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Introduction

Software systems are the basis for human everyday activities, which are increasingly de-

pendent on software. Software is an integral part of systems we interact with in our daily

life raging form small systems for entertainment and domotics, to large systems and in-

frastructures that provide fundamental services such as telecommunication, transportation,

and financial. In particular, software systems play a key role in the context of critical

domains, supporting crucial activities. For example, ground and air transportation, power

supply, nuclear plants, and medical applications strongly rely on software systems: failures

affecting these systems can lead to severe consequences, which can be catastrophic in terms

of business or, even worse, human losses. Therefore, given the growing dependence on soft-

ware systems in life- and critical-applications, dependability, i.e., ”the ability of the system

to avoid service failures that are more frequent and more severe than is acceptable” [1], has

become among one of the most relevant industry and research concerns in the last decades.

Software faults have been recognized as one of the major cause for system failures

[1, 2, 3] since the hardware failure rate has been decreasing over the years [4]. Time and

cost constraints, along with technical limitations, often do not allow to fully validate the

correctness of the software solely by means of testing [5, 6]; therefore, software might be

released with residual faults that activate during operations. According to [1], the activation

of a fault generates errors which propagate through the components of the system, possibly

leading to a failure. Therefore, in order to produce reliable software, it is important to

understand how errors affect a software system. For example, analyzing types of

1
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errors that affect the software, the effect these errors may have on it as well as how they

propagate through its components, allows both (i) the design of dependability structures and

mechanisms, such as Error Detection Mechanisms (EDMs) and Error Recovery Mechanisms

(ERMs), and (ii) their optimal placement in the source code, allowing the improvement of

the system reliability.

This is of paramount importance especially in the context of complex critical soft-

ware systems, where the occurrence of a failure can lead to severe consequences. However,

the analysis of the error behavior of this kind of system is not trivial. They are often dis-

tributed systems based on many interacting heterogeneous components and layers, including

Off-The-Shelf (OTS), third party components and legacy systems. In addition, they are ex-

pected to satisfy the rules imposed by certification standards, such as the DO-178B [7] in the

avionics domain. Often, they include legacy components and/or obsolete kernel versions,

which limit the use of cutting-edge technologies and the level of intervention, e.g., in terms

of code instrumentation for error analysis. All these aspects, undermine the understanding

of the error behavior of complex critical software system.

A well established methodology to evaluate the dependability of operational systems

and to identify their dependability bottlenecks is represented by field failure data analysis

(FFDA), which is based on the monitoring and recording of errors and failures occurred

during the operational phase of the system under real workload conditions, i.e., field data.

Indeed, direct measurement and analysis of natural failures occurring under real workload

conditions is among the most accurate ways to assess dependability characteristics [8]. One

of the main sources of field data, are monitoring techniques, such as event logging, assertion

checking, source code instrumentation. Beside being recommended by several international

safety standards and governmental guidelines, e.g., IEC 61508-7 [9], the AUTomotive Open

System Architecture (AUTOSAR) through the ISO-26262 [10], and the DoD Guide for

achieving Reliability, Availability, and Maintainability (RAM) [11], they are a consolidated
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and pervasive practice both within the open-source community and proprietary software

systems industry.

The contribution of the thesis is to provide a methodology that allows un-

derstanding the error behavior of complex critical software systems by means

of field data generated by the monitoring techniques already implemented in

the target system. The use of available monitoring techniques allows to overcome the

limitations imposed in the context of critical systems, avoiding severe changes in the system,

and preserving its functionality and performance.

The methodology is based on fault injection experiments that stimulate the target sys-

tem with different error conditions. Injection experiments allow to accelerate the collection

of error data naturally generated by the monitoring techniques already implemented in the

system. The collected data are analyzed in order to characterize the behavior of the system

under the occurred software errors. In particular, the dissertation aims to provide answers

to the following compelling research questions (RQs):

• RQ1: Is it possible to use monitoring techniques to characterize the error behavior

in complex critical software system? Field data generated by means of monitoring

technique contain valuable information about the behavior of the target system at

runtime. However, it is not trivial to analyze them in order to obtain valuable infor-

mation about the error behavior of the system during failing executions, and especially

about the propagation of errors. Therefore, there is the need to understand if data

provided by monitoring techniques can be leveraged to analyze the error behavior of

a software system.

• RQ2: Is it possible to improve the error detection/recovery of a complex critical

software system from error data? The knowledge of the error behavior of the target

system and of how the errors propagate through its components are often used in the
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literature to identify the locations for EDM and ERM, which allow an improvement

of the detection and recovery of errors in the target system. However, there is no

prior experience on the use of field data to infer the locations where the placement

of EDMs and ERMs might be beneficial for the system, and the type of error/failure

they have to cope with.

• RQ3: How do the error and failure reporting ability change between different moni-

toring techniques implemented in a given system? And what about the dissimilarity

of their data? A number of monitoring techniques can be implemented in a complex

critical software system, which can be of different types and consider different error

models; therefore, it can be useful to compare the performance exhibited by each

technique in order to provide insights to developers to implement better monitoring

techniques. There are existing studies that try to address this topic; however, they do

not characterize the effectiveness of a monitoring technique with respect to failures

and errors.

• RQ4: Is it useful to combine different monitoring techniques implemented in a com-

plex critical software system? Different monitoring techniques implemented in a soft-

ware system might expose orthogonal performance, complementing each other in terms

of failure reporting and/or error propagation reporting ability. However, the orthogo-

nality of monitoring techniques and the potentiality of their combination in a software

system is still unexplored.

In order to provide answers to the before-mentioned research questions, the proposed

methodology leverages a set of innovative means defined in this dissertation, i.e., (i) Error

Propagation graphs, which allow to analyze the error propagation phenomena occurred

in the target system and that can be inferred by the collected field data, and a set of metrics

composed by (ii) Error Determination Degree, which allows gaining insights into the
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ability of error notifications of a monitoring technique to suggest either the fault that led

to the error, or the failure the error led to in the system, (iii) Error Propagation Re-

portability, which allow understanding the ability of a monitoring technique at reporting

the propagation of errors, and (iv) Data Dissimilarity, which allows gaining insights into

the suitability of the data generated by the monitoring techniques for failure analysis.

The methodology has been experimented on two instances of complex critical software

systems in the field of Air Traffic Control (ATC), i.e., a communication middleware support-

ing data exchanging among ATC applications, and an arrival manager that is responsible

for managing flight arrivals to a given airspace, within an industry-academia collaboration

in the context of a national research project1.

Results show that field data generated by means of monitoring techniques already im-

plemented in a complex critical software system can be leveraged to obtain insights about

the error behavior exhibited by the target system, as well as about the potential benefi-

cial locations for EDMs and ERMs. In addition, the proposed methodology also allowed

to characterize the effectiveness of the monitoring techniques in terms of failure reporting,

error propagation reportability, and data dissimilarity.

The dissertation is organized as follows. Chapter 1 introduces to the context of complex

critical software system and provides basic notions of dependability. Moreover, an overview

on the software error analysis is presented, along with its challenges in the context of

complex critical software systems.

Chapter 2 describes the field failure data analysis methodology and examines the related

literature. A discussion about open issues and challenges about the use of FFDA for analyze

the error behavior of complex critical system is also provided.

1The systems considered in this dissertation are developed by Finmeccanica, a top leading company in
electronic and information solutions for critical systems (www.finmeccanica.com). The evaluation versions
of the systems are used as case study to support research activities conducted in the framework of the MIN-
IMINDS PON Project (n. B21C12000710005), funded by the Italian Ministry of Education and Research,
and led by the Federico II University of Naples, CINI and Finmeccanica
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Chapter 3 describes the proposed methodology, providing details on all its characteris-

tics, such as faultload, workload, experimental procedures and evaluation metrics. Also the

description of the proposed metrics is provided.

Chapter 4 provides the description of the target systems and of the target monitoring

techniques that are considered in this dissertation, and on which the proposed methodol-

ogy has been applied. Also details about the conducted experimental campaign, i.e., the

workloads, faultloads, labeling and error clustering processes, are provided. Finally, the

obtained datasets are detailed at the end of the chapter.

Chapter 5 discuss the results obtained by applying the proposed methodology to the

considered monitoring techniques. Their effectiveness has been evaluated by measuring the

evaluation metrics of the methodology.

Chapter 6 provides a comparison of the considered monitoring techniques, which has

been conducted by comparing the measures obtained from the evaluation metrics of the

proposed methodology. Also their combination has been analyzed in order to evaluate the

potential benefits that can be achieved by considering multiple techniques at the same time.



Chapter 1

Error Characterization of Complex
Critical Software Systems

Characterizing error behavior of a software system is crucial to engineers. Characterization encom-
passes, for example, errors classification, analysis of error propagation, identification of error-prone
components. The knowledge of which types of software errors affect the system, the effect these
errors may have on it as well as how they propagate through its components allows both the design
of efficient dependability structures and mechanisms, and their placement where they are the most
effective, improving the dependability of future system releases. This knowledge is extremely valuable
especially in the context of complex critical software system, where the occurrence of a failure has a
high cost since it can lead to severe consequences, such as loss of life, damage to the environment or
extensive economic losses. This chapter introduces to complex critical software systems, and provides
basic notions of dependability that will be used in the rest of the dissertation. Then an introduction
to the software error analysis is presented, along with its challenges in the context of complex critical
software systems.

1.1 Complex Critical Software Systems

Critical systems are a special class of systems providing functionalities whose malfunction,

i.e., failure, could result in damage to the equipment, reputational losses or, even worse,

in human injury, loss of life, damage to the environment or extensive economic losses [12].

Examples of critical systems include embedded medical systems, flight control systems,

automobile control systems, and online money transfer systems. For these systems a high

level of dependability is essential in order to reduce the risk of failure and the losses that may

7
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result from such a failure. Based on the consequences of a system failure, critical systems

can be divided in three different categories:

• Safety-critical systems: A system whose failure may result in loss of life or serious

environmental damage, such as a control system for a chemical manufacturing plant.

• Mission-critical systems: A system whose failure may result in the failure of some

goal-directed activity, such as a navigational system for a spacecraft.

• Business-critical systems: A system whose failure may result in very high costs for

the business using that system, such as the customer accounting system in a bank.

The complexity of critical systems has increased during the years. Many modern critical

systems have been built with such complexity that they cannot be based on hardware

alone. For example, advanced, aerodynamically unstable, military aircraft require continual

software-controlled adjustment of their flight surfaces to ensure that they do not crash.

Software is essential in order to cope with this growing complexity, making it possible to

manage large numbers of devices, complex control laws and functionality. In addition, it

can be cheaper than hardware solutions.

Many critical systems are nowadays based on large and complex software, such as smart

grids, air traffic control (ATC) systems. These systems, named Complex Critical Soft-

ware Systems, are in general the result of the integration of many strongly interacting
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heterogeneous components and layers, including Off-The-Shelf (OTS) and third party com-

ponents, such as operating system, communication middleware, database, network proto-

cols, virtual machines, as well as legacy systems1. In addition, they are typically distributed

systems, composed by several software-intensive systems deployed on many remote nodes

communicating on a network.

As critical software systems grow in complexity, interconnectedness, and distribution,

the possibilities to incur in a system failure increase. Complex critical software systems

have a long lifetime, during which they evolve since they are integrated with other systems,

and/or extended to cope with new requirements. The evolution causes a further growth of

their complexity, and it often forces the integrated systems to operate beyond the original

design conditions. The usage of many heterogeneous components causes complex interde-

pendencies, and introduces sources of non-determinism, that often lead to the activation

of subtle faults. Such behaviors, due to their complex triggering patterns, typically es-

cape the testing phase. The activation of these faults and the propagation of errors among

components can result in failures and system downtime with huge costs [14].

There are many examples of critical software systems which have failed due to software

related faults. For instance, the Ariane V launch failure [15], which was due to a fault with

software successfully used on earlier version of the launcher, and the loss of the Mars Climate

Orbiter [16], which was due to a mismatch between Imperial and SI units. In addition,

1Legacy systems are software systems that have been developed in the past, often using older or ob-
solete technology. The maintenance actions of these systems (e.g., modifications to the source code) are
prohibitively costly because (i) the component is written in a programming language which has become
obsolete as compared to the rest of the technologies used by the enterprise and/or (ii) the component is not
well-documented [13]. They are maintained because it is too risky to replace them.
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some studies of anomalies of NASA space missions Voyager and Galileo has revealed that

anomalies of the most recent mission are mostly due to software and are fixed by changing

in-flight or ground-software systems [17, 18].

The high costs of failure of critical systems imply that they have to be developed so

that failures are very rare, but they have also include effective monitoring and recovery

mechanisms that are of paramount importance if and when failures occur. In many complex

critical systems a problematic issue is that one single source problem often leads to many

software errors that are often unrelated to the actual problem. In such a situation, it is

of prime importance that the monitoring software gives the user a fast hint about what is

really going wrong. Therefore, understand the error behavior of complex critical software

systems and the effectiveness of the monitoring techniques they implement are vital issues

in these type of systems.

1.2 Basic Dependability Concepts

Dependability has been considered a fundamental attribute since early computer systems.

First studies in the context of dependable computing dates back to the 1960s, e.g., [19].

However, the effort on the definition of the basic concepts and terminology for computer sys-

tems dependability dates back to 1980, when a joint committee on ”Fundamental Concepts

and Terminology” was formed by the Technical Committee on Fault-Tolerant Computing

of the IEEE Computer Society and the IFIP Working Group 10.4 ”Dependable Computing

and Fault Tolerance”. A synthesis of this work, which represents a milestone in the area
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of dependability, was presented at FTCS-15 in 1985 [20], where computer system depend-

ability was defined as the quality of the delivered service such that reliance can justifiably

be placed on this service. This notion has evolved over the years. A later work [1] defines

dependability as the the ability of the system to avoid service failures that are more frequent

and more severe than is acceptable. The dependability is a composed quality attribute, that

encompasses the following subattributes:

• Availability: readiness for correct service;

• Reliability: continuity of correct service;

• Safety: absence of catastrophic consequences on the user(s) and the environment;

• Confidentiality: absence of improper system alterations;

• Maintainability: ability to undergo modifications and repairs.

1.2.1 Threats: Fault, Error, Failure

The causes that lead a system to deliver a service deviating from its function, i.e., an

incorrect service, are manifold and can manifest at any phase of its life-cycle. Hardware

faults and design errors are an example of the possible sources of failure. These causes

are categorized as failures, errors, and faults, and are recognized in the literature as

dependability threats [1].

A failure is an event that occurs when the delivered service deviates from correct service.

for example, a service might fail either because it does not comply with the functional

specification, or because this specification did not adequately describe the system function.
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A service failure is a transition from correct service to incorrect service. The period of

delivery of incorrect service is a service outage, while the transition from incorrect service

to correct service is a service recovery or repair. The deviation from correct service may

occur in different ways that are called failure modes.

An error can be defined as the part of the system state that may lead to a its subsequent

failure. Precisely, a failure occurs when the error causes the delivered service to deviate from

correct service. A fault is the adjudged or hypothesized cause of an error. Faults can be

either internal or external of a system.

Failures, errors, and faults are related each other in the form of a chain of threats [1], i.e.,

the so-called fault-error-failure chain. A fault is active when it produces an error; otherwise,

it is dormant. An active fault can be either i) an internal dormant fault that has been

activated, or ii) an external fault. A failure occurs when an error is propagated to the service

interface, leading the service delivered by the system to deviate from correct service. An

error that does not lead to a failure is said to be a latent error. For example, programming

bugs, i.e., faulty instructions in a program (e.g., common programming mistakes, such as

missing variable initializations, or poorly-written logical clauses), are dormant fault in the

software; they are activated when an appropriate input pattern is fed to the component

where the faulty instruction resides, and an error is generated. The error might propagate

within the system and affect the delivered service, i.e., a failure has occurred. A failure of a

system component causes an internal fault of the system that contains such a component, or

causes an external fault for the other system(s) that receive service from the given system.
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1.2.2 Means

The need to attain the various attributes of dependability during system operations has

lead to the design of a variety of dependability means over the last decades. These means

can be grouped into four major categories [1]:

• Fault prevention aims to prevent the occurrence or introduction of faults. Fault

prevention is enforced during the design phase of a system, and applies both for

software, e.g., information hiding, modularization, use of strongly-typed programming

languages, and hardware, e.g., by means of precise design rules.

• Fault tolerance aims to avoid service failures in the presence of faults. It takes place

during the operational life of the system. Fault tolerance is commonly achieved by

means of redundancy, either temporal or spatial. Temporal redundancy attempts to

re-execute the operation which caused the failure after the system has been restored

in an error-free state, while spatial redundancy exploits the computation performed by

multiple systems replicas. Spatial redundancy relies on the assumption that replicas

are not affected by the same faults: this is achieved via design diversity [21]. Moreover,

both temporal and spatial redundancy adopt error detection and recovery approaches,

i.e., once the error is detected, a recovery action is initiated.

• Fault removal aims to reduce the number and severity of faults. The removal ac-

tivity is usually performed during the verification and validation phases of the system

development, by means of testing and/or fault injection [22]. During the operational

phase, fault removal encompasses corrective and perfective maintenance.
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• Fault forecasting aims to estimate the current number, the future incidence, and

the consequences of faults. Fault forecasting is conducted by performing an evaluation

of the system behavior in face of activated faults. Evaluation can be either qualitative,

which aims at identifying and classifying the failure modes, and quantitative, which

aims to evaluate in terms of probabilities the extent system attributes are satisfied in

terms of probabilities.

1.3 Understanding the Behavior of Software under Error

Software errors represent a major dependability threat for any software systems. As dis-

cussed in Section 1.2.1, the activation of a fault lead to a software error, which can propagate

through the components of the system, leading to a system failure. Therefore, in order to

produce reliable software, it is important to understand how faults and errors may affect a

software system. The knowledge of which types of error affect the software, the effect these

errors may have on it as well as how they propagate through its components allows both

(i) the design of efficient dependability structures and mechanisms, and (ii) their placement

where they are the most effective.

The study of the behavior of errors in software systems may be used to find the compo-

nents which are most exposed to errors and to understand how different components affect

each other in the presence of different type of errors. In addition, the analysis of software

errors occurred in a system allows also to know where and what type of errors are likely

to do the most damage. This information represents a valuable knowledge when deciding

where to place an error detection mechanism (EDM ), such as assertion, logging instruction,
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or an error recovery mechanism (ERM ), such as wrapper, redundant piece of code. Indeed,

two factors that might impact the effectiveness of both EDMs and ERMs are (i) the type

of error they have to cope with and (ii) their location.

Several studies have addressed the analysis of the software errors in order to charac-

terize the error behavior of a software systems and/or to identify locations for EDMs and

ERMs. For example, in [23] an approach that allows early identification of effective detec-

tor locations in dependable software design is presented. The approach leverages module

coupling to identify potential error detector locations at module-levels for data-value errors.

Detailed information are required for each module composing the target system in order to

evaluate its coupling, such as input and output data/control parameters, global variables

used as data/control, number of modules called/calling. In addition, the approach works for

fault-intolerant software, which has to be subsequently enhanced with detectors at specific

locations. An open-source flight simulator has been used to validate the approach.

Authors in [24] proposed an analytical approach to estimate the probability of error

propagation between components in a software architecture. The approach is based on a

proposed metric, named error propagation probability, which represents the probability that

an error that arises in one component propagates to other components. The evaluation of

the metric requires analytical approach that is based on architecture specifications, and

uses information that is typically available at an architectural level, such as set of states of

a component and set of messages that a component can exchange with another component.

The analytical approach has been validated by comparing the analytical results with the

ones obtained by an experimental campaign, both conducted on a part of a large command
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and control system used in a critical application.

A black-box error analysis technique for Commercial OTS (COTS) system is described

in [25]. The proposed technique studies how information flows between software compo-

nents. The technique forcefully corrupts the information that flows between components

and observes what impacts the corruption had, in order to isolate those components that

cannot tolerate the failure of other components. A fault injection technique that injected

faults into the interfaces between components is used along with a set of monitors that

checks the output of each component to evaluate the propagation of error through the

system.

In [26] an extension of an existing Bayesian methodology for reliability estimation of

component-based software systems is proposed in order to take into account also the prop-

agation of errors. To this aim, an approach to error propagation probability calculation is

presented, which has been integrated into the existing Bayesian methodology for reliability

prediction. An automated Personnel Access Control System has been used as case study

to compare the existing methodology with the existing one. The obtained results indicate

that error propagation can make a significant difference in system reliability prediction, es-

pecially if components leaking erroneous states are complex and frequently used. However,

the approach is based on some assumptions, i.e., existence of information about failure rates

for components and connectors; independence of the failures among different components;

each component is expected to exhibit the same failure rate whenever it is invoked.

The impact of inter-modular data error propagation is assessed in [27]. Adopting a



Chapter 1. Error Characterization of Complex Critical Software Systems 17

white-box approach, the authors characterized the data error propagation process and de-

rived a set of metrics that quantitatively represents the inter-modular software interactions.

A real embedded target system has been used to perform fault-injection experiments to

obtain experimental values for the proposed metrics. The obtained results showed that

the metrics allow to determine candidate module for replication or equip with EDMs and

ERMs.

An approach to the analysis of the reliability of a component-based system that takes

into account the error propagation probability is proposed in [28]. The modeling approach

can be used to drive several tasks, such as: (i) placing error detection and recovery mecha-

nisms, (ii) focusing the design, implementation and selection efforts on critical components,

(iii) devising cost-effective testing strategies. In order to generate the model, the approach

assumes that the operational profile of each component is known, as well as its internal fail-

ure probability, i.e., the probability that, given a correct input, a failure occurs during the

execution of the component causing the production of an erroneous output. The approach

has been validate on an Automated Teller Machine (ATM) bank system example.

In [29] the authors present an approach based on static software product metrics to

identify software modules where the effects of a fault in that module are not observable.

