The stream-failure-detection service-element 88

5.1.5 The case study application . 92

5.1.6 Experimental results . 96

5.2 Supporting Location-awareness on Personal Devices 99

5.2.1 Location-awareness . 99

5.2.2 The Location API for J2ME CLDC profile 101

5.2.3 Enabling RSSI-based positioning for JSR-179 compliant appli-

cations . 102

5.2.4 Enabling the RSSI-based positioning technique on a Bluetooth

network . 105

5.2.5 Experimental results . 106

6 Conclusions 110

6.1 Conclusions . 110

Bibliography 114

vii

List of Tables

4.1 Comparing the responsibilities of Master and Slave Domain Specific

Agents . 59

viii

List of Figures

1.1 The importance of requirements with respect to each nomadic comput-

ing domain. The evaluation refers to four levels of importance, namely

not applicable, indifferent, desirable, and crucial. 14

1.2 The overall importance of requirements compared to that of each no-

madic computing domain. 17

2.1 A comparison of the surveyed technologies 36

3.1 Conceptual model of the proposed architectural framework 43

3.2 An architecture resulting from the proposed architectural framework . 44

3.3 The conceptual model of the interworking infrastructure. Conceptual-

classes in grey represent off-the-shelf components. 46

3.4 Exporting service advertisements . 49

3.5 Importing service advertisements . 50

4.1 Semantic matching, translation, and completion of Service Description

Records . 53

4.2 High-level UML Class Diagram of the Slave DSA component 56

4.3 UML Class Diagram of the major classes involved in the management

of service advertisements. Shadowed classes belong to the Publishing

Manager. 57

4.4 UML Class Diagram of the Description Translator component 58

ix

4.5 Peer-to-peer approach for Inter-federation discovery and for the subse-

quent advertisement of external services within a certain federation. . 61

4.6 Filtering algorithm for proactive discovery 64

4.7 Simulation model of the filtering mechanism 65

4.8 Effects of filtering parameters on the import ratio 66

4.9 UML Class Diagram of the Registry Info Component 68

4.10 High-level components of the infrastructure prototype. Grey boxes

represent the implemented components. 69

4.11 Mapping a Bluetooth Service Descriptor onto an Interoperable Service

Description Record. Dark boxes represent the mandatory attributes. . 70

4.12 UML Class diagram of the Bluetooth Description Translator component. 71

4.13 Integrating Java and C++ components of the Bluetooth Slave DSA . 73

4.14 Importing services into a Bluetooth domain. 74

4.15 UML Class Diagram of the implemented Master DSA 76

4.16 Overall architecture of the implemented case-study environment . . . 78

5.1 Conceptual model of nomadic distributed multimedia systems 83

5.2 Multimedia Application requirements 87

5.3 Conceptual model of the failure-detection service-element 88

5.4 Error filtering subsystem . 89

5.5 Transparent failure occurrences . 92

5.6 Overall architecture of the case-study application 93

5.7 UML class diagram of the implemented service-element 94

5.8 RTP packet sizes as a function of media formats 95

5.9 Detected errors and related failures 99

5.10 High-level architecture of the proposed service-element. Shadowed

boxes contain the implemented components, whereas non-shadowed

boxes represent off-the-shelf components. 104

5.11 Retrieval of a mobile user’s location 105

x

5.12 a) Signal strength while moving between different rooms; b) Topology

of the RSSI-measurement environment. 107

5.13 Topology of the environment used to compare the Location Change

Detection Time with the speed of a walking user. 109

xi

Acknowledgements

The first lines of this thesis should be words of gratitude to all those who helped to

make this thesis possible. First of all, I have to thank professor Stefano Russo and his

faithful assistant Domenico Cotroneo for being patient reviewers and helpful guides

of my research works from the very early life of my research career (i.e., my Master

Thesis) and for supporting this work with ideas, criticism, and crucial insights. Some

valuable ideas for this research were inspired by a tight interaction with professor

Kimmo Raatikainen and his research group during my six-month stay in Finland as a

visiting student and researcher. His hints and insights gave a significant contribution

to this thesis. His kindness merged to the friendliness of Tiina Niklander and of

Oriana, Simone, and Davide made my first finnish winter more friendly and warm: I

will never forget my first “Joulukahveja” at the Computer Science department with

them, and I hope we’ll keep on doing so in the next years.

Of course, no one could survive the perils of a PhD without the friendship of the

several companions who share in the misery and joys and forced me to have fun in

spite of my research-addiction as well. Thanks to all the PhD students and researches

with whom I had the pleasure to collaborate (and to joke) during the last years.

Much appreciation goes to the rest of my family; their support and belief in me

have always inspired me in my endeavors. Last, but certainly not least, I thank my

sweet-heart whose love gave me the strength and encouragement to follow the path

that I felt was right, and whose patience and unselfishness allowed me the freedom to

complete the task. This dissertation is lovingly dedicated to her and to all the people

who love to chase dreams fearlessly.

Naples, Italy Cristiano di Flora

November 30, 2004

i

Introduction

In the nomadic computing environment people interact with various companion,

embedded, or invisible computers not only in their close vicinity but potentially

anywhere; they currently see the resulting environment as the composition of het-

erogeneous sub-systems which support personal and nomadic applications. These

sub-systems are called nomadic computing domains. They consist of communicat-

ing clusters of personal digital devices, devices shared with other people and even

infrastructure-based systems. These domains may have an unrestricted geographical

span, and incorporate devices into the nomadic environment regardless of their geo-

graphic location. In order to do this they need the services of infrastructure-based

networks and ad-hoc networks to extend their reach.

Since the requirements of each nomadic computing domain are different from those

of the others, the diversity of current technologies is the key factor to suit all the do-

mains. Unfortunately, though the current service platforms succeed in supporting

a particular nomadic computing domain, they are scarcely interoperable with each

other, thus limiting the possibility to use them as building blocks for larger nomadic

systems. Moreover, it is very unlikely that either i) one technology will fit all the

requirements of a nomadic environment or ii) device manufacturers will embrace mul-

tiple service discovery and delivery technologies on mobile devices. This is especially

1

2

true with respect to low-cost and embedded devices, i.e., with respect to personal

devices used by nomadic users. Hence, the challenge for future service provisioning

systems will be the definition of an architecture for the effective interworking of exist-

ing service infrastructures, and that fulfills the needs of personalized, context-aware,

nomadic services and solutions at the same time.

The aim of this thesis is to bring a significant contribution in this area, with the

goal of enabling the definition of novel strategies to support interoperability between

future nomadic users.

The contribution of this work is to provide a comprehensive and thorough descrip-

tion of how to effectively deal with the heterogeneity of both discovery and delivery

infrastructures, and of specific applications as well.

As for the infrastructure, this thesis presents a novel architecture to address in-

teroperability and scalability of both the discovery and the delivery of nomadic ap-

plications. It aims to mitigate the diversity of service representations, technologies,

and interaction models of current nomadic computing domains. The proposed ar-

chitecture allows to build a nomadic environment by composing nomadic computing

domains (built upon current technologies), thereby allowing clients to discover and

use services across domain borders. This architecture is composed of discovery and

delivery agents: the former are in charge of connecting domains into a single logical

domain, whilst the latter manage service sessions that users can establish to services

after service discovery. The proposed solution uses a novel algorithm to decide which

services to publish across diverse domains so as to reduce the burden due to service

discovery across a huge number of diverse discovery platforms. This algorithm specif-

ically uses both functional and technology-related constraints to drive the import

3

and export operations. The proposed solution is evaluated both by simulation and

by the implementation of a prototype used to connect Jini-based to Bluetooth-based

domains.

As for specific applications, two case studies are thoroughly described so as to

show how to deal with unpredictability and context-awareness. This work specifically

shows how to handle the nomadicity concerns of i) location-awareness for mobile

devices and of ii) unpredictable system behavior for mobile multimedia services.

Chapter 1

Service Provisioning in Nomadic
Computing systems

This chapter sheds some light on Nomadic environments. Specifically it firstly de-

fines nomadicity and compare nomadic computing with several computing paradigms

for mobile users. Subsequently two example scenarios for nomadic computing are

described, which are used in the rest of the chapter to define the requirements of

nomadic environments, as well as to identify issues in satisfying such requirements.

1.1 Nomadicity and modern mobile computing

Nomadicity is the tendency of a person, or a group of people, to move frequently.

The widespread diffusion of personal devices is paving the way for services to be

provided to nomadic users according to the anytime, anywhere access rule of Nomadic

Computing, defined by Leonard Kleinrock in 1995 [31]. In other words, nomadicity

is the ability to move easily from place to place and retain access to a rich set of

information and communication services1 while moving, at intermediate stops, and

1By services, I refer to a device (such as a printer, projector, or a scanner) or an application that
provides useful functions to end-users.

4

5

at the destination. Its basic characteristics include location independence, device

independence, motion independence, widespread access, and ease of use. As stated

by L. Kleinrock, “the essence of a nomadic environment is to automatically adjust

all aspects of the user’s computing, communications, and storage functionality in

a transparent and integrated fashion”. This transparency 2 refers to the following

variables: i) location user is at; ii) communication device and computing platform

he is using; iii) current state of system resources (e.g., bandwidth, device features,

available services); and iv) whether or not the user is in Motion.

As for nomadicity, different computing paradigms are required by mobile users.

Such paradigms can be broken-down into the following categories:

Distributed computing: system is physically distributed. User can access sys-

tem/network from various points which are tied to a physical location. E.g.

Unix systems, world wide web, email; in this case the network is fixed, while

the user moves;

Mobile computing: continuous access, automatic reconnection; in this case net-

work topology changes, because each user moves across different locations; thus

the main challenge is to deal with changing node location.

Pervasive computing: computing environment including sensors, cameras and in-

tegrated active elements; the goal is to make the computer invisible;

Wearable computing: computing devices integrated into bodily experience (smart

clothing);

2The notion of transparency here refers to the perception of a computing environment that
automatically adjusts to the processing, communications and access available at the moment.

6

Ubiquitous computing: computers are embedded in user’s natural movements and

interactions with pervasive computing environments; users move across several

pervasive environments;

Nomadic (portable) computing: provide users with access to popular desktop

applications, applications specially suited for mobile users, and basic communi-

cation services in a mobile, sometimes wireless, environment; in this case, the

network is fixed, except for user devices and their point of attachment. Users

can take their device with them, and decide to use different devices for different

situations.

These computing paradigms have been topics of research since the early 1990s [23,

31, 36, 44, 63, 40]. Those topics are related by a desire to address mobility from dif-

ferent viewpoints. For instance, ubiquitous computing is quite similar to nomadic

computing from a user’s perspective, as they both concern with user and terminal

mobility. However, this common desire makes it difficult to precisely classify exist-

ing systems. Confusion is further exacerbated by the usage of nomadic and personal

devices either for ubiquitous or nomadic computing applications. However, the dif-

ferent strategy to deal with dynamic changes allows for distinguishing nomadic and

ubiquitous systems: nomadic computing systems are mostly reactive, since they react

to events or situations rather than acting first to change or prevent something [37].

Conversely, ubiquitous computing systems are proactive as they can take action (so

as to prevent something) by causing change and not only react to change when it

happens [52]. Another significant difference lies in the main requirement to satisfy:

while ubiquitous computing systems mostly concern with the seamless integration

7

of novel user interfaces and computing devices into human life, nomadic comput-

ing systems deal with assemblage of interconnected technological and organizational

elements, which enable physical and social mobility.

Since this work concerns with nomadic computing, in the following section several

detailed examples of nomadic environments are described, so as to provide the reader

with a more comprehensive analysis of their characteristics.

1.2 Nomadic computing scenarios

1.2.1 Introduction: The Nomadic Computing Environment

The future nomadic computing should cover all aspects of personal life. When inter-

acting with computers today, we move in different computing domains. Communica-

tion and computing devices move; users move and change their devices; (sub)networks

in cars, trains and airplanes move; software moves from one execution environment

to another. In this subsection a future is envisaged where personalization and ubiqui-

tous access to information and communication are merged into the so-called Nomadic

Computing Environment.

The nomadic computing environment is composed of several heterogeneous discov-

ery and delivery sub-systems. These systems are called nomadic computing domains.

They constitute a category of distributed systems with very specific characteristics.

They are configured in an ad hoc fashion, as the opportunity and the demand arise,

to support personal and nomadic applications. Nomadic computing domains con-

sist of communicating clusters of personal digital devices, devices shared with other

people and even infrastructure-based systems. At the heart of a nomadic comput-

ing domain is a core Personal Area Network (PAN), which is physically associated

8

with the owner of the domain. Unlike the present PANs that have a geographically

limited coverage, the Personal Operating Space, nomadic computing domains may

have an unrestricted geographical span, and incorporate devices into the nomadic

environment regardless of their geographic location. In order to do this they need the

services of infrastructure-based networks and ad-hoc networks to extend their reach.

The concept of service is becoming crucial in Nomadic Computing, since end-users

see such domain as a collection of interacting services, each providing a well-defined

functionality.

Heterogeneity and diversity of NCDs have been addressed by adopting a Service-

oriented approach so far. This approach suggests to build each NCD according to

the service oriented architecture(SOA) model. A SOA allows clients to discover and

use available services, thereby it is usually composed of service discovery and ser-

vice delivery infrastructures. More specifically, it is composed of the following main

entities: i) service, i.e., the logical entity, defined by one or more published inter-

faces; ii) service provider, i.e, the entity that implements a service specification;

iii) service requestor, i.e., the software entity that requests a service to a specific

provider (it can be an end-user application or another service); iv) service locator,

i.e., a service provider that acts as registry and allows the lookup of service provider

interfaces and service locations; and v) service broker, i.e., a service provider that

forwards service request to one or more additional service providers. This model al-

lows to design and deploy federations of services in which the kind and the number

of services can dynamically vary3; the resulting services can be deployed according

to the following paradigms: i) service implemented on a single machine, ii) service

3Dynamism means that the re-configuration of these federations upon service connections and
disconnections is spontaneous

9

distributed on a local area network, and iii) service more widely distributed across

several company networks.

In the rest of this sub-section a set of nomadic computing scenarios are described,

in order to show that nomadic domains introduce new design challenges due to the

heterogeneity of the involved technologies, the need for self-organization, the dynam-

ics of the system composition, the application-driven nature, the co-operation with

infrastructure-based networks, and the security hazards.

1.2.2 Networked Services: The Smart Airport

The user is willing to print a set of documents before departure; some documents

are stored onto his Wi-Fi Personal Digital Assistant (PDA), whereas others can be

retrieved through his company’s document management web-service. As he switches

the PDA on, its web browser is re-directed to the Airport’s welcome page; upon an

e-ticket based authentication, the system provides him with the list of the available

services and facilities. The user notices that the system offers more powerful and dy-

namic services through a Jini-based service infrastructure. He can use these enhanced

services, since his PDA is compliant with the Jini technology; thus, he browses the

list of available printing facilities by means of his Jini-browser tool, and he localizes

a Bluetooth laser color printer within the departure hall he is walking through; he

notices that this printing service allows also to print remote web pages, as well as to

print documents published on the world wide web as results of a specific Web-service.

As the service is requested, the print-service’s graphical client appears on the PDA.

The user provides the tool with the local documents to print, as well as with the URI

and service parameters to retrieve the remote documents by means of his company’s

Web-services. The tool provides him with an Airport Positioning System (APS),

10

which guides him to the printer; moreover, it informs him that the documents will

be printed in five minutes. When the user reaches the printer to pick his documents

up, an instant messaging service advertisement is received by his PDA. He joins this

service, and subsequently contacts his friend Maggie, who is in the printer room at

the moment. Maggie is printing her e-mails through her Bluetooth-printing enabled

smart phone, which directly discovered the printer through its native Bluetooth in-

terface.

1.2.3 Smart environments: A Digital Home Environment

User devices include mobile devices (ranging from powerful devices like notebooks

and personal digital assistants to less powerful devices such as mobile phones), and

fixed devices as well (e.g., printers, digital camcorders, and audio/video equipments).

Mobile devices may create trusted and secure federations. The entire family can easily

and conveniently watch TV and movies on any display, whether it is a TV or a PC,

anywhere in the home, all at the same time. The program guide shows a common

integrated listing of all movies, TV programs, pictures, music, and other content from

all the devices on the home network at the touch of a button.

1.2.4 Ad-hoc Community: Interaction between Personal Dig-

ital Assistants

The future phone (or personal trusted device) will be the core of the personal network-

ing system. It probes its surroundings looking for suitable peripheral devices such as

displays, input devices, processors, fast access memories and access points to com-

munication channels. It dynamically builds up the most appropriate end-user system

that can be auto-configured. When two or more people having their future phones

11

gather together, they may want to create an ad-hoc community. The establishment

and operability of the community cannot rely on availability of infrastructure services.

Therefore, client functionality at the terminal is not enough to support applications

usable for members of an ad-hoc community.

1.2.5 Personal Domain: Managing and connecting personal

devices

A person can routinely use several devices for both professional and entertainment

activities. The interaction between the user and his devices must be spontaneous as

much as possible. When two personal devices interact (e.g., a bluetooth headset and

a mobile phone) they may want to create an ad-hoc community. A Personal Area

Network is established incorporating a number of devices so that the user can exploit

his devices in the most natural and intuitive way.

1.3 Requirements of nomadic Environments

The presented scenarios explore various aspects of nomadic computing but they also

show a common theme. The typical experience with nomadic computing is that

of discovering usable services and of interacting with them while moving and upon

movements. The Cross-Industry Working Team in the U.S. identified the following

challenges in realizing a service infrastructure to support nomadicity [13].

Location-independent Communications. A significant challenge for nomadic

computing is to make the process of establishing communications with a nomad

largely transparent to both the nomad and his correspondent, regardless of which

12

one initiates the exchange. The service infrastructure must therefore supply an ubiq-

uitous and reliable implementation of location independence which places no special

burdens on the nomad.

Device Independence. The infrastructure must support user mobility by al-

lowing for access devices with different capabilities, at different locations, through

different access paths, and under different access conditions.

Widespread access. Because an essential component of nomadicity is that indi-

viduals remain as connected as they desire from wherever they desire, the communica-

tions devices and channels on which connectivity depends must allow for widespread

access.

Security (identification, certification, and billing). Because the device is

not the person, technology can hide the identities of the communicating parties.

Ensuring that the individual at the other end of the communications channel is whom

she says she is is critical to establishing effective access. Similarly, when the individual

is in motion, switching between devices and locations, many other security issues are

exacerbated.

Adaptability to new technologies. The rapid pace of technological change

challenges the infrastructure to adapt continuously to new technologies. System com-

ponents supporting nomadicity are likely to be among those changing most rapidly.

Heterogeneity of interaction platforms. In order to meet the requirements

of each personal computing domain, a wide range of service discovery and interaction

platforms have been proposed. While these platforms share a number of common at-

tributes (e.g., the advertise-discover-interact paradigm), they each have distinguishing

features. Since a comprehensive nomadic computing infrastructure should support all

13

the personal networking domains described in Section 1.2, future networked environ-

ments are likely to present developers with a heterogeneous environment composed

of multiple specialized support platforms.

Partitioned communication environment A given person may use the same

device (or set of devices) for accessing the infrastructure in various separate personal

environments – business, family, holiday. The communications environment must be

partitioned so that the user can filter and manage incoming communications.

Friendly interface. Public acceptance of new technology is largely based on the

extent to which this technology is familiar and consistent with other technologies –

that is, similar to models users already know. The complex interface devices and

services that will probably characterize the infrastructure make realization of this

friendly interface somewhat difficult. Nomadicity adds further complexity with its

requirements for specialized devices and more complex connections.

1.4 Issues in realizing heterogeneous nomadic en-

vironments

The challenge for future nomadic computing systems will be the definition of an uni-

fying infrastructure for the effective interworking of existing service platforms (rather

than a brand new solution), and that fulfills the needs of personalized, context-aware,

nomadic services and infrastructures at the same time [2, 4, 48].

This claim can be qualitatively confirmed upon an analysis of each domain’s re-

quirements, which is briefly summarized in Figure 1.1. For instance, applications

within the personal domain are targeted to single users; they consist of device to

device services. Spontaneous connectivity, device diversity, suitability to resource

14

<100>100<1000<50Involved devices

1-NN-N1-N1-1Interaction

CrucialDesirableDesirableCrucial
Friendly interface

IndifferentCrucialCrucialDesirable
Partitioned
environment

CrucialCrucialCrucialCrucial

Heterogeneity of
interaction platforms

CrucialCrucialDesirableCrucial
Adaptability to new
technologies

DesirableCrucialCrucialDesirableSecurity

DesirableCrucialDesirableN/A
Widespread access

DesirableDesirableCrucialCrucial
Device independence

DesirableCrucialIndifferentN/A

Location-independent
communication

Smart-
environments

Networked
services

Ad-hoc
community

Personal
Computing

Figure 1.1: The importance of requirements with respect to each nomadic computing
domain. The evaluation refers to four levels of importance, namely not applicable,
indifferent, desirable, and crucial.