Indeed, the conducted study shows that there is an empirical relationship between static

software product metrics and propagation of errors. The work used an adventure game,

named Nethack, as case study for the proposed approach.

Other studies, such as [30, 31, 32, 33, 34, 35], address the analysis of the software errors

by leveraging the information provided by field data, i.e., data generated by the target
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system during operational phase. These studies are detailed in the Chapter 2, where an

overview on the analysis of field data is proposed.

1.4 Challenges to Software Error Analysis in Complex Crit-
ical Software Systems

As discussed in Section 1.3, software errors represent a major dependability threat for any

software systems, since they can propagate through the components of the systems and can

potentially lead to a system failure if they are not properly managed.

The analysis of software errors occurred in a software system is a valuable process as it

allows to understand how and what type of errors may affect the system, the effect these

errors may have on it as well as how they propagate through its components. In turn,

this knowledge provides valuable insights on where to place EDMs or ERMs, which allow

improving the reliability of the system.

This is of paramount importance especially in the context of complex critical software

system, where the occurrence of a failure has a high cost since it can lead to severe conse-

quences. However, the analysis of the error behavior of this kind of system is not trivial. As

discussed in Section 1.1, complex critical software system are often based on many strongly

interacting heterogeneous components and layers, including OTS and third party compo-

nents, legacy systems, and are typically distributed, composed by several software-intensive

systems deployed on many remote nodes communicating on a network. In addition, they

are expected to satisfy the rules imposed by certification standards, such as the DO-178B

[7], as well as they might not be built on the top of cutting-edge technologies as they include
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legacy and/or obsolete kernel versions, which limit the intervention degree on the system.

Moreover, complex critical systems often lack of documentation, since they can be based

on OTS and legacy components, which often do not have a specification, or when this is

present, it is not precise and complete.

All these aspects, undermine the use of existing approaches since they are not designed

to this kind of system and cope with their complexity. For example, the approach in [24]

requires information that is typically available at an architectural level, such as set of states

of a component and set of messages that a component can exchange with another compo-

nent, while the ones in [26, 28] require information about failure rates of each components.

The approaches proposed in [27, 29] require a white-box view of the system. Differently, the

technique proposed in [25] is black-box, but the used fault injection technique requires both

to know the undesirable states of each components and a monitor for each components of

the system. In addition, these approaches are not applied to complex systems, as reported

in Table 2.1 that summarizes the most complex case study used in each before-mentioned

study and in the ones that are detailed in Section 2.4.

Therefore, the contribution of the thesis is to provide a methodology that

allows understanding the error behavior of complex critical software systems,

going beyond the limits imposed by this type of systems. To this aim, the method-

ology leverages the data generated by the target system during operational phase, i.e., field

data, by means of monitoring techniques, and is based on the fundamental of Failure Field

Data Analysis (FFDA). An overview of FFDA and field data is provided in Chapter 2,

while the methodology is described in Chapter 3.





Chapter 2

Field Failure Data and Software
Errors

Field Failure Data Analysis (FFDA in the following) provides information that allows to understand
the effect of errors on system behavior. It provides accurate information on the target system, for the
elaboration and validation of analytical models, and for the improvement of the development process.
The collected data helps to characterize the system under observation. Quantitative analysis of the
failure, error and fault types observed in the field yields feedback to the development process and can
thus contribute to improving the production process as well as the reliability of the systems. This
chapter discusses the principles of the FFDA methodology and the related literature is examined.
Finally, a discussion about open issues and challenges about the use of FFDA for analyze the error
behavior of complex critical system concludes the chapter.

2.1 Field Failure Data Analysis: definition and goals

Field Failure Data Analysis groups all fault forecasting techniques which are performed in

the operational phase of the life time of a software system. This analysis is valuable in

a variety of industrial domains, because it allows evaluating and improving dependability

characteristics of computer systems. It is based on the monitoring and recording of errors

and failures occurred during the operational phase of the system under real workload condi-

tions, i.e., the failing behavior is not forced or induced in the systems by means of fault/error

21
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injection techniques. Filed data contain rich information about the system reliability, pro-

viding valuable information on actual error/failure behavior of a software system during the

normal system operation: analysis of naturally-occurring failures/errors is among the most

accurate ways to achieve insights into the failure/error behavior of the system [8, 36]. The

objective of a FFDA campaign mainly concerns the detailed characterization of the actual

dependability behavior of the operational system. More in detail, main goals of FFDA

studies can be summarized as the following:

• identification of the classes of errors/failures as they manifest in the field, i.e., the

actual failure model and error model of an operational system;

• analysis of failure and recovery times statistical distributions;

• correlation between failures and system workload;

• modeling of the failing behavior and recovery mechanisms, if any;

• identification of the root causes of outages, and indication of dependability bottle-

necks;

Although FFDA studies are useful for evaluating the real system, they have some draw-

backs. For example, they are limited to manifested failures, such as the ones that can be

traced. In addition, the particular conditions under which the system is observed can vary

in different installations of the system, thus raising doubts on the statistical validity of the

results. Noteworthy, the analysis of data collected on a given system is hardly beneficial

to the current version of the system. It can be instead useful for the next generations of
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systems. In addition, FFDA may require a long period of observation of the target system,

especially when the system is robust and failure events are rare. To achieve statistical va-

lidity and to shorten the observation period, these studies should be carried out on more

than one deployed system, each of them under different environmental conditions.

2.2 FFDA methodology

FFDA studies are usually based on three consecutive steps: (i) collection, concerning the

collection of data to analyze from the actual system, (ii) filtering, which consists in the

extraction of the information which are useful for the analysis, and (iii) analysis, that is

the derivation of the intended results from the manipulated data. Figure 2.1 summarizes

the FFDA methodology, highlighting the sequential relationship among its phases. In par-

ticular, once a data source has been selected and field data have been collected from a

target system, data filtering phase makes it possible to infer failure data from the selected

data source. Finally, failure data are analyzed to characterize properties of interest of the

system. Details about the best practice on each of these steps are presented are surveyed

in the following.

Figure 2.1: The FFDA methodology.
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2.2.1 Collection

The collection phases of the FFDA methodology allows the gathering of the field data

generated from the target system during operational phase. A preliminary study of the

system is required for this phase in order to understand what to collect and how to collect

it, along with the technique that can be successfully used.

Techniques that are commonly used for the collection phase of FFDA are Failure reports

and Monitoring techniques.

Failure reports are generated by human operators, typically users or specialized main-

tenance staff. A report usually contains information such as the date and hour when the

failure has occurred, a description of the observed failing behavior, comments form the

operator about the action taken to restore the system, the hardware/software module pin-

pointed as responsible of the failure, and, if possible, the root cause of the failure. The

problem with this technique is that human operators are responsible for the detection of

the failure, hence some failure may remain undetected. Moreover, the information con-

tained in the report depends on the experiences and opinions of the operator and can vary

from one operator to another. Automated failure report systems have been proposed. An

example is represented by the Corporate Error Reporting software proposed by Microsoft.

It creates a detailed report every time that an application crashes or hangs, or when the

OS crashes. The report contains a snapshot of the state of the system during the crash;

including a list that contains the name and timestamp of binaries that were loaded in the

memory of computer at the time of crash, as well as a brief stack trace. This information
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allows for a quick identification of the routine that caused the failure as well as the reason

and cause for the failure.

Monitoring [37, 38] is a well-established practice in software systems because it supports

a variety of engineering tasks, such as managing the computing environment, measuring

performance indicators, troubleshooting and post-mortem characterization of failures and

errors. A monitoring system is defined as a process or a set of possibly distributed processes

whose function is the dynamic gathering, interpreting, and acting on information concern-

ing an application as it executes [37]. Therefore, monitoring is a valuable source of field

data that analysts can leverage to understand the behavior of a software system at runtime.

Beside general-purpose software, monitoring is recommended (if not even mandatory) to

comply with a number of international standards and governmental guidelines in critical

software systems. In fact, monitoring makes it possible to verify whether a critical system

is compliant with its expected behavior and preventing catastrophic consequences, such as

loss of life and damage to the environment. For example, the IEC 61508-7 [9] suggests

the use of “failure detection by on-line monitoring”, the DoD Guide for achieving Reliabil-

ity, Availability, and Maintainability (RAM) [11] emphasizes the need to “monitor system

performance to ensure that RAM performance levels meet user needs and constraints”, the

AUTomotive Open System Architecture (AUTOSAR), whose safety is enforced through the

ISO-26262 standard [10], indicates the use of execution sequence monitoring to trace the

paths taken by a given program and detect control flow errors.

It is worth noting that monitoring the occurrence of failures plays, and will play, a crucial

role in critical systems. Testing activities are not able to exhaustively validate a complex
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system against every potential fault trigger because of time and budget constraints. A

software system is likely to be released with a number of residual software faults. Gaining

insights into the reporting ability and limitations of a monitoring technique against failures

is crucial to increase the accuracy of runtime data and to infer a number of implications in

developing and improving monitoring.

Several techniques are currently used to generate monitoring data. Monitoring tech-

niques can be broadly classified into direct and indirect. Direct monitoring techniques

actively involve the monitored system in the data gathering phase [39, 40, 41, 42]. Moni-

toring data are either (i) generated by the target system itself, i.e., push-based monitoring,

or (ii) obtained by querying the target system, i.e., pull-based monitoring. Indirect mon-

itoring aims to collect data without relying on the monitored system [43, 44, 45, 46]. The

data concerning the system execution are generated at different locations, such as network

or operating system, by means of internal or external probes. Examples of indirect monitor-

ing tools are Ganglia [43] and Nagios [44], which monitor the target system by evaluating

metrics, such as CPU utilization, system load, used memory, number of running processes.

In the case of direct monitoring, the source code of a software system is arranged at

development time in a way to generate monitoring data at runtime. For instance, event

logging, which belongs to direct monitoring, has been extensively used over the past decades

for either post-mortem failure analysis [47, 48, 49], on-line analysis [50, 51], and for char-

acterizing the runtime behavior of industrial and critical systems [52, 53]. On the contrary,

indirect monitoring relies on a number of probes that generate data without the need for

the direct involvement of the monitored software system. For example, operating system
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probes can be adopted to measure a number of metrics, such as CPU/memory utilization

and system load.

Several direct monitoring techniques have been proposed and used in many domains in

the last decades. A substantial body of literature used event log files to conduct analysis

studies in several application domains, such as networked systems [47], cloud infrastructures

[54, 55], web applications and large clusters [49, 50]. The log files are generated at run-

time by the monitored software by means of logging instructions in the source code, either

using a dedicated library or simple file writing functions. They contains contain valuable

information to understand the system dependability behavior. Event logging is a widely

consolidated and pervasive practice both within the open-source community and propri-

etary software systems industry [56, 57, 58, 59, 60]. Studies such as [56, 60] point out that

software programs might contain up to one logging instruction every 30 lines of code. Event

logs have been successfully adopted also in the context of critical industrial systems.

For example, in [52] it is proposed a log analysis framework for Mars Science Laboratory

flight software [39]. The proposed method is based on the extraction of simple events from

application text logs. The extraction is implemented by means of regular expressions and

it aims to obtain a well-structured log, which can be analyzed with appropriate patterns to

detect failures. In [53] the authors proposed a failure detection and diagnosis framework for

component-based distributed embedded systems, such as automotive systems. The frame-

work encompasses a logging layer that allows collecting system events, which are fed to a

monitoring and diagnosis layers.

Assertion checking is a direct monitoring technique based on the use of assertions,
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i.e., code statements that check invariant properties of a program and produce an alert

if one of the properties is violated at runtime [61]. An example is range checking, where

the assertions perform boundary checks on the values of program variables in order to

detect anomalies [62]. In [40] is presented an assertions-based mechanism to detect data

errors in Embedded Control Systems. A configuration parameter is defined for each type

of monitored signal. An error in a signal is detected as soon as the signal violates the

constraints given by the configuration parameter. The mechanism is evaluated by means

of an error injection campaign involving an embedded system. Many works use assertions

to analyze the runtime behavior of a system. For example, in [63] the authors presented

an on-line mechanism to detect software errors during operational execution from data and

control-flow viewpoints. In particular, for data viewpoint, the authors used executable

assertions defined on functional blocks to detect anomalies on data values. A general-

purpose monitoring approach that is implemented for sequential, concurrent, and reactive

systems written in Java is presented in [42]. This approach, named JASS (Java with

ASSertion), includes a pre-compiler for annotated Java programs and an assertion language

that support all standard Design by Contract1 assertions that can be introduced in a given

program.

Source code instrumentation is based on the insertion of specific instructions into

the source code of a given program with the aim of monitoring its behavior. Several works

use this approach for failure analysis. For example, [41] presents an approach that uses

1An approach widely adopted in the context of critical systems; it allows the specification of assertions in
the form of method pre- and post-conditions, class and loop invariants, and further additional checks that
can be introduced at several points of the program code.
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code instrumentation to detect violations of time constraints in real-time systems. Au-

thors in [64] propose a rule-based logging approach. The approach defines a set of rules

that establishes how the logging mechanism must be implemented to detect several types

of errors, such as errors affecting services and interactions between software modules. Each

rule defines the placement of the logging instructions in the code. A monitoring framework,

named LogBus, has been developed by the authors in [64] based on rule-based logging. In

[65] the authors used a software instrumentation package, i.e. DTrace, to perform Function

Boundary Tracing (FBT), which traces function entry and exit events, in order to monitor

the execution of a software system. Another technique based on source code instrumen-

tation is Aspect-Oriented Logging, i.e. a systematic approach to log management based

on the Aspect-Oriented Programming (AOP) paradigm [66]. In this technique logging can

be treated as a system-wide feature orthogonal to other services or to the business logic.

For instance, through aspect weaving, a log entry can be systematically produced for each

runtime exception, with the aim of supporting transparent exception reporting. Monitor-

ing techniques based on source code instrumentation are also used in the area of runtime

verification [67, 68], where a set of properties are checked during the execution of the tar-

get system. The properties, usually written in a formal specification language, are used to

generate a number of monitors; the monitors analyze the events generated by the system

at runtime with the aim of verifying whether the properties are met or not. The system is

previously instrumented in order to generate the events required by the monitors.
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2.2.2 Filtering

Filtering consist in analyzing the collected data for correctness, consistency, and com-

pleteness. This concerns the filtering of invalid data and the coalescence of redundant or

equivalent data. Indeed, given a large volume of data collected in real systems, a crucial

step is inferring the failure data that will be used to perform an FFDA analysis. Filtering

encompasses two types of activity, i.e., (i) removing non-useful data, and, more importantly,

(ii) coalescing redundant failure data by grouping entries that are related to the manifesta-

tion of the same problem. This is especially true when event logs are used. Logs, indeed,

contain many information which are not related to failure events. Only a fraction of the en-

tries in the log is useful to conduct the failure analysis: many entries report non-error events

and can be excluded from the failure analysis [69]. Filtering non-error events is essentially

time-consuming task; however, it does not represent a real problem to failure analysis. It

is used to reduce the amount of information to be stored, and to concentrate the attention

only on a significant set of data, thus simplifying the analysis process. A manual inspection

of the data is valuable to identify the severity of the entries and error-specific keywords.

Two basic filtering strategies can be adopted: blacklist and whitelist strategies. The black-

list can be thought as a list of all the terms that surely identify an event which is not of

interest for the analysis. The blacklist filtering discards all those events which description

message contains at least one of the blacklist terms. On the contrary, the whitelist is the list

of all permitted terms, hence only events which contain these terms are not rejected. Both

the approaches can be supported by de-parameterization procedures. De-parameterization
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replaces variable fields within a text entries (e.g., usernames, IP and memory addresses,

folders) with a generic token. For example, the hypothetical entries

incoming connection from 225.178.20.37

incoming connection from 143.195.0.100

appear the same once IP addresses are replaced with the IPAddr token. De-parameterization

reduces the number of distinct messages templates to scrutinize. As shown by [70] around

200 million entries in the log of a supercomputing system were generated by only 1,124

distinct messages.

Once non-error data has been filtered out, it still remains the problem of grouping the

error entries representing the manifestation of the same problem. Events which are close

in time may be representative of one single failure events. They thus need to be coalesced

into one failure event. Coalescence techniques can be distinguished into temporal, spatial,

and content-based.

Temporal coalescence, or tupling [69], exploits the heuristic of the tuple, i.e., a collection

of events which are close in time. The heuristic is based on the observation that two

failure events, if related to the same fault activation, are likely to occur near in time.

Consequently, if the time distance of the entries is smaller than a predetermined threshold,

i.e., the coalescence window, they are placed in the same group (called tuple). To explain how

the tupling scheme works, let Xi be the i − th entry in the log, and t(Xi) the timestamp

of the entry Xi. If the condition t(Xi+1)t(Xi) < W is satisfied (with W denoting the

mentioned coalescence window), Xi+1 is place in the same tuple of Xi. The window size is

a crucial parameter which need to be carefully tuned in order to minimize collapses (events



Chapter 2. Field Failure Data and Software Errors 32

related to two different faults are grouped into the same tuple) and truncations (events

related to the same fault are grouped into more than one tuple).

Spatial coalescence is used to relate events which occur close in time but on different

nodes of the system under study. It allows to identify failure propagations among nodes,

resulting particularly useful when targeting distributed systems. The techniques adopted for

spatial coalescence are usually the same as the ones used for temporal coalescence [71, 36].

Finally, content-based coalescence groups several events into one event by looking at the

specific content of the events into the data. For example, in [72] this technique is adopted

to identify machine reboots: when a the system is restarted, a sequence of initialization

events is generated by the system. By looking at the specific contents of these events, it

is possible to develop proper algorithms to identify machine reboots sequences and group

them into one reboot event. Also, content-based coalescence can be used to group events

belonging to the same type [73].

2.2.3 Analysis

Collection and filtering make it possible to infer the failure event from the collected data;

analysis allows practitioners to achieve meaningful insights from the data. Data analysis

step consists in performing statistical analysis on the filtered data to identify trends, to

evaluate quantitative measures and to assess fault tolerance and recovery mechanisms.

Error and failure classification is a the first step of the analysis, which aims at catego-

rizing all the observed failures events on the basis of different criteria, e.g., their nature,
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severity and originating component. Classification allows pinpoint the most errors/failures-

prone components and, in general, the failure modes of the system. Classification results

can be used to drive finer-grain analysis. In addition, descriptive statistics can be derived

from the data to analyze the location of faults, errors and failures among system compo-

nents, the time to failure or time to repair distributions, the impact of the workload on the

system behavior, the coverage of error detection and recovery mechanisms, etc. Commonly

used statistical measures in the analysis include frequency, percentage, and probability dis-

tribution [74]. They are often used to quantify the reliability, the availability, and the

maintainability.

A substantial body of literature try to conduct the evaluation and modeling of depend-

ability attributes. More detailed analysis try to determine the probability distribution of

the time to failure variable, and, in some cases, of the time to repair. This permits to detail

the failure model of the system under study. To this aim, the real data are fitted with

theoretical, continuous time distributions. The most adopted distributions in this field are

the exponential, the hyper-exponential, the lognormal, and the weibull.

The exponential distribution was firstly adopted to model the time to failure and time to

repair of electronic components. However, it has been often shown that this distribution does

not fit real data, especially when the data involves multiple underlying causes or software

failures. This is due to the simplistic memoryless property of the exponential distribution.

Authors in [75] use a hyper-exponential distribution to fit the duration of failures. This

type of distribution has been adopted in the mentioned study because the authors observed

the existence of multiple predominant failure dynamics in the data: as a result, a two-stage
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hyper-exponential model was chosen.

The lognormal distribution has been recognized as a proper distribution for software

failure rates [76]. Many successful analytical models of software behavior share assumptions

that suggest that the distribution of software event rates will asymptotically approach

lognormal. The lognormal distribution has its origin in the complexity, that is the depth

of conditionals, of software systems and the fact that event rates are determined by an

essentially multiplicative process. The central limit theorem links these properties to the

lognormal: just as the normal distribution arises when summing many random terms, the

lognormal distribution arises when the value of a variable is determined by the multiplication

of many random factors. The lognormal distribution has been also used in the context of

high-performance computing systems [77].

The weibull distribution [78] is probably the most adopted function to model the failure

data. widely used parametric family of failure distributions. The reason is that by a

proper choice of its shape parameter, an increasing, a decreasing, or a constant failure rate

distribution can be obtained. Weibull distributions have been used in many application

domains, e.g., [47, 78, 75].

In practice, the modeling of the failure data by means of statistical distribution, is

usually supported by goodness-of-fit test procedures, e.g., the Kolmogorov-Smirnov test, to

establish whether the chosen distribution is a good model to fit the data.

Other types of analysis are concerned with the correlation between failure distributions.

The correlation can uncover possible links between failures in different hardware and soft-

ware modules or in different nodes constituting the system under study. This analysis can
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also conduct to the discovery of trends among failure data on event logs. From a theoretical

perspective, the trend analysis of event logs is based on the common observation that a

module exhibits a period of (potentially) increasing unreliability before final failure. By

discovering these unreliability trends, it can be possible to predict the occurrence of certain

failures. To this aim, principal component analysis, cluster analysis, and tupling can be

adopted [2].

Finally, the analysis activity often conducts to the development of simulation models of

the dependability behavior. Models often adopted in the literature are state-machines, fault

trees, Markov chains, and Petri nets. The understanding gathered from field data allows to

define these models and to populate their parameters with realistic figures, e.g., failure and

recovery rates.

2.3 Relevant Applications

FFDA has been used for decades to characterize dependability of operational systems.

This section summarizes relevant efforts and reference works in the area of dependability

characterization by means of field data: studies have been grouped based on the main

analysis objectives they pursue.

2.3.1 Error and Failure Classification

As discussed in Section 2.2.3, the primary task to achieve insights into the meaning of

collected failure data is classification. Error and failure classification usually represent the

starting point of a FFDA study and have several advantages. For examples, they allow

determining the most-predominant failure classes, pinpointing system components that are



Chapter 2. Field Failure Data and Software Errors 36

prone to generate error/failure data, and support the evaluation of the improvement be-

tween subsequent releases of the same product. This information is valuable to conduct

quantitative evaluations of the system, and allows a better interpretation of the measure-

ment.

The work in [79] propose an interesting FFDA study on a server machine with the Sun

SPARC UNIX OS. Starting from event logs, the work performs a classification of failures and

identify the potential trends of errors which lead to failures. Data in the log is classified

and categorized to identify error trends leading to failures, and to support MTBF and

availability measurements. For examples, authors show that the input-output subsystem is

the most error-prone subsystem, and that many network problems observed in the log were

not caused by the system under study.

A characterization of operating system reboots of Windows NT and 2K machines is

proposed in [80]. The data source adopted in the study was collected over a period of

36 months. The study focuses on unplanned reboots, representing the occurrence of a

failure, identified via a content-based coalescence approach. The study demonstrates that

the number of failures caused by the operating system itself is smaller in Windows 2K when

compared to NT machines; however, the number of failures caused by application code is

larger in Windows 2K.

The work in [81] conduct a similar classification study, addressing Windows XP SP1.

Th author shows how the percentage of OS failures decreases from 12% for Windows 2K to

the 5% of Windows XP, thus demonstrating that system crashes are often due to applica-

tions and third party software. In addition, they conduct a detailed classification study to
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pinpoint the .dll and executable files causing crashes.

Authors in [82] face a rather different application domain. From a classification study

of 62 user-visible failures in three large-scale Internet services, i.e., Online, Content, and

ReadMostly, they observe that front-ends are a more significant problem than is commonly

believed. In particular, operator error and network problems are shown to be leading

contributors to user-visible failures.

Understanding the distribution of the failure data among different classes can provide a

feedback about the quality of analysis results. In [70] authors demonstrate, in the context

of supercomputing system, that the classes of failures that bias the content of the log, i.e.,

the most entries-prone classes, can distort measurements.

2.3.2 Diagnosis and Correlation of Failures

FFDA analysis allows achieving in-depth understanding of causes and correlation among

failures. The use of only measurements-based approach does not allow to obtain this type

of evidence. The use of models, and statistic artifacts applied to the data are also required

to reach this goal. Works in the area, dating back to the 1980s, demonstrated the existence

of a relationship between the failure behavior and the workload run by a system.

In particular, during a performance measurement campaign for a large DEC-1OA time-

sharing system, it was found that the simplistic assumption of a constant system failure

rate did not agree with measured data [83]. Subsequent research by the same authors [84]

involves use of a doubly stochastic Poisson process to model failures. The model relates the

instantaneous failure rate of a system resource to the usage of the considered resource.
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Moved by this research, the authors in [85] proposed an approach to evaluate the re-

lationship between system load and failure behavior that presumes no model a priori, but

rather starts from a substantial body of empirical data. The study was conducted on three

IBM 370 mainframes, and both failure data (maintenance failure reports) and performance

counters (via a proprietary IBM system) were gathered. A regression analysis of failure

and performance data evidenced the strong correlation between failure manifestation and

system load.

Several works suggest that failures observed in different components of a computer

system are correlated. In [86] authors defined an analysis methodology for event logs of

Tandem systems through multivariate techniques, such as factor and cluster analysis. The

event logs were gathered from three Tandem systems over a 7 months period. A 2-phase

hyperexponential distribution was adopted to model the error temporal behavior, according

to the two error behaviors exhibited by the three systems: error bursts and isolated faults.

Although the number of errors observed during the system operations was relatively small,

authors observed that multiple processes were affected by the same problem, because of the

presence of shared resources.

Authors in [87] perform a measurement study to assess the dependability of seven DEC

VAX machines. The analysis aimed to estimate the distributions of the Time Between

Errors and Time Between Failures, to analyze dependencies between errors and failures.

Again, shared resources turned out to be a relevant dependability bottleneck. Moreover,

the analysis showed that errors and failures occur in bursts, and that, neglecting failure

correlation phenomena can significantly impact the quality of the measures.



Chapter 2. Field Failure Data and Software Errors 39

The work in [88] evidences the feasibility of on-line diagnosis approaches based on trend

analysis and real data. Specifically, it concentrates on the recognition of intermittent failures

and defines a methodology to distinguish between transient, permanent, and intermittent

failures by looking at the correlation between consecutive failure events. Statistical tech-

niques are used to quantify the strength of the relationship among entries in the log. About

500 groups of failures are identified over a 14 months time span.

2.3.3 Failure Prediction

Analysis of failure data log is the basis also failure prediction studies. Several works have

been developing techniques to predict failures, based on the occurrence of specific event

patterns in field data. Predicting failures is challenging; however, it allows applying fail-

ure avoidance strategies, triggering corrective and recovery actions, reducing the Time To

Repair, enhancing system dependability.

In [78] a failure prediction technique, called the Dispersion Frame Technique (DFT), is

presented. The technique is defined by starting from the statistical characterization of real

data observed on a 13 SUN 2/170 nodes, running the VICE file system, over a 22 months

period. By gathering data by both event logs (regarded as errors) and from operators failure

reports (regarded as failures), authors concentrate of the identification of error trends which

lead to failures. The effectiveness of the DFT is shown via direct experiments on actual

data. In particular, it is shown that the DFT uses only one fifth of the error log entry

points required by statistical methods for failure prediction. Also, the DFT achieves a

93.7% success rate in failure prediction.
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Authors in [50] analyze event logs from a 350-node cluster system. Logs encompass

reliability, availability and serviceability (RAS) events, and system activity reports collected

over one year. Authors observed that data in the log were highly redundant: for this reason,

filtering techniques have been applied to model the data into a set of primary and derived

variables. The prediction approach, based on a rule-based classification algorithm, was able

to identify the occurrence of critical events with up to 70% accuracy.

A deep study on the logs from a production IBM BlueGene/L system has been conducted

in [89]. The authors proposes empirical failure prediction methods which can predict around

80% of the memory and network failures, and 47% of the application I/O failures.

2.3.4 Using Field Data to Characterize Security

FFDA campaigns have also been used in the context of security community, where secu-

rity analysis have been conducted starting from the data collected during the progression

of malicious activities and security attacks. several works appeared which attempted to

characterize and to model system vulnerabilities and attacks starting from field data.

An outstanding example is represented by the Honeynet project [90]. A honeypot can

be defined as a monitored computer environments placed on the Internet with the explicit

purpose of being attacked. By placing honeypots on the Internet and by gathering data

on the malicious activity affecting them, one can study the characteristics of attacks and

system vulnerabilities. As an example, the study in [91] aimed at using data collected by

honeypots to validate fault assumptions required when designing intrusion-tolerant systems.

Authors set up three machines equipped with different operating systems (Windows NT and
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2K, and Red Hat Linux) and collected network-related data (via tcpdump) for four months

to analyze the source of attacker and the attacked ports. The work evidenced that, in

most cases, attackers know in advance which ports are open on each machine, without

performing any port scan. Moreover, there were no substantial differences in the attacks

made on different operating systems.

A similar setup has been used by [92]. In this case the testbed was composed by two

Windows 2K machines and security data have been collected over a time period of 109 days

by means of the Ethereal tool. The objective of the study was to establish the characteristics

of the data that allowed separating different classes of attacks. This work, which shows how

to use field data to recognize attacks, established that features, such as, number of bytes

constituting the attack or mean distribution of the bytes across the packets, are valuable

metrics to separate attacks.

The work in [93] exploits data from the Bugtraq database and proposes a classification

of vulnerabilities. In particular, vulnerabilities are dominated by five categories: input vali-

dation errors (23%), boundary condition errors (21%), design errors (18%), failure to handle

exceptional conditions (11%), and access validation errors (10%). The primary reason for

the domination of these categories is that they include the most prevalent vulnerabilities,

such as buffer overflow and format string vulnerabilities. Starting from this data and helped

by code inspections, authors propose finite state machine models for vulnerabilities, which

help to better understand their behavior and/or to uncover new ones.

Authors in [94] conduct an in-depth study of the forensic data (e.g., syslog, Intrusion



Chapter 2. Field Failure Data and Software Errors 42

Detection System (IDS) logs) produced by the machine of a large-scale computing organi-

zation. Attack data adopted in the study are collected over a timeframe of 5 years. The

analysis aims to achieve insights into the progression of attacks, to pinpoint the type of

alerts that are more likely to catch different types of attacks, and to investigate causes

of undetected incidents. Analysis results are valuable to model security attributes and to

develop monitoring tools.

2.3.5 Monitoring Techniques Characterization

Field data have also been used to evaluate the effectiveness of monitoring techniques, which

are one of the main sources of field data as discussed in Section 2.2.1.

In [95] a platform, called SMock, for testing and evaluating runtime monitoring tools

is presented. The platform allows generating a Java mock test system, which is used as a

benchmark for the runtime verification tools under test, starting from a specification. The

mock system is run under a given monitoring tool. After the execution, SMock generates a

report that contains the execution time of the system, the average memory usage and cpu

utilization. The analysis of the reports generated by SMock makes it possible to assess the

impact and the performance overhead induced by the considered runtime verification tools

on the mock system.

In [64] the rule-based logging technique is compared to the traditional logging in two

open-source systems. The authors adopt a software fault-injection approach to assess the

logging techniques under different failure manifestations. The results, obtained from the

analysis of the collected log for the techniques, indicate that rule-based logging significantly
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improves the failure detection capability of the traditional logging approach; however, it

misses some details that could help to understand failure causes (e.g., a given file could not

be opened, a service was invoked with bad parameters).

The work [96] presents an experimental analysis of different monitoring techniques in

web-based applications. The work focuses on both direct and indirect monitoring techniques

and tools, i.e., Zabbix [97], the log-analyzer Swatch [98], a monitoring module based on

aspect-oriented programming and an end-to-end monitoring technique based on JMeter

[99]. The experimental study consists in the emulation of anomalous scenarios and the

evaluation of coverage, detection latency and overhead of the techniques. The analysis of

the obtained file data allows understandig that the AOP based technique is characterized

by the maximum failure reporting rate, followed by the end-to-end monitoring technique,

Swatch and Zabbix.

It should be noted that no one of the cited works characterize the effectiveness of a

monitoring technique with respect to failures and errors in a comprehensive way. Indeed, [95]

does not focus on the failure and error reporting ability of the monitoring techniques, [64]

is limited to only two monitoring techniques, and [96] presents preliminary measurements

conducted considering a small number of scenarios (i.e., order of 10), which involved fairly

obvious error manifestations, such as abnormal memory and CPU consumption.

2.4 Related Research and Thesis Contributions

Literature proposing techniques and measurements based on the analysis of field data en-

compasses different domains, as discussed in the previous Section. Field data have been
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used also to characterize the error behavior of software systems and/or identify locations

for EDMs and ERMs. In particular, some studies are based on the use of source code in-

strumentation and monitoring techniques to collect field data in order to analyze how errors

manifests in a given system, the effects they may have on the system as well as how they

propagate through the software.

For example, a framework for profiling modular software with regard to error propaga-

tion and error effect is proposed in [30]. The framework, called EPIC, may be used to find

the modules and signals which are most exposed to errors in a system and to ascertain how

different modules affect each other in the presence of data errors, i.e., errors in variables

and signals. EPIC makes use of variable instrumentation to trace the values of variable in

order to estimate the proposed error permeability, which evaluates the ability of a module

to contain errors, and propose the placement of EDM. The proposed framework has been

successfully applied to part of an embedded control system used for arresting aircraft on

short runways and aircraft carriers.

In [31] authors propose a system, called Triage, that automatically performs onsite

software failure diagnosis providing a detailed diagnosis report, which includes the fail-

ure nature, triggering conditions, related code and variables, the error propagation chain,

and potential fixes. The system makes use of kernel-level components and of multiple re-

executions of the target software to support failure diagnosis; during each re-execution,

detailed information is collected via dynamic binary instrumentation in order to conduct

the analysis of the occurred failure and its causes. The system has been applied on 9

applications with different complexity, such as TAR, Apache web server, MySQL.
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An environment for examining the propagation of errors in software is proposed [32].

The environment, called PROPANE, allows the analysis of the propagation of data errors in

a single-process software system written in C, identifying the error paths and evaluating the

propagation times. With this aim, PROPANE makes use of a fault injection mechanism to

induce data error in the system as well as of instrumentation of the variables of the system

to detect the occurrence of errors. Part of an embedded control system used for arresting

aircraft has been used to evaluate the effectiveness of the proposed tool.

A method for assessing error data propagation for operating systems is proposed in [33].

The method is focused on the analysis of the behavior of error in device driver, and on

the propagation of these errors to applications which makes use of the target device driver.

Errors are induced into a device driver by means of fault injection at interface level, while

the detection of the propagation of an occurred error to application is obtained by means

of assertions. A set of metrics are proposed, i.e., Service Error Permeability, OS Service

Error Exposure, Driver Error Diffusion, which help to understand if the target driver needs

a wrapper. The method has been assessed on Windows CE .Net operating system, which

was chosen for its limited complexity.

In [34] an approach to capture the importance of variables in dependable software sys-

tems is proposed. The approach is based on a proposed metric, named importance, which

captures the impact a given variable has on the dependability of a software system. The

evaluation of the metric requires the instrumentation of the variables of the system, in order

to understand when a variable is corrupted. Based on the proposed metric, the approach

allows to provide insights on the design and positioning of EDMs and ERMs in order to
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guarantee that critical variables always hold appropriate values. The approach has been

assessed on an open-source flight simulator.

A diagnosis tool, called SherLog, is proposed in [35]. The tool analyzes event logs gen-

erated by a software system during failure executions and its source code to automatically

generate control-flow and data-flow information to help engineers diagnose the errors oc-

curred in the system. In particular, SherLog is able to provide the reporting path of an

error, using a static analysis of the source code. The tool has been evaluated on 8 different

real-world failures from 7 applications, which range between rmdir GNU utils to the Apache

web server.

It is worth noting that the use of these solutions is not trivial in complex critical software

systems, which is the focus of this dissertation. As discussed in Section 1.4, complex critical

software systems are usually distributed, characterized by multiple levels, and several com-

ponents, each one with complex interconnections and several variables. In addition, they are

expected to satisfy the rules imposed by certification standards, such as the DO-178B [7], as

well as they might not be built on the top of cutting-edge technologies as they include legacy

and/or obsolete kernel versions, which limit the intervention degree on the system. These

aspects undermine the use of existing techniques based on field data in complex critical

software systems. For example, the approaches in [30, 32, 34] are based on instrumentation

of variables, which might be expensive in a complex critical software system composed by

several modules. In particular, the approach in [30] also requires to measure the proposed

error permeability for each input of each module, which lead to a low scalability of the

approach; while the tool in [32] can be used only for single process software, which limits
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Table 2.1: Most complex case study used in each considered work.

work
Most complex case study

(name, type or LOC)
[31] MySQL
[23, 34] FlightGear Flight Simulator - ∼220K LOCs
[29] Nethack - adventure game
[32, 30, 27] Part of an embedded control system for arresting aircraft
[33] Windows CE .Net operating system
[24] Part of a Computer Software Configuration Item
[25] no case studies
[26] Personnel Access Control System
[28] Automated Teller Machine (ATM) bank system example
[35] Apache web server - ∼317K LOCs
this study Real-world ATC communication middleware - ∼790K LOCs

its applicability to complex software systems. On the other hand, the system proposed in

[31] makes use of kernel-level components and dynamic binary instrumentation, while the

one proposed in [33] is conceived for OS device drivers. In addition, the tool in [35] requires

static analysis of the source code, which can be either expensive on system composed by

a large number of lines of codes, or inapplicable if the source code is not totally available.

Noteworthy, these approaches are not applied to complex systems, as reported in Table

2.1 that summarizes the most complex case study used in each before-mentioned study

and the ones discussed in Section 1.3, along with the most complex one considered in this

dissertation. This is a further evidence of their inapplicability to this type of systems.

Therefore, the contribution of the thesis is to provide a methodology that

allows understanding the error behavior of complex critical software systems

by means of field data generated by the monitoring techniques that are already
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implemented in the target system. The use of monitoring techniques already imple-

mented in a software system allows to avoid any changes in the target system, preserving its

functionalities and performance. As discussed in Section 2.2.1, monitoring techniques are

one of the main source of field data since, beside being recommended by several international

safety standards and governmental guidelines, e.g., IEC 61508-7 [9], the AUTomotive Open

System Architecture (AUTOSAR) through the ISO-26262 [10], and the DoD Guide for

achieving Reliability, Availability, and Maintainability (RAM) [11], they are consolidated

and pervasive practice both within the open-source community and proprietary software

systems industry. The following challenging questions are related to the former:

• RQ1: Is it possible to use monitoring techniques to characterize the error behavior in

complex critical software system? Field data generated by means of monitoring tech-

nique contain valuable information about the behavior of the target system at runtime.

However, it is not trivial to analyze them in order to obtain valuable information about

the error behavior of the system during failing executions, and especially about the

propagation of errors. Therefore, an ad-hoc methodology is required to extract and

analyze data provided by a monitoring technique in order to understand what happen

in the system in terms of errors when a fault is activated, according to the considered

monitoring technique. More in details, the methodology has to leverage error data

generated by a monitoring technique to infer (i) the error model considered by this

technique, (ii) the error behavior of the system at varying the type of activated fault

and the type of failure occurred in the system, according to the inferred error model,
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(iii) how errors propagate through the components of the target system, (iv) the fail-

ure reporting ability exposed by the considered monitoring technique at varying the

type of activated fault and the type of failure occurred in the system.

• RQ2: Is it possible to improve the error detection/recovery of a complex critical

software system from error data? The knowledge of the error behavior of the target

system and of how the errors propagate through its components are often used in the

literature to identify the locations for EDM and ERM, which allow an improvement of

the detection and recovery of errors in the target system. Therefore, the methodology

has to allow inferring the locations where the placement of EDM and ERM might be

beneficial for the system, and the type of error/failure they have to cope with.

• RQ3: How do the error and failure reporting ability change between different moni-

toring techniques implemented in a given system? And what about the dissimilarity

of their data? A number of monitoring techniques can be implemented in a complex

critical software system, which can be of different types and consider different error

models; therefore, it can be useful to compare the performance exhibited by each

technique in order to provide insights to developers to implement better monitoring

techniques. To this aim, the methodology has to compare the performance exhibited

by each monitoring technique in terms of (i) ability to report failure occurred in the

target system, (ii) failure coverage by failure and fault type, (ii) ability to report the

propagation of errors and (iv) dissimilarity of the data they provide at varying failure

manifestation. There are studies that try to address this topic; however, they do not
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characterize the effectiveness of a monitoring technique with respect to failures and

errors, as discussed in Section 2.3.5.

• RQ4: Is it useful to combine different monitoring techniques implemented in a com-

plex critical software system? Different monitoring techniques implemented in a soft-

ware system might expose orthogonal performance, complementing each other in terms

of failure reporting and/or error propagation reportability. Therefore, the method-

ology has to be able to evaluate (i) the orthogonality of the monitoring techniques

implemented into the target system and (ii) the potential benefit of their combination.

The following chapters try to answer the above mentioned questions, by describing the

proposed methodology as well as the results obtained form its application to two different

real-world critical software systems in the field of Air Traffic Control domain. These chapters

are the result of a three years experience, and partially extend previously published results,

as [100, 101, 102].



Chapter 3

Software Error Analysis: a
data-driven methodology

The analysis of errors occurred in a software system is one of the main activity to incorporate
dependability structures and mechanisms where they are the most effective. To this aim, know where
errors tend to propagate and where errors tend to do the most damage, leading to failure, is of
paramount importance. Several solutions are proposed in the literature to conduct error analysis of a
software system. However, their application is not trivial in the context of complex critical software
systems. In this chapter a methodology to conduct error analysis in the context of complex critical
software systems is presented.

The methodology leverages field data generated by means of monitoring techniques (MUT) al-
ready implemented in the target system (SUT), in order to (i) understand the error behavior exposed
by the target system and to (ii) assess the effectiveness of the monitoring techniques implemented
in the system. An automated framework, based on software fault injection experiments, is used to
collect field data from the MUTs. The collected data are used to evaluate a number of metrics in
order to quantify the ability of MUTs at reporting useful notifications in face of failures, as well as
to evaluate the error behavior exhibited by the SUT they allow to infer.

3.1 Introduction

The knowledge on how faults and errors may affect a software system is of paramount

importance in order to improve their reliability. In particular, the design of effective error

detection mechanisms requires not only knowledge on which types of errors to detect but

also the effect these errors may have on the software, i.e., the failures they lead to, as well

as how they propagate through the software, i.e., the error propagation. Existing solutions

51
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allow obtaining this knowledge in different ways. However, their application is not trivial

in the context of complex critical software systems, as discussed in the Section 2.4, since

they are often characterized by multiple and distributed nodes, multiple levels, each one

with multiple modules, and also by some constraints in terms of intervention degree and/or

performance.

The proposed methodology aims to leverage field data generated by means of monitoring

techniques already implemented in the target software system in order to understand the

error behavior of the system, avoiding intrusive modifications of its source code to collect

useful data to analyze. It should be noted that the higher the effectiveness of the considered

monitoring techniques at reporting errors and failures occurred in the target system, the

higher the comprehensiveness the methodology is able to provide in terms of error behavior

of the system. For this reason, the proposal is also conceived as a methodology to compare

the effectiveness of different monitoring techniques implemented in different target systems.

To this aim, the methodology leverages information retrieval metrics and other proposed

metrics.

3.2 Proposed Methodology

Let the System Under Test (SUT) be the target software system, i.e., the software

implementing the monitoring techniques to assess. The SUT is exercised with a faultload

and a workload. The faultload consists of a set of software faults, which represents common

programming mistakes found in real software systems; the workload is a typical operational

profile for the SUT. The execution of the SUT subjected to the faultload and the workload
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allows inducing errors and failures into the SUT. The proposed method makes it possible

to measure the extent the direct monitoring techniques implemented by the SUT are able

to report the occurrence of the failures induced through the faultload and also to evaluate

the error behavior exhibited by the SUT according the considered monitoring techniques.