15

(and power) constrained devices are the main challenges that the supporting infras-

tructures have to deal with. Hence, infrastructures for personal domain must take

seriously into account heterogeneity and adaptability to new technologies, device in-

dependence, and friendly interface. Partitioning and security are not key challenges,

as the number of devices is extremely small, and the involved devices usually belong

to the same person.

As for the ad-hoc community, services require peer to peer messaging, collabo-

rative applications, and advertising. Applications usually consist of device to device

services, even though they can involve more devices than personal domain applica-

tions. Again, spontaneous connectivity, device diversity, suitability to resource (and

power) constrained devices, are the main challenges the technologies have to deal

with. This domain demands to partition the resulting environment more flexibly, as

the number of devices involved in the discovery process is greater than the Personal

Domain. Services require discovery and interaction between different persons. As

infrastructure services are not available, the server functionality must be provided

by the ad-hoc community. Since each peer in the distributed server needs to be

light-weighted, the server functionality needs to be distributed among the members

of the ad-hoc community according to a peer-to-peer model. Thus, the discovery and

delivery processes are seriously concerned with security issues.

The Networked services domain encompasses Information and entertainment,

M-commerce, corporate services, and advertising. This domain is characterized by

a strong user mobility, which causes frequent changes of service environments; mo-

bile users access services through portable computing devices (such as laptop and

16

handheld computers) in conjunction with both mobile and fixed communication in-

frastructures. Thus, it requires flexible mechanisms for locating and configuring very

heterogeneous services provided either by mobile entities or by stationary hosts. Users

wish to be able to locate the service easily and efficiently. Widespread access is the

key challenge for networked services. Hence, the infrastructure requires spontaneous

adaptation to the diverse resources of mobile terminals, to user preferences, and to

other environmental parameters. Besides widespread access, the presence of both

users and services, service composition, heterogeneity, and the partitioning of sepa-

rate administrative domains are the main challenges that the service infrastructure

has to face.

The smart-places domain requires seamless, dependable connectivity to the in-

formation users need to drive their professional life - i.e., digital office domain - or

their personal life - i.e. digital home domain. The ability to bridge between both the

digital office and the digital home is a key challenge for many applications in smart

environments. The key requirements to address include adaptability to new technolo-

gies, high usability and friendliness of user interfaces, and the availability of several

diverse platforms to support the discovery and the interaction of active devices (and

services).

Since a global nomadic environment includes all the described nomadic computing

domains, it is noteworthy to evaluate also the importance of each requirement with

respect to the entire set of nomadic domains. Figure 1.2 shows the qualitative evalu-

ation of the overall importance of the outlined requirements. This evaluation shows

that, although each nomadic computing domain has its distinguishing requirements,

the coexistence and rich heterogeneity of services and platforms is crucial for all the

17

Heterogeneity of
interaction platforms

Adaptability to new
technologies

Friendly interface

Security

Device independence

Partitioned
environment

Widespread access

Importance

Personal Computing

Ad-hoc community

Networked services

Smart-environments

Figure 1.2: The overall importance of requirements compared to that of each nomadic
computing domain.

envisioned scenarios.

Indeed, as the number of involved different platforms increases, a number of issues

arise. Heterogeneity poses problems in terms of interoperability, scalability, context-

awareness, and unpredictability. These problems are discussed in the remainder of

this Section.

1.4.1 Interoperability issues

As for interoperability, a key issue is how to deal with the diversity of service repre-

sentations and interaction models. For instance, certain platforms (e.g., UPnP and

18

WSA) use XML documents to represent services and define interactions, whereas

others can define a specific URL syntax (e.g. SLP) or store service descriptors as se-

rialized Java objects (e.g. Jini and RMI). Developing an application that is to interact

with more than one of these platforms simultaneously poses considerable challenges

to developers so far. Hence, an interworking mechanism for locating, interacting

with and representing services is crucially required. As for networking technologies,

the coexistence of diverse wireless networks can be challenging for they can interfere

with each other. The interested reader may refer to [19] for further details about

coexistence issues in wireless networks.

1.4.2 Scalability issues

As for scalability, even the performance of a single platform can significantly de-

crease as the number of clients and services increases. Indeed, discovery mechanisms

are mostly based on multicast advertisements; as the number of clients and services

grow, networks will be significantly impacted by service announcement traffic; thus

system scalability can be affected by the burden due to dynamic discovery and in-

teraction. Clearly, the coexistence of a huge number of heterogeneous services and

platforms (which characterizes nomadic environments) exacerbates these issues, and

it makes scalability be a prime consideration in the design of an interworking infras-

tructure. Hence, even with efficient protocols, further savings both in bandwidth and

in dimensions of service registries – as well as consequent improvements in scalability

– must be achieved.

19

1.4.3 Unpredictability issues

As for unpredictability, communication bandwidth and error rates change dynami-

cally in wireless communication networks, a mobile system’s battery power decreases,

portable devices can be temporarily switched off or unreachable because of network

partitions, and the monetary cost of communication can vary significantly. Envis-

aging a system that makes all these dynamics transparent is difficult. A practical

solution could use specific intermediaries to handle the nomadicity concerns of unpre-

dictable user behavior, unpredictable network, unpredictable computing, and graceful

degradation. Developers have provided pragmatic solutions for these intermediary

functions, but comprehensive general principles are missing. The issues to address

encompass not only intermediaries’ functionality, but also the integration of security,

transactions, conversion overhead, and reliability. Moreover, although researchers

have studied the viability of application adaptation in mobile systems, strategies for

making adaptation decisions also require exploration.

1.4.4 Context-awareness issues

Context is defined by Dey and Abowd [52] as “any information that can be used

to characterize the situation of an entity. An entity is a person, place or object

that is considered relevant between the user and the application, including the user

and application themselves”. Context awareness is, then, defined as system’s ability

to “use context to provide relevant information and/or services to the user, where

relevancy depends on the user’s task”.

As for context-awareness, nomadic applications should know their operating en-

vironment for context-dependent activities, such as giving directions or employing

20

more or less stringent security mechanisms. Hence, context-infrastructures should

go beyond the traditional middleware approach: while in traditional middlewares,

details are hidden from both users and application designers and are encapsulated

inside the middleware itself (so that the distributed system appears to application

developers as a single integrated computing facility), in nomadic environments it is

neither always possible, nor desirable, to hide all the implementation details from

the user [18], as applications may have valuable information that could enable the

middleware to execute more efficiently and to behave according to user context.

Context-awareness introduces an additional layer of heterogeneity. Indeed, a cru-

cial issue to address is how to make context-information interoperable. compatibility

analysis. Due to the fuzzy, overlapping, and time changing nature of user contexts,

context representation is often a crucial task. The uncertainty of context sources

can be partially relieved by sharing information with neighboring devices that are

involved in similar (i.e., matched) contexts. By collecting and sharing the context

from other devices, one can achieve a more accurate description of the current con-

text than the one recognized by single devices. However, context sharing exacerbates

the heterogeneity of the resulting system, introducing novel differences between the

involved devices.

1.5 Contribution

The aim of this thesis is to bring a significant contribution in this area, with the

goal of enabling the definition of novel strategies to support interoperability between

future nomadic users. The contribution of this work is to provide a comprehensive

and thorough description of how to effectively deal with the heterogeneity of both

21

discovery and delivery infrastructures, and of specific applications as well.

As for the infrastructure, this thesis presents a novel architecture to address in-

teroperability and scalability of both the discovery and the delivery of nomadic ap-

plications. It aims to mitigate the diversity of service representations, technologies,

and interaction models of current nomadic computing domains. The proposed ar-

chitecture allows to build a nomadic environment by composing nomadic computing

domains (built upon current technologies), thereby allowing clients to discover and

use services across domain borders. This architecture is composed of discovery and

delivery agents: the former are in charge of connecting domains into a single logical

domain, whilst the latter manage service sessions that users can establish to services

after service discovery. The proposed solution uses a novel algorithm to decide which

services to publish across diverse domains so as to reduce the burden due to service

discovery across a huge number of diverse discovery platforms. This algorithm specif-

ically uses both functional and technology-related constraints to drive the import

and export operations. The proposed solution is evaluated both by simulation and

by the implementation of a prototype used to connect Jini-based to Bluetooth-based

domains.

As for specific applications, two case studies are thoroughly described so as to

show how to deal with unpredictability and context-awareness. This work specifically

shows how to handle the nomadicity concerns of i) location-awareness for mobile

devices and of ii) unpredictable system behaviour for mobile multimedia services.

Chapter 2

Service Platforms for Nomadic
Computing

This chapter lays the groundwork for the thesis and surveys the state of the art in

service platforms for nomadic environments. A preliminary analysis of traditional and

novel service platforms is provided in Section 2.1 and 2.2 respectively. Section 2.3

compares the suitability of the described platforms to satisfy the requirements of

interoperability and adaptability to new technologies; it explicitly emphasizes the

need for interworking in current and future nomadic computing environments. Sec-

tion 2.4 concludes the chapter by describing and comparing on-going research works

on interworking infrastructures for nomadic computing environments.

2.1 Traditional platforms

2.1.1 Jini

Jini technology - built on the top of the Java 2 Standard Edition (J2SE) platform - en-

ables software services and devices to work together in an impromptu community [61].

Jini relies on Java’s characteristics - such as code mobility, platform independence,

22

23

and distributed events - for reducing planning, installation, and human intervention

in discovering and delivering services. The core of a Jini system is the so-called

Lookup Service (LS); it allows clients to find and use services, and allows servers to

join the Jini system. The LS provides service browsing, as well as white-pages (i.e.

discovery by service interface), and yellow pages (i.e. discovery by service attribute).

The yellow pages mechanism is based on exact matching: queries cannot include any

relational operator. The presence of entities into the service directory is managed

through registration leasing. The Lookup Service provides registered services with a

lease token, in order to allow them to periodically renew their presence; in case of

lease expiration, the corresponding service entry is canceled. LSs may be located by

unicast and multicast discovery mechanisms. Jini also requires each device either to

run a Java virtual machine or to associate itself with a device that can execute a JVM

on its behalf.

Jini is certainly useful for the home environment, as long as interfaces for the

desired devices are being developed. This is one of the drawbacks: Much is still

left unspecified, interfaces for certain devices still have to be implemented, while

they are already available for consumer electronics in other solutions. This prevents

interworking between devices of different vendors. The Jini specification currently

does not address security issues, even though latest specifications include some basic

security mechanisms.

2.1.2 Salutation

Salutation [11] is an architecture for service discovery and delivery in ubiquitous

computing environments characterized by strong mobility of user devices. Presence

24

and network-protocols independence are the main concepts in Salutation; both its

discovery and delivery infrastructures are tightly related to such concepts. Salutation

architecture is based on three main components, namely the Functional Unit (FU),

the Salutation Manager (SLM), and the Transport Manager (TM).

A Functional Unit defines a service from a client’s point of view. Functional

units already specified or under consideration by the Salutation Consortium include

printing, faxing, and document storage. Services can register and unregister func-

tional units with the local Salutation Manager.

Salutation Managers function as service brokers. They are in charge of manag-

ing both the discovery and the delivery of services. They specifically i) manage ser-

vice registry (to store service descriptors), ii) provide a discovery service, iii) monitor

availability of registered services (through periodic heart-beat messages), and iv) man-

age service delivery sessions. As for discovery, Salutation Managers provide clients

with three different mechanisms, namely exhaustive discovery of all available services

(ALL CALL), discovery of a specific type of service (TYPE CALL), and discovery

of the service that best suits several specified client characteristics (MATCH CALL).

As for session management, the SLM establish a virtual communication pipe between

client and service in order to send service invocations, results, and additional data.

Communication on the virtual pipes is managed through the so-called Personality

Protocols. A Salutation manager can operate in one of three “personalities”. In

native personality, Salutation Managers are used only for discovery. The emulated

personality is similar to the native personality in that Salutation managers set up

the connection, but in this case they transfer native data packets encapsulated in

Salutation manager protocol format (bridge). In Salutation personality, Salutation

25

managers establish the connection between client and service, and they also mandate

the specific format of the data transferred. The Salutation architecture defines the

data formats.

Transport Managers isolate the implementation of the Salutation manager from

particular transport-layer protocols and thereby gives Salutation network transport

independence. To support a new network transport requires a new transport man-

ager to be written, but does not require modifications to the Salutation manager.

Transport managers locate the Salutation managers on their respective network seg-

ments via either multicast, static configuration, or reference to a centralized direc-

tory. Discovery of other Salutation managers allows a particular Salutation manager

to determine which functional units have been registered and to allow clients access

to these remote services. Communication between Salutation managers is based on

remote procedure call (RPC).

A lightweight version of Salutation, namely Salutation-Lite, has been developed for

resource-limited devices. It is based primarily on IrDA to leverage the large number

of infrared-capable devices. Salutation-Lite focuses primarily on service discovery.

The Salutation specification currently does not address security issues.

2.1.3 Bluetooth

Bluetooth (BT) wireless technology is a short-range communications system intended

to replace the cables connecting portable and/or fixed electronic devices [5, 15]. It

provides point-to-multipoint voice and data transfer. The technology supports both

isochronous and asynchronous services. A simple isochronous application might link

a cellular phone and wireless headset, where the headset and base are both Bluetooth

26

devices. More complicated applications include automatic discovery of wireless net-

work connections and automatic synchronization of data between several Bluetooth

devices.

Bluetooth protocol stack addresses communication between devices at several lev-

els. 1 Groups of up to eight Bluetooth devices can form ad hoc networks called pi-

conets to communicate, share services, and synchronize data. In each piconet, a mas-

ter device coordinates the other Bluetooth devices (including setting the 1,600hopsper-

second frequency-hopping pattern). Individual devices can participate in more than

one piconet at a time.

The Bluetooth Service Discovery Protocol (SDP) provides a set of functionalities

for enumerating the devices in range and browsing available services. It also supports

stop rules that limit the duration of searches or the number of devices returned. Client

applications use the API to search for available services either by service classes, which

uniquely identify types of devices (such as printers or storage devices), or by matching

attributes (such as a model number or supported protocol). Attributes that describe

the services offered by a Bluetooth device are stored as a service record and are

maintained by the device’s SDP server. The distinction between service classes and

descriptive attributes is not well defined, but service classes generally define broad de-

vice categories, such as Printer, ColorPrinter, and PostScriptPrinter, while attributes

1At the bottom of the stack, the radio and baseband layers provide the short-range, frequency-
hopping radio platform. The link manager protocol (LMP) controls link setup and provides en-
cryption and authentication services. The proprietary logical link control and adaptation protocol
(L2CAP) provides multiplexed communication over LMP to higher level layers. L2CAP is propri-
etary, but other network protocols, such as IP, can be built on top of it. Specifically, higher layers
can include the following protocols: Hayes compatible AT (ATtention) protocol, which provides a
standard interface for controlling remote cellular phones and modems; RFComm, which emulates
an RS-232 serial interface; a simple object exchange protocol (OBEX), which enhances Bluetooth’s
interoperability with IrDA; and Bluetooth’s service discovery protocol (SDP).

27

allow a finer level of description. Manufacturers must eventually standardize these

service classes for maximal interoperability between Bluetooth devices.

As for service delivery, SDP does not provide a mechanism for using discovered

services, i.e., specific actions required to use a service must be provided by a higher

level protocol. However, it does define a standard attribute ProtocolDescriptorList,

which enumerates appropriate protocols for communicating with a service.

The key features are robustness, low power, and low cost. Moreover, many features

of the core specification are optional, thereby allowing product differentiation.

2.1.4 Universal Plug’N’Play (UPNP)

The UPnP architecture defines common protocols and procedures to guarantee in-

teroperability among network-enabled PCs, appliances, and wireless devices [16, 29].

It is a proposed architecture supported by the UPnP Forum, headed by Microsoft.

UPnP aims to standardize the protocols used by devices to communicate by using

XML messages. The basic building blocks of a UPnP network are devices, services

and control points. Its device model is hierarchical. In a compound device, the root

device is discoverable; a client (called a control point) can address the individual

sub-devices independently. Devices that don’t speak UPnP directly - called bridged

devices - can be integrated into a UPnP network, thereby guaranteeing a basic support

to interoperability. A bridge maps between UPnP and device-native protocols.

28

2.1.5 Universal Description, Discovery and Integration of

business for the web (UDDI)

Universal Description, Discovery and Integration (UDDI) [10] is a specification for

distributed Web-based information registries of Web services. UDDI registries rely

on an information model defined in an XML schema. Such an XML-based approach

allows to offer a platform-neutral view of data, and allows hierarchical relationships

to be described in a natural way. The information provided in a UDDI business regis-

tration encompass: i) white pages including address, contact, and known identifiers;

ii) yellow pages including industrial categorizations based on standard taxonomies;

and iii) green pages, the technical information about services that are exposed by the

business. Green pages include references to specifications for Web services, as well as

support for pointers to various file and URL based discovery mechanisms if required.

2.1.6 Service Location Protocol (SLP)

The Service Location Protocol (SLP) [22] is an IETF protocol for automatic resource

discovery and advertisement on local area IP networks. It is based on the interac-

tion of three types of agent, namely the Directory Agent (DA), the Service Agent

(SA), and the User Agent (UA). Directory Agents cache information about available

services. Service Agents advertise the location and attributes of available services.

User Agents discover the location and attributes of services needed by client software.

User Agents can discover services by issuing a directory like query to the network.

The SLP supports service browsing and string-based query for attributes, including

relational operators and sub-string matching. SLP may also operate in a directory-

less mode. Thus, it suits both ubiquitous and ad-hoc computing environments. SLP

29

also interacts with LDAP; hence services registered with an SLP DA can be auto-

matically registered in an LDAP directory. This eliminates the need to reconfigure

clients that already discover services using LDAP. Unlike Jini, Salutation, UDDI,

and UPnP, which all aspire to some degree of transport-level independence, SLP is

designed solely for IP-based networks.

2.1.7 Cooltown

Cooltown [30] is an infrastructure to support “web presence” for people, places

and things, developed by HP Labs within the framework of the Cooltown project.

Cooltown puts web servers into things like printers and puts information into web

servers about things like artwork; it groups physically related things into places em-

bodied in web servers. Using URLs for addressing, physical URL beaconing and

sensing of URLs for discovery, and localized web servers for directories, Cooltown

creates a location-aware but ubiquitous system to support nomadic users. On top of

this infrastructure we can leverage Internet connectivity to support communications

services. Web presence bridges the World Wide Web and the physical world, thus

providing a model for supporting nomadic users without a central control point.

2.1.8 JXTA

The JXTA protocols are a set of six protocols that have been specifically designed for

ad hoc, pervasive, and multi-hop peer-to-peer (P2P) network computing [59]. Using

the JXTA protocols, peers can cooperate to form self-organized and self-configured

peer groups independently of their positions in the network (edges, firewalls), and

without the need of a centralized management infrastructure. From a high-level

30

point of view, JXTA can be divided into three layers: core, service, and application

layer. The core layer provides fundamental functionalities like transport, discovery,

and security primitives. The service layer relies on the core layer and provides services

that are typically used in Peer-to-Peer applications like searching and indexing, file

sharing, and security services. Applications usually rely on both, core and service

layers, although the service layer may be more important to application developers.

2.2 Novel platforms

2.2.1 CARISMA and REMMOC: exploiting reflection

The first approach addresses service discovery issues at the middleware layer. This

approach aims to manage diversity of mobile applications and services - which are

implemented and advertised upon different service discovery and delivery protocols -

through reflection and re-configurability [8].

2.2.2 Konark

The Konark middleware [9] specifically addresses discovery and delivery issues in

ad-hoc networking. The main features of this architecture include automatic device

configuration, peer-to-peer service discovery, service delivery, and repository distribu-

tion. Service delivery is based on the HTTP and SOAP protocols. Service discovery

in Konark encompasses the so-called active-pull and service advertisement mecha-

nisms: the former consists of a multicast request-reply mechanism initiated by clients,

whereas the latter consists of a periodic advertisement sent by services in order to

announce their presence to other entities (i.e. clients and other services).

31

2.2.3 Aura

Aura [56] is an architectural framework for ubiquitous computing applications. Aura

represents an alternative approach that enables mobile users to make the most of

ubiquitous computing environments, while shielding those users from managing het-

erogeneity and dynamic variability of capabilities and resources. Specifically, Aura

has the following key features: first, user tasks become first class entities that are rep-

resented explicitly and autonomously from a specific environment. Second, user tasks

are represented as coalitions of abstract services. Third, environments are equipped

to self-monitor and renegotiate task support in the presence of run time variation of

capabilities and resources. This architectural framework has a number of important

benefits. By representing user tasks explicitly, Aura provides a placeholder to capture

user intent. This knowledge is used to guide the search for suitable configurations in

each new environment. By representing tasks as service coalitions, the infrastructure

can recognize when all the essential services in a task can be supported, instantiating

them jointly, or otherwise provide early warning to the user that that is not possible.