According to this concept, the notion of Monitoring technique Under Test (MUT) is

introduced.

Considered MUTs are evaluated by using different metrics. Precision and Recall of a

MUT, i.e., the ability of a MUT at generating monitoring data upon the occurrence of a

failure, and its failure coverage, i.e., the ability of a MUT at reporting different types of

failure occurred in the SUT, are measured. In addition, three new metrics are defined:

• Data Dissimilarity, which allows gaining insights into the suitability of the data

generated by a MUT for manual failure analysis.

• Error Determination Degree, which allows gaining insights into the ability of error

notifications of a MUT to suggest either the fault that led to the error, or the failure

the error led to in the SUT.

• Error Propagation Reportability, which allows understanding the ability of the

MUT at reporting the propagation of errors in the SUT.

The effectiveness of different MUTs at reporting the set of failures induced in the SUT

are compared as well as their effectiveness in terms of Error Determination Degree and Error

Propagation Reportability. The metrics that are adopted in this dissertation are detailed

in Section 3.3. All the characteristics of the proposed method, such as faultload, workload
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and experimental procedures, are detailed in the following.

3.2.1 Faultload

The faultload consists of a set of software faults, i.e., common programming mistakes

that can be found in the source code of real-world software systems. The faults adopted in

this dissertation belong to the well consolidated orthogonal defect classification (ODC)

[103]. The fault types proposed by [104] have been considered, which extend the ODC classes

for practical injection purposes. The authors in [104] analyzed the fault distributions of a

number of software systems and identified a subset of representative fault types observed

in the field.

Table 3.1 reports the fault types used in the proposed methodology and the ODC class

to which they belong, i.e., algorithm (ALG), assignment (ASG), checking (CHK ), interface

(INT ). Each fault type represents a typical programming mistake, such as missing variable

initialization, missing function call, wrong values assigned to variable. According to the

estimates in [104], the fault types adopted in this study represent a subset accounting for

total around 80% of representative faults found in real-world software systems.

It should be noted that the methodology leverages fault injection means to induce the

faultload in the considered SUTs. The rationale behind this choice is to accelerate the

collection of failure data generated by the MUTs, avoiding to wait for naturally occurred

failures. However, practitioners might apply the proposed methodology also on naturally

occurred failure data. Indeed, knowing the root cause of the occurred failure and the failure

mode, i.e., the way the SUT fails, each failure manifestation can be categorized according
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Table 3.1: Fault types adopted in the methodology. (ALG-algorithm, ASG-assignment,
CHK -checking, INT -interface)

Fault
ODC
type

MFC missing function call ALG
MVIV missing variable initialization using ASG

a value
MVAV missing variable assignment using ASG

a value
MVAE missing variable assignment with an ASG

expression
MIA missing IF construct around CHK

statements
MIFS missing IF construct plus statements ALG
MIEB missing IF construct plus statements ALG

plus ELSE before statement
MLC missing AND/OR clause in expression CHK

used as branch condition
MLPA missing small and localized part ALG

of the algorithm
WVAV wrong value assigned to variable ASG
WPFV wrong variable used in parameter INT

of function call condition
WAEP wrong arithmetic expression in INT

parameter of a function call

the considered fault types and failure model, which is detailed in the next section.

3.2.2 Workload and Failure Model

Each fault of the faultload is injected into the SUT: the SUT is exercised with the workload

in order to trigger the fault and to induce the occurrence of a failure. The workload is

SUT-dependent and does not vary across the experiments that emulate the faults.

A general classification to categorize the failures induced in the SUT has been adopted.

The classification is based on a reference paper in the area of dependability [1]:

• CRASH : abrupt/unexpected termination of the SUT; the pid(s) of the process(es)
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encapsulating the software are deallocated by the operating system before the software

system is correctly halted.

• SILENT : the SUT is up, but no output/functionality is provided within the expected

timeout, e.g., the system is hung or no output is generated at all. The expected

timeout has to be established by means of fault-free runs of the system before the

injection experiments.

• ERRATIC: bad output, misconfigurations, exceptional conditions, and errors impact-

ing the system internal components that do not cause CRASH or SILENT failures.

• NO FAILURE: no failure manifestation is noted during the experiment; the injected

fault is not activated or it does not cause the failure of SUT.

3.2.3 Experiments procedure

A campaign of experiments is conducted to collect the data generated by the MUTs. For

each experiment, one fault belonging to the faultload is induced into the SUT. The SUT is

exercised with the workload, and the monitoring data generated by the MUTs are collected.

Figure 3.1 shows the steps of the procedure adopted for each experiment. The execution

of the experiments is automated and supervised by a controller program, such as indicated

by Figure 3.1. The controller injects the faults, starts/stops the SUT, and reboot the ma-

chines to ensure the same initial conditions for each experiment (e.g., no zombie processes,

unallocated semaphores, and shared memories are left by the previous experiment). The

steps are described in the following:



Chapter 3. Software Error Analysis: a data-driven methodology 57

Figure 3.1: Assessment approach.

1. Experiment setup. One fault belonging to the faultload is introduced in the SUT.

Then, the SUT is started.

2. Workload activation. The SUT is exercised with the workload. The workload

invokes the SUT with the goal of triggering the fault and activating the MUTs under

error conditions.

3. Data collection and experiment finalization. The monitoring data generated by

a MUT are saved in a file either when (i) the workload completes or (ii) a predefined

timeout expires (the timeout is established before the campaign by means of fault-free

runs of the SUT). After the files containing the data generated by the MUTs are saved

for subsequent analysis, the SUT is restored, the files are cleaned, and the machines

are rebooted before the next experiment is performed.

The Controller establishes whether a failure occurred or not upon the completion of

the experiment. The Controller analyzes both operating system-level data (e.g., pid(s) of

the process(es) executing the SUT, core dumps), and workload -level data (e.g., the output
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Figure 3.2: Labeling and Error Clustering.

generated by the SUT and the response time) to establish the type of failure out of the

adopted failure model. For example, the Controller would label as SILENT an experiment

where all the OS processes incarnating the SUT are still alive after the completion of the

experiment, but no function has been delivered within the expected timeout.

3.2.4 Labeling and Error Clustering

In order to make the collected data suitable for the analysis, the methodology provides two

further steps, i.e., labeling and error clustering, as shown in Figure 3.2.

Labeling aims to label each notification generated by a MUT into no error-reporting,

i.e., the notification does not report an error, and error-reporting, i.e., the notification

reports an error; the labeled data allow the evaluation of the metrics provided by the
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proposed methodology.

Error clustering aims to classify the types of error reported by each MUT, and to infer

the error model of the MUT in the related SUT, i.e., the types of error that the MUT is

able to report into the related SUT. The clustered error data allow obtaining insights about

the error behavior exposed by a SUT according to the considered MUT. Once the error

model of a MUT is defined, all its error notifications are labeled with the type of reported

error. In addition, this step also includes the labeling of each error notification with its

source function and component, i.e., the function that generates the error notification and

the component of the SUT the function belong to, respectively, which are provided by the

error notification.

3.2.5 Error Propagation Graph

The dataset that contains for each fault injection experiment (i) the number of errors of

each type reported by a MUT in each component of the related SUT during the experiment,

(ii) the type of injected fault, (iii) the ODC class the fault belongs to, and (iv) the type

of failure occurred in the SUT, has to be generated from the dataset obtained during the

experimental campaign. For each MUT of a SUT, a dataset of this type is generated in

order to evaluate how the errors propagate through the components of the considered SUT.

The information contained in these datasets allows to build non-exhaustive directed

graphs, one for each ODC class, that summarizes the error propagation phenomena obtained

during the experimental campaign in a SUT, named Error Propagation graphs. These

graphs have been partially inspired by the ones proposed in [105]. It should be noted that
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the error propagation graphs are considered non-exhaustive because they are built based

on the errors detected by a MUT, i.e., the errors that led to at least an error notification to

be generated by the MUT in the components of the SUT. Therefore, the errors undetected

by the MUT cannot be considered. Each directed graph is characterized by three types

of node: (i) the fault type nodes, i.e., the nodes that represent the fault types that belong

to the considered ODC class, (ii) the component nodes, i.e., the nodes that represent the

components, or groups of components, of the considered SUT, and (iii) the failure nodes,

i.e., two nodes that represent the occurrence or not of a failure in the considered SUT.

Noteworthy, the node that represents the component where the faults have been injected

during the experimental campaign, named faulty component here, is divided in two nodes:

• faulty component-IMMEDIATE that represents the function where a fault has

been injected;

• faulty component-QUICK that represents the remaining part of the faulty com-

ponent.

An example of error propagation graph for a specific ODC class and MUT of a SUT

is shown in Figure 3.3. The absolute and probability values in a fault type node indicate

the number of fault of this type for which the considered MUT have generated at least an

error notification and the probability to have an error notification from the MUT about this

type of fault, i.e., the ratio between the before mentioned absolute value and the number

of faults of the considered ODC class for which the MUT has generated at least an error

notification, respectively.
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Figure 3.3: Example of directed graph with failure nodes.

Differently, the absolute and probability values in a component node refer to the errors

generated as a consequence of a fault of the considered ODC class and for which the MUT

has generated at least an error notification, named MUT reported errors here. Precisely,

the absolute value indicates the number of MUT reported errors that propagate through the

related component, i.e., the number of MUT reported errors for which only the component,

or almost the component and the faulty component at the same time, has generated at

least an error notification; while the probability value indicates the probability that a MUT

reported error propagates only through the component, or almost through the component

and the faulty component at the same time, i.e., at least an error notification is generated

for it by the component, or almost by the component and the faulty component at the

same time, which is obtained as ratio between the before mentioned absolute value and

the number of MUT reported errors. In particular, the absolute and probability values in
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the faulty component-IMMEDIATE node indicate the number of MUT reported errors for

which at least an error notification has been generated by the function where the fault has

been injected, named faulty function, and the probability that at least an error notification

is generated for a MUT reported error by the faulty function, which is obtained as ratio

between the before mentioned absolute value and the number of MUT reported errors. Sim-

ilarly, the absolute and probability values in the faulty component-QUICK node indicate the

number of MUT reported errors for which at least an error notification has been generated

by the other non-faulty functions, i.e., all the function excluding the faulty function, and

the probability that at least an error notification is generated for a MUT reported error

by one these non-faulty functions, which is obtained as ratio between the before mentioned

absolute value and the number of MUT reported errors. It should be noted, that in case

of component nodes that represent a group of nodes, these nodes only refer to the MUT

reported errors that are exclusively reported by them at the same time, or almost by them

and the faulty component at the same time.

Regarding the arches, the absolute and probability values on an arch from a fault type

node and a component node indicate the number of fault of this type that led to a MUT re-

ported error notified by the component, i.e., the number of MUT reported errors, generated

as consequence of a fault of this type, that propagated through the component, and the

probability that a MUT reported errors, generated as consequence of a fault of this type,

propagates through the component, which is obtained as ratio between the before mentioned

absolute value and the absolute value of the considered fault type node, respectively. In the

same way, the absolute value on an arch from two component nodes indicates the number
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of MUT reported errors that propagate form the first component to the second one, i.e.,

the MUT reported errors for which at least an error notification has been generated in both

the components at the same time, while probability value indicates probability that a MUT

reported error propagates from the first component to the second one, i.e., the probability

that a MUT reported errors lead to at least an error notification to be generated in both the

components at the same time, which is defined as the ratio between the before mentioned

absolute value and the number of MUT reported errors. Finally, the absolute value on an

arch from a component node to the FAILURE node indicates the number of MUT reported

errors, which have been reported by the component, that have led to a failure in the con-

sidered SUT (the break down of the failure is reported in the square brackets); while the

probability value represents the probability that a MUT reported errors, which have been

reported by the component, have led to a failure in the considered SUT, which is obtained

as ratio between the before mentioned absolute value and the absolute value related to the

node component. In the same way, the absolute value on an arch from a component node

to the NO-FAILURE node indicates the number of MUT reported errors, which have been

reported by the component, that have not lead to a failure in the considered SUT; while

the probability value represents the probability that a MUT reported errors, which have

been reported by the component, have not led to a failure in the considered SUT, which

is obtained as ratio between the before mentioned absolute value and the absolute value

related to the node component.

It should be noted that the propagation phenomena showed in the error propagation

graphs are almost three-level propagation phenomena. The assumption here is that the error
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reported in the faulty component are the cause of the errors reported by other components,

as well as the error reported by the faulty function is the cause of the error reported by the

non-faulty functions of the faulty component. Therefore, for example, if error notifications

are generated by the faulty function, by a non-faulty function of the faulty component, and

by another component of the considered SUT, e.g., COMPONENT X, at the same time, it is

possibly to assume that the error has been propagated from the faulty function to the non-

faulty function of the faulty component, and from the latter to the other component, than an

arch form the faulty component-IMMEDIATE node to the faulty component-QUICK node

can be drown, as well as an arch form the faulty component-QUICK to the COMPONENT

X node.

Differently, nothing can be said about the causality between the notification generated

in two non-faulty components since no information are available on how the components

interact each other, and which requires a deep knowledge of the system. Therefore, if an

error notification is generated in two non-faulty components, no directed arches can be

drawn between the components.

Noteworthy, it is also possible to build a graph by considering many MUTs at the same

time. In this case, the concept of MUT reported errors is substituted with the MUTs

reported errors, which represents the errors generated as a consequence of a fault of the

considered ODC class and for which the at least one of the considered MUTs has generated

at least an error notification. In addition, another node can be also introduced in the error

propagation graph, i.e., the detection node, which allows to understand what MUTs have

reported/detected the errors, as shown in Figure 3.4. The absolute values on an arch from a
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Figure 3.4: Example of directed graph with detection node.

component node to the DETECTION node indicates the number of MUTs reported errors,

which have been reported by the component, that have been reported by each MUTs; while

the percentage value represents the same information in percentage terms, which is obtained

as ratio between the before mentioned absolute value and the absolute value related to the

node component, multiplied by 100.

3.3 Evaluation Metrics

The output of each experiment consists of the (i) type of fault induced in the SUT, (ii)

type of failure (if any), and (iii) the files containing the monitoring data generated by each

MUT. Each entry in these files is labeled as error- or no error- reporting, as well as with

the source component and function, and the type of reported error in the entry.

The data collected through the proposed method make it possible to evaluate the MUTs

implemented by a system and to quantify their ability at reporting useful notifications in
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face of failures, as well as to evaluate the error behavior exhibited by the SUT they allow

to infer. The evaluation metrics are presented in the following.

3.3.1 Recall and Precision

The files containing the data generated by a MUT during the injection experiments, are

attributed to four disjoint sets, i.e., true negative (TN), true positive (TP), false negative

(FN) and false positive (FP). For example, the false negative set contains the files of a MUT

that do not report any failure notification even if, according to the controller, a failure was

actually caused by the injected fault. Similarly, the false positive (FP) set contains the

files that report a failure even if no failure occurred during the experiment according to the

controller.

Recall (R) and precision (P) of a MUT are computed based on the cardinality of TN,

TP, FN and FP. In the context of this study, R measures the probability that a failure is

reported by the MUT, i.e., R = |TP |/(|TP |+ |FN |); P measures the probability that a file

reporting a failure corresponds to an actual failure, i.e., P = |TP |/(|TP |+ |FP |).

3.3.2 Failure Coverage

The overall recall of each MUT has to be broken down by failure type, i.e., CRASH, SILENT,

ERRATIC, in each SUT in order to evaluate the failure coverage of the MUT. The failure

coverage of a MUT with respect to a type of failure is the ratio between the number of

failures of this type reported by the MUT in the considered SUT, and the total number

of failures of the same type observed during the campaign in the SUT. For example, let

|FAILURESSUT,X | be the number of failures of type X occurred in the target system
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SUT , and |FAILURESMUT,SUT,X | be the number of failures of type X reported by the

monitoring technique MUT in the target system SUT , the failure coverage of the monitoring

technique MUT in the target system SUT with respect to the failure of type X is:

FCMUT,SUT,X = |FAILURESMUT,SUT,X |/|FAILURESSUT,X |.

Failure coverage provides a big-picture of the failure reporting capability of the MUTs.

3.3.3 Error Determination Degree

The dataset that contains for each fault injection experiment (i) the number of errors of

each type reported by a MUT of a SUT in the experiment, (ii) the type of injected fault,

(iii) the ODC class the fault belongs to, and (iv) the type of failure occurred in the SUT,

has to be generated from the dataset obtained during the experimental campaign. For

each MUT of a SUT, a dataset of this type is created in order to evaluate the ability of

the error notifications generated by a MUT of a SUT to pinpoint the fault type, the ODC

class, and the failure type, related to those error notifications. It should be noted that each

of these datasets considers only the experiments where the MUT has reported almost one

error notifications.

The Error Determination Degree (EDD) metric is proposed to evaluate these abilities

of a MUT. In particular, the Error Determination Degree of a MUT of a SUT with respect

to the fault type, the ODC class, or the failure type, represents the ability of the error

notifications generated by the MUT to pinpoint the fault type, the ODC class, or the failure

type, respectively, related to those error notifications. Precisely, the EDD of a MUT of a

SUT with respect to X, i.e., the fault type, the ODC class, or the failure type, is defined as
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the correct classification rate of a classifier that has analyzed the dataset generated for the

MUT of the SUT by means of a k-fold cross-validation process, and considering the number

of errors of each type reported by the MUT as features and X as class to predict. The closer

the value to 100.00% the higher is the ability of the MUT to suggest the X related to the

error notifications the MUT has generated during the experimental campaign. Noteworthy,

the classifier used for the evaluation of EDD, as well as the number of folds to consider for

the cross validation, have to be the same for each MUT of each SUT in order to perform a

comparison.

3.3.4 Error Propagation Reportability

The Error Propagation Reportability (EPR) metric is proposed to evaluate the ability of

each MUT of a SUT to report the error propagation phenomena in the related SUT with

respect to a specific ODC class. In particular, considering the fault related to the considered

ODC class, let |ENFC| be the number of MUT reported errors that have at least an error

notification generated in the faulty component of the considered SUT, i.e., the sum of the

absolute value on the arches from a fault type node to a faulty component node (either

IMMEDIATE or QUICK ) on the error propagation graph, and |MRE| the number of

MUT Reported Errors of the considered SUT, i.e., the sum of the absolute values of the

fault nodes on the graph, the EPR of the monitoring technique MUT of the target system

SUT with respect to the ODC class X is defined as:

EPRMUT,SUT,X = |ENFC|/|MRE|

The closer the value to 1 the higher is the ability of the MUT to properly report the
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error propagation phenomena occurred in the SUT during the experimental campaign.

Differently, a low value for this MUT suggests that there is the need of add some EDMs

into the components of the considered SUT, in order to improve the ability of the MUT at

reporting the propagation of errors.

It should be noted that in some cases the assumption that all the errors are expected

to generate at least an error notification in the faulty component can be not valid. For

example, when a component that reports the error works as a detector of the faulty compo-

nent. Therefore, the proposed EPR metric might provide a not accurate value in this case.

However, it can be successfully used to decide where to place EDMs, and, more important,

as a comparative metric between MUTs. Indeed, if a MUT reports the error propagation

path that is unreported by another MUT (with a lower EPR), this suggests that the second

one actually exhibited a low ability at reporting error propagation paths.

3.3.5 Orthogonality of the MUTs

Given a SUT, the set of failures of the same type, i.e., CRASH, SILENT, ERRATIC, is

broken down into a number of disjoint subsets, which are detailed in the following:

• NONE: the failures reported by no MUT.

• MUT∗i : the failures reported exclusively by the MUTi (i=1. . . n, where n is the total

number of MUTs of the SUT, such as depicted by Figure 3.1). Let MUTi be the set

of failures reported by the MUTi: MUT∗i = MUTi −
⋃n

k=1 MUTk, where k6= i.

• (MUTi·MUTj)
∗: the failures reported by both MUTi and MUTj but not by any other

MUT, i.e., (MUTi·MUTj)
∗ = (MUTi ∩MUTj) −

⋃n
k=1 MUTk, where i,j=1. . . n, i 6=j,
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k6= i, j.

• ALL: the failures that are reported by all the MUTs;

Figure 3.5 shows a graphical representation of the sets in the case of three MUTs. For

example, MUTi=MUT∗i ∪ (MUTi·MUTj)
∗ ∪ (MUTi·MUTk)∗ ∪ ALL.

For each set the percentage of reported failures, i.e., the cardinality of the set

divided by the total number of failures in percentage terms, are computed. These mea-

surements provide strong insights into the effectiveness of the MUTs. For example, a large

number of failures belonging to the NONE set, suggests the need for improving the detec-

tion mechanisms implemented by the SUT. Even more important, the analysis of the sets

(MUTi·MUTj)
∗ allows understanding if the MUTs can complement at reporting failures.

3.3.6 Dissimilarity of the Monitoring Data

The above described evaluation metrics is complemented with measurements of dissimi-

larity of the data generated by the MUTs during the experiments. The dissimilarity aims

to measure the degree of difference among the data produced by a MUT in response to

different failures. It should be noted that, in spite of a high recall, a MUT might generate

Figure 3.5: Representation of the MUTs comparison approach.
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similar notifications under different failures. The data contained in few failure notifications

could be more effective when compared to the data that are repeated across many notifi-

cations, which indicate generic error reporting. The dissimilarity of the monitoring data

provides insights into the suitability of a MUT for manual failure inspection, since dissimilar

notifications help to discriminate between the failures occurred in the SUT.

The dissimilarity through the log.entropy scheme is measured. Log.entropy is a well-

established term weighting scheme in the information retrieval domain [106, 107]. Term

weighting assesses features, such as frequency, rarity and randomness of textual information

across a collection of documents (i.e., the files containing the monitoring data in this study).

Log.entropy is used because it allows gaining quantitative insights into unstructured data

with no specific assumptions regarding semantics and patterns they might contain. In this

respect, log.entropy allows potential analysts to measure the dissimilarity of the notifications

even without a deep knowledge of the MUT.

As described in Section 3.2.3, the data generated by the MUTs are saved into distinct

files at the end of each experiment. Given a MUT, let D (i.e., the documents set) denote

set of files produced by the MUT during the experiments where it reported the occurrence

of a failure. Term weighting is performed by generating a term-document matrix before-

hand. The term-document is a |T | × |D| matrix, where |T | is the total number of distinct

terms occurring across the collection of documents in D, and |D| the total number of doc-

uments (again, log files in this study). A term is a sequence of characters separated by

one or more whitespaces. Each element xi,j of the term-document matrix, with 1 ≤ i ≤ |T |

and 1 ≤ j ≤ |D|, represents the number of times the term i occurs in the document j.
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Log.entropy quantifies the importance of a term (i) within each document, and (ii) across

all the documents in D. The value of log.entropyj for a given document j is estimated as

follows:

log.entropyj =

√√√√ |T |∑
i=1

(ei · log2(1 + xi,j))2 (3.1)

ei = 1 +
1

log2(|D|)
·
|D|∑
j=1

pij log2(pij) (3.2)

where ei, with 0 ≤ ei ≤ 1, is computed according to Equation 3.2 (where pi,j = 1 +

xi,j/
∑|D|

j=1 xij), and represents the entropy value of the term i across the documents in the

set D. The occurrence of the term i in the document j, i.e., xi,j , is scaled by log2 in the

log.entropy technique.

Log.entropy is a positive numeric score computed for each document: the smaller the

value of log.entropy, the higher the chance the document contains terms that are strongly

repeated in D. As it can be inferred from Equations 3.2, terms that occur regularly across

the document set have a small weight. For example, a term occurring the same number of

times across all the documents would be weighted 0.

In the context of this study, it would be desirable that each file generated by a MUT

exhibited a large log.entropy score, which denotes that the file contains very specific notifi-

cations (i.e., not frequently repeated across the documents set) for a given failure, that is,

the MUT generates dissimilar data. At the other end of the spectrum, a small log.entropy

score denotes generic reporting (similar data).
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It should be noted that each of these metrics allows to provide insights related to the

research questions addressed in this dissertation. In particular, the analysis of the Error

Propagation Reportability and of the Error Determination Degree allows to understand the

suitability of the monitoring techniques for the characterization of the error behavior of the

considered system (RQ1 ). The analysis of the Error Propagation Graphs allows to infer the

potential locations for EDMs and ERMs (RQ2 ). In addition, the study of all the metrics

allows to characterize the failure and error reporting ability of the monitoring techniques

(RQ3). Finally, the study of the MUTs orthogonality, and of the EPR and EDD obtained

by combining the MUTs, allows to assess if the combination of MUTs can be useful (RQ4 ).





Chapter 4

Target Systems, Techniques, and
Datasets

This chapter provides the description of the target systems, i.e., the Systems Under Test (SUTs), and
the target monitoring techniques, i.e., the Monitoring techniques Under Test (MUTs), that are con-
sidered in this dissertation. The reference SUTs are two real-world critical industrial systems in the
Air Traffic Control (ATC) domain, i.e., a communication middleware (SUT1) and an arrival man-
ager (SUT2). Both the SUTs implemented three monitoring techniques, i.e., event logging (MUT1),
assertion checking (MUT2) and rule-based logging (MUT3), which represent the reference MUTs
in this dissertation. Also details about the conducted experimental campaign, i.e., the workloads,
faultloads, Labeling and Error Clustering processes, are provided. Finally, the obtained datasets are
detailed at the end of the chapter.

4.1 The Reference SUTs

The proposed methodology has been applied on the MUTs implemented by two real-world

critical industrial systems in the Air Traffic Control (ATC) domain, where monitoring

is strongly recommended.

The SUTs are a communication middleware (MW or SUT1) and a standalone ATC

program called arrival manager (AM or SUT2), described in the Sections 4.1.1 and 4.1.2,

respectively. A controller has been developed in order to supervise the injection experiments

for each SUT. The experimental framework consists of Virtual Machines (VMs), which run

75
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the SUTs. The VMs are hosted on machines equipped with Intel i7-2670QM CPU, 6 GB

of RAM, running a Fedora 16 OS installation. Each VM is based on the Red Hat 5 EL OS

and it is configured with 4 cores, and with 2GB of RAM.

4.1.1 Communication Middleware

The SUT1 is a communication middleware for the integration and the interoperability of

heterogeneous critical systems, such as ATC and crisis management applications. For exam-

ple, the middleware is used to integrate flight data processors (FDPs) and controller working

positions (CWPs) in the ATC domain. The access to the middleware and its source code

has been granted within the MINIMINDS academic-industrial project1. Figure 4.1 shows

the SUT1 and the experimental framework deployed to generate the monitoring data. The

framework includes the adapting layers, which allow legacy applications to invoke the SUT1

and its services. SUT1 ensures the communication between legacy applications, according

to the publish-subscribe paradigm; its source code consists of 796,353 lines of C code.

Figure 4.1: SUT1: Experimental framework.
1http://www.cosmiclab.it
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In details, the SUT1 is composed by 8 components, i.e., abstraction, which represents the

abstraction level between the middleware and the operating system, api, which represents

the API exposed to applications, database, which bridges data from middleware to a DBMS

and vice versa, ddsi2, which provides QoS-driven real-time networking based on multiple

reliable multicast channels, durability, which provides fault-tolerant storage for both state

data as well as persistent settings, kernel, which represents the core of the middleware,

spliced, which is responsible for creating and initialising the database which is used to

manage the middleware data, and user, which represents an intermediate level between the

api and the kernel module.

4.1.2 Arrival Manager

The SUT2 is the ATC arrival manager. This system manages the arrivals of flight in a given

airspace. The arrival manager implements two tasks, which are represented by Figure 4.2.

The sequencing process assists a human operator at optimizing the runway capacity;

the metering process regulates/manages the flow of aircrafts entering the airspace. The

arrival manager continuously computes an arrival sequences list (ASL) and times for flights

based on different parameters, such as the landing rate and the spacing requirements for

flights arrivals.

The system is multi-process and multi-thread, and adopts an Oracle Database2 to store

the data. The high-level architecture of the SUT2 is shown by Figure 4.2. The access to

the source code of the system, which is composed by 40,396 lines of C++ code, has been

granted in the context of an industrial partnership with the developers of the system.

2http://www.oracle.com/
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Figure 4.2: SUT2: Experimental framework.

4.2 Workloads

Controlled testbeds have been setup to exercise both the SUTs. It is worth noting that even

if the experiments are conducted in a controlled environment, adopted software emulate a

real-world scenario in order to collect representative monitoring data.

The experimental framework for the SUT1, i.e., the communication middleware, is com-

posed by real-world ATC prototypes, which are developed by the industrial partners of

the MINIMINDS project, to collect representative monitoring data. It is worth noting

that adopted software (i.e., middleware, adapters and applications) emulate a production

ATC installation. The experimental framework includes a number of Off-The-Shelf (OTS)

components, such as the JBoss application server3 and the Hypersonic Database4. The

workload of the SUT1 is implemented by two ATC legacy applications (shown by Figure

4.1). The applications exchange flight data through the communication middleware. The

considered applications are (i) a FDP that generates flight data (i.e., the data that describe

a flight, such as arrival and departure time, flight trajectory) and publishes the data on

3http://www.jboss.org
4http://hsqldb.org



Chapter 4. Target Systems, Techniques, and Datasets 79

the communication middleware, and (ii) a web-based CWP that receives the data from the

middleware and displays the flight information on a web console.

The experimental framework for the SUT2, i.e., the arrival manager, represents a real-

world scenario, which has been deployed in conjunction with the developers of the system,

to collect representative monitoring data. The workload is represented by a test suite that

emulates the nominal usage of the system during the operations. The test suite consists of

a sequence of test cases that are adopted by the developers to exercise the SUT2 by means

of representative requests. The test cases (that are shown by Figure 4.2, i.e., Test Tool)

verify the behavior of the system under insert- and delete-flight orders submitted to the

SUT2.

4.3 The Reference MUTs

Both the considered SUTs natively implement event logging (EL or MUT1) and as-

sertion checking (AC or MUT2) in order to generate events of interest and failure

data during the execution. Furthermore, the code instrumentation technique proposed in

[64], called rule-based logging (RB or MUT3), has been implemented into both the

SUTs before the experimental campaign. Event logging, assertion checking, and source

code instrumentation represent widely-established direct monitoring techniques in critical

industrial systems.

4.3.1 Event Logging

Log-based techniques consist in collecting and analyzing event log files produced by the

system, where available. Event logs contain valuable human-readable information to gain
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insights into regular and anomalous system activities. Well known logging frameworks are

UNIX Syslog [108] and Microsoft Event Logging [109]. The SUTs implement a variety of

built-in mechanisms to generate the event logs.

The SUT1 adopts a variety of procedures to generate the events in the log, which are

reported by the leftmost column of Table 4.1. Figure 4.35 (line 4 ) shows a fragment of

logging code that adopts the OS REPORT procedure. The generation of the event is triggered

by an if statement (line 4): in particular, a warning is reported if no name is specified for

a topic.

Table 4.1: Logging procedures implemented by the SUT1.

logging
occurrences

occurrence with
procedure error message

OS REPORT 2,126 331
printf 1,713 79
snprintf 863 82
fprintf 485 21
DLRL Except THROW 467 189
sprintf 277 1
NN ERROR 67 43
OS DEBUG 45 32
YY 35 25
cfg error 35 35
NN FATAL 34 12
yyerror 30 30
gapi errorReport 15 15
tot. occurrences 6,192 895

Total 6,192 logging instructions have been identified in the SUT1, with a density 0.78%

as shown in TABLE 4.2, i.e., 1 logging instruction every 129 lines of code. The second

column of Table 4.1 reports the number of logging instructions by procedure. It is worth

5In the Figures showing snippets of code (sample monitoring data), omitted has been used in place of
the lines of code (notifications), which have not been reported in the dissertation.
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1 Communication Middleware (v topic.c, line 480)
2 //omitted

3 if (name == NULL) {
4 OS REPORT(OS WARNING, ”v topicNew”, 0,

5 ”Topic ’?’ is not created. No name specified (NULL).”);

6 r e t u r n n u l l ;

7 }
8 //omitted

Figure 4.3: Example of error logging (SUT1).

1 Communication Middleware (spliced.c, line 614)
2 //omitted

3 if (createResult == os resultSuccess) {
4 o s _ s h a r e d M e m o r y R e g i s t e r U s e r P r o c e s s ( s p l i c e d G e t D o m a i n N a m e ( ) , info−>p r o c I d ) ;

5 OS REPORT 2(OS INFO, OSRPT CNTXT SPLICED,

6 0, ”Started service %s with args %s”, info-¿name, args);

7 }
8 //omitted

Figure 4.4: Example of informational logging (SUT1).

noting that event logging is also used to report informational events, such as the code

snippet in Figure 4.4 that notifies the start of a service of the middleware. Total 895 out of

6,192 logging instructions contain an error message in the SUT1. The rightmost column of

Table 4.1 shows the breakdown of the logging instructions containing an error message by

procedure.

Similar considerations apply to the SUT2. Again, it has been observed that the event

logging mechanism consists of a variety of procedures. The distribution of the logging pro-

cedures is shown in Table 4.3, while Figure 4.5 reports an example of the most recurring

Table 4.2: MUTs density for each case study. EL-error* denotes the percentage of logging
instructions containing an error message out of the total of logging instructions.

SUT1 SUT2

(796,353 LOC) (40,396 LOC)
EL 0.78% 1.98%

EL-error* 14.45% 11.39%
AC 0.99% 0.18%
RB 0.36% 8.59%
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Table 4.3: Logging procedures implemented by the SUT2.

logging
occurrences

occurrence with
procedure error message

DIAG 493 69
Log 115 2
sprintf 71 14
Diagnostic 66 3
TRACE 39 0
printf 15 3
tot. occurrences 799 91

logging procedure. The SUT2 contains 799 logging instructions, with a density of 1.98%,

i.e., 1 logging instruction every 51 lines of code. Total 91 logging instruction contain an

error message, such as indicated by the rightmost column of Table 4.3.

1 Arrival Manager (CSeqUtl.cpp, line 306)
2 //omitted

3 if ( 0 == pAerodromes ){
4 sDiag.Format(”searchForAerodrome(), aerodrome[%s] : DB CONNECT ERROR ”, pAdCode );

5 DIAG(sDiag);

6 //omitted

Figure 4.5: Example of logging instruction (SUT2).

4.3.2 Assertion Checking

Assertion checking is based on the use of assertions, i.e., code statements that check invari-

ant properties of a given program and produce an alert if one of the properties is violated at

runtime [61]. Examples are range checking, where the assertions perform boundary checks

on the values of program variables [62], and specification of function interfaces [61], where

the assertions perform checks on preconditions and postconditions of functions. Most of the

assertions implemented by the SUTs belong to the specification of function interfaces class.
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1 Communication Middleware (v writer.c, line 1670)
2 //omitted

3 v _ w r i t e r v _ w r i t e r N e w ( v _ p u b l i s h e r p , c o n s t c _ c h a r ∗ name , v _ t o p i c topic ,

4 v _ w r i t e r Q o s qos , c _ b o o l e n a b l e ){
5 //omitted

6 assert(p != NULL);

7 assert(C TYPECHECK(p, v publisher));

8 assert(C TYPECHECK(topic, v topic));

9 //omitted

Figure 4.6: Example of assert instructions (SUT1).

1 Arrival Manager (STUB HMI MTCD.cpp, line 582)
2 //omitted

3 v o i d H M I _ M T C D : : s e t _ T h d I n f o ( C D a t a b a s e ∗ pUserDB , t T h d I n f o ∗ p T h d I n f o )

4 {
5 assert(pUserDB != 0);

6 assert(pThdInfo != 0);

7 //omitted

Figure 4.7: Example of assert instructions (SUT2).

Examples of assertions implemented by the SUT1 are shown by Figure 4.6. The assert

instructions (lines 6-8) check the value/type of two variables: they evaluate to TRUE when

the internal state of the monitored program is correct, FALSE otherwise. The assert

statement at line 6 generates a warning if the p is NULL; lines 7-8 generate an alert if

C TYPECHECK returns FALSE.

Examples of assertions implemented by the SUT2 are shown by the snippets in Figure

4.7. The assert instructions (lines 5-6) check the values of two program variables: they

evaluate to TRUE when the internal state of the monitored program is correct, FALSE

otherwise. For example, the considered assert statement generate a warning if the pUserDB

and pThdInfo variables value is equal to 0.

Both the examples taken from SUT1 and SUT2 verify a precondition of a function, i.e.,

v writerNew and set ThdInfo, respectively. The source code of the SUT1 contains around

7,954 assert instructions, with a density of 0.99%, i.e., 1 assertion every 101 lines of code.

The source code of the SUT2 contains 72 assert instructions, with a density of 0.18%, i.e.,
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1 assertion every 561 lines of code.

4.3.3 Source Code Instrumentation

Source code instrumentation is based on the insertion of specific instructions into the code of

a software system with the aim of monitoring its behavior. The technique proposed in [64],

i.e., the rule-based logging, has been used to instrument both SUT1 and SUT2. Rule-

based logging consists of a number of rules, which drive the placement of the monitoring

instructions. For example, the Service STart (SST) and Service ENd (SEN) rules aim

to trace the start and the end of a function; similarly, the Interaction STart (IST) and

Interaction ENd (IEN) rules suggest how to trace the start and the end of a function call.

For example, Figure 4.8 shows a function that has been instrumented with the rule-

based logging technique. The function, i.e., CASDI t, belongs to the SUT2. It can be noted

that the SST (line 8) and SEN (line 14) instruction have been introduced to trace the start

and the end of the function, while IST (line 10) and IEN (line 12) are placed before and

after the invocation of SendOrdLst.

The instruction logAnEvent consists of three fields that indicate (i) the event introduced

1 Arrival Manager (CAsdIt.cpp, line 37)
2 //omitted

3 C A S D I _ t : : C A S D I _ t ( C A S F D o c ∗ p D o c ) :

4 m _ b M e s s a g e I n Q u e u e ( f a l s e ) , m _ n D i a g n o s t i c L e v e l ( 0 ) ,

5 m _ n T i m e A s s i g n T y p e ( 0 ) , m _ n T i m e ( 0 ) ,

6 m _ n Y e a r ( 0 ) , m _ n M o u n t h ( 0 ) , m _ n D a y (0 )

7 {
8 logAnEvent( SST, CASDI t, CAsdIt.cpp);

9 //omitted

10 logAnEvent( IST, SendOrdLst, CAsdIt.cpp );

11 S e n d O r d L s t ( ) ;

12 logAnEvent( IEN, SendOrdLst, CAsdIt.cpp );

13 //omitted

14 logAnEvent( SEN, CASDI t, CAsdIt.cpp);

15 }
16 //omitted

Figure 4.8: Example of rule-based instructions (SUT2).
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in the source code, (ii) the monitored function and (iii) the monitored module. The events

generated by the logAnEvent instruction are collected by a dedicated monitoring frame-

work, named LogBus [64], which generates error events. For instance, if the SEN (IEN)

event is not generated within an expected time since the observation of the correspond-

ing SST (IST), a Service Error (Interaction Error) is generated by the LogBus: the error

indicates that a function (or a call to a function) failed to terminate within the expected

timeout. The SUT1 contains 2,895 rule-based logging instructions, with a density of 0.36%,

i.e., 1 instruction every 275 lines of code, while the SUT2 contains around 3,470 rule-based

logging instructions, with a density of 8.59%, i.e., 1 instruction every 12 lines of code.

Table 4.2 summarizes the density of each MUT in both the SUTs. For example, the

density of the logging instructions in the SUT1 is 0.78%, i.e., (6, 192/796, 353) · 100. The

density of assertions and rule-based logging is rather different across the SUTs. It should

be noted that for SUT1 only the kernel component implements the rule-based logging.

4.4 Falutloads

The datasets considered in this dissertation have been obtained by running each SUT under

a representative faultload. The faultloads have been generated by the SAFE6 tool [110].

The tool parses the Abstract Syntax Tree (AST) of the SUT (generated by the compiler

frontend) and automatically searches for all the locations in the source code where each fault

type reported by Table 3.1 can be injected. As a result, the greater the size and complexity

6http://www.critiware.com/safe.html
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of the source code, the larger the number of possible injectable faults that are inferred by

the tool. The injection is accomplished by means of changes of the source code, which

emulate the programming mistake. For each fault, SAFE generates a .patch file containing

the lines of code that will be subtracted and added to the SUT in order to emulate the fault.

It should be noted that the faultload has been generated by means of changes of the source

code. The rationale behind this choice is the availability of the source code of the SUTs

that have been considered in this dissertation. However, the same goal can be reached by

using a different tool or apporach, such as binay-level [111] and interface-level [112] fault

injection that allow fault injection also if the source code of the SUTs is not available.

The faultload of the SUT1 is composed by 12,733 faults. Overall 3,159 faults caused

the failure of the SUT1.

Table 4.4 presents the total number of failures by fault and failure type. For example,

the value 185 reported by the cell (MFC, CRASH ) indicates that 185 algorithm faults,

i.e., ALG, of type missing function call, i.e., MFC, caused a CRASH failure. Differently,

the value 1,482 reported by the cell (total, CRASH ) of the ALG ODC class indicates that

1,482 algorithm faults caused a CRASH failure. A closer look into the data collected by the

controller of the experiments revealed that the causes of ERRATIC failures can be divided

as follows: abnormal termination of one (more) internal service thread(s) of the SUT1 (39%),

misconfigurations and bad setting of the quality of service parameters (18%), inability of the

SUT1 at properly executing all the publish requests of the FDP (14%), interaction issues

between the publishing and the core module of the SUT1 (12%), data delivery issues (5%),

other minor causes (12%). It is worth noting that the dataset generated in the SUT1 has
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Table 4.4: Failures by fault and failure type (SUT1).

failure
fault

CRASH SILENT ERRATIC
tot.

ODC type faults

ALG

MFC 185 56 41 282
MIFS 54 2 13 69
MIEB 44 6 12 62
MLPA 1,199 94 156 1,449

total 1,482 158 222 1,862

ASG

MVIV 4 0 0 4
MVAV 23 1 2 26
MVAE 627 34 57 718
WVAV 22 0 4 26

total 676 35 63 774

CHK
MIA 38 1 9 48
MLC 4 0 2 6

total 42 1 11 54

INT
WPFV 389 9 20 418
WAEP 50 1 0 51

total 439 10 20 469
tot. failures 2,639 204 316 3,159

been made publicly available7.

A faultload of total 6,597 faults has been injected in the SUT2. Overall 685 injections

caused a failure of the SUT2. Table 4.5 divides the set of failures by fault and failure

type. For example, again the value 6 reported in the cell (MFC, CRASH ) indicates that 6

algorithm faults of type missing function call caused a CRASH failure. Differently, the value

68 reported by the cell (total, CRASH ) of the ALG ODC class indicates that 68 algorithm

faults caused a CRASH failure. ERRATIC failures are mainly caused by corruptions of

timestamps at determining the arrival time of flights (49%) and database exceptions (45%);

other minor causes account for around 6% of ERRATIC failures.

7http://www.mobilab.unina.it/Datasets.htm
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Table 4.5: Failures by fault and failure type (SUT2).

failure
fault

CRASH SILENT ERRATIC
tot.