By providing an abstract characterization of the services in a task, the infrastruc-

ture can search heterogeneous environments for appropriate matches to supply those

services. By providing the environment with self-monitoring capabilities, the infras-

tructure can detect when task requirements (such as minimum response time) are not

met, and search and deploy alternative configurations to support the task.

32

2.2.4 Sahara

The Service Architecture for Heterogeneous Access, Resources, and Applications (SA-

HARA) [49] aims to the composition of services and to seamless discovery. It is a tech-

nical architecture for application-level service composition and inter-operation across

separate administrative domains. Its functional elements include service discovery,

service-level agreements, and service composition under constraints. SAHARA sup-

ports peering and brokering, as well as diverse business, value-exchange, and access-

control models.

2.2.5 Open Mobile Alliance and the Wireless Village

The Open Mobile Alliance (OMA) has published a set of enabler specifications to

ensure the consistent development of mobile Internet Services [41]. It has identi-

fied service discovery as a key challenge for its Wireless Village (WV) Architecture;

discovery of service in the WV is quite simple but interesting, as it relies on an au-

thentication mechanism for establishing Service Level Agreements before discovering

available services.

2.3 Comparing service platforms: the need for in-

terworking

2.3.1 Service platforms and nomadic computing domains

The mentioned service platforms aim to raise the abstraction level of the user access to

solve the problem of nomadic discovery and delivery: the trend is to discover services

33

not based on network addresses but based on service usage intentions. For service

platforms to become nomadic, either a single technology must dominate or the most

commonly used technologies must be made interoperable.

Indeed, each technology suits a specific personal computing domain. For instance,

Bluetooth and UPNP seem to suit well the personal domain, as they provide an in-

tuitive but powerful mechanism for device-to-device discovery and interaction. These

technologies are suitable for a wide variety of mobile and fixed devices, such as mobile

phones, home appliances, smart sensors, wearables, laptops, PDAs, and desktop PCs.

The Jini technology is also suitable for this domain, even though its system require-

ments (i.e. presence of a Java 2 Standard Edition virtual machine on each device)

do not match the capabilities of less powerful mobile devices (e.g., mobile phones,

smart-phones, and PDA) and of low-cost devices as well. Moreover, service discovery

in the personal domain should not rely on any underlying networking infrastructure,

and on the presence of IP-based connectivity as well; this makes most of the cited

technologies not suitable for the Personal Domain.

Bluetooth and UPNP seem to be suitable for the ad-hoc community domain too.

They do not cope with the discovery of dynamically distributed peer-to-peer services.

This issue is partially addressed by SLP and by the Konark middleware, since they

can use a distributed registry for resource discovery. However, they pose several

interoperability concerns, which could be solved by adopting an OSGi-like solution

for managing device diversity (see next section).

As for the networked services domain, Salutation can provide for Presence and

network-protocols independence, even though it does not manage service composi-

tion. SAHARA provides for service composition and inter-operation across separate

34

administrative domains. The Open Mobile Alliance (OMA) Instant Messaging and

Presence Services (IMPS) specification is specially targeted to managing presence in

interoperable end-user networked services.

2.3.2 The need for interworking

Since the requirements of each personal computing domain (that a nomadic comput-

ing system is composed of) are different from those of the others, the diversity of

current technologies is the key factor to suit all the domains.

As an example, consider a wide-area nomadic environment composed of a huge

number of smart environments each consisting of a federation of multiple devices.

Such an environment demand that two different service discovery paradigms be adopted.

Indeed, whilst most of device-oriented technologies (e.g., UPNP, Jini, Bluetooth) ad-

dress the issue of the extreme dynamism of smart environments, these protocols do

not scale to the wide-area. Rather, they are intended for use within relatively small

communities of devices 2. On the contrary, technologies for networked services (e.g.,

JXTA, UDDI) scale better to the wide-area, even though they do not provide the

required spontaneity and dynamism. Hence, one should use at least two different

technologies (e.g., UPNP and JXTA) in order to address the requirements both of

inter-domain and of intra-domain discovery.

2For instance, the Windows ME UPnP client attempts to locate all the local network services
upon initialization. If the multicast search yields n service advertisements then n TCP based HTTP
interrogations follow to gather the XML service descriptions (the user would then initiate a further
n interactions to get the presentation pages for each device). According to the UPnP specification,
in the simple case of one root device with one service type, 12 packets are generated (4 packets each
sent 3 times to avoid problems with packet loss) each refresh interval (normally 30 minutes). As
a client joins or roams into the network, it issues an SSDP:ALL M-SEARCH request (3 times for
reliability). Every service must respond to each M-SEARCH by unicasting its service advertisement
to the client (again 3 times per response). A single search yields a total of 36 response datagrams
(if no packets are lost).

35

This simple example shows that interworking seems to be the most promising

prospect for interoperability in nomadic computing: it is very unlikely that either

i) one technology will fit all the requirements of a nomadic environment or ii) de-

vice manufacturers will embrace multiple service discovery and delivery technologies

on mobile devices. This is especially true with respect to low-cost and embedded

devices, i.e., with respect to personal devices used by nomadic users. Hence inter-

working efforts are perhaps the most important force in nomadic computing systems

deployment.

However, though the current service platforms succeed in supporting a particular

nomadic computing domain, they have a limited support for very heterogeneous en-

vironments. Figure 2.1 shows a comparison of the presented platforms with respect

to the issue of realizing a very heterogeneous nomadic environment. The main limi-

tation of current technologies is the limited support for interoperability which in turn

limits also their adaptability to new technologies [50]. A few of them can support

interoperability by applying ad-hoc bridging strategies rather than a more open and

general approach [21]. As for scalability, SLP and Konark support registry distribu-

tion, whereas Salutation and Sahara try to dominate the complexity of the resulting

system through a hierarchical organization of discovery and delivery agents. Task

distribution in Aura can also be used to leverage the scalability of its delivery infras-

tructure. It is worth noting that the less dynamic and self-configuring the platform is,

the better the resulting infrastructure scales to large systems. The second and third

columns in Figure 2.1 show that Konark is the only platform which tries to address

both scalability and unpredictability issues, whereas the rest of the platforms cope

with either the former or the latter issue. Besides reconfiguration and user mobility,

36

NoMay support
(mobility)

NoMay supportOMA

NoNoYesYesSahara

YesYesMay support (task
distribution)

NoAura

May supportYes (automatic
reconfiguration)

Yes (distributed
registry)

YesKonark

YesYesnoNoCARISMA

May supportMay supportYesNoJXTA

May support (sensing
and location-
awareness)

NoYesNoCooltown

NoNoYes (centralized or
distributed registry)

Yes (SLP –
LDAP
integration)

SLP

NoMay support
(mobility)

YesYes (XML)UDDI / SOAP

NoMay supportNoYes (bridging)UPNP

May supportYes (channel and
radio layers)

NoNoBluetooth

NoMay supportYesYes (bridging)Salutation

May support
(discovery)

Yes (self-
reconfiguration)

NoNoJINI

Support for
Context-awareness

Support for
unpredictability

Support for
scalability

Support for
Interoperability

Figure 2.1: A comparison of the surveyed technologies

CARISMA and Aura are the only platforms which support variability of capabilities

and resources. They also provide an explicit support for context-awareness, whereas

almost all of the presented platforms do not support it.

2.4 Interworking solutions

For service platforms to become ubiquitous, either a single platform must dominate

or the most commonly used technologies must be made interoperable. Currently,

37

bridging seems to be the most promising prospect for interoperability [50]. The

need for interworking is also present in certain recent research works on supporting

nomadic computing. The IST-NOMAD project [14] deals with the integration and

composition of location-aware service discovery mechanisms, handover procedures

and service / user profiling, by developing technology that allows users to freely roam

across existing and future network infrastructures.

The OSGi Alliance has recently released the third release of the OSGi Service

Platform [28], an enhanced software specification for the delivery of managed services

to devices in homes, cars, businesses, and other environments. The specification is

explicitly designed to be open and synergistic with a wide range of existing network-

ing and computer technologies. The specification deliberately does not prescribe any

particular device or network technology. Nor does it specify a particular device dis-

covery method. Rather, it focuses on the attachment of devices supplied by different

vendors. OSGi provides a low-level mechanism for device discovery which can be used

as a building block for more complex discovery architectures, as demonstrated by the

work in [39].

As for XML registries, the Java API for XML Registries (JAXR) provides a uni-

form and standard Java API for accessing different kinds of XML Registries. An

XML registry is an enabling infrastructure for building, deploying, and discovering

Web services. Currently there are a variety of specifications for XML registries in-

cluding, most notably, the ebXML Registry and Repository standard, which is being

developed by OASIS and U.N./CEFACT, and the UDDI specification, which is being

developed by a vendor consortium. JAXR enables Java software programmers to use

a single, easy-to-use abstraction API to access a variety of XML registries. Simplicity

38

and ease of use are facilitated within JAXR by a unified JAXR information model,

which describes content and metadata within XML registries. As an abstraction-

based API, JAXR gives developers the ability to write registry client programs that

are portable across different target registries. Similarly, JAXR also enables value-

added capabilities beyond those of the underlying registries. The current version of

the JAXR specification includes detailed bindings between the JAXR information

model and both the ebXML Registry and the UDDI Registry v2.0 specifications.

As for discovery, the integration between the discovery infrastructures of differ-

ent nomadic domains has been addressed by using discovery brokers (ie., discovery

agents). Such brokers can be implemented according to a service query translation or

service registration translation approach. Service query translation is about sending

service queries across service discovery domain borders, whereas service registration

translation is about sending (translated) service registrations across service discovery

domain borders [32]. The Salutation architecture [11] is based on a broker. Salutation

has some significant differences compared to the proposed architectural framework:

i) Salutation’s service broker is more closely coupled to applications; ii) Salutation

uses service query translation approach rather than service-registration translation;

and iii) Salutation defines a well-defined translation between service ontologies. Con-

versely, the solution proposed by this thesis is presented as an architectural design

pattern for discovery brokers, thereby leveraging the re-usability of the entire ap-

proach. A Jini-SLP bridge has also been developed, which allows services lacking

a JVM to participate in Jini systems [21]. The heart of the Jini-SLP bridge is a

special SLP User Agent that acts as discovery broker and registers the availability of

“Jini-capable” SLP Service Agents. To do this, Jini-capable SLP services advertise

39

the availability of a Jini driver factory. When a Jini client needs one of the regis-

tered SAs, it downloads a Jini-driver factory from the lookup server and uses it to

instantiate a Java object to drive the service. Similar schemes are possible for the

other technologies; for example, it should be possible to Jini-enable UPnP services in

this way. Miller and Pascoe describe mapping Salutation to Bluetooth SDP to take

advantage of Bluetooth’s wireless capability [38]. Two approaches are considered: the

first maps the Salutation APIs to Bluetooth SDP by implementing Salutation on top

of Bluetooth; the second uses a Bluetooth transport manager and essentially replaces

Bluetooth SDP with Salutation. This approach will also work with other schemes,

like Jini. Bluetooth is a particularly attractive target for interoperability, primarily

because of its wireless capability. Because of this, additional interoperability efforts

between Bluetooth and other service discovery technologies seem inevitable.

Although the above mentioned bridging strategies allow to leverage the interoper-

ability of certain existing interaction platform, the main limitation of such strategies

lies in the lack of effective advertisement-filtering mechanisms which makes them un-

suitable for large-scale environments. Futhermore, as the amount of domain increases,

the amount of needed mappings grows quadratically. Instead, the existence of a gen-

eral domain (internal to the service brokers) enables implementing only the mappings

between the general templates and the (external) service templates. Hence, the pro-

posed solution allows the growth of the amount of mappings to be limited to linear by

the general templates. Moreover, the mentioned strategies show how to connect two

(or more) service discovery domains establishing a technology-to-technology bridge,

thereby providing an individual solution to specific integration problems. Conversely,

this work proposes a re-usable architectural pattern for building a comprehensive

40

interworking infrastructure with a technology-independent strategy.

As for integration, a more versatile discovery-broker approach has been proposed

by Koponen and Virtanen in [32]. The work by Koponen and Virtanen bears a re-

semblance to this thesis, for it is based on a general domain for service-registration

translation to address the need for federating service discovery domains. However,

the work in [32] focuses mostly on simple local federations; wide area service discov-

ery is omitted completely, whereas this thesis proposes an interworking infrastructure

which addresses scalability to wide-area federations as well. Moreover, the archi-

tecture proposed by Koponen and Virtanen focuses on mediating the data (service

registrations) and not on mediating service requests, thus ignoring service-delivery

issues. Conversely, the architectural framework herewith proposed can be used to

manage both service advertisements and service sessions.

As for interoperable context-awareness, there is an increasing interest in defining

a high-level software application programming interface for technology-independent

location-awareness [43]. Several organizations have recently proposed location APIs to

leverage the interoperability of both indoor and outdoor positioning systems. In order

to deal with the heterogeneity of location techniques, the Java Community Process

(JCP) has recently finalized a Java Specification Request (JSR) to define a Location

API (JSR-179) [47] for MIDP-compliant devices. This package provides applications

with functionality for i) obtaining information about location and orientation of the

mobile device, and for ii) accessing a shared database of known locations (the so-

called Landmarks). These specifications may be implemented by means of existing

location methods, including satellite based methods like GPS, as well as short-range

positioning methods. The Open Mobile Alliance (OMA) Location Working Group

41

(LOC), which continues the work originated in the former Location Interoperability

Forum (LIF) [42], is developing specifications to ensure interoperability of Mobile

Location Services on an end-to-end basis. This working group has defined a location

services solution, which allows users and applications to obtain location information

from the wireless networks independently of the air interface and positioning method.

The Finnish Federation for Communications and Teleinformatics (FiCom) has built

a national location API to enable location-information exchange between network

operators, and between operators and service providers as well [20]. FICOM’s API is

compliant with the LIF location services specifications.

Chapter 3

The Proposed Architectural
Framework

3.1 Conceptual model

Section 1.4 showed that four main problems stem from the heterogeneity of no-

madic environments, namely interoperability, scalability, unpredictability, and con-

text awareness. This chapter proposes a novel architectural framework for nomadic

computing systems which is specially designed to overcome these issues.

Interoperability and scalability issues are mostly related to the characteristics of

each interaction platform, whereas unpredictability and context-awareness issues de-

pend on application-specific requirements. Driven by these differences, the framework

combines application-level and platform-level strategies in order to fulfill heterogene-

ity requirements comprehensively.

The conceptual model of the proposed framework is strongly influenced by such

a combined approach, as Figure 3.1 shows. The main idea behind the framework is

to add interoperability and scalability to existing interaction platforms by means of

42

43

Y DomainX Domain

Discovery

X

Delivery

X
Discovery

Y

Delivery

Y

Interaction Platforms

Interworking

Infrastructure

Support for:
- Interoperabitliy
- Scalability

Services / Clients Application

1

Application

2

Application

K

Support for:
- Unpredictability
- Context-awareness

Generic Service Element Layer

Figure 3.1: Conceptual model of the proposed architectural framework

a novel interworking infrastructure. The framework must thereby define placehold-

ers for capturing service advertisements and service delivery sessions, and for repre-

senting the nomadic computing environment as the composition of several service-

provisioning domains as well.

As for the heterogeneity of context-information and for the unpredictability of sys-

tem behaviour, the framework provides a number of basic services or service-elements

to applications. Therefore, the framework must also define the major abstractions to

address heterogeneity from this application-dependent point of view.

Such abstractions are represented in Figure 3.1 as a toolbox of Generic Service-

elements on which context-aware and adaptive applications can rely. In order to

leverage the re-usability of such service-elements, it is crucial that a set of interfaces

be defined to represent the functionality required by nomadic applications. It is worth

noting that the adopted approach is quite similar to that of middleware platforms

with respect to traditional distributed systems. Middleware is a widely used term

44

Jini DomainBluetooth Domain

SDP

Server

RFCOMM

Delivery
Lookup
Service

Java
RMI

Interaction Platforms

Location-aware

Application
Application

Fault-tolerant

Video Streaming

Services / Clients

Indoor-location

Sensing

Media streaming

QoS Monitor

Support for:
- Unpredictability
- Context-awareness

Interworking

Infrastructure

Support for:
- Interoperabitliy
- Scalability

Figure 3.2: An architecture resulting from the proposed architectural framework

to denote a set of generic services above the operating system. The importance of

middleware as a set of generic services above the operating system and transport stack

is widely recognized. Such a modular approach is also used in the herewith presented

architectural framework to address context-awareness and unpredictability. Chapter

5 will show how to design and to implement two service-elements each supporting a

well-known class of applications.

Figure 3.2 shows a bird’s eye view of an example system resulting from the pro-

posed architectural framework. More specifically, it shows that the interworking

infrastructure can be used to federate Jini and Bluetooth domains, thereby adding

interoperability to both the interaction platforms. It is worth noting that the infras-

tructure can also widen the boundaries of a bluetooth service, allowing even clients

located on the wide-area to discover and use it. Figure 3.2 clarifies also the role of

45

generic service-elements within the proposed framework. For instance, as for unpre-

dictability and context-awareness, location-aware applications could further exploit

location-sensing elements to build specific location-attributes and models, whereas

multimedia applications could exploit media-streaming-qos monitoring elements to

adapt the behaviour of their encoders and decoders accordingly.

3.2 The Interworking Infrastructure

3.2.1 The overall architecture

The interworking infrastructure allows to build an interoperable nomadic environment

by composing several nomadic computing domains. Such an infrastructure relies on

a group of cooperating agents which address interoperability and scalability issues

from different points of view. The combined goal of these agents is to enable service

discovery and delivery across domain borders, thus leveraging the interoperability of

the involved domains by merging them into a global service-provisioning environment.

However, when dealing with environments composed of a huge number of domains, it

is necessary to take both scalability and partitioning issues into account, as mentioned

in Section 1.4.2. To this aim, the global environment is assumed to be hierarchically

structured. Its hierarchical organization relies on the concepts of Nomadic Com-

puting Domain, Domain-Federation, and Global Environment. Nomadic

computing domains are the elementary service-provisioning domains and repre-

sent a single physical end-system composed of devices that use a single interaction

platforms to discover and deliver services. A Domain-Federation is a wider service

provisioning environment which can include several Nomadic Computing Domains.

46

General Domain Nomadic Computing Domain

<<Interface>>

Domain Specific Agent

+ImportServices()

+ExportServices()

Slave DSA

Domain Federation

Update Service List

<<Off-the-shelf Component>>

Discovery Infrastructure

+Look_Services_Up()

+Publish_Service()

<<Off-the-shelf Component>>

Delivery Infrastructure

<<Device>>

Technology-compliant Device
1

1

1

1..n

1

1..n

1 1

Manage Local Registry

1

1Global Environment

Includes

<<Service-specific Proxy>>

Client-side Proxy

<<Service-specific Proxy>>

Server-side Proxy

0..n 0..n

Master DSA

1

1..n

Figure 3.3: The conceptual model of the interworking infrastructure. Conceptual-
classes in grey represent off-the-shelf components.

The aggregation of several Domain-Federations results in the creation of the Global

(nomadic computing) Environment.

The conceptual model of the proposed interworking infrastructure is depicted in

Figure 3.3. The infrastructure is composed of the following components. First, the

discovery agents, called Domain Specifc Agents (DSAs), are in charge of connect-

ing diverse domains into a single logical domain. Second, the delivery agents, called

Service Specific Proxies(SSPs), manage service sessions that users can establish

to services after service discovery. More specifically, Service-Specific Proxies are soft-

ware components that provide a mechanism for services to be adapted and delivered

even to incompatible devices.

From a logical standpoint, a domain comprises one instance of Domain Specific

Agent and several instances of Service Specific Proxy. However, in order to suit the

hierarchical organization of the global environment, the framework defines two hier-

archically ordered types of discovery agents, called Master DSA and Slave DSA.

47

Each federation is assigned a specific Master DSA, whereas a Slave DSA interfaces a

single domain to a certain federation.

3.2.2 Managing and updating service lists

Each agent holds a list of all the services published within its own service-provisioning

environment. A Master DSA’s service-list contains the list of all the services currently

published into the federation of its own (federation-level service list), whereas that

of a Slave DSA comprises all the services currently published within the nomadic

computing domain of its own (domain-level service list). Such lists consist in a

set of descriptive documents, called Interoperable Service-Description Records

(ISDRs), each assigned to a specific service. Section 4.1 will provide further details

about the data comprised in such documents, and about their structure as well.

The integration of different interaction platforms can be achieved according to a

service query translation or a service description record translation approach. The

former is about sending service queries across domain borders, whereas the latter is

about sending translated service descriptions. The proposed infrastructure adopts a

service description translation approach for the following reasons. First, as the in-

frastructure aims to transparently integrate diverse domains, description translation

is more appealing than query translation; indeed the set of query and notification

functionalities of current service discovery solutions is more heterogeneous and more

dynamic than the set of current service description templates. Second, changes in

service queries are more frequent on network than changes in service descriptions.

Third, as the infrastructure must enable service delivery across a domain’s bound-

aries, the description translation approach is more suitable for the dynamic creation

48

of Service-Specific Proxies both on the client-side and on the server-side. Finally,

the presence of Master DSAs allows for grouping multiple service descriptors into a

single coarse-grained advertisement. This federation-level advertisement is crucial to

make the infrastructure scale to a large number of nomadic domains, and to screen

a certain federation from undesirable and unauthorized direct access to/from slave

agents residing in different federations.

The Slave DSA is in charge of discovering services within a single nomadic com-

puting domain, and of providing its Master DSA with the domain-level service list.

On the one hand the Master DSA is responsible for the propagation of service de-

scription records among the various SDSAs of its own federation, while on the other

hand it is in charge of providing other federations with the service list of its own

federations. That is to say, the role of a Master DSA is two-fold as it provides key

discovery services at the Federation / Global Environment interface (inter-federation

discovery), and within its own Federation as well (intra-federation discovery).

Service-description translation requires the framework to define a mechanism to

trigger translations and exchange of information between the agents involved in intra-

federation and inter-federation discovery. More specifically, the service lists could be

updated by using either a reactive or a proactive approach. In the reactive approach,

the owner of a service-list can decide to update it upon specific events. In the proactive

approach, the agents take action by firing events and they do not only react to events

when they happen. That is to say, such updates are triggered by third-parties (another

agent) which can force a certain agent to update the service list of its own.

As for inter-federation discovery, the MDSA provides SDSAs with a mecha-

nism to retrieve the list of all the services available in the global environment. To

49

Bluetooth
Piconet

MDSA

4. Interoperable
Service Descriptors

Bluetooth

Bluetooth
SDSA

MDSA

2. Discover local
Services

3. List of local
services

Request
Service List

1.

4. Interoperable
Service Descriptors

Bluetooth
Domain

Figure 3.4: Exporting service advertisements

this aim it retrieves the service-lists of each external federation by contacting all the

MDSAs comprised in the nomadic environment. As for intra-federation discov-

ery, the Master DSA provides each SDSA within its own federation with the list of

the services available in the rest of the Federation. To this aim it firstly retrieves

the local-service-lists of each domain within its own federation by contacting all the

comprised SDSAs, and subsequently sends the federation-level service list to all the

Slave DSAs within the Federation.

Inter-federation discovery is reactive, for it is must be explicitly triggered by the

interested Master agent upon a specific event. Conversely, intra-federation discovery

is proactive, since the Slave DSA updates its own domain-level service list upon the

arrival of its own MDSA’s requests. More specifically, the proactive intra-federation

discovery mechanism comprises the following steps. During the first step, depicted

in Figure 3.4, it retrieves Service Description Records (SDRs) from the local service

registry (e.g., a set of Bluetooth Service Discovery Protocol servers, or a Jini Lookup

Service) and converts them to an Interoperable Service Description Record format

which can be understood by other DSAs. Subsequently, it sends a set of ISDRs to its

50

MDSA

Send
Service list

1’.

Jini
Domain

Jini
Lookup
Service

Jini
SDSA

2. Publish
Remote Services

UPNP
Domain

UPNP
Registry

UPNP
SDSA

2’. Publish
Remote Services

ISDRISDRISDRISDRISDRISDR

Send
Service list

1.

Figure 3.5: Importing service advertisements

Master DSA, which can thus gather the incoming ISDRs in order to build the list of all

the available services within its federation. This list is then autonomously forwarded

by the MDSA to its Slave DSAs, as shown in Figure 3.5. Upon the arrival of such

service advertisements, a Slave DSA translates them from the common semantics and

syntax of the ISDRs to those of its own domain (e.g., those of Bluetooth descriptors).

Such translated descriptors are subsequently published by the SDSA into the domain

of its own, thus providing placeholders for external services to be discovered as local-

domain services.

The description of MDSA responsibilities given above has shown also that the

slave DSAs are in charge of importing and exporting services within the domain of

their own. However, SDSAs are involved not only in service-advertising (i.e. support-

ing the interoperability of service discovery infrastructures) but also in supporting

the interoperability of service delivery infrastructures. Hence, the import/export op-

erations can also require SDSAs to create/destroy service-specific proxies.

Chapter 4

Addressing Interoperability: the
Interworking Infrastructure

This chapter provides further details about the design and the implementation of

Master and Slave Domain-Specific Agent components. The chapter also includes a

thorough description of a novel algorithm for discovery agents to mitigate the diver-

sity of service representations and interaction platforms. This algorithm specifically

uses both functional and technology-related constraints to drive import and export

operations. The rest of the chapter is organised as follows. Section 4.1 introduces

preliminary definitions and concepts. Design guidelines for the internal structure of

discovery agents are provided in Section 4.2. Section 4.3 introduces the novel filtering

algorithm to import and export services across heterogeneous domains. The stabil-

ity of the proposed algorithm is evaluated by simulation. Section 4.4 describes the

implementation of a system prototype, which is composed of Bluetooth-based and

Jini-based Domain Specific Agents. The agents have been tested in a real environ-

ment in order to show how to add interoperability to an existing service provisioning

domain by means of the developed infrastructure. Such a proof-of-concept implemen-

tation is described in Section 4.5.

51

52

4.1 Preliminary definitions

As defined in Section 3.2, the Interoperable Service Description Record (ISDR) is

used to translate service advertisements between heterogeneous domains. An ISDR

comprises the following sections. The Basic Information section contains the service

identifier, as well as a set of description attributes (e.g., service name and a set of

keywords). The Service Profile section defines service semantics in terms of well-

defined service classes (e.g., printing service, web-connectivity, instant messaging).

The Client Resource section contains optional information about system requirements

on the client-side (e.g., required amount of RAM and storage space, required operating

systems, and supported wireless technologies). The Service Access section provides

details about the platform used to deliver a certain service. It specifically provides

information about the adopted technology, as well as a technology-specific identifier

which allows clients to establish a service session so as to start service provision.

In order to decide whether a descriptor can be translated or not, it is necessary

to define the concepts of descriptor translatability and service visibility.

A generic Service Description Record SDRk is a list of attributes SDRk =

(a1, a2, ...an). Each field aj is assigned a name, a value, and specific semantics (e.g. the

name field may be assigned a printService value, and “name of service” semantics).

Fields can be either mandatory or optional. It is noteworthy that the cardinality and

the optional nature of SDRs depends on the specific domain that they refer to.

Let D1 and D2 be two different domains. Given two different service descriptors

SDR1 = (a1, a2, ...an) ∈ D1, and SDR2 = (b1, b2, ...bm) ∈ D2, the following

properties can be defined:

Descriptor Translatability: a descriptor SDR1 ∈ D1 is translatable into a

53

Not-translated
Attributes

Mandatory
Attributes

SEMANTIC MATCHING
(Attributes with the same semantics

but different representation)

Unspecified Optional
Attributes

COMPLETION
Attributes generated by
the SDSA

TRANSLATION
Attributes translated by
the SDSA

SDR1 SDR2

Translated Optional
Attributes

Figure 4.1: Semantic matching, translation, and completion of Service Description
Records

descriptor SDR2 ∈ D2, being D1 6= D2, if the following conditions hold: i) all in-

formation representing the same semantics (semantic matching) can be translated

(translation), and ii) the remaining mandatory fields of the target SDR can be

calculated by processing either a subset of SDR2 fields or an external piece of infor-

mation (completion). Figure 4.1 shows the role of completion, semantic matching,

and translation with respect to descriptor translatability.

Service Visibility: a service s ∈ D1 is visible in domain D2 6= D1 ⇔ ∃SDR2 ∈

D2 | SDR1 is translatable in SDR2. It is worth noting that if a service s ∈ X is visible

in domain Y , and its Y -version is visible in another domain Z, then s is visible in Z.

If such a condition holds, s is said to be visible in Z trough Y (transitive-visibility

property).

The overall integration approach relies on this Transitive-visibility property. In-

deed, this property allows Domain Specific Agents to integrate Nomadic Computing

54

Domains by using the Global Environment as an intermediary for service advertise-

ment and for discovery as well.

Advertisement Filtering: in large-scale nomadic computing systems, discovery

agents can generate a large volume of service advertisements. However, each domain

may be interested in only a small portion of such advertisements. For instance, a

certain domain could be interested only in the advertisements that concern a specific

set of service types (e.g., messaging and network access). Moreover, visibility cannot

be guaranteed for all the services to import. Hence, large-scale interoperable systems

need directory services that aggregate service advertisements, manage queries from

clients, and decide which services to publish across diverse domains. Such an im-

port mechanism is called Advertisement Filtering; it can be driven by different

principles, such as resource (i.e., bandwidth, registry dimension) saving strategies,

description semantic, and functional and technological constraints.

Filtering Stability: a filtering mechanism is stable if the average amount of

imported services is constantly smaller than the overall number of services in the

registry.

When designing a filtering mechanism, it is crucial that the following two re-

quirements be taken into account. First, the mechanism should allow the discovery

agent to control the distribution of different types of service (e.g., printing, messaging,

media-streaming) within its child domain, and to behave accordingly as well. Second,

it should allow the agents to tune the stability of the resulting filtering mechanism.

55

4.2 Designing Domain Specific Agents

4.2.1 Designing a Slave Domain Specific Agent

According to Section 3.2, the major responsibilities of a Slave DSA comprise the

following tasks:

import/export : to import and to export services within a single nomadic comput-

ing domain;

filtering : to filter the received service-list upon import operation, according to

visibility rules as defined in Section 4.1;

translation : to translate Interoperable SDRs into local technology-specific descrip-

tion records (and vice versa);

proxy management : to create and destroy service-specific proxies;

external advertisement : to provide a mechanism for Master agents to discover

the services of a certain domain within the federation of their own.

Based on the outlined responsibilities, a Slave DSA has been designed as resulting

from the interaction of several components. The internal architecture of such a slave

agent is presented in Figure 4.2 and briefly described in the following. It is worth

noting that the Slave DSA is directly connected to a specific interaction platform.

Hence, its implementation is highly dependent on the adopted target platform, as

Section 4.4.1 will show.

The Publishing Manager is the key component for import and export oper-

ations. It creates and maintains the ISDR-based registry of local services. More

56

SDSA

<<Tecnology-dependent Component>>

Local Interaction Platform

Publishing Manager

Service-access ManagerDescription Translator

MDSA

Append Proxies

1

1

1

1

Intra-federation Discovery

1

1..*

Manage Registry

-Query / Modify

1

-Advertise / Receive Services1

1

1

Figure 4.2: High-level UML Class Diagram of the Slave DSA component

specifically it is in charge of i) filtering the service list before importing services, ii)

importing and discovering services within the domain associated to the Slave DSA,

and iii) coordinating other components in order to publish external services into the

local domain and to advertise the local services externally.

The Description Translator is in charge of translating service descriptors. Such

a component evaluates the translatability property to decide whether a service is

visible or not; hence, it is responsible not only for translation but also for completion.

The Service Access Manager is responsible for the creation and for the de-

struction of service specific proxies. It is also in charge of producing information for

creating the Service Access section of the Interoperable SDR.

Importing and exporting service advertisements

Figure 4.3 shows that the internal structure of the Publishing Manager component

comprises the following classes.

57

+runImport(in ISDRlist , in IIDlist)
#filter(in ClassID, in bool) : bool
#publishService(in LSDR, in bool) : bool
#unregisterService (in IID) : bool

-minUsage: int
-useResetType: int
-useResetFreq: int

Import Manager

+getLIDs(in bit) : LIDList
+add(in LID, in IID , in imp, in vi)
+remove(in IID)
+findI (in IID) : ServiceIDs
+findL(in LID) : ServiceIDs

Service ID List

1

+runExport()
+getNewService () : ISDRList
+getOldService () : IIDList
#browseLocal () : LIDList
#getLSDR(in LIDs, in LSDRList) : bool
#compare()

Export Manager

+runImport(in ISDRList , in IIDList)
+runExport()
+getNewService () : ISDRList
+getOldService () : IIDList

<<interface>>
DSAinterface

+getDimR()
+getNnoEx()
+getDimNoEx()
+getMinSpace()
+isExceeding(in class) : bool
+addSrvc(in class)
+removeSrvc(in class)

RegistryInfo

+ISDRToL (in ISDR , in LSDR) : bool
+LToISDR (in LSDR, in ISDR) : bool

Description Translator

+getLID()
+getIID ()
+getUsage() : int
+isVisible () : bool
+isUsable() : bool
+isImported() : bool
+set(in IID , in LID)
+setImported(in bit)
+setVisible(in bit)
+setUsage(in int)
+setUsable(in bit)

-LID
-IID
-imported : bool
-visible : bool
-usable : bool
-usage : int

ServiceIDs

*

<<COTS Library>>
Platform_Manager

{Service Discovery methods}

{Service Delivery methods}

<<use>>

<<use>>

<<Platform-dependent discovery>>

<
<

P
latform

-dependentservice
registration>

>

Figure 4.3: UML Class Diagram of the major classes involved in the management of
service advertisements. Shadowed classes belong to the Publishing Manager.

The Import Manager is in charge of registering external services onto the local

domain. Similarly the Export Manager is responsible for the announcement of

local services to external domains. As for the specific domain to integrate, both the

Import and the Export Manager use the Platform Manager component to query

and/or to modify the local domain. The Platform Manager class is the interface

to the discovery and delivery functions of the adopted interaction platform. Such

key-functional blocks are typically provided as a set of off-the-shelf components.

Advertisement filtering and semantic matching

In order to investigate the translatability of a certain service and to translate its

service descriptor, the Import Manager and the Export manager components use the

Description Translator. The internal architecture of the Description Translator is

58

Translator

+ ISDRToL(ISDR,LSDR):bool
+ LToISDR(LSDR,ISDR):bool
- translation(direction):bool
- completion(direction):bool

- ISDR
- LSDR

<<interface>>
ITranslator

+ ISDRToL(ISDR,LSDR):bool
+ LToISDR(LSDR,ISDR):bool

Semantic Match

+ translateIL(v1,v2):bool
+ translateLI(v1,v2):bool

Match 1

+ translateIL(v1,v2):bool
+ translateLI(v1,v2):bool

Match N

+ translateIL(v1,v2):bool
+ translateLI(v1,v2):bool

Mandatory
Attribute

+ deriveVal(v):bool

Attribute 1

+ deriveVal(v):bool

Attribute N

+ deriveVal(v):bool

Figure 4.4: UML Class Diagram of the Description Translator component

depicted in Figure 4.4. Such a class diagram represents the conceptual architecture

of a Description Translator component. Indeed, the number and the signature of all

the member functions in Figure 4.4 is highly dependent on the adopted interaction

platforms. The Translator class is responsible for establishing the translatability of

a certain service. To this aim, it exploits both the Semantic Match and the Manda-

tory Attribute classes. The former is used to translate both mandatory and optional

translatable attributes, while the latter is used to calculate the values of those ISDR

attributes that are mandatory but not obtainable by the Local (platform-dependent)

SDR (completion). Even though the Import Manager and the Export Manager exploit

the same translation mechanism, they adopt different advertisement-filtering strate-

gies. While on the one hand the Export Manager is only in charge of discovering and

of trying to translate all the local services, on the other hand the Import Manager has

59

also to decide which services to import according to a novel advertisement filtering

mechanism. Such a mechanism takes into account both functional constraints and

the current composition of the service registry. This mechanism is provided by the

Registry Info class, and will be extensively described in Section 4.3.

4.2.2 Designing Master DSAs and building Federations

MDSA vs SDSA

The interface of a Master DSA is quite similar to that of a Slave DSA, even though

several significant differences exist between the two agents. The main differences

between the responsibilities of such agents are presented in Table 4.1: since the MDSA

is a federation-level discovery agent, it does not depend on a specific interaction

platform, and it is not concerned with the creation and destruction of service-specific

proxies. Moreover, as the MDSA manages only Interoperable Service Description

Records, it provides no translation or completion services.

Feature SDSA MDSA
Import/export Within a nomadic domain Within a domain-federation
Filtering Yes No
Translation Yes No
Proxy management Yes No
External advertisement Federation-level Global Environment level
Platform dependent Yes No

Table 4.1: Comparing the responsibilities of Master and Slave Domain Specific Agents

60

Designing intra-federation and inter-federation discovery protocols

As mentioned in Section 3.2.2, the Master DSA provides key discovery services at the

Federation / Global Environment interface (inter-federation discovery), and within its

own Federation as well (intra-federation discovery). Since in a real nomadic comput-

ing environment the number of agents involved in intra-federation and inter-federation

discovery operations can be significantly large, it is necessary to use scalable commu-

nication protocols and paradigms to design and implement such discovery services.

Such communication protocols and paradigms should also be suitable for achieving

interoperable resource-aggregation.

In order to satisfy such requirements, a peer-to-peer decentralized approach is

adopted for the communication between Master and Slave DSAs. Such an approach

lays the groundwork for more robust, dynamic, and scalable search mechanisms [53].

Moreover, it is valuable for a variety of reasons, which are briefly discussed in the

following. In a peer-to-peer model, different peers can be grouped into PeerGroups.

Peers within the same PeerGroup can send both group-level and one-to-one messages

to other peers. By adopting a peer-to-peer approach, each domain-federation can

be assigned a certain PeerGroup, thus considering each Slave DSA within a certain

federation as a peer belonging to the Federation’s PeerGroup. Similarly, Master DSAs

are designed as peers belonging both to the Global environment PeerGroup and to

the Federation PeerGroup, as depicted in Figure 4.5.

Such a peer-to-peer model paves the way to the design of group-discovery and

group-announcement protocols which present the following characteristics.

• service registry : each Slave DSA has its own service registry which contains the

list of the Interoperable SDRs of its local services; similarly, each Master DSA

61

MDSA

MDSA SDSA

SDSA SDSA

SDSA

Federation
Peer Group

Global-Environment
Peer Group

2. Retrieve the list of
external Services

3. Forward the list to
all the SDSAs within
the federation

SDSA SDSA

MDSA

Federation
Peer Group

1. Create the
complete list of
internal Services

Figure 4.5: Peer-to-peer approach for Inter-federation discovery and for the subse-
quent advertisement of external services within a certain federation.

holds a list of all the services available in its own federation;

• inter-federation service advertisement : each Master DSA can retrieve the service-

lists of all the Master DSAs registered with the Global Environment by sending a

specific reactive-discovery advertisement to the Global Environment’s Peer

Group; upon the arrival of such an advertisement, each MDSA sends the list of

its own federation to the requesting MDSA (see steps 1. and 2. in Figure 4.5);

• proactive intra-federation service advertisement : each Master DSA retrieves the

service-lists of all its Slave Agents through periodic service-list advertise-

ments sent to the federation’s Peer Group; it subsequently uses them to build

a complete list of all the services available within the Federation; such a com-

plete list is then sent to all the Slave DSAs by means of a service-list update

62

advertisement within the Federation’s PeerGroup. The same mechanism is also

used to publish the service-descriptors received by means of an inter-federation

service advertisement. Such a peer-to-peer mechanism for importing services

into a federation is presented in Figure 4.5.

4.3 Proactive filtering of Service Advertisements

4.3.1 The filtering algorithm

Each Slave DSA holds a domain-level service list which comprises the Service De-

scription Records of all the services currently published within the domain of its

own. Import operations can significantly increase the dimension of such a service list,

thereby increasing the dimension and the complexity of the resulting domain. Visi-

bility rules provide a first step toward the management of domain complexity, even

though they do not guarantee that domain resources be always available. Moreover,

resource unavailability can force agents to discard new import operations; this can

make entire service classes unavailable. Therefore, the Import Manager adopts a more

complex filtering strategy, in order to guarantee that a minimum number of service

records is assigned to each service class. As already mentioned such a mechanism is

provided by the Registry Info component.

In order to build a precise model the proposed algorithm, it is necessary to give

the following definitions. Let DM(D1) be the maximum dimension of domain D1,

and let C(D1) = Cj(j = 1..n) be the set of service classes provided by D1. Hereafter

by DR(D1) it is meant the residual dimension of D1, whilst by minspace(Cj) it is

meant the minimum space required by class Cj. If minspace(Cj) has been allocated

63

to each class, the number of Cj services can exceed minspace(Cj). Thus, available

classes can be categorized into Exceeding (Ex) and Not Exceeding (NotEx) classes,

depending on the current number of services; thereby N(D1) is the overall number of

service classes available in D1, NEx(D1) and NNotEx(D1) are the number of exceeding

and not-exceeding classes respectively. DimEx(D1) and DimNotEx(D1) represent the

fraction of D1 assigned to exceeding and not-exceeding classes respectively.