ODC type faults

ALG

MFC 6 6 12 24
MIFS 0 0 0 0
MIEB 0 1 0 1
MLPA 62 199 258 519

total 68 206 270 544

ASG

MVIV 0 1 0 1
MVAV 0 0 0 0
MVAE 11 63 48 122
WVAV 0 0 0 0

total 11 64 48 123

CHK
MIA 1 3 0 4
MLC 0 0 0 0

total 1 3 0 4

INT
WPFV 2 4 8 14
WAEP 0 0 0 0

total 2 4 8 14
tot. failures 82 277 326 685

4.5 Labeling and Error Clustering

The files that contains the data generated by the MUTs during the fault injection exper-

iments have been analyzed through a post-mortem inspection in order to conduct the

labeling and error clustering of the data. Labeling aims to label each notification generated

by a MUT into no error-reporting, i.e., the notification does not report an error, and error-

reporting, i.e., the notification reports an error; the labeled data allow the evaluation of the

metrics provided by the proposed methodology that are related to the failure coverage of

MUTs. Differently, Error Clustering aims to classify the types of error reported by each

MUT, and to infer the error model of the MUT in the related SUT; the clustered error

data allow obtaining insights about the error behavior exposed by a SUT according to the
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considered MUT.

4.5.1 Labeling

The files that contains the data generated by the MUTs after each fault injection experiment

have been labeled into no error- and error-reporting through a post-mortem inspection.

The files have been scrutinized with the aim of pinpointing one or more error notifications

generated by the MUTs. The presence of error notifications in a given file, possibly suggests

that a failure occurred during the execution of the experiment according to the MUT that

generated the file. Figure 4.9 and Figure 4.10 report error notification generated by means

of event logging and assertion checking, respectively.

In order to label the event logs, the procedures that have been commonly used by several

works in the area, such as [113, 114], have been adopted. First, the content of the event logs

collected across all the experiments has been de-parameterized, i.e., variable fields, such

as IP and memory addresses, file system paths and timestamps, has been replaced with a

general token (e.g., IP ADDRESS, PATH). For example the entries

sshd[7654]: Accepted publickey for rob from 192.168.0.184

sshd[4154]: Accepted publickey for lisa from 210.140.12.6

share the same information structure, referred here as statement, once the variable fields

have been replaced with the generalized tokens:

sshd[PID]: Accepted publickey for USER from IP ADDRESS

This procedure identifies a small number of statements because most of the entries in the

event logs differ because of the variable fields. A manually categorization of each statement
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as error and no-error reporting has been performed by inspecting the source code of the

SUTs, by analyzing available documentation, and trough direct communication with the

developers. A regular expression, which catches only the statements that have been flagged

as error-reporting after the manual categorization, is applied to the event logs in order to

identify the ones reporting an error.

The post-mortem labeling of the files containing the notifications generated by means of

assertion checking and rule-based logging required a smaller effort because these techniques

1 Communication Middleware
2 Report : ERROR

3 Date : Tue Dec 10 18 : 3 4 : 5 3 2013
4 Description : Type mismatch : object type . . .
5 . . . is v_cfEle but v_cfAttr was expected

6 Node : localhost . localdomain
7 Process : Receiver <26873>
8 Thread : ddsdeamon 2b05e366c940
9 Internals : //Database : : c_checkType/c_misc . c

10 ===========================================
11 Report : ERROR

12 Date : Tue Dec 10 18 : 3 4 : 5 3 2013
13 Description : Type mismatch : object type . . .
14 . . . is v_cfEle but v_cfAttr was expected

15 Node : localhost . localdomain
16 Process : Sender <26874>
17 Thread : ddsdeamon 2b23441ae940
18 Internals : //Database : : c_checkType/c_misc . c
19

20 Arrival Manager
21 13 2 3 : 5 7 : 3 2 . 2 1 9 [ ELGT−8] CEligThdHandler : . . .
22 . . . Invalid ETO in points : H=24, M=00, S=00
23 13 2 3 : 5 7 : 3 2 . 2 1 9 [ ELGT−8] ACDPM_getEtoTime : . . .
24 . . . Invalid ETO in points : H=24, M=00, S=00
25 13 2 3 : 5 7 : 3 2 . 2 2 0 [ ELGT−8] CEligThdHandler : . . .
26 . . . Invalid ETO in points : H=24, M=00, S=00
27 13 2 3 : 5 7 : 3 2 . 2 2 0 [ ELGT−8] CEligThdHandler : . . .
28 . . . Invalid ETO in points : H=24, M=00, S=00

Figure 4.9: Example of error notifications in the event logs.
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1 Communication Middleware
2 //code/qentc : 1 2 1 2 : proxywriteraddconn : . . .
3 . . . Assertion ‘pwr−>ctopic != ( 0 ) ’ failed

4

5 Arrival Manager
6 1 9 : 5 0 : 4 7 . 2 3 7 TST : WARNING EXCEPTION , . . .
7 . . . Assertion Failed .
8 ( 26) B729EFE0 : WARN/Assert
9 Module Procedure Line Instruction

10 CDB_AM_UKR AM_TST_CMD 26 B729EFE0

Figure 4.10: Example of assertions.

are inherently conceived for error reporting. In this respect, all the files containing the

notifications generated by the assert instruction or by the LogBus monitoring framework

have been labeled as error-reporting.

It should be noted that the labeling step has been conducted in this study by a post-

mortem manual inspection of the obtained data. However, practitioners might apply dif-

ferent approaches in order to reach the same goal.

4.5.2 Error Clustering

The error notifications generated from the reference MUTs during the experimental cam-

paign have been further analyzed in order to infer the error model they consider. For each

MUT, the files that contains the error notifications have been scrutinized with the aim of

grouping together the error notifications that have common characteristics, such as same

message, same semantic, same source module/file, etc. Groups containing error notifica-

tions with similar characteristics, here named clusters, for a given MUT possibly represent

the types of error that the MUT is able to report into the target system, i.e., its error
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1 Error notification #1
2 Description : Operation failed , couldn ’ t resolve

3 type ”kernelModule v_builtin”
4 Internals : //kernel : : v_builtinNew/v_builtin . c
5

6 Error notification #2
7 Description : Field ( null ) not found in type d_deleteData_s

8 Internals : //kernel : : v_filterNew : / v_filter . c

Figure 4.11: Example of error notifications in the event logs of SUT1

model in the target system. For example, Figure 4.11 reports two different error notifica-

tions generated by event logging in the SUT1 in different fault injection experiments. It

should be observed that, despite the error notifications contain different messages, they

have quite similar semantic since both refer to a data type problem. Therefore, they can be

potentially grouped together in a cluster that represent data type errors. Noteworthy, the

type of characteristics to consider in order to create clusters of error notifications of a MUT

changes based on the nature of the MUT. For example, the event logging often generates

notifications with a very high semantic level, as seen in Figure 4.11. Therefore, the semantic

of the notifications can be a valid feature to cluster error notifications of event logging.

Differently, assertion checking, which is based on assertions that check invariant proper-

ties of a given program and produce an alert if one of the properties is violated at runtime,

generates notifications where only the violated property and the location of the assertion

are reported, as seen in Figure 4.10. Therefore, for this MUT the type of violated properties

can be a potential feature to group together the notifications. For example, Figure 4.12

reports two different notifications generated by assertion checking in the SUT1 in different
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1 Error notification #1
2 //code/v_networkQueue . c : 4 1 4 : v_networkQueueTakeFirst . . .

. . . Assertion ‘ sample != NULL ’ failed .
3

4 Error notification #2
5 //code/v_groupInstance . c : 1 1 4 0 : v_groupInstanceInsert . . .

. . . Assertion ‘ message != NULL ’ failed .

Figure 4.12: Example of assertions in SUT1

fault injection experiments. It should be observed that, despite the notifications have differ-

ent content, both indicate that the checked variable contains a NULL value. Therefore, they

can be potentially grouped together in a cluster that represent errors due to NULL value.

Finally, the rule-based logging generates error notifications with a very low verbosity

level, where only the type of error, e.g., SER, IER, the source function and module are

reported. All the three reported information represent potential features for clustering.

However, the source module has been considered as feature to generate clusters of error

notifications of this MUT since it avoids obtaining both large number of clusters with few

occurrences (in the case of source function) and small number of clusters with many oc-

currences (in the case of error type). For example, Figure 4.13 shows two different error

notifications generated by rule-based logging in the SUT1 in different fault injection exper-

iments. The reported error notifications indicate two different errors raised in two different

functions, i.e., v kernelNew and v builtinNew, which belong to the same module of the

kernel, i.e., kernel, which represents the core module of the kernel component of the SUT1

(as a reminder, only the kernel of the SUT1 implements the rule-based logging; therefore

the reported modules are the ones that compose the kernel itself, i.e., Writer, DataReader,
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Subscriber, Publisher, Network, Topic, Group, Kernel, Message). Therefore, they can be po-

tentially grouped together in a cluster that represent errors generated in the core component

of the kernel of the SUT1.

Based on the above considerations, the clusters of error notifications have been gener-

ated, and their error model in the related SUT has been inferred. It should be noted that

the data clustering approach has been applied only to the MUTs implemented by the SUT1,

which is the most complex one (it is a distributed system deployed on two different nodes

and it is composed by 796,353 lines of code for each node; differently, the SUT2 is not a

distributed system, and it is composed by a lower number of lines of code, i.e., 40,396).

In addition, a high number of experiments in SUT1 lead to at least one error notification

generated by one of the MUTs (2,748 for SUT1 against the 957 for SUT2).

The semantic of the message, the type of check and the source kernel module of the

notifications are used as feature to group together the error notifications for MUT1, MUT2

and MUT3, respectively. Regular expressions, which catch the error notifications that

belongs to each considered cluster, has been applied to the error notifications of each MUT

in SUT1 in order to place each one in the right cluster.

Table 4.6 contains the error model considered by each MUT in the SUT1, i.e., the set

1 Error notification #1
2 SER v_kernelNew kernel

3

4 Error notification #2
5 IER v_builtinNew kernel

Figure 4.13: Example of error notifications of rule-based logging in SUT1
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Table 4.6: Error models considered by MUTs in SUT1.

cluster errors description example of notification
event logging
e1-EL Memory errors Failed to allocate cache

e2-EL Quality of Service errors Writer not created inconsistent qos

e3-EL Unexpected result errors Operation returned ... but expected ...

e4-EL Data type errors Operation failed, couldn’t resolve type ...

e5-EL Main daemon errors Could not claim the DDSdaemon!

e6-EL Consistency errors Illegal contained object

e7-EL Topic errors Failed to produce built-in ... topic

e8-EL Mutex errors Operation failed mutex ... Invalid argument

e9-EL Kernel entities errors Create kernel entity failed

e10-EL Timeout/liveliness errors A fatal error was detected when trying to...

...register the daemon liveliness hbCheck ...

e11-EL Threads progress errors Thread ... failed to make progress

e12-EL Configuration errors Could not initialise configuration

e13-EL Other errors Maximum number of network queues exceeded ...

Expression ... is not a valid ... statement

assertion checking
e1-AC Data type errors ‘(w == c checkType(w,"v writer"))’ failed

e2-AC Unexpected value errors ‘c refCount(found) == 4’ failed.

e3-AC Forced assertion execution ‘(0)’ failed.

e4-AC NULL value errors ‘message != NULL’ failed

e5-AC Data size errors ‘c aSize(msgKList) == c aSize(instKList)’ failed

rule-base logging
e1-RB Writer module errors IER v pubGetQosRef writer

e2-RB DataReader module errors IER v subAddReader datareader

e3-RB Subscriber module errors SER v subNew subscriber

e4-RB Publisher module errors SER v pubNew publisher

e5-RB Network module errors IER v grpNotifyAwareness network

e6-RB Topic module errors IER v cfEleXPath topic

e7-RB Group module errors SER regInstance group

e8-RB Kernel module errors IER c free kernel

e9-RB Message module errors SER v msgQos new message

of obtained clusters for each MUT, and an example of error notification included in each

cluster.

During the error data clustering process, each error notifications generated by each

MUT has been also labeled with its source function and component, i.e., the function

that generates the error notification and the component of the SUT1 the function belong
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to, respectively. Indeed, the error notifications generated by each MUT in SUT1 allow

obtaining these information. For example, the Internals field in the error notifications

of the event logging provides both information, as can be seen in Figure 4.11, where the

source function of the first error notification is v builtinNew, while its source component

is kernel. Similarly, both assertions and rule-base logging provide the source function

and component of the error notification by design. For example, in Figure 4.12 the source

function and component of the first assert notification are v networkQueueTakeFirst and

v networkQueue.c, which is one of the source file of the kernel component, respectively;

while in Figure 4.13 the source function and component of the first rule-based logging

notification are v kernelNew and kernel, respectively.

It should be noted that practitioners might apply different approaches respect than the

one described here in order to reach the same goals.

4.5.3 Discussion on the Error Models

Error clustering allowed inferring the error model considered by each MUT in the SUT1.

According to the obtained clusters, each MUT considers a rather different error model in

SUT1, as it can be observed by Table 4.6. More in details, the main differences are:

• MUT1 mainly considers error types that are related to application logic of the target

systems, such as e2-EL and e7-EL that represent errors on the management of the

Quality of Service and of the Topics, respectively.

• MUT2 considers error types that are less related to application logic respect than the

ones considered by MUT1. Instead, they are related to the properties that the target
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system has to satisfy at runtime, such as e2-AC and e5-AC that represent errors

related to an unexpected value for a system variable/function result, e.g., when the

value of a system variable/function result does not satisfy a constraint, and to an

unexpected size of a system variable/function result, respectively. Exceptions are the

errors included in e3-AC, which are explicitly raised by the developers by verifying a

property that is always unsatisfied, e.g., when the control flow enters in a known error

path.

• The inferred error model for the MUT3 considers error types that are related to the

module of the kernel that reports the error, e.g., e1-RB and e2-RB, which represent the

errors raised by the Writer and DataReader kernel module, respectively. Indeed, rule-

based logging, differently from the other MUTs, aims to detect errors reflecting the

adopted system structure in terms of modules, functions/services, and interactions.

4.6 Obtained Datasets

The overall results of the campaigns are summarized from Table 4.7 to Table 4.16.

Table 4.7 and Table 4.8 report the absolute number and percentage (i.e., RF%)

of failures reported by each MUT by ODC fault and failure type in SUT1 and SUT2,

respectively. For example, the value 210 reported by the cell (EL, Absolute) - CRASH

column and ALG row - in Table 4.7 indicates that 210 out of 1,482 CRASH failures caused

by ALG faults (the number of failures by fault type is shown in Table 4.4) were detected

by the event logs, i.e., EL, of the middleware (SUT1). On the other hand, the value 38

reported by the cells (EL, Absolute) - CRASH column and ALG row - in Table 4.8, indicates
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that the event logs generated by the arrival manager (SUT2), reported 38 CRASH failures

caused by ALG faults out of 68 (again, the number of failures by fault type for the SUT2

is shown in Table 4.5). In percentage terms, the event logs generated by the SUT1 and the

SUT2 reported 14.17% (i.e., (210/1, 482) · 100) and 55.88% (i.e., (38/68) · 100) of CRASH

failures caused by ALG faults, respectively: these values are reported by the RF% column

of Table 4.7 and Table 4.8, respectively. The rightmost columns of Table 4.7 and Table 4.8

report the total number of activated faults detected by each MUT in the SUT1 and SUT2,

respectively. Similarly, the bottom rows of Table 4.7 and Table 4.8 aggregate the number

and the percentage of reported failures by type.

Table 4.9 and Table 4.10 report the absolute number of errors reported by each MUT

by fault (ODC class and type, according to Table 3.1) and failure type in SUT1, respectively.

Table 4.7: Absolute number (Absolute) and percentage of reported failures (RF %) by fault
and failure type for each MUT of SUT1.

failure

fault MUT
CRASH SILENT ERRATIC total faults

Absolute RF % Absolute RF % Absolute RF % Absolute RF %

ALG
EL 210 14.17 93 58.86 45 20.27 348 18.69
AC 916 61.80 0 0.00 0 0.00 916 49.19
RB 987 66.60 115 72.79 16 7.21 1,118 60.04

ASG
EL 130 19.23 30 85.71 16 25.40 176 22.74
AC 396 58.58 0 0.00 0 0.00 396 51.16
RB 474 70.12 22 62.86 2 3.17 498 64.34

CHK
EL 9 21.43 1 100.00 1 9.09 11 20.37
AC 29 69.05 0 0.00 0 0.00 29 53.70
RB 20 47.62 0 0.00 0 0.00 20 37.04

INT
EL 116 26.42 9 90.00 4 20.00 129 27.51
AC 263 59.91 0 0.00 0 0.00 263 56.08
RB 313 71.30 6 60.00 0 0.00 319 68.02
EL 465 17.62 133 65.20 66 20.89 664 21.02
AC 1,604 60.78 0 0.00 0 0.00 1,604 50.78tot. failures
RB 1,794 67.98 143 70.10 18 5.70 1,955 61.89
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Table 4.8: Absolute number (Absolute) and percentage of reported failures (RF %) by fault
and failure type for each MUT of SUT2.

failure

fault MUT
CRASH SILENT ERRATIC total faults

Absolute RF % Absolute RF % Absolute RF % Absolute RF %

ALG
EL 38 55.88 5 2.43 24 8.89 67 12.32
AC 19 27.90 0 0.00 21 7.78 40 7.35
RB 23 41.18 199 96.60 169 62.59 396 72.79

ASG
EL 1 9.09 1 1.56 1 2.08 3 2.44
AC 5 45.45 0 0.00 0 0.00 5 4.07
RB 10 90.91 59 92.19 47 97.92 116 94.31

CHK
EL 1 100.00 3 100.00 0 0.00 4 100.00
AC 0 0.00 0 0.00 0 0.00 0 0.00
RB 0 0.00 0 0.00 0 0.00 0 0.00

INT
EL 2 100.00 1 25.00 4 50.00 7 50.00
AC 0 0.00 0 0.00 0 0.00 0 0.00
RB 0 0.00 0 0.00 6 75.00 6 42.86
EL 42 51.22 10 3.61 29 8.90 81 11.82
AC 24 29.27 0 0.00 21 6.44 45 6.57tot. failures
RB 38 46.34 258 93.14 222 68.10 518 75.62

For example, the value 68 reported by the cell (MFC, EL) - ALG row - in Table 4.9 indicates

that 69 algorithm faults, i.e., ALG, generated by a missing function call, i.e., MFC, have

lead to an error in the SUT1, which has been reported by the event logging, i.e., EL; while

the value 369 reported by the cell (total, EL) indicates that 369 algorithm faults have lead to

an error in the SUT1, which has been reported by the event logging. On the other hand, the

value 1,604 reported by the cells (CRASH, EL) in Table 4.10, indicates that the assertions

generated by the communication middleware (SUT1) reported 465 errors that lead to a

CRASH failures in the SUT. The bottom rows of Table 4.9 and Table 4.10 aggregate the

number of reported errors for each MUT.

Table 4.11, Table 4.12 and Table 4.13 report the absolute number (i.e., Abs) and

percentage (i.e., %) of errors reported by MUT1, MUT2 and MUT3, respectively, by
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Table 4.9: Absolute number of reported errors by fault type for each MUT of SUT1.

error
fault

EL AC RB
ODC type

ALG

MFC 69 160 140
MIEB 26 29 31
MIFS 12 44 34
MLPA 262 684 926

total 369 917 1,131

ASG

MVAE 175 364 468
MVAV 8 14 15
MVIV 0 3 4
WVAV 12 16 17

total 195 397 504

CHK
MIA 15 27 18
MLC 2 2 2

total 17 29 20

INT
WAEP 11 36 38
WPFV 122 227 282

total 133 263 320
tot. errors 714 1,606 1,975

Table 4.10: Absolute number of reported errors by failure type for each MUT of SUT1.

error
failure EL AC RB

CRASH 465 1,604 1,794
SILENT 133 0 143
ERRATIC 66 0 18
NO FAILURE 50 2 20
tot. errors 714 1,606 1,975

fault and error type, i.e., the error clusters identified for each MUT during the error data

clustering phase (as a reminder, the error data clustering phase has been conducted only

on the SUT1). For example, the value 2 reported by the cell (MFC, Abs) - e1-EL column -

in Table 4.11 indicates that 2 out of 69 errors detected by the event logs of the middleware

(SUT1), and caused by ALG faults of type MFC (the number of the detected errors by fault
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Table 4.12: Absolute number (Abs) and percentage of reported errors (%) by fault and
error type for MUT2 of SUT1.

error

fault
e1-AC e2-AC e3-AC e4-AC e5-AC

Abs % Abs % Abs % Abs % Abs %
MFC 4 2.50 107 66.88 9 5.63 36 22.50 4 2.50
MIEB 0 0.00 10 34.48 8 27.59 11 37.93 1 3.45
MIFS 2 4.55 30 68.18 0 0.00 11 25.00 1 2.27
MLPA 90 13.16 336 49.12 67 9.80 147 21.49 48 7.02

total ALG 96 10.47 483 52.67 84 9.16 205 22.36 54 5.89
MVAE 70 19.23 166 45.60 39 10.71 70 19.23 21 5.77
MVAV 0 0.00 4 28.57 1 7.14 7 50.00 2 14.29
MVIV 0 0.00 3 100.00 0 0.00 0 0.00 0 0.00
WVAV 0 0.00 7 43.75 1 6.25 6 37.50 2 12.50

total ASG 70 17.63 180 45.34 41 10.33 83 20.91 25 6.30
MIA 0 0.00 15 55.56 1 3.70 11 40.74 0 0.00
MLC 0 0.00 2 100.00 0 0.00 0 0.00 0 0.00

total CHK 0 0.00 17 58.62 1 3.45 11 37.93 0 0.00
WAEP 16 44.44 12 33.33 5 13.89 3 8.33 0 0.00
WPFV 35 15.42 126 55.51 14 6.17 51 22.47 5 2.20

total INT 51 19.39 138 52.47 19 7.22 54 20.53 5 1.90
tot. errors 217 13.51 818 50.93 145 9.03 353 21.98 84 5.23

type and MUT is shown in Table 4.9) are of type e1-EL; while the value 47 reported by

the cell (total ALG, Abs) - e1-EL column - in Table 4.11 indicates that 47 out of 369 errors

detected by the event logs of the middleware, and caused by ALG faults (again, the number

of the detected errors by fault type and MUT is shown in Table 4.9) are of type e1-EL. On

the other hand, the value 4 reported by the cells (MFC, Abs) - e1-AC column - in Table