Given a service si, the filtering rules of the proposed proactive algorithm are

defined as follows:

• if C(si) is not exceeding, si is imported into LD1;

• if C(si) is exceeding, si is imported only if all the classes have their own

minspace available, or equivalently:

DR(D1) ≥ NNotEx(D1) · minSpace − DimNotEx(D1)

being NNotEx(D1) · minSpace − DimNotEx(D1) the space available for not-

exceeding classes;

• if importing si empties the space available for not-exceeding classes, si is im-

ported if and only if the following conditions hold: a) si is usable, and b) the

service sd to discard is either not usable or rarely used.

Filtering rules are depicted in Figure 4.6. As for the last rule, usability is the possi-

bility to build service proxies on both client-side and server-side.

64

is C(s) an
exceeding class?

try to import a service "s"

s can be
imported

DimR >= NnoEx*minSpace
 - DimNoEx

is s usable?

Select the imported service "e" of an
exceeding class with minimum usage

[yes]

is usage of e greater
than minUsage?

s can't be
imported

[no]

discard "e"

[yes]

[no]

[no]

[yes]

[yes]

[no]

Figure 4.6: Filtering algorithm for proactive discovery

4.3.2 Evaluating the stability of the filtering mechanism

The filtering algorithm can limit the number of imported services Ne. Let Ntot be the

total number of services to import, and Nimp be the number of effectively imported

services. The stability of the filtering algorithm can be estimated through the import

ratio ti parameter, defined as follows: ti =
Nimp

Ntot
. As an example, ti ≈ 1 means that

i) remote domains behave irregularly, for they announce and discard services very

frequently, and/or ii) services are exported before reaching a significant usage rate

(i.e., the import/export mechanism is too fast with respect to client requests). Hence,

an unstable mechanism is characterised by ti ≈ 1, i.e., a not-optimal service usage is

being performed. Conversely, ti ≈ k, 0 < k < 1 means that services are effectively

used, and service discarding is quite a rare event, thus achieving import mechanism

stability.

65

Initialization
Importing
services

generation

Filtering
and import

Service
usage

simulation

Usage
info reset

Current no. of import
operations = importNo?

Results

yes

no

Dim
ClassNo

maxServices minSpace
minUsage

useTax useResetFreq
useResetType

Figure 4.7: Simulation model of the filtering mechanism

The stability of the discovery mechanism has been evaluated by means of a MAT-

LAB simulation model. This model relies on the following assumptions: a1) each

service is represented by filtering parameters, i.e., service class and service usage;

a2) all the services to import are visible; a3) all the services to import are usable; and

a4) remote domains behaviour is regular. Figure 4.7 depicts the simulation model

used for evaluating the filtering mechanism. The model can be tuned by setting

two main types of parameters, namely internal parameters, which directly charac-

terise the filtering mechanism, and external parameters, which significantly affect the

mechanism, even though they do not belong to it.

External parameters include the registry dimension, Dim, the overall number

of classes, ClassNo, the maximum allocation vector, MaxServices(i) (MaxServices(i) =

n means that each import operation should import at most n services of class i), and

the service-usage vector, UsageRate(i) (UsageRate(i) = tav means that tav is the

average usage-time of class-i services). Internal parameters comprise the mini-

mum space assigned to each service class, MinSpace, the minimum usage threshold,

MinUsage, the frequency of updates to the service-usage information, UsageResetFreq,

and the type of update to perform, UsageResetType,i.e., reset usage or divide current

usage by the specified value.

66

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ti vs Import Operations

Import Operations

Im
po

rt
 R

at
io

 t i

maxServices = [20,20,20], useTax = [3,3,3]

maxServices = [10,10,10], useTax = [1.5,1.5,1.5]
T = 15

T = 30

a) b)

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

andamento originale
minUsage = 2
useResetFreq = 40
use ResetType = 4

ti vs Import Operations

Im
po

rt
 R

at
io

 t i

Import Operations

Reference ratio

MinUsage=2

UseResetFreq=40

UseResetType=4

b)

Figure 4.8: Effects of filtering parameters on the import ratio

Given the inter-filtering time T and the quantity of announced services Q, the av-

erage volume of services is defined as V = T ·Q. However, V can also be calculated as

follows: V =
∑i=ClassNo

i=1
MaxServices(i)

2
, since MaxServices(i) elements are uniformly

distributed. Hence, V can be tuned by setting MaxServices’s components.

The stability of the import mechanism has been evaluated with respect to the

inter-filtering time T . For the sake of simplicity, the agent is assumed to import one

service each second (i.e., Q=1). Figure 4.8a) shows that, when T = 30, or equivalently

when V = TQ = 30, the steady-state import ratio is close to 30%; if T is halved,

the import mechanism gets unstable; this instability is represented by high values of

the import-ratio, which reaches 80− 90%. Hence, Figure 4.8a) shows that increasing

T can enhance import stability. If the mechanism has to operate in an environment

characterised by low values of T , a different strategy is needed. Figure 4.8b) shows how

to tune internal parameters so as to enhance system stability upon low inter-filtering

times; the reference import-ratio represents an unstable mechanism, characterised by

MinUsage = 3, UseResetFreq = 20, UseResetType = 0. By forcing MinUsage = 2,

67

the mechanism behaves more selectively, since services that had been used at least

2 times (upon the last registry reset operation) cannot be discarded; therefore, the

import ratio value is lower than the reference one, i.e., the mechanism is more stable.

Stability can also be enhanced by varying the characteristics of the registry-reset

operations. Increasing UseResetFreq up to 40 can specifically lead to a more stable

mechanism. Initial variations of the import ratio can be smoothed by decreasing

the MinUsage parameter. The last curve represents the effects of changes in the

UseResetType parameter: by dividing usage information by 4 at each reset operation

(UseResetType = 4), the resulting curve is more regular and asymptotically reaches

a zero value. Hence, in this case the higher the number of requested operations, the

more selective the mechanism is.

4.3.3 Using the proactive mechanism for importing external

services

In order to show how to use the proposed algorithm as a strategy for SDSA to

import external services, the rest of this section outlines the overall architecture of

the Registry Info component. The components involved in proactive filtering are

presented in Figure 4.9.

The Local Registry Info is the main class within this component. It holds

the list of all the service classes that a certain domain can provide; such a list is

represented as a list of ServiceClassInfo objects. As regards the management of

the filtering mechanism, the Local Registry Info implements two different interfaces,

namely IRegistryInfoControl and IRegistryInfo. While the former is used only to

set the internal parameters of the ISDR registry, the latter is used to retrieve the

68

Import Manager

+ runImport(ISDRlist,IIDlist)
- filter(ClassID, bool): bool
- publishService(LSDR, bool)
- unregisterService(IID)

- minUsage: int
- useResetFreq: int
- useResetType: int

Service ID List

- serviceNumber :int

+ getNumber():int
+ getLIDs(bit):LIDlist
+ add(LID,IID,imp,vi)
+ remove(IID)
+ findI(IID):ServiceIDs
+ findL(LID):ServiceIDs

ServiceIDs

- LID
- IID
- imported: bool
- visibile: bool
- usable: bool
- usage: int

 + getLID()
 + getIID()
 + getUsage():int
 + isVisible():bool
 + isImported():bool
 + isUsable():bool
 + set(IID,LID)
 + setImported(bit)
 + setVisible(bit)
 + setUsable(bit)
 + setUsage(int)

Local Registry Info

- Dim: int
- DimR: int
- minSpace: int
- NnoEx: Int
- DimNoEx: int
+ getDimR(): int
+ getNnoEx(): int
+ getDimNoEx(): int
+ getMinSpace(): int
+ isExceeding(classID):bool
+ getExcClass():ServiceClassInfo
+ addSrvc(classID)
+ removeSrvc(classID)
+ addServiceClass(classID)
+ removeServiceClass(classID)
+ setDim(int)
+ setMinSpace(int)

Service Class Info

- classID
- importedSrvcNo
+ increaseSrvcNo()
+ decreaseSrvcNo()

<<interface>>
IRegistryInfo

+ getDimR()
+ getNnoEx()
+ getDimNoEx()
+ getMinSpace()
+ isExceeding(class):bool
+ addSrvc(class)
+ removeSrvc(class)

<<interface>>
IRegistryInfoControl

+ addServiceClass()
+ removeServiceClass()
+ setDim()
+ setMinSpace()

*

Figure 4.9: UML Class Diagram of the Registry Info Component

information required by the filtering algorithm, and to update the registry when

publishing or unregistering services.

4.4 Implementation Issues

Figure 4.10 depicts the overall architecture of the implemented prototype. Two dif-

ferent Slave DSAs have been implemented, in order to use the prototype to integrate

Jini and Bluetooth domains. The component diagram in Figure 4.10 shows that the

prototype relies on several COTS component. Each SDSA interacts with its child

domain by means of the functionality provided by a technology-specific API. As for

Bluetooth domain, the Official Linux Bluetooth protocol stack (BLUEZ) [6] has been

adopted. This library provides quite a comprehensive implementation of a Bluetooth

69

<<Slave DSA>>
Bluetooth SDSA

<<Master DSA>>

<<Slave DSA>>
Jini SDSA

<<Local Registry>>
Bluetooth SDP Server

<<Local Registry>>
 Jini Lookup Service

<<Technlogy-specific API>>
BLUEZ

<<Technlogy-specific API>>
JINI SDK

<<Technlogy-specific API>>
JXTA Libraries{}

{}

{}

{}

{}

{}

{}

Figure 4.10: High-level components of the infrastructure prototype. Grey boxes
represent the implemented components.

Stack to Linux Applications written in the C and C++ languages. As for the Jini

domain, the Jini SDSA uses the Jini Technology Starter Kit 2.0 libraries.

As for peer-to-peer communication, the inter- and intra-federation discovery pro-

tocols require a scalable, dynamic, and flexible mechanism for peers to communi-

cate within the global environment. JXTA is an open source technology which has

been designed to build dynamic large-scale peer-to-peer computing systems. Since

its suitability to address such issues has been demonstrated by a comprehensive eval-

uation [55], the implemented intra-agent discovery protocols use it as a peer-to-peer

messaging and collaboration layer.

It is worth noting that the implemented MDSA is completely independent of the

platforms to integrate. Conversely, the two SDSAs are tightly related to their own

target platform (i.e., Jini or Bluetooth). For the sake of simplicity, the rest of this

Section describes the implementation of a Slave DSA component with respect to the

Bluetooth domain. However, the analogies and differences between the two agents

are pointed out explicitly while describing the Bluetooth Slave DSA.

70

4.4.1 Implementing a Slave DSA for Bluetooth domains

Translating Bluetooth Service Records into Interoperable SDRs

Figure 4.11 compares a typical Bluetooth Service Descriptor with an Interoperable

Service Description Record.

More specifically, it shows that the semantic matching condition holds only for a

small sub-set of Bluetooth description fields; moreover, it also shows that the oblig-

atory nature of certain fields depends on the particular domain. For instance, the

Service ID and Service Name fields are optional in Bluetooth Descriptors, whereas

they are mandatory in Interoperable Service Descriptions Records. The Mandatory

Attribute class provides all the methods to fill the obligatory attributes in the involved

service descriptors.

The implementation of the Description Translator, depicted in Figure 4.12, reflects

the relationships between the service descriptors in Figure 4.11.

ServiceRecordHandle

ProfileDescriptorList

ServiceClassIDList

ServiceID

ServiceName

ServiceDescription

ProviderName

ServiceAvailability

ServiceRecordState

BrowseGroupList

LanguageBaseAttrIDList

ServiceInfoTimeToLive

ProtocolDescriptorList

ClientExecutableURL

DocumentationURL

Class

Service ID

Name

Comment

Provider

Load

Version

Availability

Location

Bandwidth

Keyword

Client Resource

Service Resource

Bluetooth SDR Interoperable SDR

Figure 4.11: Mapping a Bluetooth Service Descriptor onto an Interoperable Service
Description Record. Dark boxes represent the mandatory attributes.

71

+IToLoc (in esp _record , out sdp _record _t) : bool
+LocToI (in sdp _record _t, out esp _record) : bool
-translation (in string) : bool
-completion (in string) : bool

-inter_record
-sdp_record _t

Translator

+translateIL (in string , out UUID)
+translateLI (in UUID , out string)
+translateIL (out UUID)
+translateLI (out Interoper_ID)
+translateIL (in string , out string)
+translateLI (in string , out string)
+translateIL (in loadStruct , out uint 8_t)
+translateLI (in uint 8_t, out loadStruct)

Semantic Match

+deriveVal (out uint 32_t)
+deriveVal (out Interoper_ID)
+deriveVal (out string)
+deriveVal (out string)

Mandatory _Attribute

-Estremità 11

-Estremità 2*

-Estremità 31

-Estremità 4*

Figure 4.12: UML Class diagram of the Bluetooth Description Translator component.

Indeed, the Semantic Matching class provides all the methods required to translate

the fields from the native Bluetooth representation to the Interoperable SDR format.

For instance, the translate_IL(in String, out UUID) method is used to trans-

late the the Class field of the ISDR into the ServiceClassIDList field of a Bluetooth

SDR. The reverse translation is provided by the translate_LI(in UUID, out String)

method.

While the translation of the Class field is quite straightforward, the transla-

tion of different fields may require several operations to be done. For instance,

Bluetooh ServiceAvailability (av) measures service load in a range between 0 and

255 (e.g. sA=25 means that about 90% of service capacity has been allocated to

active clients), while the ISDR Load parameter represents the same concept by

means of a structured information (called LoadStruct). A LoadStruct is com-

posed of two sub-fields, namely client_no (i.e. the number of active clients) and

maxClients (i.e., the maximum number of allowed clients for a certain service). The

72

translate_IL(in load:loadStruct, out av: uint8_t) method provides a valid

Bluetooth Availability field by processing the Load field of the Interoperable SDR.

More specifically, this method calculates availability as the minimun integer number

not greater than the following value:
(

1 − load.client no
load.maxClients

· 255
)

.

As for the Jini Slave DSA, the translation is more flexible since each Jini service

is described by means of an associated Entry Object. The structure of this Entry

can be personalized and extended seamlessly. Hence, it is possible to translate every

Interoperable SDR into a jini Entry Object. Unfortunately, the reverse translation is

not as flexible as the Jini to ISDR one, since it could not be possible to identify the

service class of a Jini service. If it is possible to modify a service Registration Entry

by adding an ISDR_ServClass attribute to it, the agents will be able to recognize it

so as to classify the service correctly. Conversely, most of legacy Jini services will be

imported as Generic Services.

Interacting with local registries

The overall architecture of the Bluetooth SDSA comprises both Java and C++ com-

ponents, as Figure 4.13 shows. The bridge between the two different types of compo-

nent has been established by means of the Java Native Interface (JNI) mechanism.

The SDSA Peer is a Java-based component which on the one hand is in charge of

interacting with other agents by means of the implemented JXTA-based intra-agent

protocols, while on the other hand it exploits lower level C++ components (such as

the Import Manager and the Export Manager) in order to deal with all the domain-

management issues that have been described in Section 4.2.

The UML sequence diagram of an import operation is presented in Figure 4.14.

73

Import Manager

<<interface>>SDSA

Bluetooth_dsa_stub.h.

dsa_cpp_stub.cpp

J N I

<< interface >>SDSA

SDSA_Peer

<<implements>>

com.dsa.jni.bluetooth

C + + S I D E J A V A S I D E

libSDSA.so

DSA_helper_classes

Dsa_cpp_stub.cpp

SDSA C++/Java Bridge

MDSA

JXTA Libs

Bluez Libs

Figure 4.13: Integrating Java and C++ components of the Bluetooth Slave DSA

Such a scenario shows that the SDSA Peer wraps the Import Manager component in

order to trigger its native methods upon the arrival of JXTA advertisements from its

own Master DSA.

As regards the interaction of the Jini SDSA with a Jini Lookup Service, the

overall architecture of the implemented agents is much more simple than that of the

Bluetooth SDSA. Indeed, since the Jini Technology Starter Kit consists of a set of

Java Packages, no JNI bridging mechanism is required, thus eliminating the need to

implement the additional SDSA Peer component. The Import Manager component

can join the JXTA PeerGroup directly in order to receive and send messages to its

Peers.

4.4.2 Using the JXTA technology to build domain-federations

The adoption of the JXTA technology as an effective communication layer for peer-

to-peer interaction between agents requires to map agents and service-provisioning

74

: Bluetooth_SDPServer : Local_Registry_InfoImport_Manager : Service_ID_ListMDSA

JXTA
Advertisement

For each
service to
register

For each
service to
discard

For each
visible service

: SDSA_Peer : Translator

IToLoc(ISDR, sdp_record_t)3:

filter(ClassID, usable)5:

sdp_record_register(service_descriptor)6:

add(LID, IID, imported, visible)7:

addSrvc(idclass)8:

sdp_record_unregister(service_descriptor)9:

remove(IID)10:

removeSrvc(idclass)11:

importServices (ISDR_LIst, IID_List)1:

runImport(ISDR_List, IID_List)2:

VisibleServices_List4:

Figure 4.14: Importing services into a Bluetooth domain.

domains to JXTA entities and concepts. The interested reader may refer to [59] for

further details about such concepts. It is worth noting that JXTA is an hybrid peer-

to-peer technology, since its messaging and routing facilities are based on the presence

of different classes of Peers. A basic peer can always receive and send messages to

either another peer or an entire PeerGroup.

A special class of peers called rendezvous peers, function as Super-node for a

JXTA system. That is to say, it allows other peers to discover advertisements from the

rest of the network. The rendezvous can also delegate queries to other peers, which

must also be a rendezvous. Edge peers publish indexes of advertisements across

Rendezvous network using Distributed Hash Tables (DHT). DHTs are maintained

by Rendezvous peers and are based on pluggable Hash functions. A relay peer is a

special rendezvous that can forward both requests and messages.

75

In the proposed infrastructure, each Master DSA joins two different PeerGroups in

compliance with the conceptual schema depicted in Figure 4.5. The first PeerGroup

represents the global-environment and comprises all the available Master DSAs. The

second PeerGroup, representing the federation of the specific MDSA, comprises the

Slave DSAs assigned to each nomadic domain. The Slave DSAs discover their Master

by means of PeerGroup advertisements. Each Master DSA functions as rendezvous

for all the Slave DSAs comprised in its own federation.

4.4.3 Master DSAs and inter-agent communication

In order to connect the Master DSA to JXTA PeerGroups, several components have

been introduced into its architecture, as Figure 4.15 shows. The interaction between

agents during intra-federation and inter-federation discovery protocols is built upon

bidirectional JXTA pipes. A set of basic messages has been defined in order to imple-

ment such discovery protocols. Such messages are encapsulated into an helper Java

interface, called DSAMessages, which must be implemented by the involved parties.

A custom PipeAdvertisement, called DSAPipeAdvertisement, has also been defined.

As for the management of inter-federation and intra-federation discovery protocols,

the MDSA delegates most of the work to three components, namely the Connection-

Thread, the DiscoProactiveThread, and the ReceiveAndSendThread. Such

components allow the MDSA to receive and send advertisements to its peers in par-

allel. They implement the JXTA PipeMsgListener interface, which allows agents to

interact with each other asynchronously by means JXTA Bidirectional-Pipes.

The ConnectionThread component is in charge of creating JXTA advertise-

ments for sending specific requests from a Master DSA to either its Slave DSAs or

76

ConnectionThread

#pipeAdv : PipeAdvertisement
#dsapipeAdv : DSAPipeAdv

#pipe : JxtaBiDiPipe
#group : PeerGroup

#mdsa : MDSA

#pid : PeerID
#op

+ConnectionThread(group : PeerGroup, dsapipeAdv : DSAPipeAdv, mdsa : MDSA, op)

+pipeMsgEvent(event : PipeMsgEvent) : void
#sendListMessage() : void

+run() : void

DiscoProactiveThread

~dsapipeAdv : DSAPipeAdv
~pipe : JxtaBiDiPipe

~group : PeerGroup
~list

+DiscoProactiveThread(group : PeerGroup, dsapipeAdv : DSAPipeAdv, list)

+pipeMsgEvent(event : PipeMsgEvent) : void
#sendListMessage() : void
#sendHandShake() : void
+run() : void

ReceiveAndSendThread

#pipe : JxtaBiDiPipe
#mdsa : MDSA

+ReceiveAndSendThread(pipe : JxtaBiDiPipe, mdsa : MDSA)

-receiveAndSendMessage(pipe : JxtaBiDiPipe) : void
+pipeMsgEvent(event : PipeMsgEvent) : void

+run() : void

DSAMessages

@ReqProactiveDiscovery = "ProactiveDiscovery"{frozen}
@ReqReactiveDiscovery = "ReactiveDiscovery"{frozen}
@ReqLocalServices = "LocalServices"{frozen}

@ResponseMessage = "Response"{frozen}
@RequestMessage = "Operation"{frozen}

@ReqFedServices = "AllService"{frozen}

@ReqServiceList = "ServiceList"{frozen}

@ReqDescriptor = "Descriptor"{frozen}
@ReqNameList = "NameList"{frozen}

@HandShake = "SendList"{frozen}

@Name = "name"{frozen}

MDSA

...