4.12, indicates that 4 out of 160 errors detected by the assertion checking of the middleware,

and caused by ALG faults of type MFC are of type e1-AC ; while the value 96 reported

by the cell (total ALG, Abs) - e1-AC column - in Table 4.12 indicates that 96 out of 917

errors detected by the assertion checking of the middleware, and caused by ALG faults are

of type e1-AC. Similarly, the value 63 reported by the cells (MFC, Abs) - e1-RB column -
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Table 4.13: Absolute number (Abs) and percentage of reported errors (%) by fault and
error type for MUT3 of SUT1.

error

fault
e1-RB e2-RB e3-RB e4-RB e5-RB e6-RB e7-RB e8-RB e9-RB

Abs % Abs % Abs % Abs % Abs % Abs % Abs % Abs % Abs %
MFC 63 45.00 40 28.57 29 20.71 28 20.00 29 20.71 10 7.14 55 39.29 97 69.29 0 0.00
MIEB 9 29.03 11 35.48 5 16.13 5 16.13 0 0.00 0 0.00 9 29.03 26 83.87 0 0.00
MIFS 13 38.24 8 23.53 3 8.82 3 8.82 6 17.65 2 5.88 14 41.18 23 67.65 2 5.88
MLPA 346 37.37 278 30.02 109 11.77 147 15.87 94 10.15 80 8.64 290 31.32 753 81.32 3 0,32

total ALG 431 38.11 337 29.80 146 12.91 183 16.18 129 11.41 92 8.13 368 32.54 899 79.49 5 0.44
MVAE 169 36.11 150 32.05 67 14.32 54 11.54 36 7.69 44 9.40 163 34.83 377 80.56 6 1.28
MVAV 3 20.00 6 40.00 1 6.67 0 0.00 1 6.67 1 6.67 2 13.33 12 80.00 0 0.00
MVIV 2 50.00 1 25.00 1 25.00 1 25.00 0 0.00 0 0.00 3 75.00 4 100.00 0 0.00
WVAV 5 29.41 6 35.29 1 5.88 1 5.88 1 5.88 2 11.76 6 35.29 16 94.12 0 0.00

total ASG 179 35.52 163 32.24 70 13.89 56 11.11 38 7.54 47 9.33 174 34.52 409 81.15 6 1.19
MIA 8 44.44 5 27.78 1 5.56 2 11.11 1 5.56 2 11.11 9 50.00 13 72.22 0 0.00
MLC 0 0.00 1 50.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 100.00 0 0.00

total CHK 8 40.00 6 30.00 1 5.00 2 10.00 1 5.00 2 10.00 9 45.00 15 75.00 0 0.00
WAEP 26 68.42 9 23.68 6 15.79 5 13.16 0 0.00 2 5.26 15 39.47 31 81.58 0 0.00
WPFV 62 21.99 127 45.04 32 11.35 22 7.80 11 3.90 38 13.48 71 25.18 219 77.66 0 0.00

total INT 88 27.50 136 42.50 38 11.88 27 8.44 11 3.44 40 12.50 86 26.88 250 78.13 0 0.00
tot. errors 706 35.75 642 32.51 255 12.91 268 13.57 179 9.06 181 9.16 637 32.25 157379.65 11 0.56

in Table 4.13, indicates that 63 out of 140 errors detected by the rule-based logging of the

middleware, and caused by ALG faults of type MFC are of type e1-RB ; while the value

431 reported by the cell (total ALG, Abs) - e1-RB column - in Table 4.13 indicates that

431 out of 1,131 errors detected by the rule-based logging of the middleware, and caused

by ALG faults are of type e1-RB. In percentage terms, the 2.90% (i.e., (2/69) · 100), 2.50%

(i.e., (4/160) ·100) and 45.00% (i.e., (63/140) ·100) of detected errors by MUT1, MUT2 and

MUT3, respectively, and caused by ALG faults of type MFC are of type e1-EL, e1-AC and

e1-RB, respectively: these values are reported by the % column of Table 4.11, Table 4.12

and Table 4.13, respectively. The bottom rows of Table 4.11, Table 4.12 and Table 4.13,

aggregate the number and the percentage of reported errors by type.
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Table 4.15: Absolute number (Abs) and percentage (%) of reported errors by failure and
error type for MUT2 of SUT1.

error

failure
e1-AC e2-AC e3-AC e4-AC e5-AC

Abs % Abs % Abs % Abs % Abs %
CRASH 217 13.53 817 50.94 144 8.98 353 22.01 84 5.24
SILENT 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

ERRATIC 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
NO FAILURE 0 0.00 1 50.00 1 50.00 0 0.00 0 0.00
tot. errors 217 13.51 818 50.93 145 9.03 353 21.98 84 5.23

Table 4.16: Absolute number (Abs) and percentage (%) of reported errors by failure and
error type for MUT3 of SUT1.

error

failure
e1-RB e2-RB e3-RB e4-RB e5-RB e6-RB e7-RB e8-RB e9-RB

Abs % Abs % Abs % Abs % Abs % Abs % Abs % Abs % Abs %
CRASH 633 35.28 591 32.94 226 12.60 223 12.43 139 7.75 154 8.58 577 32.16 145781.22 10 0.56
SILENT 69 48.25 44 30.77 26 18.18 43 30.07 26 18.18 20 13.99 54 37.76 110 76.92 0 0.00

ERRATIC 2 11.11 5 27.78 3 16.67 1 5.56 12 66.67 1 5.56 4 22.22 1 5.56 0 0.00
NO FAILURE 2 10.00 2 10.00 0 0.00 1 5.00 2 10.00 6 30.00 2 10.00 5 25.00 1 5.00
tot. errors 706 35.75 642 32.51 255 12.91 268 13.57 179 9.06 181 9.16 637 32.25 157379.65 11 0.56

Table 4.14, Table 4.15 and Table 4.16 report the absolute number (i.e., Abs) and

percentage (i.e., %) of errors reported by MUT1, MUT2 and MUT3, respectively, by

failure and error type. For example, the value 49 reported by the cell (CRASH, Abs) -

e1-EL column - in Table 4.14 indicates that 49 out of 465 errors detected by the event

logs of the middleware (SUT1), which have lead to a CRASH failures in the SUT (the

number of the detected errors by failure type and MUT is shown in Table 4.10), are of

type e1-EL. On the other hand, the value 217 reported by the cells (CRASH, Abs) - e1-AC

column - in Table 4.15, indicates that 217 out of 1,604 errors detected by the assertion

checking of the middleware, which have lead to a CRASH failures in the SUT, are of type
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e1-AC. Similarly, the value 633 reported by the cells (CRASH, Abs) - e1-RB column -

in Table 4.16, indicates that 633 out of 1,794 errors detected by the rule-based logging of

the middleware, which have lead to a CRASH failures in the SUT, are of type e1-RB.

In percentage terms, the 10.54% (i.e., (49/465) · 100), 13.53% (i.e., (217/1, 604) · 100) and

35.28% (i.e., (633/1, 794) ·100) of detected errors by MUT1, MUT2 and MUT3, respectively,

which have lead to a CRASH failures in the SUT, are of type e1-EL, e1-AC and e1-RB,

respectively: these values are reported by the % column of Table 4.14, Table 4.15 and Table

4.16, respectively. The bottom rows of Table 4.14, Table 4.15 and Table 4.16, aggregate the

number and the percentage of reported errors by type.



Chapter 5

Experimental Results: Analysis of
the target Techniques

The effectiveness of the considered MUTs, i.e., event logging (EL - MUT1), assertion checking (AC
- MUT2), rule-based logging (RB - MUT3), has been evaluated by measuring the evaluation met-
rics presented in Section 3.3. Precisely, Recall (R), Precision (P), Failure Coverage (FC), Error
Determination Degree (EDD) and Error Propagation Reportability (EPR) have been evaluated for
each MUT. It should be noted that Recall, Precision and Failure Coverage of each MUT have been
evaluated on both the target SUTs considered in this dissertation. Differently, the Error Determina-
tion Degree and the Error Propagation Reportability have been evaluated only on the SUT1, which
is the most complex one (again, it is a distributed system deployed on two different nodes and it is
composed by 796,353 lines of code for each node; differently, the SUT2 is not a distributed system,
and it is composed by a lower number of lines of code, i.e., 40,396); moreover, a high number of
experiments in SUT1 led to almost one error notification generated by one of the MUTs.

5.1 Event Logging Analysis

The effectiveness of the MUT1, i.e., event logging, has been evaluated by analyzing the data

generated by the MUT during the conducted experimental campaign, which are summarized

in the tables described in Section 4.6. The data have allowed the measurement of the metrics

defined in the proposed methodology, i.e., Recall (R), Precision (P), Failure Coverage (FC),

Error Determination Degree (EDD) and Error Propagation Reportability (EPR). It should

be noted that Recall, Precision and Failure Coverage of the MUT have been evaluated on

both the considered target SUTs, i.e., the communication middleware (SUT1) and arrival

107
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manager (SUT2). Differently, the Error Determination Degree and the Error Propagation

Reportability have been evaluated only for the MUTs implemented by the SUT1.

5.1.1 Recall and Precision

Figure 5.1 and Figure 5.2 show the percentage of reported errors of the MUT1, i.e., the

percentage of experiments where the MUT has generated at least one error notification,

with respect to the failure and non-failure experiments, i.e., the experiments where the

injected fault led to a failure in the considered SUT or not, respectively, conducted during

the experimental campaign for SUT1 and SUT2, respectively.

Figure 5.1 shows that MUT1 has reported at least an error notification for a high

percentage of SILENT failures occurred in the SUT1, i.e., 65.20%, while reported at least an

error notification for a limited percentage of CRASH and ERRATIC failures, i.e., 17.62%

and 20.89%, respectively. However, most of the errors reported by the MUT1 led to a

CRASH failure in the SUT1. Indeed, CRASH failures are the most occurred failures in the

SUT1, i.e., 2,639 out of 3,159 failures occurred in SUT1 (as reported in Table 4.4), which are

followed by the SILENT and ERRATIC failures that account for 204 and 316, respectively.

Differently, Figure 5.2 shows that MUT1 has reported at least an error notification for

a high percentage of CRASH failures occurred in the SUT2, i.e., 51.22%, while reported

at least an error notification for a limited percentage of SILENT and ERRATIC failures.

Figure 5.1: Percentage of reported errors of MUT1 by failure type for SUT1.
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Figure 5.2: Percentage of reported errors of MUT1 by failure type for SUT2.

As for SUT1, most of the errors reported by the MUT1 in the SUT2 led to a CRASH

failure. Indeed, MUT1 has generated at least an error notification in 42 experiments where

a CRASH occurred in the SUT2, against the 10 and 29 experiments where a SILENT and

an ERRATIC occurred, respectively. In addition, Figure 5.1 and Figure 5.2 show also that

MUT1 has generated error notifications also when no failures occurred in the SUTs. These

error notifications represent False Positives (FPs) with respect to the failures.

Table 5.1 reports FP, FN, TP, P and R for the MUT1 for each SUT. It can be noted that

the precision is very close to 1 for the event logging mechanism implemented by the SUT1

(i.e., MW-EL): almost all the failures reported by the MUT are actual failures occurred in

the communication middleware. Differently, MUT1 exhibits a low precision value in the

SUT2. In fact, event logging generates a relevant number of FPs in the arrival manager

(i.e., AM-EL). The number of FNs is 2,495 out of total 3,159 failures in the SUT1 and 604

out of total 685 failures occurred in the SUT2. These findings suggest that event logging

Table 5.1: False Positive (FP), False Negative (FN), True Positive (TP), Precision and Recall
of MUT1 for each SUT.

FP FN TP Precision Recall
MW-EL 50 2,495 664 0.930 0.210
AM-EL 243 604 81 0.250 0.118
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might miss a relevant number of failures. The rightmost column of Table 5.1 reports the

recall of the MUT.

It should be noted that the density of the MUT, which is reported by Table 4.2 (i.e., EL

and EL-error), is potentially related to the value of recall/precision. For example, Table 5.1

reports that the recall of MW-EL is bigger than AM-EL: the percentage of error logging

instructions out of the total number of logging instructions of MW-EL, i.e., 14.45%, is

bigger than AM-EL, i.e., 11.39%. Nevertheless, the high density of the MUT might affect

the precision, as it can be inferred from the values of precision of AM-EL reported by

Table 5.1. In fact, a large number of logging instructions might increase the probability to

generate FPs.

5.1.2 Failure Coverage

The overall recall has been broken down by failure type in each SUT. Given a failure type,

the bottom row of Table 4.7 and Table 4.8 show the absolute number and the percentage

of failures that have been reported by each MUT in SUT1 and SUT2, respectively. For

example, EL reports 465 and 45 CRASH failures in SUT1 and SUT2, respectively (such

as shown by the first row of the third cell in the bottom of Table 4.7 and Table 4.8,

respectively). These numbers account for total 17.72%, i.e., (465/2, 639) · 100, and 51.22%,

i.e., (45/82) · 100, of CRASH failures that have been induced in the SUT1 and SUT2,

respectively.

Figure 5.3 shows the percentage of reported failures of MUT1 by failure type and SUT.

It can be noted that the reporting ability of the MUT changes significantly across
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Figure 5.3: Percentage of reported failure of MUT1 by type and case study.

the SUTs. Moreover, the MUT might show a different ability at reporting the

same type of failure in different SUTs. In fact, the coverage of the event logs ranges

from a minimum of 3.61%, i.e., AM-EL (SILENT failures), to a maximum of 65.20%, i.e.,

MW-EL (SILENT failures).

The overall recall has been also broken down by fault type in each SUT. Given a fault

type, the rightmost column of Table 4.7 and Table 4.8 shows the absolute number and

the percentage of failures that have been reported by each MUT in SUT1 and SUT2, re-

spectively. For example, EL reports 348 and 67 activated ALG faults in SUT1 and SUT2,

respectively (such as shown by the first row of the penultimate rightmost cell in Table

4.7 and Table 4.8, respectively). These numbers account for total 18.69% and 12.32% of

activated ALG faults that have been injected in the SUT1 and SUT2, respectively.

Figure 5.4 shows the percentage of activated faults that are reported by MUT1 in both

the SUTs. Percentage of reported failures can be observed in the rightmost column of Table

4.7 and Table 4.8 for SUT1 and SUT2, respectively. It can be noted that the reporting

ability by fault type of the MUT changes slightly in the SUT1,i.e., event logging is
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Figure 5.4: Percentage of reported failure of MUT1 by fault type and case study.

able to detect almost the same percentage of failures irrespectively of the type of injected

fault in the SUT1. Moreover, the MUT might show a different ability at reporting

the same type of fault in different SUTs. In fact, the reported failure by fault type of

the event logs ranges from a minimum of 18.69%, i.e., MW-EL (ALG faults), to a maximum

of 27.51%, i.e., MW-EL (INT faults), in the SUT1, and from a minimum of 2.44%, i.e.,

AM-EL (ALG faults), to a maximum of 100.00%, , i.e., AM-EL (CHK faults), in the SUT2.

5.1.3 Error Determination Degree

The error behavior inferred by the error notifications of the MUT1 has been evaluated by

considering the error model extracted during the error clustering process, which is described

in Section 4.5.2.

Figure 5.5 shows the breakdown of the errors reported by MUT1 in the SUT1 by error

type, i.e., the error types that belong to the inferred error model reported in Table 4.6,

and fault ODC class. Percentage of the errors reported by the considered MUT by error

type and ODC class can be observed in the total ALG, total ASG, total CHK and total
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INT rows of Table 4.11. It can be noted that the percentage of errors reported by

the MUT for each error type changes slightly at varying the ODC class in

SUT1. For example, considering the error type e4-EL, i.e., data type errors, the MUT

has generated at least an error notification of this type in 27.10%, 34.87% and 41.35% of

ALG, ASG, and INT experiments, respectively, i.e., experiments where only an ALG, an

ASG, or an INT fault has been injected in the SUT. Similarly, the MUT has generated

at least an error notification of type e5-EL, i.e., error related to the main daemon of the

SUT, in 10.53%, 18.46% and 22.22% of ALG, ASG, and INT experiments, respectively.

In particular, ALG and ASG exposed a very similar error behavior. A closer look into

the error notifications obtained from these ODC classes and into the source code of the

related injected faults allowed to understand that often faults of different classes led to

error notifications of the same type, and in some cases exactly the same ones. For example,

in some cases both the elimination of small part of source code, i.e., MPLA faults that

Figure 5.5: Percentage of reported errors by cluster and fault ODC type for MUT1.
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belong to the ALG class, and the substitution of variable assignment with an expression,

i.e., MVAE faults that belong to the ASG class, led a variable to be assigned with a data of

an unexpected type, which has been reported by the MUT with the same error notification,

i.e., "Type mismatch: object type is ... but ... was expected" that belongs to

the type e4-EL. Moreover, in three of the 4 ODC classes, i.e., ALG, ASG and INT, e4-EL

errors are the most reported ones by the MUT. It should be noted that CHK faults led to

a different error behavior with respect to the other fault types. However, a small number of

samples have been collected for this type of fault. Therefore, no conclusions can be drawn

for CHK class.

As discussed in section 3.3.3, an extract of the obtained dataset has been submitted to

a classifier in order to measure the Error Determination Degree of the event logging with

respect to the ODC fault class, i.e., the ability of its error notifications to suggest what is

the ODC class of the fault that have led to those error notifications. The extracted dataset

contains (i) the ODC class of the injected fault and (ii) the number of error notifications

generated by the event logging for each error type of its inferred error model, for each fault

injection experiment where at least one error notification has been generated by the MUT.

This dataset has been submitted to a Random Forest classifier1 classifier [115]. The numbers

of error notifications for each type are used as features of the classification, while the ODC

fault class is used as the class to predict, i.e., the value the classifier have to predict. A

K-fold cross-validation has been conducted, with K=30. It should be noted that different

classifiers and number of folds have been tried in order to choose the best combination;

1The parameters of the classifier have been left at default value.
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Table 5.2: Prediction results for MUT1 (k-fold cross-validation: Random Forest and k=30).

class correct classification (%) incorrect classification (%)
ODC fault class 57.10% 42.89%
fault type 43.47% 53.53%
failure type 88.92% 11.08%

the Random Forest classifier with the considered number of folds have outperformed all

other combinations. However, practitioners might apply different classifier and approaches

in order to evaluate the EDD.

The first row of Table 5.2 reports the results of the classification. The considered

classifier was able to predict the ODC type of a fault from the error notifications the fault

have led to with a not very high accuracy; in fact, the percentage of correct classification,

i.e., the considered Error Determination Degree, is equal to 57.10%. This result confirm the

finding inferred from Figure 5.5. Indeed, the low variability of the error behavior inferred

by means of the MUT1 at varying the ODC class led to the poor prediction performance of

the classifier.

The ODC fault class has been broken down by fault type in order to understand the

error behavior at varying the fault type. Figure 5.6 shows the percentage of errors that

are reported by MUT1 by error and fault type, i.e., the types of fault reported in Table 3.1.

Percentage of the errors reported by the considered MUT by error and fault type can be

observed in Table 4.11. It can be noted that the percentage of errors reported by the

MUT for each error type changes at varying the fault type in SUT1. For example,

the error type e1-EL, i.e., memory errors, has been reported with different percentages at

varying the fault type, e.g., at least an error notification of this type has been reported
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Figure 5.6: Percentage of reported errors by cluster and fault type for MUT1.

in 1.64% of experiments where a WPFV fault has been injected, as well as in 61.54% of

experiments where a MIEB fault has been injected. However, MLPA and MVAE faults

exposed a very similar error behavior. This finding is strictly related to the one obtained

for the ODC classes. Indeed, MLPA and MVAE are fault types that belongs to ALG and

ASG class, respectively, and they are the ones that occurred more often respect than the

other types in the related class, as can be seen in Table 4.9. Therefore, their error behaviors

influence the error behavior of the ODC class they belong to. In particular, as previously

discussed, they tended to generate the same errors, which are reported by MUT1 with error

notification of the same type. In addition, given a fault type, in almost all cases the

percentage of reported errors strongly changes at varying the error type. For

example, for MIEB faults the error type e1-EL is reported more than the other types as
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well as the error type e4-EL for MVAE faults. It should be noted that a limited number

of samples have been collected for some types of fault, i.e., MVIV, MIFS, MVAV, WVAV,

MIA, MLC and WAEP, as showed in Table 4.9 (EL column). Therefore, no conclusions

can be drawn for these types of fault.

An extract of the obtained dataset has been submitted to the Random Forest classifier

in order to measure the Error Determination Degree of the event logging with respect to

the fault type, i.e., the ability of its error notifications to suggest what is the type of the

fault that have led to those error notifications. The extracted dataset contains (i) the

type of the injected fault and (ii) the number of error notifications generated by the event

logging for each error type of its inferred error model, for each fault injection experiment

where at least one error notification has been generated by the MUT. The numbers of error

notifications for each type are used as features of the classification, while the fault type is

udes as class to predict. A K-fold cross-validation has been conducted, with K=30. The

second row of Table 5.2 reports the results of the classification. Despite the more variability

exposed by the error behavior at varying the fault type respect than the case where the

faults are grouped into ODC class, the considered classifier was able to predict the fault

type from the error notifications the fault have led to with a not very high accuracy; in fact,

the percentage of correct classification, i.e., the considered Error Determination Degree, is

equal to 43.47%, which is even worse than the one obtained in the case where the ODC

class has been considered as class to predict.