<<getter>>+getexternalFederationsServiceList()
<<getter>>+getinternalDomainsServiceList()

<<getter>>+getLocalDomainServicesList()

<<getter>>+getAllServiceList()

<<getter>>+getServiceLists()

+interfederationDiscovery()
+intrafederationDiscovery()
+startServerPipe()

+updateList()
+startJxta()

+MDSA()

SDSA

+addToImportedService(obj) : void{guarded}

<<getter>>#isEquals(eid1, eid2) : boolean

<<getter>>+getDescriptorByName(name)

+clearImportedService() : void{guarded}

<<getter>>+getServiceNameList()

<<constructor>>+SDSA(name)

<<getter>>+getExpServiceList()
<<getter>>+getServiceList()

+deleteTree(dir) : boolean

+serviceImport(list) : void

-create_bidiServer() : void

+serviceDiscovery() : void
-bidi_listen() : void

+startJxta() : void

+filtering() : void

+startup() : void

JXTA_PipeMsgListener

+pipeMsgEvent()

Export Federation-Level Service List

Inter-federation and intra-federation Service List Retrieval

-Retrieve / Send1

-Send / Retrieve

1

Intra-federation and Inter-federation Service Lookup

-Request Service Lists

1

1..*

Intra-domain Service Advertisment

1

1..*

Intra-federation Service List retrieval

1

1

Figure 4.15: UML Class Diagram of the implemented Master DSA

other Masters within the global environment. Hence it is involved in the early steps

of both intra-federation and inter-federation service discovery.

The ReceiveAndSendThread is responsible for answering to incoming requests.

Both the SDSA and the MDSA hold a ReceiveAndSendThread object which function

as a broker for messages on JXTA Pipes. Such an object is in charge of parsing and

decoding the incoming requests, and of triggering the required operations accordingly.

For instance, as regards to intra-federation discovery, the MDSA keeps track of all the

Slave DSAs that joined its Federation PeerGroup. It uses such a peer-list to contact its

77

Slave DSAs periodically in order to retrieve the service list of each domain comprised

in its federation. To this aim, it creates one ConnectionThread object for each active

SDSA, in order to send multiple service-list requests in parallel. The contacted SDSAs

will exploit their own ReceiveAndSendThread object to answer to such requests. The

MDSA’s ReceiveAndSendThread object will gather all the incoming answers in order

to update the MDSA’s Federation-level service list (Intra-federation Service Lookup).

The DiscoProactiveThread component is in charge of forwarding the Federation-

level service list to each SDSA in a certain federation. In order to proactively update

the service-list of each Slave DSA comprised in the Federation (Intra-federation Ser-

vice Advertisement), the MDSA assigns one DiscoProactiveThread object to each

discovered SDSA; each object will periodically send the federation-level list to its

own SDSA’s ReceiveAndSendThread object.

4.5 Putting all the pieces together: the interoper-

able printing service

In order to evaluate the effectiveness of the proposed interworking approach, the im-

plemented prototype has been used to leverage the interoperability of a real bluetooth

service. More specifically, a print service has been used as an example.

The architecture of the experimental testbed is depicted in Figure 4.16. The

considered global environment consists of two different federations, each assigned

to a specific laboratory within my research group, namely the Computer Science

Department Lab and the CINI-ITEM Lab.

The laboratories are located in two different buildings and belong to different

78

Hand held computer
Laptop computer

PDA

PDA

Pen computer

Jini Lookup Service

Bluetooth
Network Access Point

CS Dept
MDSA

CS Dept
MDSA

CINI-ITEM
MDSA

CINI-ITEM
MDSA

CS Dept
Bluetooth SDSA

CS Dept
Bluetooth SDSA

CS Dept
Jini SDSA

CS Dept
Jini SDSA

CINI-ITEM
Bluetooth SDSA 1

CINI-ITEM
Bluetooth SDSA 1

CINI-ITEM
Bluetooth SDSA 2

CINI-ITEM
Bluetooth SDSA 2

Printer SSP

Printer
Jini Wrapper

Printer
Jini Wrapper

Client-side
Printer
Proxy

Client-side
Printer
Proxy

Server-side
Printer
Proxy

Server-side
Printer
Proxy

Laptop

Bluetooth Printer

1. D
iscover and

interactio
n

2.Discover
3. C

reate

4. Create the
federation-level

service list

5. Retrieve the list
of external Services

6. Proactive Service
Advertisement

7. Create

8. Publish

9. Jini

D
iscovery

10.1 Print()
10.2 Print()

10.3 Print()

Figure 4.16: Overall architecture of the implemented case-study environment

organizations. The CSDept Federation comprises a bluetooth piconet and a Jini

federation. The CINI-ITEM federation consists of two bluetooth piconets. The CINI-

ITEM Federation 2 comprises a Bluetooth printer. Due to the lack of interoperability

between bluetooth and Jini, the Jini-enabled laptops cannot discover (and use) the

bluetooth printer.

By using the proposed interworking infrastructure, the Bluetooth printer has been

exported to external domains. Such an export process consists of several steps, which

are depicted in Figure 4.16. Such steps are briefly described in the following.

1.Bluetooth-based terminals can discover and use the Bluetooth Printer by means of

direct bluetooth-based interaction.

2. - 3. The bluetooth Slave DSA discovers the bluetooth printer and creates the

related server-side Service-Specific Proxy.

79

4. CINI-ITEM’s Master DSA builds the federation-level service list.

5. - 6. The CS Department’s Master DSA retrieves the list of external services, and

sends it to its own Slave DSAs.

7. - 8. The Slave DSA creates the client-side service proxy for the Printing service.

Such a SSP consists of two components, namely a client-side ssp and a jini wrapper.

The former is in charge of interacting with the server-side SSP, whereas the latter

is responsible for service registration with the Jini Lookup Service, in order to be

discovered by Jini clients as a standard Jini Service.

9. A mobile user looks the available services up for a printing service, and can find

it thanks to the presence of the Printer SSP.

10. The printing requests sent by the pen computer (10.1) are translated and for-

warded to the server-side SSP (10.2), which subsequently sends the data to the printer

by means of a bluetooth-based interaction (10.3).

It is worth noting that when a user looks services up from the Jini-enabled pen

computer, the imported printing service is presented as an active Jini Service. Hence

the user can discover and use it as an off-the-shelf Jini Service.

To give a visual understanding of the interworking capability of the infrastructure

on the service-discovery layer, an environment-browsing tool has been developed.

Such a tool allows to browse federations in order to give users an overall view of the

current composition of the global environment. This tool allows to see which feder-

ations are active, and allows to browse the available agents within each federation.

It is also possible to query each agent in order to retrieve the list of services avail-

able within its own service-provisioning domain. More specifically, it is possible to

retrieve the federation-level service list by asking a specific MDSA to send its own

80

service list. Similarly, it is possible to retrieve a domain-level service list by asking a

specific SDSA to send its own service list.

Chapter 5

Addressing Unpredictability and
Context-awareness: two
case-studies

The previous chapter showed how to address the scalability and interoperability is-

sues which stem from the strong heterogeneity of nomadic environments. This chapter

focuses on unpredictability and context-awareness issues of two particular types of ap-

plication. More specifically, this chapter describes the implementation of two service

elements. The first supports nomadic multimedia streaming applications and relies

on a novel technique to address unpredictable performance of nomadic multimedia

streaming. The second supports location-aware applications for Java-based mobile

devices and relies on an innovative approach for indoor-location-sensing.

81

82

5.1 Addressing the unpredictable behavior of No-

madic Multimedia Services

5.1.1 Dependable Multimedia and Unpredictability

Mobile multimedia applications are becoming of increasing interest to applications

with stringent dependability requirements, such as internet robotics, flight control,

telemicroscopy, telemedicine, and military applications [34, 60]. The unpredictable

behaviour of the exploited multimedia stream can significantly affect the dependabil-

ity of the resulting application. Addressing the unpredictability of real-time streaming

service on mobile devices is the most crucial issue that these nomadic computing ap-

plications must face so far. Hence, it is crucial that a generic service element be

provided so as to provide such applications with a failure-detection mechanism. Al-

though a great deal of research has been conducted on dependability of multimedia

applications, to the best of our knowledge, an off-the-shelf service element for achiev-

ing fault tolerance in the considered scenario has not been proposed yet.

This section presents the design and the implementation of a generic service ele-

ment to support fault-tolerant distributed multimedia applications that rely on the

standard Real-time Transport Protocol (RTP) [54]. Realizing a fault tolerance strat-

egy for such applications is quite a complex task, since a variety of unpredictable

factors must be taken into account, such as the error detection process (e.g. network

performance, software, and hardware errors), the recovery strategies (based on de-

tection), the multimedia encoding format, and the perceptual quality. The proposed

service element faces such an unpredictability by means of a novel strategy to model

meaningful system failures in terms of multimedia stream performance parameters

(i.e., delay, delay variation, and information loss).

83

Receiver

Decode

Sender

Reception
Trasmission

Encode

Network

Acquisition Presentation

USER

Command
Manager

Controlled Device

Remote
Controller

Controller

Acquisition
Device

Detector
System

Figure 5.1: Conceptual model of nomadic distributed multimedia systems

The generic service element refers to distributed multimedia systems for video-

based remote control applications. The conceptual model of such a system is depicted

in Figure 5.1. It consists of the following components: i) the device to control; ii) the

sender of the multimedia streams that are used to control the device; iii) the receiver;

and iv) a wireless communication channel (e.g. Bluetooth and/or Wi-Fi). The sender

might physically reside either on the controlled device or on the control host. The

user controls the device by forcing movements through the remote controller, based

on multimedia data captured by the acquisition device.

The rest of this section proposes a novel service element which transparently

enables failure detection and monitoring of real-time multimedia streams. Hence, it

can be used to build fault-tolerant strategies for off-the-shelf multimedia services, or

more generally for real-time services that use the RTP protocol as a transport layer.

84

5.1.2 Preliminaries

The proposed service element relies on a threshold based mechanism to discrim-

inate faults. More specifically, it is based on the alpha-count family of mecha-

nisms, since it provides a simple but effective strategy to identify different classes

of fault. The basic alpha-count mechanism is a count-and-threshold scheme orig-

inally devised “to consolidate identification of faults, distinguished as transient or

permanent/intermittent” [7]. The simplicity of the alpha-count mechanism allows to

implement it as a small, low-overhead and low-cost module (suitable even for embed-

ded real-time systems). Furthermore its simplicity makes it also easy to explore its

behavior and its effects on the system by analytical means.

The count and threshold mechanism relies on an error signaling module that

collects error signals from any error detection device in the system. Error detection

results are periodically delivered to the alpha-count mechanism as binary signals.

The judgment on a component’s behavior, given by the error signaling mechanism,

is correct with a probability, or coverage, c. The alpha-count processes information

about erroneous behavior of each system component by giving a smaller weight to

error signals as they get older. Each not-yet-removed component i is assigned a

score variable αi in order to record information about the errors experienced by that

component. αi is initially set to 0, and accounts for the L-th judgement as follows:

• αi(L) = αi(L − 1) + 1 if the i-th component is marked as faulty at the i-th execution

steps

• αi(L) = K ∗αi(L− 1) if the i-th component is marked as correct at the i-th execution

step

where 0 < K < 1.

85

If αi(L) becomes greater than or equal to a given threshold αT , the i-th component

is marked as failed and a signal is raised to trigger further actions (error processing

or fault treatment). The effectiveness of the mechanism depends on K and αT . The

optimal tuning of these parameters depends on the expected frequency of errors, and

on the probability c of correct judgments of the error signaling mechanism. The

analysis in [7] showed the trade-off between delay and accuracy of the diagnosis; it

also showed how to tune these parameters for optimizing the behavior of the detection

mechanism.

5.1.3 Failure modes of multimedia services

A multimedia service s may be considered as the aggregation of multiple multime-

dia streams (e.g., an audio track and a video track). Each multimedia stream i is

characterized by the following three temporal distributions:

1. delay distribution, contains a sequence of values tdi(n), where tdi(n) represents

the delay of the n-th packet; a maximum delay threshold Dmax is used to dis-

tinguish delayed packet from the dropped ones;

2. delay variation distribution, contains a sequence of values

tdvi(n) = tdi(n)− tdi(n−1), where tdvi(n) represents the delay variation of the

n-th packet;

3. information loss distribution, contains a sequence of values tili(n), represent-

ing the percentage of packets that have been delayed more than Dmax in an

observation period T. Such values are calculated as follows:

86

tili(n) =

∑n

j=n−T tpli(j)

n

being:

tpli(j) =

{

1 if tdi(n) > Dmax

0 otherwise.

It is worth noting that delay distribution can influence other parameters; delay

may vary according to either information processing or transmission events.

The proposed service-element allows to detect several classes of failures of the

multimedia stream (stream-failures). In the rest of this sub-section several failure

modes are defined according to the definitions given in [45]. Value errors are not taken

into account. Indeed, such errors occur when data gets corrupted while traversing

from the server to the client; multimedia applications can tolerate such errors under

many circumstances [57]. Let STDi and STDVi be the subsets of all delay and

delay variation distributions, respectively, that do not compromise the quality of the

multimedia content. These subsets can be defined by either empirical evaluation or

video-quality measurement. Four classes of stream-failures can be defined as follows:

• delay failure, fd, occurs when the following condition holds: (tdi /∈ STDi).

It is worth noting that a crash failure is a particular case of the delay fail-

ure. Indeed, a crash failure occurs when (tdi ∈ STCFi ⊂ ¬STDi), being the

STCFi = {∃k : ∀j ≥ k, tdi(j) ≥ Dmax};

• delay variation failure, fdv, occurs when the following condition holds:

(tdvi /∈ STDVi).

87

<1% PLR-<10 s16-384 kb/sOne-wayVideo

<1% PLR-
<150msec
<400msec

16-384 kb/sVideophoneVideo

<1% PLR<1msec<10 s16-128 kb/s
High quality

audio
Streaming

Audio

<3% PLR<1msec
<1 s
<2 s

4-32 kb/sMessagingAudio

<3% PLR<1msec
<150msec
<400msec

4-64 kb/sConversationalAudio

Information
loss

Delay
variation

Delay

Quality ParametersBandwidthApplicationMedia type

Figure 5.2: Multimedia Application requirements

• information loss failure, fil, occurs when (tili ≥ qili), being qili the max-

imum percentage of lost packets that is acceptable to the specific application;

• transparent failure, ftrp. All the mentioned parameters tdi, tdvi, tili can

lightly worse at the same time. Such multiple degradations can affect the qual-

ity of the multimedia content thus precluding the user to control the device

anymore, even though application-requirements are fulfilled by each single pa-

rameter. To model such a failure-event a new class of failure, called transparent

failure, must be defined. Being npi = (tdi, tdvi, tili), i.e., npi is a point of the

three dimensional space CV = STDTi × STDV Ti × {q ∈ R : 0 ≤ q ≤ qil},

where STDTi ⊂ STDi and STDV Ti ⊂ STDVi. A transparent failure occurs

when npi ∈ CV .

The correctness of a multimedia service can be now defined as follows: a multi-

media service is defined to be correct if none of the above mentioned failures occur.

88

Meter
Error

Detector
Error

Filtering

tdi(n)

tdvi(n)

tili(n)

d
sp

ec

d
v

sp
ec

ilsp
ec

Application Requirements

eDV(n)

eIL(n)

eD(n)

Filtering Parameters

f

Figure 5.3: Conceptual model of the failure-detection service-element

5.1.4 The stream-failure-detection service-element

In order to design the failure-detection service-element, it is crucial that certain key

issues be addressed. In particular, being STDi and STDVi not computable in prac-

tice, we evaluate two alternatives: i) to find an heuristic strategy which attempts to

individualize STDi and STDVi; ii) to choose an efficient and configurable schema

which is able to detect failures with a high coverage. Due to the variable characteris-

tics of multimedia contents and environmental conditions, the first alternative is not

feasible. Hence, the rest of this section investigates the design and the implementa-

tion of a schema based on error filtering functions. Errors occur when the current

values of tdi(n), tdvi(n), and tili(n) do not satisfy application requirements. Indeed,

as suggested by the ITU-T and represented in Figure 5.2, multimedia applications

requirements can be modeled by three values dspec, dvspec, and ilspec, which repre-

sent the maximum values for delay, delay variation, and information loss, that are

acceptable to each group of applications.

The main idea behind the proposed service-element is to monitor and process

such parameters at run-time, using a combination of alpha-count functions. These

functions can be configured in order to find a trade-off between the accuracy and the

detection time, as described later in this section. Figure 5.3 depicts the conceptual

model of the proposed detection system. It consists of three subsystems:

89

TBfd(Kd,αd)

TBfdv(Kdv,αdv)

TBfil(Kil,αil)

+

TBftrp(Ktrp,αtrp)

Failure

eD(n)

eDV (n)

eIL (n)

Shift Register

e(q)

Figure 5.4: Error filtering subsystem

• Meter, which is in charge of measuring the quality parameters for each packet;

• Error Detector, which is responsible for the detection of three different errors:

i) error on delay, defined by a boolean value eD(n) = (tdi(n) > dspec); ii) error

on delay variation, eDV (n) = (tdvi(n) > dvspec); and iii) error on information

loss, eIL(n) = (tili(n) > ilspec);

• Error filtering, which is in charge of filtering the incoming error signals in

order to detect failures.

The error filtering subsystem exploits a combination of threshold-based mech-

anisms based on alpha-count [7], as Figure 5.4 shows. In order to design such a

subsystem, it is necessary that the following issues be addressed: i) detecting failures

fd, fdv, and fil, i.e. failures which stem from the degradation of one parameter; and ii)

detecting failure ftrp, i.e. the defined transparent failure. In order to address the first

issue, the service-element uses three separate alpha-count functions, TBfd, TBfdv,

and TBfil, each providing detection of failures on a single parameter. By tuning

90

these functions it is possible to configure the accuracy and the detection time of each

single detector. An additional alpha-count module TBftrp that receives all the error

signals is used to detect transparent failures. Error signals, arriving concurrently from

the three error signaling modules, are serialized by means of a parallel-in, serial-out

register. It is worth noting that the frequency of this additional alpha-count is three

times greater than that of the input signals.

As defined in [8], two different metrics can be used to evaluate a failure detector’s

behavior, namely i) the detection time (how fast the failure detector detects failures),

and ii) the accuracy (how well it avoids mistakes). Preliminary simulation results –

obtained by modeling the error filtering subsystem in the MATLAB environment –

are presented in the following. The model receives real-world traces of multimedia

streams as inputs. Data are stored in files with different multimedia formats (see

Figure 5.8 in the next section). Three filter modules have been implemented in order

to generate delay, delay variation, and information loss distributions artificially. Two

are the outputs of the simulation models: the failure signal, which is true if a failure

has been detected, and the filtered multimedia data.

Such a model allows the accuracy of the fault detector to be heuristically evaluated.

To this purpose, we developed a multimedia player module that receives the failure

signal, as produced by the model, and the filtered multimedia data. This module

automatically presents multimedia data for a time interval where the failure has been

detected. This allows us to check if a false detection occurs and to perform a better

tuning of the filtering parameters.

The configuration of the alpha-count TBftrp is not straightforward, for it depends

on the characteristic of multimedia format. Indeed, multimedia applications can be

91

characterized by a Constant Bit Rate (CBR) or Variable Bit Rate (VBR) flows. One

drawback of using VBR sources is the increased possibility of packet loss. This is

due to high peak-to-mean ratios and significantly high autocorrelations, which char-

acterize these sources. Such sources can result in very high values for delay variation

if network resources are uncorrectly allocated. Using VBR flows, a transparent fail-

ure occurs when tdvi(n) and tili(n) degrade at same time, i.e., for a given packet n,

edv(n) = eil(n) = 1. CBR flows allow to simplify bandwidth allocation, and also to

render the video source more suitable for traffic policing. However, CBR encoding

has the drawback that video quality (distortion) varies significantly in order to ensure

a constant bit-rate. Using CBR, a transparent failure occurs more likely when all the

three parameters degrade at same time. In order to validate this assumption, the

model has been tested also with simulated VBR (CBR) traffic by means of the Ns-2

network simulator; the outcomes of such tests were compliant with the mentioned

assumptions.

Figure 5.5 shows the shape of the alpha-count functions with respect to a VBR

video streaming. Four transparent failure have been raised by the TBftrp. K and

α thresholds were set to 0.7 and 2.5 respectively. It is worth noting that the video

quality crucially worses upon the raised failures.

The accuracy and the speed of the count-and-threshold mechanism can be cus-

tomized by varying filtering parameters. The configuration of the alpha-counts is

performed according to the suggestions given in [7], which provided an exhaustive

analysis of the effects of these parameters on detector’s behavior. Simulation re-

sults indicated that, for the considered multimedia applications, lower values of k

are needed. In fact, K represents the time window where memory of previous errors

92

TBftrp(Ktrp=0,7;αααα trp=2,5)

0,0

1,0

2,0

3,0

4,0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

e(q) T-B Function

TB functions

0,0
0,5
1,0
1,5
2,0
2,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

TBfd TBfdv TBfil

Figure 5.5: Transparent failure occurrences

is retained; choosing k between 0.7 and 0.8 results in a time window which allows

to keep track of previous errors without slowing too much the decrease of the alpha

function.

5.1.5 The case study application

Overall architecture

The proposed service-element has been implemented and tested with a case-study

application, consisting of real-time control of a Lego Mindstorm [62] robot. Such

an application allows to control the so-called “RoverBot”, described in the Lego

MindStorms “Constructopedia”. The RoverBot Control (RBC) application enables

remote users to receive a live video-stream from the robot, and allows them to send

movement-commands to the RoverBot. The application has been implemented as a

Jini service in order to exploit Jini code-mobility features [61]. A Jini service consists

of a server-side back-end and a client-side service object. In compliance with the Jini

service model, the RBC has been split between the client-side, i.e., the remote-driver

side, and the back-end side, i.e., the Roverbot side. The overall architecture of the

presented case-study application is depicted in Figure 5.6.

93

Roverbot Remote ControllerRoverbot Control Host

RoverBot

RCX
Controller

RoverBot Control
Back-End

Video
Camera

RoverBot Control
Service Object

RCX
Manager

Real-time Video
Transmitter

Echo Server

Media
Player

Detection
System

Remote
Controller

RTCP Sender Reports
RTCP Receiver Reports

Control commands

Live video stream

Echo requests / replies

Figure 5.6: Overall architecture of the case-study application

RBC’s back-end consists of the following components: i) the real-time video trans-

mitter which produces a live video stream representing RoverBot’s viewpoint; such a

stream is based on the real-time transport protocol (RTP/RTCP) [54]; ii) the RCX

manager, which interfaces RBC back-end with RoverBot’s RCX controller, in order to

force it to perform specific movements; and iii) the echo server, which is in charge of

answering to echo requests sent by the service object for estimating the actual round

trip time.

RBC’s service object is composed of i) the media player, which is in charge of

presenting the video stream on remote driver’s display, ii) the remote controller,

which allows the driver to communicate with the RBC back-end in order to move the

RoverBot, and iii) the detection system, which implements the mechanism described

in Section 5.1.4 with respect to an RTP-based streaming session.

Multimedia-related components and part of the detection system have been here

implemented exploiting the Java Media Framework (JMF) libraries [58]. The RCX

manager is based on the RCX Java API [35] for communicating with the RoverBot.

94

+Monitor()
+update(ReceiveStreamEvent)()
+update(RemoteEvent)()
+update(SessionEvent)()
+wakeup()

+Session : String = null
+mgrs

«implementation class»
Meter

+EchoClient()
+DelayMeasure()
+CloseSocket()

«implementation class»
EchoClient

1

*

+wakeup()

«interface»
ITime

+run()
+activate()
+seactivate()

Timer

+getAlphaCount()

-alphaTot
-threshold

TBMonitor

+measuredParameter()

-isFailed
-myTBMonitor

Monitor

1 2

+getErrorDetector()
+updateScore()
+writeScore()

-errorDetector
-detector

AlphaCount

+detection()

«interface»
DetectorI

AlphaCountTot

+updateValue()
-myThreshold : AlphaCount

ErrorDetector

13 1

1

+failureDetection()

«interface»
FailureDetectorI

1
1

1 111

Figure 5.7: UML class diagram of the implemented service-element

Implementation of the detection service-element

The proposed service-element has been implemented as a single centralized compo-

nent. The issues concerning a distributed implementation of such a component are

not addressed here. However, the interested reader may refer to [51] for a thorough de-

scription of a distributed implementation of threshold-based diagnostic mechanisms.

Figure 5.7 shows the class diagram of the implemented detection system.

The meter class is responsible for estimating delay, delay variation and information

loss. Information about the quality of the actual multimedia sessions is extracted from

RTCP session messages [54], called RTCP reports, which are periodically exchanged

between senders and receivers of an RTP stream. The observation period varies from

0 to 5 secs. Such messages provide measures about i) the interarrival jitter, i.e.,

an estimation of the statistical variance of RTP data packets inter-arrival time, and

ii) the fraction lost, i.e., the fraction of lost packets since the last report. The im-

plemented meter uses such information to measure delay variation and information

95

loss. Since the interarrival jitter is measured in msec× SamplingT ime, delay varia-

tion is calculated by dividing the interarrival jitter by the bit-rate (coding/decoding

frequency). RTCP reports provide no information suitable for estimating the delay.

To this aim the Meter has been enriched by the EchoClient component, which is

in charge of calculating the round trip time (RTT) between the remote streaming

host and the client. Such component relies on the presence of the EchoServer on the

remote host to estimate the delay between the two components. The experiments on

the implemented prototype showed that the accuracy of delay measurements depends

on the size of RTP packets. In order to improve the accuracy of such an estimation,

the size of several RTP packets has been measured for a large variety of formats.

Results are shown in Figure 5.8.

During the start-up phase, the EchoClient retrieves the format of the media con-

tent by analyzing RTCP reports, thus adapting the size of echo packets to the effective

size of RTP ones. Each periodic evaluation of the RTT results from the mean value

calculated on multiple measures; evaluations are periodically executed according to

the wake-up messages provided by the timer thread. The value of the wake-up period

was set to that of the observation.

(352x288) 80

(352x288) 70

(352x288) 220

12

16

16

16

16

16

Packets/sec. (on average)

550 (on average)H263/90000Video

1298 /1141MPEG Layer IIIAudio

139GSM/8000Audio

520ULAW/8000Audio

1000 (on average)MPEG-I/90000Video

1008JPEG/90000Video

704DVI/22050Audio

374DVI/11025Audio

284DVI/8000Audio

Packet size [byte]Format/Frequency[Hz]Audio/Video

Figure 5.8: RTP packet sizes as a function of media formats

96

The Monitor class is in charge of triggering a failure signal upon failure detection.

Such a class instantiates two or more TBMonitor objects. Indeed, a multimedia con-

tent is composed by multiple flows (e.g., the audio and video flows). The TBMonitor

class implements the error filtering subsystem, i.e., it is in charge of detecting failures

for the assigned flow. The AlphaCount class implements the alpha-count function.

According to the conceptual model, described in section 5.1.4, the TBMonitor is com-

posed of 4 AlphaCounts. In particular, the alpha-count which implements the TBFtrp

function, called AlphaCountTot, is a specialization of the AlphaCount.

5.1.6 Experimental results

In real-world scenarios, quality parameters are measured during a certain observation

period T . Indeed, measuring these parameters for each packet leads to unfeasible

solutions due to the large measurement-overhead. For this reason the monitoring

functions of the RTP protocol are based on an average observation period of 1−2[sec].

If a permanent error on a single parameter occurs, the detection time can be estimated

as follows: dt[sec] = α
K
× T .

The implemented case-study application has been used to analyze and to evaluate

the behavior of the proposed service-element. Experiments have been performed on a

testbed, composed of a remote-control workstation (RCW), and a control host (CH)

which effectively resides on a Lego-Mindstorm RoverBot, distributed over an IEEE

802.11b wireless LAN.

The RCW is a uniprocessor Linux machine running Linux Red Hat 8.0 distri-

bution. The CH is an HP Tablet PC, which is IEEE 802.11b compliant and it is

equipped with a video camera. The considered control application has the following

QoS requirements: i) dspec = 80 ms, ii) dvspec = 10 ms, iii) ilspec= 3%.

97

The aim of the herewith presented experimental evaluation is twofold. The first

goal is to validate considerations and tuning rules given in Section 5.1.4. More specif-

ically, given the specific QoS requirements, the suitability of variable bit-rate (VBR)

and constant bit-rate (CBR) encodings has been investigated. Both strategies have

been tested with respect to two kinds of video images, captured by a fixed video

camera and by a moving one. The former is typical of telemedicine and survellaince

applications, whereas the latter is suitable for unmanned vehicle control applications.

The VBR and CBR streams used the H263 and JPEG protocols respectively; the

video-resolution was set to 352x288 pixels. Measures have been performed with a

period T = 2s; hence each measure refers to 140 packets if the H263 protocol is

used, whereas each JPEG-related measure refers to 440 packets, as Figure 5.8 shows.

Experimental results showed that delay variation is significantly influenced by i) the

kind of images, i.e., coming from fixed camera or with rapid scene changes, and ii)

the encoding strategy, i.e., VBR or CBR. In particular, the H263 protocol produced

a higher average delay variation, compared to that of the JPEG stream: for a fixed

camera, tfix
dvH263 = 3.73msec and tfix

dvJPEG = 0.73msec. Moreover, upon rapid scene-

changes the obtained values were tmov
dvH263 = 9.0msec and tmov

dvJPEG = 0.88msec. It is

worth pointing out that delay variation in JPEG CBR encoding does not significantly

depend on the kind of images; hence, upon rapid scene-changes, the resulting video

is quite distorted. This confirms what was claimed by Section 5.1.4.

Secondly, the suitability of the implemented mechanism to detect the failure modes

defined in Section 5.1.3 has been evaluated as well. Although it has been used for

a critical application, the considered multimedia service can tolerate degradation of

user-related parameters, until the perceived QoS allows the driver to control the

98

remote device. Hence, deciding whether a degradation leads to a failure or not is a

challenging issue. Such an issue has been addressed by a qualitative evaluation of

the received stream. Experiments described in the following validate the suitability

of threshold-based filtering for distinguishing acceptable degradations from service

failures. It is worth mentioning that the analysis did not take into account delay

failures; indeed, experiments showed that delay values were much lower than service

requirements, whereas delay variation, information loss and transparent failures have

been injected. Errors eDV were generated by introducing a CPU-bound load on the

control host. This load resulted in an increase of the delay variation, thus forcing jitter

errors to occur. The second have been forced by injecting link faults on the ethernet

switch that resides between the wireless LAN access point and the RCW. To this

aim the service-element has been enriched by a component for enabling and disabling

switch’s port at run-time through a serial cable. In order to inject transparent failures,

multiple light degradations of each parameter were forced. More specifically, several

degradations were transparently injected by means of the Nistnet network emulator.

Figure 5.9 depicts the errors and failures detected during about 700 seconds – i.e.

350 measures – of live streaming captured by the camera on the RoverBot. The

detector raised a single transparent failure signal, due to the errors detected between

measures 330 and 350. Experimental results show that only significant degradations of

user-related parameters resulted in a transparent failure. The behavior of the failure

detector was consistent with the empirical evaluation of the received images. The

device was controllable until the transparent failure was raised, although several errors

were detected until measure 330. Subsequently, the RoverBot became uncontrollable.

Crash failures are detected by the TBfd functions.

99

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298 307 316 325 334 343 352

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298 307 316 325 334 343 352

Errors

Failures

Figure 5.9: Detected errors and related failures

5.2 Supporting Location-awareness on Personal De-

vices

5.2.1 Location-awareness

The proliferation of handheld mobile devices and wireless networks is laying the

groundwork to the development of novel context-aware systems. The context-aware

applications that are based on a location-dependent context model are of special inter-

est for nomadic computing system developers and designers. Indeed, during the last

years a plenty of works presented systems and technologies for automatic location-

sensing of either people or devices [1, 3, 17, 24, 26, 27, 33]; these works demonstrated

the importance of providing location-sensing components to applications for personal

devices (e.g., PDAs, Laptops, Mobile Phones); the main limitation of the existing

approaches is that each solution solves a different problem or supports different ap-

plications.

Many mobile devices (e.g. smart-phones and PDAs) now support the Mobile In-

formation Device Profile (MIDP) of the Java 2 Micro Edition (J2ME) platform. This

platform provides a common yet flexible computing and communication environment

that could be fitted for devices having different capabilities. Moreover, currently

100

most of mobile devices have a wireless network device such as IEEE 802.11 and Blue-

tooth adapters. Since in future mobile systems several technologies will coexist, such

systems will need a high-level Application Programming Interface for technology-

independent location sensing [43]. For this reason, generic service-elements will func-

tion as the key functional blocks for location-aware nomadic applications.

As for location-aware computing, no single location-sensing technology is likely

to become dominant, since each technology can either satisfy different requirements

or suit different devices. In order to deal with this heterogeneity, the Java Com-

munity Process (JCP) has recently finalized a Java Specification Request (JSR) to

define a Location API (JSR-179) [47] for MIDP-compliant devices. This package

provides applications with functionality for i) obtaining information about location

and orientation of the mobile device, and ii) accessing a shared database of known

locations (the so-called Landmarks). These specifications may be implemented by

means of existing location methods, including satellite based methods like GPS, as

well as short-range positioning methods.

Though the Received Signal Strength (RSS) has been used as a good location-

fingerprint by several indoor positioning techniques [25, 33], no standard approach

to tailor such techniques to the JSR-179 API has been proposed yet. This section

proposes an implementation of these specifications, and demonstrates its effectiveness

by providing experimental results obtained from a bluetooth-based system.

Specifically, this section shows how to extend the Java APIs for Bluetooth (JSR-

82) [46] in order to provide the Location API with a generic service-element for

RSS-based location-sensing. The proposed service-element relies on the insertion of

a new component, called RSSI_Provider, into the JSR-82 API. This is in charge

101

of producing information about signal strength, which could be needed to build

Location objects. The bridge between the the two APIs is built through a spe-

cific LocationProvider class (i.e. the effective location-sensing element, generat-

ing Locations, defined in JSR-179), which exploits the RSSI_Provider to gener-

ate Locations. The proposed solution can suit a wide variety of mobile devices, since

it requires no additional positioning device but a bluetooth adapter. Based on the de-

signed extensions, this section proposes an implementation of the LocationProvider,

which relies on a specific RSS-based indoor positioning technique [12].

5.2.2 The Location API for J2ME CLDC profile

The JSR-179 [47] defines a J2ME optional package to enable location-aware appli-

cations for MIDP devices. Specifically this package provides the following two main

functionalities: i) obtaining information about location and orientation of the mobile

device; and ii) accessing a landmark database stored on the device. Each functionality

exploits specific objects as information containers; indeed, the Location class rep-

resents the standard set of basic device-location information, whereas the Landmark

class represents known locations (i.e. the places that mobile users can go through).

Landmark objects have a name and may be placed either into a single category or into

several categories. Each category is intended to group landmarks that are of similar

type to the end user (e.g. restaurants, museums). Landmarks are stored into a per-

sistent repository, called LandmarkStore, which provides JSR-179-compliant applica-

tions with a shared database for location description. The LocationProvider class

represents a module that is able to determine the location of the terminal. This may

be implemented by using existing location methods, including satellite based methods

102

like GPS, and short-range positioning methods like Bluetooth Local Positioning. Ac-

tually, each device can have several location providers installed, each related to a dif-

ferent positioning technique (e.g., GPS and RSS-based triangulation). The API allows

to specify selection criteria to choose the most suitable LocationProvider. Upon the

selection of a specific LocationProvider, the application can retrieve Location ob-

jects by means of either periodic updates or asynchronous queries.

5.2.3 Enabling RSSI-based positioning for JSR-179 compli-

ant applications

Location API for indoor positioning

JSR-179, as already mentioned, enables developers to write wireless location-based

application and services for mobile devices by means of several location methods,

including satellite based methods, as well as short-range positioning methods. The

accuracy of information provided through this API depends on the accuracy of the

adopted positioning system.

This section refers to an indoor-positioning technique which is suitable for detect-

ing the symbolic position [26] of mobile users within a set of buildings. For the sake

of clarity, in the rest of this sub-section this technique is briefly presented. The inter-

ested reader may refer to [12] for further details on the adopted approach. It is worth

pointing out that the mentioned technique aims to identify the room that the device

is moving in; thus the accuracy contained into Location objects is related to the

coordinates-error probability (i.e. the probability of associating a device to a wrong

room). Since an effective measurement of such an error probability goes beyond the

scope of this work, the coordinates are herewith assumed to have a constant accu-

racy. According to the adopted technique, each room of the building is represented

103

by a symbolic location, called “zone”; each zone is assigned to a certain Bluetooth

position-sensor. The topology of the considered environment is represented by the

Sensor-Coordinates table, which associates each Bluetooth sensor to a specific room,

and the Sensor-Neighbors table, which logically links sensors each other between ad-

jacent rooms.

The adopted technique uses the Received Signal Strength Indicator (RSSI) to

finger-print the rooms that the mobile device is in. It is worth noting that, although

symbolic representation of locations implies an additional layer of indirection to get

the geometric information, it brings some benefits to the proposed solution. First,

storage and retrieval of symbolic location data might be more suitable to location

applications than geometric location data. Second, a hierarchical (e.g., building-floor-

room) symbolic data model can ease the integration of multiple wireless technologies

within the same application. The third advantage is that the symbolic model might

be used to predict user location, for it helps building secondary models of location

information such as individual mobility patterns.

The rest of this sub-section shows how the adopted positioning technique can be

mapped onto the JSR-179 API. Moreover, it also shows how to extend the JSR-82

API so as to bridge it to JSR-179 LocationProviders, and provide some comments

about the current implementation.

According to the zoning approach, each Location has a one-to-one relationship

with a specific room of the building. Within the JSR-179 specifications, Location

objects represent the up-to-date location in terms of timestamped coordinates, ac-

curacy, speed, course, and information about the positioning method used for the

location, plus an optional textual address. Thus, it is crucial that such a technique

104

Location
Provider

Landmark
Store

RSSI
Provider

Location
Estimator

Sensor
Locator

Sensor
Connector

HCI
Driver

JSR 82

JSR 179

Bluetooth Stack

Location-aware
Application

RSSI
LocationProvider

<<implements>>

Location

Creates

Figure 5.10: High-level architecture of the proposed service-element. Shadowed boxes
contain the implemented components, whereas non-shadowed boxes represent off-the-
shelf components.

be mapped onto JSR-179 semantics. Therefore, each room is assigned a specific set of

latitude, longitude, and altitude parameters. In addition, as already mentioned, the

accuracy is assumed to be constant. Landmarks and the already mentioned tables

represent the topology of the considered environment. Figure 5.10 shows the overall

architecture of the proposed extensions. A particular LocationProvider, namely the

RSSILocationProvider, has been implemented in order to provide the overlying JSR-

179 applications with the indoor location-sensing service-element. As for Landmarks,

each known Location (i.e., each room) is assigned a name that identifies the room

to the end user (e.g., the Contemporary Art gallery within an exhibition). As for the

topology tables, the SensorLocator component is in charge of managing the Sensor-

Coordinates table; hence it associates each zone (i.e. each Landmark) to a specific

Bluetooth sensor. The SensorConnector manages the Sensor-Neighbors table; hence

105

JSR179-based application RSSILocationProvider LocationEstimator RSSI_Provider HCI_DriverLandmarkStore

GetCurrentPosition

GetRSSI (neighbor_1)

getAddressInfo

getLocation()

Address Info

CurrentPosition (x,y,z)

SensorConnector SensorLocator

GetRSSI (neighbor_n)

Read_RSSI()

getCoordinates(nearest_Sensor)

Location

Find_Nearest_Sensor

Get_Neighbors (last_sensor)

Read_RSSI()

Figure 5.11: Retrieval of a mobile user’s location

it represents the interconnections between rooms.

5.2.4 Enabling the RSSI-based positioning technique on a

Bluetooth network

In order to enable the proposed technique on a Bluetooth-based system, a new

class has been appended to the Java API for Bluetooth (JSR-82) [46], namely the

RSSI_Provider, which allows to measure the RSSI; this value refers to the commu-

nication between the device itself and another Bluetooth device (i.e., a sensor).

Figure 5.11 shows the retrieval of user’s location by means of the described

extensions. It is worth noting that the LocationEstimator component exploits

the RSSI_Provider to discover the zone where the mobile device is. It specifically

analyzes the Sensor-Neighbors table by means of the SensorConnector component,

and reads the RSSI for each neighbored sensor. Upon the identification of the nearest

sensor (i.e., the identification of the current room), the LocationEstimator can i)

106

retrieve its spatial coordinates by means of the SensorLocator component, and ii)

return them to the RSSILocationProvider.

Implementation details

The RSSI_Provider class has been implemented as an extension to the JBlueZ library.

JBlueZ is an implementation of the JSR-82 specifications, which relies on the official

Linux Bluetooth protocol stack, namely Bluez [6]. Since BlueZ is implemented as

library of native procedures written in C, the RSSI_Provider uses the Java Native

Interface (JNI) to retrieve RSSI and quality information through the BlueZ HCI

layer. As for the Location API, a JSR-179 implementation skeleton consisting of

a LandmarkStore and a LocationProvider has been implemented.

5.2.5 Experimental results

In order to evaluate the behavior of the designed service-element, it has been tested

on Compaq iPAQ 3970 PDAs running the Familiar 0.7.0 Linux distribution. A set of

ANYCOM Bluetooth dongles configured to accept connections from mobile devices

function as Bluetooth Room sensors. The proposed solution has been evaluated from

different view-points.

First, the RSSI has been measured while moving through a simple sequence of

three adjacent rooms, namely the Green Room, the Blue Room, and the Red room.

This preliminary experiment aimed to verify that the RSSI could be used as a room-

fingerprint. Figure 5.12a shows the measured values of the RSSI with respect to

each room’s sensor. Figure 5.12b shows the environment used to perform this ex-

periment. Since our testing user starts moving from green-room sensor’s location

(as Figure 5.12b shows), the distance from the green sensor functions as a location

107

Blue Room Red RoomGreen Room

R
SS

I

BLUE Room RED RoomGREEN Room

-12

-10

-8

-6

-4

-2

0

2

4

1 2 3 4 5 6 7 8 9 10 11 RED Room
sensor

GREEN Room
sensor

BLUE Room
sensor

Distance from green sensor (m)

a)

b)

Figure 5.12: a) Signal strength while moving between different rooms; b) Topology
of the RSSI-measurement environment.

variable for the presented results; the vertical dividing lines represent the separation

between adjacent rooms (e.g., the wall between the green and the blue room is 4

meters far from the green room sensor). Preliminary results showed that the highest

RSSI value always represents the current room: for instance, when the user is 3 me-

ters far from the green sensor (i.e., he is walking in green room) Green Room’s RSSI

is higher than the others, whereas when the user is 6 meters far from the green sensor

(i.e., he is walking in blue room) Blue Room’s RSSI is higher than the others.

The experiments aimed also to evaluate the performance of the RSSI_provider

108

component. Specifically the RSSI measurement time tRm = tBC + tRSSI has been

measured, where tBC is the time to connect to a Bluetooth sensor, and tRSSI is the

time to read the RSSI. Several factors influence tRm, such as channel-degradation

phenomena (e.g., multi-path fading, interference, direct sunlight, physical obstacles),

as well as the adopted Bluetooth hardware and software libraries. Since the measures

of this preliminary evaluation focused on the performance of the implemented APIs,

channel-degradation phenomena were not taken into account.

Each RSSI measurement refers to a certain sensor. Preliminary experiments

showed that tRm is not influenced by the distance d from the used sensor. In-

deed, it is well-known that the higher the distance between bluetooth devices is,

the lower the performance of the bluetooth channel in terms of data-rate (due to

packet-errors and error-correction procedures); since the amount of information ex-

changed between sensing devices by using the proposed protocol is extremely small,

such a data-rate degradation does not significantly influence tRm. Specifically these

experiments showed that tBC >> tRSSI , being tBC ≈ 1175ms and tRSSI ≈ 8ms

independently of d.

Figure 5.13 depicts an example topology in which each room can have at most

3 adjacent rooms. According to the proposed approach, when the mobile user is

walking through room Z4, the LocationEstimator component continuously analyzes

each adjacent rooms’ sensor RSSI in order to decide whether the user has moved to

a new room or not. Thus, when the user moves from Z4 to Z1, the Location Change

Detection time tLCDT depends on tRSSI , whereas tBC does not affect tLCDT since

the connection with the involved room sensors has been previously established. In

this case (which is the worst case as each room can have at most 3 adjacent rooms),

109

Z0

Z3

Z2
Z5

Z4

Z6

Z1

Z7

Z8

Figure 5.13: Topology of the environment used to compare the Location Change
Detection Time with the speed of a walking user.

the performance of the LocationProvider component is suitable for the up-standing

JSR-179 applications, as it is able to detect location-changes in less than 50ms; the

LocationEstimator must compare the RSSI obtained from the current room’s sensor

with the value retrieved from the three adjacent rooms’ sensors. Hence, in this case

tLCDT ≈ (tRSSI(AdjRooms)+tRSSI(CurrRoom)) = (3+1)×tRSSI ≈ 40ms < 50ms),

which is a reasonable time if compared with the speed of a walking user (i.e., 2m·s−1).

Chapter 6

Conclusions

6.1 Conclusions

The aim of this dissertation was to bring a contribution to research on nomadic

computing systems with respect to the issues that arise when a high level of inter-

operability must be guaranteed. The ultimate goal was to enable the definition of

novel strategies to support the extreme heterogeneity of future nomadic computing

systems.

The overall dissertation started with a preliminary analysis of the requirements

of nomadic computing systems, which allowed to identify also the most challenging

issues for the realization of highly interoperable nomadic computing systems. Such

a requirement analysis was followed by a critical evaluation of the state-of-the-art

research in supporting nomadic computing by means of service platforms. On the

one hand the state-of-the-art research in this field emphasized the unfeasible nature

of a brand-new solution for addressing all the the requirements of future nomadic

environments, while on the other hand it exacerbated the need for interworking in

current and future nomadic computing environments. Indeed, since the requirements

110

111

of each personal computing domain are different from those of the others, the diversity

of current technologies is the key factor to suit all the domains.

Building a comprehensive interworking solutions for interoperable nomadic sys-

tems is really challenging, since as the heterogeneity and the number of the involved

platforms increases, a number of issues arise, including integration issues (interop-

erability and scalability), and unpredictability issues (context-awareness and unpre-

dictable system behaviour).

Driven by the need for interworking, this work proposed a novel architectural

framework for interoperable nomadic computing systems. The basic idea upon which

the framework is based is that integration and unpredictability require two differ-

ent approaches to be combined. Integration specifically requires the framework to

define an innovative infrastructure for the interworking of existing service discovery

and delivery technologies. However, such an approach is not suitable for addressing

unpredictability issues, since such issues are highly dependent on application require-

ments. Hence, the framework allows to deal with such issues by means of an additional

generic service-elements layer, which provides specific applications with a specialized

support for addressing unpredictability.

This work showed that such a combined approach is feasible, and provided useful

lessons learned and design guidelines. A proof of concept implementation of the

architectural framework has also been presented, in order to point out also the main

implementation issues and the strategies adopted to address them.

As for the interworking infrastructure, the implemented prototype showed that the

proposed solution supports the integration of diverse Nomadic Computing Domains.

112

The overall infrastructure has been designed to allow interoperability of existing inter-

action platforms by means of two different types of agents. An innovative algorithm

for proactive service advertisement has also been proposed. The effect of several filter-

ing parameters on the import ratio (i.e., on mechanism stability) have been evaluated

by simulations. Simulation results showed that system stability is proportional to the

inter-filtering time: the lower the inter-filtering time is, the higher the import ratio.

Moreover, the selectivity of the filtering mechanism is proportional to the number

of requested operations. The conceptual infrastructure has been implemented with

respect to Jini and Bluetooth technology. A proof-of-concept implementation of the

overall infrastructure has been described and tested to add interoperability to an

existing Bluetooth service, namely a Bluetooth printer.

As for the generic service elements, two novel techniques to handle the nomadic-

ity concerns of location-awareness and unpredictable system behaviour have been

proposed and thoroughly discussed. The first service element allowed to deal with

unpredictability in RTP-based distributed multimedia applications. The second ser-

vice element was designed to allow Java-based Location-aware applications to sense

the location of a mobile user who is moving within a building. As for the unpre-

dictability of multimedia applications, the proposed service-element relies on the as-

sumption that the unpredictable behaviour of a multimedia stream can significantly

affect the dependability of the applications that will use it. The key-idea upon which

the service-element was built is to define the correctness of a multimedia service as a

function of user-related quality parameters. The implemented prototype showed that

the service element is suitable for coping with dependability issues of nomadic multi-

media applications. Moreover, since the implemented prototype refers to RTP-based

113

multimedia streams, it can be also used to build failure-detection service-elements

for other types of services that use the RTP protocol as a real-time transport layer.

As for location-awareness, the service-element resulted in a versatile infrastructure

model, which is independent of the used devices as well as of the wireless communi-

cation technologies. Since the solution is based on the standard Java Location API

specifications (JSR-179), it is suitable for a wide range of commercial mobile devices.

Experiments showed that the performance of the implemented service-element does

not depend on the distance between the mobile device and location-sensors. Moreover,

the performance of the implemented JSR-179 components is reasonable if compared

with the velocity of walking users.

The overall work carried out during my PhD activity refers to standard technolo-

gies and interaction platform. Moreover, the description of the conceptual architec-

ture is clearly separated from the case-study implementations. This increases the

chances to provide current research with an useful and re-usable contribution, and

with more general design and implementation guidelines as well.

Bibliography

[1] G. Anastasi, R. Bandelloni, M. Conti, F. Delmastro, and E. Gregoriand G.

Mainetto, Experimenting an indoor bluetooth-based positioning service, Proceed-

ings of the 23rd International Conference on Distributed Computing Systems

Workshops (ICDCSW’03), IEEE Computer Society, 2003, pp. 480–483.

[2] R. Bagrodia, W. Chu, L. Kleinrock, and G. Popek, Vision, Issues, and Architec-

ture for Nomadic Computing, IEEE Personal Communications 2 (1995), no. 6,

14–27.

[3] P. Bahl and V. N. Padmanabhana, Radar: An in-building rf-based user loca-

tion and tracking system, Proceedings of the IEEE Infocom 2000, vol. 2, 2000,

pp. 775–784.

[4] John Barton and Tim Kindberg, The challenges and opportunities of integrating

the physical world and networked systems, HP-Labs Technical report HPL-2001-

18 (2001).

[5] Bluetooth SIG, Specification of the bluetooth system - core and profiles v. 1.1,

2001.

[6] Bluez, Bluez: the official linux bluetooth protocol stack, 2002.

114

115

[7] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni,

Threshold-based mechanisms to discriminate transient from intermittent faults,

IEEE Transactions on Computers 49 (2000), no. 3, 230 – 245.

[8] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera, On the quality of service

of failure detectors, IEEE Trans. Comput. 51 (2002), no. 5, 561–580.

[9] L. Choonhwa, A. Helal, N. Desai, V. Verma, and B. Arslan, Konark: A system

and protocols for device independent, peer-to-peer discovery and delivery of mobile

services, IEEE Transactions on Systems, Man and Cybernetics 33 (2003), no. 6,

682–696.

[10] UDDI Spec Technical Committee, Uddi version 3.0.1: Uddi spec technical

committee specification, 2003, available at http://uddi.org/pubs/uddi-v3.0.1-

20031014.pdf.

[11] The Salutation Consortium, Salutation architecture specification, version 2.1,

June 2000, available at http://www.salutation.org.

[12] Domenico Cotroneo, Stefano Russo, Fabio Cornevilli, Massimo Ficco, and Vin-

cenzo Vecchio, Implementing positioning services over an ubiquitous infrastruc-

ture, Proceedings of the Second IEEE Workshop on Software Technologies for

Future Embedded and Ubiquitous Systems (WSTFEUS’04), IEEE Computer

Society, 2004, pp. 14–18.

[13] Christopher Dabrowski, William Majurski, Wayne McCoy, and Shukri Wakid,

Modeling nii services: future needs for standards and interoperability, Standard-

View 2 (1994), no. 4, 203–217.

[14] Kai-Oliver Detken, Ioannis Fikouras, and Panos Phillipopoulos, Service discov-

ery integrated network platform, Converged Networking: Data and Real-time

116

Communications over IP , Springer-Verlag IFIP International Federation for In-

formation Processing Series 119 (2003).

[15] Myra Dideles, Bluetooth: a technical overview, Crossroads 9 (2003), no. 4, 11–18.

[16] UPNP Forum, Universal plug and play device architecture, version 1.0, June

2001, available at http://www.upnp.org.

[17] Y. Fukuju, M. Minami, H. Morikawa, and T. Aoyama, Dolphin: An autonomous

indoor positioning system in ubiquitous computing environment, Proceedings of

the IEEE Workshop on Software Technologies for Future Embedded Systems,

IEEE Computer Society, 2003, pp. 53–56.

[18] Kurt Geihs, Middleware challenges ahead, IEEE Computer 34 (2001), no. 6,

24–31.

[19] N. Golmie, R. E. Van Dyck, A. Soltanian, A. Tonnerre, and O. Rebala, Inter-

ference evaluation of bluetooth and ieee 802.11b systems, Wirel. Netw. 9 (2003),

no. 3, 201–211.

[20] FiCom Location API Working Group, Ficom location api 2.0.0 interface specifi-

cation, 2002.

[21] E. Guttman and J. Kempf, Automatic discovery of thin servers: SLP, Jini and

the SLP-Jini bridge, Proceedings of the 25th Annual Conference of the IEEE

Industrial Electronics Society (1999), 722–727.

[22] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service location protocol,

version 2, IETF RFCC 2608 (1999).

[23] Uwe Hansmann, T. Stober, L. Merk, and M. Nicklous, Pervasive computing,

Springer-Verlag New York, Inc., 2003.

117

[24] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, The anatomy of a

context-aware application, Proceedings of 5th Annual International Conference on

Mobile Computing and Networking (Mobicom 99), ACM Press, 1999, pp. 59–68.

[25] Jeffrey Hightower and Gaetano Borriello, Location sensing techniques, Techical

Report UW-CSE-01-07-01, 2001, University of Washington.

[26] , Location systems for ubiquitous computing, Computer 34 (2001), no. 8,

57–66.

[27] Ekahau Inc., Ekahau positioning engine 2.0: Developer guide, 2002.

[28] Open Server Gateway Initiative, Osgi service platform release 3 specification,

April 2003.

[29] Michael Jeronimo and Jack Weast, Upnp design by example, Intel Press, 2004.

[30] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe

Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris, John Schet-

tino, Bill Serra, and Mirjana Spasojevic, People, places, things: web presence for

the real world, Mob. Netw. Appl. 7 (2002), no. 5, 365–376.

[31] Leonard Kleinrock, Nomadicity: Anytime, Anywhere in a disconnected world,

Mobile Networks and Applications 1 (1996), no. 1, 351 – 357.

[32] Teemu Koponen and Teemupekka Virtanen, A service discovery: A service bro-

ker approach, Proceedings of the Proceedings of the 37th Annual Hawaii Inter-

national Conference on System Sciences (HICSS’04) - Track 9, IEEE Computer

Society, 2004, p. 90284.2.

[33] A. Kotanen, M. Hannikainen, H. Lappakoski, and T.D. Hamalainen, Experiments

on local positioning with bluetooth, Proceedings of the International Conference

118

on Information Technology, Computers and Communication (ITCC03), IEEE

Computer Society, 2003, pp. 297–303.

[34] M.P. LaMonte, Y. Xiao, C. Mackenzie, P. Hu, W. Gaasch, J. Cullen, and

D. Gagliano, Telebat: Mobile telemedicine for the brain attack team, J Stroke

Cerebrovasc Dis. 9 (2000), 128–135.

[35] D. Laverde, G. Ferrari, and J. Stuber, Programming lego mindstorms with java,

Syngress Publishing, 2002.

[36] Kalle Lyytinen and Youngjin Yoo, Introduction to the special issue on issues and

challenges in ubiquitous computing, Commun. ACM 45 (2002), no. 12, 62–65.

[37] , Research commentary: The next wave of nomadic computing, Info. Sys.

Research 13 (2002), no. 4, 377–388.

[38] B. Miller and R. Pascoe, Mapping salutation architecture apis to bluetooth service

discovery layer, version 1.0, Bluetooth SIG White paper (1999).

[39] T. Nakajima, Pervasive servers: A framework for creating a society of appliances,

Personal and Ubiquitous Computing 7 (2003), no. 3–4, 182–188.

[40] I. G. Niemegeers and S. M. Heemstra De Groot, Research issues in ad-hoc dis-

tributed personal networking, Wirel. Pers. Commun. 26 (2003), no. 2-3, 149–167.

[41] Open Mobile Alliance (OMA), Oma service environment, approved version 1.0,

September 2004, available at http://www.openmobilealliance.org.

[42] Location Inter operability Forum, Mobile location protocol lif ts 101 specification,

version 3.0.0, 2002.

[43] Cynthia A. Patterson, Richard R. Muntz, and Cherri M. Pancake, Challenges in

location-aware computing, IEEE Pervasive Computing 2 (2003), no. 2, 80–89.

119

[44] Thomas F. La Porta, Krishan K. Sabnani, and Richard D. Gitlin, Challenges for

nomadic computing: mobility management and wireless communications, Mob.

Netw. Appl. 1 (1996), no. 1, 3–16.

[45] David Powell, Failure mode assumptions and assumption coverage, Proc. 22nd

IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-22) (Boston, MA, USA),

1992, (Revised version available as LAAS-CNRS Research Report 91462, 1995),

pp. 386–395.

[46] Java Community Process, Java apis for bluetooth specification 1.0 final release,

2002.

[47] , Location api for j2me specification 1.0 final release, 2003.

[48] Kimmo Raatikainen, Henrik B. Christensen, and Tatsuo Nakajima, Applica-

tion requirements for middleware for mobile and pervasive systems, SIGMOBILE

Mob. Comput. Commun. Rev. 6 (2002), no. 4, 16–24.

[49] Bhaskaran Raman, Sharad Agarwal, Yan Chen, Matthew Caesar, Weidong Cui,

Per Johansson, Kevin Lai, Tal Lavian, Sridhar Machiraju, Zhuoqing Morley

Mao, George Porter, Timothy Roscoe, Mukund Seshadri, Jimmy S. Shih, Keith

Sklower, Lakshminarayanan Subramanian, Takashi Suzuki, Shelley Zhuang, An-

thony D. Joseph, Randy H. Katz, and Ion Stoica, The sahara model for ser-

vice composition across multiple providers, Proceedings of the First International

Conference on Pervasive Computing, Springer-Verlag, 2002, pp. 1–14.

[50] Golden G. Richard, Service advertisement and discovery: Enabling universal

device cooperation, IEEE Internet Computing 4 (2000), no. 5, 18–26.

[51] L. Romano, A. Bondavalli, S. Chiaradonna, and D. Cotroneo, Implementation of

threshold-based diagnostic mechanisms for cots-based applications, Proceedings

120

of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), IEEE

Computer Society, 2002, p. 296.

[52] Daniel Salber, Anind K. Dey, and Gregory D. Abowd, The context toolkit: aiding

the development of context-enabled applications, Proceedings of the SIGCHI con-

ference on Human factors in computing systems, ACM Press, 1999, pp. 434–441.

[53] R. Schollmeier, A definition of peer-to-peer networking for the classification of

peer-to-peer architectures and applications, Proceedings of the First International

Conference on Peer-to-Peer Computing (P2P01), 2001, pp. 101–102.

[54] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, Rtp: A transport proto-

col for real-time applications, ietf request for comment (rfc1889), 1996, available

at http://www.ietf.org/rfc/rfc1889.txt.

[55] Jean-Marc Seigneur, Gregory Biegel, and Christian Damsgaard Jensen, P2P with

JXTA-Java Pipes, Proceedings of the 2nd International Conference on Princi-

ples and Practice of Programming in Java, Computer Science Press, Inc., 2003,

pp. 207–212.

[56] Joao Pedro Sousa and David Garlan, Aura: an architectural framework for user

mobility in ubiquitous computing environments, Proceedings of the IFIP 17th

World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Soft-

ware Architecture, Kluwer, B.V., 2002, pp. 29–43.

[57] Richard Staehli, Jonathan Walpole, and David Maier, A quality-of-service specifi-

cation for multimedia presentations, Multimedia Syst. 3 (1995), no. 5-6, 251–263.

[58] Inc. Sun Microsystems, Java media framework api ver.2.1.1e, 2003, available at

http://java.sun.com/products/java-media/jmf/.

121

[59] Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou,

Carl Haywood, Jean-Christophe Hugly, Eric Pouyoul, and Bill Yea-

ger, Project jxta 2.0 super-peer virtual network, May 2003, available at

http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf.

[60] Anand Tripathi, Challenges designing next-generation middleware systems, Com-

mun. ACM 45 (2002), no. 6, 39–42.

[61] Jim Waldo and Ken Arnold, The Jini specification - second edition, Addison-

Wesley, 2000.

[62] P. Wallich, Mindstorms: not just a kid’s toy, IEEE Spectrum 38 (2001), no. 9,

52–57.

[63] Mark Weiser, Some computer science issues in ubiquitous computing, SIGMO-

BILE Mob. Comput. Commun. Rev. 3 (1999), no. 3, 12.