Figure 5.7 shows the breakdown of the errors reported by MUT1 in the SUT1 by failure

type, i.e., the failure that the reported error(s) led to, and error type. Percentage of the
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errors reported by the considered MUT by error and failure type can be observed in Table

4.14. It can be noted that the percentage of errors reported by the MUT for almost

all error types strongly changes at varying the failure type in SUT1. For example,

the percentage of experiments where at least an error notification of type e4-EL is raised

ranges from 0%, for experiments where a SILENT or an ERRATIC failures occurred in

the system, to 47.10%, for experiments where a CRASH failure occurred in the system.

Similarly, the percentage of experiments where at least an error notification of type e5-EL

ranges from 2.58%, for experiments where a CRASH failures occurred in the system, to

85.71%, for experiments where a SILENT failure occurred in the system.

An extract of the obtained dataset has been submitted to the Random Forest classifier

in order to measure the Error Determination Degree of the event logging with respect

to the failure type, i.e., the ability of its error notifications to suggest what is the type of

failure occurred in the system as consequence of the error(s) behind those notifications. The

Figure 5.7: Percentage of reported errors by cluster and failure type for MUT1.
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extracted dataset contains (i) the failure occurred in the system and (ii) the number of error

notifications generated by the event logging for each error type of its inferred error model,

for each fault injection experiment where at least one error notification has been generated

by the MUT. The numbers of error notifications for each type are used as features of the

classification, while the failure type is used as class to predict. A K-fold cross-validation

has been conducted, with K=30. The third row of Table 5.2 reports the results of the

classification. The classifier was able to predict the failure type from the error notifications

with a high accuracy; in fact, the percentage of correct classification, i.e., the considered

Error Determination Degree, is equal to 88.92%. This result confirms the finding inferred

from Figure 5.7. Indeed, the high variability of the error behavior inferred by means of the

MUT1 at varying the failure type led to the good prediction performance of the classifier.

Based on these findings, it should be noted that event logging can potentially allow

the determination of the failure type occurred in the communication middleware from the

obtained error notifications, while nothing can be said about the ODC class and the type

of the fault that has been injected.

5.1.4 Error Propagation Reportability

The propagation paths of the errors raised in SUT1 during the experimental campaign, as

consequences of the injected faults, have been inferred by means of the error notifications

generated by MUT1 in the SUT. As a reminder, the error notifications generated by event

logging in the SUT1 provides the component, and also the function, that has generated the

notification. Therefore, the knowledge of the component, and also of the function, where the
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faults have been injected (both provided by the tool used for the fault injection), along with

the knowledge of the source component and function of each error notification, allowed to

build non-exhaustive graphs (according to the methodology proposed in Section 3.3.4) that

summarize the error propagation phenomena obtained during the experimental campaign.

As a reminder, the obtained directed graphs are considered non-exhaustive because they

have been built based on the errors detected by the MUT1; therefore the errors undetected

by the MUT cannot be considered. It should be noted that only the directed graphs that

summarize propagation paths of the errors generated as a consequence of ALG and ASG

faults have been generated, since they are the ODC fault classes with the highest number

of collected samples.

Figure 5.8 shows the error propagation graph that summarizes the major error propa-

gation paths through the components of the SUT1, which are generated as a consequence of

ALG faults. Noteworthy, the number of faults considered in the graph refers to the number

of faults that have led to at least an error notification to be raised by event logging. It can

be observed that, excepted from the MIEB faults, most of the faults led to errors that

have not been reported by the event logging in the kernel . For example, 91.30%,

66.66% and 65.27% of MFC, MIFS and MLPA faults, respectively, did not lead to an error

notification in the kernel. In particular, 33.33%, 31.68% and 41.67% of MFC, MLPA and

MIFS faults, respectively, have led to at least an error that has generated at least an error

notification in the database component of the SUT1; while 37.68% and 15.27% of MFC and

MLPA faults, respectively, have led to at least an error that has generated at least an error

notification in the api, spliced and user components of the SUT1, at the same time. This
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finding is also confirmed by the proposed Error Propagation Reportability, which exhibits

a value of 26.02%, i.e., (96/369) · 100 (last cell of first row in Table 5.3), that suggests the

low ability of MUT1 at reporting the propagation of the errors generated as consequence of

ALG faults. Indeed, the errors are expected to arise in the kernel component of the SUT1

since all the faults have been injected into this component. Therefore, there is the need

to improve the error detection ability of the event logging in the kernel by adding some

EDMs, i.e., Error Detection Mechanisms, also with the aim to obtain more realistic error

propagation paths, which can help practitioners in different analysis, such as root cause

analysis, problem determination, etc. A closer look into the error notifications generated

by the MUT in the SUT’s components can allow to understand the type of error the EDMs

have to consider. For example, a closer look into the error notifications generated by the

database during the experiments, where no other components have reported an error, al-

lowed to understand that most of them belong to the e4-EL type. Therefore, a potential

EDM into the kernel have to consider this kind of error, e.g., by inserting a number of checks

on the type of data that are used at runtime. As a reminder, it should be noted that there

is the possibility that a propagation path has not been reported by a MUT because it is not

present by design in the target SUT, e.g., when the component that reports the error works

as a detector of the component where the fault has been injected. Therefore, the proposed

EPR metric might provide not accurate value in this case. However, it can be successfully

used to decide where to place EDMs, and, more important, as a comparative metric between

MUTs, as will be shown in Section 6. Indeed, if a MUT reports the error propagation path

that is unreported by another MUT (with a lower EPR), this suggests that the second one
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Table 5.3: Error Propagation Reportability (EPR) of MUT1 with respect to ALG and ASG
faults.

ODC
# experiments with at least # experiments with at least an error

EPR (%)
an error notification notification generated in the kernel

ALG 369 96 26.02
ASG 195 82 42.05

actually exhibited a low ability at reporting error propagation paths. Another findings that

can be inferred from Figure 5.8 is that a limited number of errors have been reported

in the function where the fault has been injected, as shown by the low probability

of the kernel-immediate node, i.e., 0.13. In addition, almost all the errors reported by

event logging in the kernel are not reported in any other components, as shown

by the high probability of the self-loop of the nodes kernel-immediate and kernel-quick, i.e.,

0.91 and 0.84, respectively.

Figure 5.8 also shows that errors reported by event logging in different system

components have led to different failures in the SUT. For example, in 100.00% of the

cases where an error have propagated to the api, spliced and user components of the SUT,

at the same time, a SILENT occurred in the SUT; while in 97.39% of the cases where an

error have propagated to the database component a CRASH occurred in the SUT. On the

other hand, it can be observed that ERRATIC failures occurred in the system mainly in the

cases where an error propagated to the functions different from the one where the fault has

been injected. It should be noted that this information allow to identify potential position

for ERMs, i.e., Error Recovery Mechanisms, that can increase the resiliency of the system.

For example, if the practitioners are interested in avoiding SILENT failures, probably it can
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be useful to insert an ERM in the api, spliced or user component, or an ERM that checks

these components at runtime. A closer look into the error notifications generated by event

logging in these components allowed to understand that most of them are of type e5-EL,

i.e., main daemon error ; therefore, it could be useful to add an ERM in the system that

checks for the availability of the main daemon (i.e., the spliced component) and provides a

recovery mechanism in case of problem, such as re-execution of the component, execution

of a different version of the component, i.e., the same component developed with a given

diversity degree. It should be noted that the implementation of ERM is not a trivial task an

requires a deep knowledge of the system, especially in complex critical system. Therefore,

system developers, which have this knowledge, can simply leverage the results obtained

from this analysis to design and implement effective ERM in their system.

Figure 5.9 shows the directed graph that summarizes the major error propagation paths

through the components of the SUT1, which are generated as a consequence of ASG faults.

Again, the number of faults considered in the graph refers to the number of faults that

have led to at least an error notification to be raised by event logging. It can be observed

that more than half of the errors reported by the event logging have not been

reported by the kernel component of the SUT1. In fact, 60.57% of MVAE faults,

i.e., the most recurrent fault type in the ASG class, have led to at last an error that

has generated at least an error notification in a component different form the kernel. In

particular, 34.86% of MVAE faults have led to at least an error that has generated at least

an error notification in the database component of the SUT1. This finding is also confirmed

by the proposed Error Propagation Reportability, which exhibits a value of 42.05%, i.e.,
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(82/195) · 100 (last cell of last row in Table 5.3), which means that 42.05% of the error

reported by the event logging are not reported by the kernel component. Noteworthy, EPR

value exhibited by the event logging for ASG class is greater than the one obtained for the

ALG, which means that for ASG class this MUT exposed better performance at reporting

error propagation. However, also for ASG there is the need to improve the error detection

ability of the event logging in the kernel by adding some EDMs. A closer look into the error

notifications generated by the MUT in the SUT’s components can allow to understand the

type of error the EDM have to consider. For example, the error notifications generated by

the database during the experiments where no other components have reported an error,

belong to the e4-EL type, as in the case of ALG class. This similarity is an expected result

since in Section 5.1.3 it has been found that ALG and ASG exposed a very similar error

behavior. In addition, almost all the errors reported by event logging in the kernel

are not reported in any other components.

Figure 5.9 also shows that also for the ASG class the errors reported by event

logging in different system components have led to different failures in the SUT.

For example, in 100.00% of the cases where an error have propagated to the api, spliced

and user components of the SUT, at the same time, a SILENT occurred in the SUT;

while in 97.26% of the cases where an error have propagated to the database component a

CRASH occurred in the SUT. Again, this information allows to identify potential position

for ERMs. For example, if the practitioners are interested in avoiding CRASH failures,

probably it can be useful to insert an ERM in the database component. A closer look into

the error notifications generated by event logging in this component allowed to understand
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that most of them are of type e4-EL; therefore, it could be useful to add an ERM in the

database component, which try to avoid failures by executing some recovery action when

an error data type occurs, such as request again the data or try to continue the execution

with default values, etc.

It should be noted that the analysis showed here, and also in the next sections, is inten-

tionally conducted to at an higher level, i.e., at component level. However, practitioners can

leverage the proposed methodology also to conduct a more fine-grained analysis, reaching

the function level.

The findings obtained from the analysis of event logging provide part of the answer

to the Research Question 1, i.e., RQ1, the Research Question 2, i.e., RQ2, and

the Research Question 3, i.e., RQ3. In fact, the analysis of the Error Propagation

Reportability allowed to understand that event logging can be used both to characterize the

error behavior of the considered SUT (RQ1 ) and to provide insights about the placement of

EDMs and ERMs (RQ2 ). In addition, this analysis also allows to understand that the Error

Propagation Reporting Ability of the event logging changes when different ODC fault class

are considered (RQ3). Differently, the analysis of Recall and Precision, of Failure coverage

and of Error Determination Degree exhibited by event logging during the experiments

allowed to infer how its Recall and Precision values change between the SUTs, how its

failure reporting ability changes at varying the failure and fault type, and also the values

exhibited by its EDD with respect to the fault type, ODC class and failure type (RQ3 ).
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5.2 Assertion Checking Analysis

The effectiveness of the MUT2, i.e., assertion checking, has been evaluated by analyzing the

data generated by the MUT during the conducted experimental campaign, which are sum-

marized in the tables in Section 4.6. The data have allowed the measurement of the metrics

defined in the proposed methodology, i.e., Recall (R), Precision (P), Failure Coverage (FC),

Error Determination Degree (EDD) and Error Propagation Reportability (EPR). It should

be noted that, as for event logging, Recall, Precision and Failure Coverage of the MUT have

been evaluated on both the considered target SUTs. Differently, the Error Determination

Degree and the Error Propagation Reportability have been evaluated only for the MUTs

implemented by the SUT1.

5.2.1 Recall and Precision

Figure 5.10 and Figure 5.11 show the percentage of reported errors of the MUT2, i.e., the

percentage of experiments where the MUT has generated at least one error notification,

with respect to the failure and non-failure experiments, i.e., the experiments where the

injected fault led to a failure in the considered SUT or not, respectively, conducted during

the experimental campaign for SUT1 and SUT2, respectively.

Figure 5.10 shows that MUT2 has been able to report only CRASH failures occurred

Figure 5.10: Percentage of reported errors of MUT2 by failure type for SUT1.
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Figure 5.11: Percentage of reported errors of MUT2 by failure type for SUT2.

Table 5.4: False Positive (FP), False Negative (FN), True Positive (TP), Precision and Recall
of MUT2 for each SUT.

FP FN TP Precision Recall
MW-AC 2 1,555 1,604 0.999 0.508
AM-AC 0 640 45 1.000 0.066

in the SUT1, reporting at least an error notification for 60.78% of this kind of failures.

Differently, Figure 5.11 shows that MUT2 has reported at least an error notification for

29.27% of CRASH failures occurred in the SUT2, while reported at least an error notification

for a limited percentage of ERRATIC failures, i.e., 6.44%. However, in absolute terms, the

numbers of errors reported by the MUT2 in the SUT2 are quite similar for both kinds of

failure. Indeed, MUT2 has generated at least an error notification in 21 experiments where

an ERRATIC occurred in the SUT2, while has generated at least an error notification in 24

experiments where a CRASH occurred. In addition, Figure 5.10 and Figure 5.11 show also

that MUT2 has generated error notifications also when no failures occurred in the SUT1.

These error notifications represent False Positives (FPs) with respect to the failures.

Table 5.4 reports FP, FN, TP, P and R for the MUT2 for each SUT. It can be noted

that the precision is very close to 1 in SUT1 and it is equal to 1 in the SUT2, therefore,

almost all the failures reported by the MUT are actual failures occurred in both the SUTs.

The number of FNs is 1,555 out of total 3,159 failures in the SUT1 and 640 out of total 685
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failures occurred in the SUT2. These findings suggest that assertion checking might miss

a relevant number of failures, especially in the SUT2. The rightmost column of Table 5.4

reports the recall of the MUT.

It should be noted that the density of the MUT, which is reported by Table 4.2 (i.e.,

AC), is potentially related to the value of recall. For example, the rather different values

of recall measured for the MW-AC and AM-AC, are likely caused by the different density

of the assertions in the SUTs, i.e., 0.99% and 0.18% out of the total number of assertions

placed in the source code of SUT1 and SUT2, respectively.

5.2.2 Failure Coverage

The overall recall has been broken down by failure type in each SUT. Figure 5.12 shows

the percentage of reported failures of MUT2 by failure type and SUT. It can be noted that,

as for MUT1, the reporting ability of the MUT2 changes significantly across the

SUTs. Moreover, the MUT might show a different ability at reporting the same

type of failure in different SUTs. In fact, the coverage of assertion checking ranges from

a minimum of 0.00%, i.e., MW-AC for SILENT and ERRATIC failures, to a maximum of

68.78%, i.e., MW-AC for CRASH failures, in the SUT1. Differently, the coverage exposed

by this MUT in the SUT2 ranges from a minimum of 0.00%, i.e., AM-AC for SILENT

failures, to 29.27%, i.e., AM-AC for CRASH failures.

The overall recall has been also broken down by fault type in each SUT. Figure 5.13

shows the percentage of activated faults that are reported by MUT2 in both the SUTs. It

can be noted that the reporting ability by fault type of the MUT changes slightly
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Figure 5.12: Percentage of reported failure of MUT2 by type and case study.

Figure 5.13: Percentage of reported failure of MUT2 by fault type and case study.

in the SUTs. In fact, results indicate that assertion checking is able to detect almost the

same percentage of failures irrespectively of the type of injected fault in both the SUTs.

Moreover, the MUT might show a different ability at reporting the same type of

fault in different SUTs. In fact, the reported failure by fault type of assertion checking

ranges from a minimum of 49.19%, i.e., MW-AC (ALG faults), to a maximum of 56.08%,

i.e., MW-AC (CHK faults), in the SUT1, and from a minimum of 0.00%, i.e., AM-AC (CHK

and INT faults), to a maximum of 7.35%, , i.e., AM-AC (ALG faults), in the SUT2.
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5.2.3 Error Determination Degree

The error behavior inferred by the error notifications of the MUT2 has been evaluated by

considering the error model extracted during the error clustering process.

Figure 5.14 shows the breakdown of the errors reported by MUT2 in the SUT1 by error

type, i.e., the error types that belong to the inferred error model reported in Table 4.6, and

fault ODC class. Percentage of the errors reported by the considered MUT by error type

and ODC class can be observed in the total ALG, total ASG, total CHK and total INT

rows of Table 4.12. It can be noted that the percentage of errors reported by the

MUT for each error type changes slightly at varying the ODC class in SUT1.

For example, considering the error type e2-AC, i.e., unexpected value errors, the MUT has

generated at least an error notification of this type in 52.67%, 45.34%, 58.62% and 52.47%

of ALG, ASG, CHK and INT experiments, respectively, i.e., experiments where only an

ALG, an ASG, CHK or an INT fault has been injected in the SUT. Similarly, the MUT

Figure 5.14: Percentage of reported errors by cluster and fault ODC type for MUT2.
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has generated at least an error notification of type e4-AC, i.e., NULL value errors, in 20.53%,

20.91%, 22.36% and 37.93% of ALG, ASG, CHK and INT experiments, respectively. In

particular, ALG, ASG and INT exposed a very similar error behavior. A closer look

into the error notifications obtained from these ODC classes and the source code of the

related injected faults allowed to understand that often faults of different classes led to

error notifications of the same type. For example, in some cases the elimination of small

part of source code, i.e., MPLA faults that belong to the ALG class, the substitution of

variable assignment with an expression, i.e., MVAE faults that belong to the ASG class,

and the wrong use of a variable in a parameter of a function call, i.e., WPFV faults that

belong to the INT class, led to obtaining a NULL value as value returned by a function or

as value of a variable checked at runtime, which has been reported by the MUT with the

same type of notification, i.e., "Assertion ‘<<variable name>> != NULL’ failed" that

belongs to the type e4-AC. Moreover, in all the ODC classes e2-AC errors are the most

reported ones by the MUT. It should be noted that CHK faults led to a different error

behavior with respect to the other fault type. However, a small number of samples have

been collected for this type of fault. Therefore, no conclusions can be drawn for CHK class.

An extract of the obtained dataset has been submitted to a classifier in order to measure

the Error Determination Degree of the assertion checking with respect to the ODC fault

class, i.e., the ability of its error notifications to suggest what is the ODC class of the fault

that have led to those error notifications. The extracted dataset contains (i) the ODC class

of the injected fault and (ii) the number of error notifications generated by the assertion

checking for each error type of its inferred error model, for each fault injection experiment
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Table 5.5: Prediction results for MUT2 (k-fold cross-validation: Random Forest and k=30).

class correct classification (%) incorrect classification (%)
ODC fault class 56.30% 43.70%
fault type 42.12% 57.88%
failure type 99.87% 0.13%

where at least one error notification has been generated by the MUT. This dataset has

been submitted to the Random Forest classifier; the numbers of error notifications for each

type are used as features of the classification, while the ODC fault class is used as the

class to predict. A K-fold cross-validation has been conducted, with K=30. The first row

of Table 5.5 reports the results of the classification. The considered classifier was able to

predict the ODC type of a fault from the error notifications the fault have led to with a

not very high accuracy; in fact, the percentage of correct classification, i.e., the considered

Error Determination Degree, is equal to 56.30%. This result confirm the finding inferred

from Figure 5.14. Indeed, the low variability of the error behavior inferred by means of the

MUT2 at varying the ODC class led to the poor prediction performance of the classifier.

The ODC fault class has been broken down by fault type in order to understand the

error behavior at varying the fault types. Figure 5.15 shows the percentage of errors that

are reported by MUT2 by error and fault type. Percentage of the errors reported by the

considered MUT by error and fault type can be observed in Table 4.12. It can be noted

that the percentage of errors reported by the MUT for each error type changes

at varying the fault type in SUT1. For example, the error type e1-AC, i.e., data

type errors, has been reported with different percentages at varying the fault type, e.g., at

least an error notification of this type has been reported in 2.50% of experiments where
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a MFC fault has been injected as well as in 44.44% of experiments where a WAEP fault

has been injected. However, MLPA, MVAE and WPFV faults exposed a very similar error

behavior. This finding is strictly related to the one obtained for the ODC classes. Indeed,

MLPA, MVAE and WPFV are fault types that belongs to ALG, ASG and INT class,

respectively, and they are the ones that occurred more often respect than the other types in

the related class, as can be seen in Table 4.9. Therefore, their error behaviors influence the

error behavior of the ODC class they belong to. In particular, as previously discussed, they

tended to generate the same errors, which are reported by MUT2 with error notification of

the same type. In addition, given a fault type, in almost all cases the percentage of

reported errors strongly changes at varying the error type. For example, for MFC

faults the error type e2-AC is reported more than the other types as well as the error type

Figure 5.15: Percentage of reported errors by cluster and fault type for MUT2.
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e4-AC for MIEB faults. It should be noted that a limited number of samples have been

collected for some types of fault, i.e., MVIV, MVAV, WVAV, and MLC, as showed in Table

4.9 (AC column). Thus, no conclusions can be drawn for these types of fault.

An extract of the obtained dataset has been submitted to the Random Forest classifier

in order to measure the Error Determination Degree of the assertion checking with respect

to the fault type, i.e., the ability of its error notifications to suggest what is the type of the

fault that have led to those error notifications. The extracted dataset contains (i) the type

of the injected fault and (ii) the number of error notifications generated by the assertion

checking for each error type of its inferred error model, for each fault injection experiment

where at least one error notification has been generated by the MUT. The numbers of error

notifications for each type are used as features of the classification, while the fault type is

udes as class to predict. A K-fold cross-validation has been conducted, with K=30. The

second row of Table 5.5 reports the results of the classification. Despite the more variability

exposed by the error behavior at varying the fault type respect than the case where the

faults are grouped into ODC class, the considered classifier was able to predict the fault

type from the error notifications the fault have led to with a not very high accuracy; in fact,

the percentage of correct classification, i.e., the considered Error Determination Degree, is

equal to 42.12%, which is even worse than the one obtained in the case where the ODC

class has been considered as class to predict.

Figure 5.16 shows the breakdown of the errors reported by MUT2 in the SUT1 by failure

type, i.e., the failure that the reported error(s) led to, and error type. Percentage of the

errors reported by the considered MUT by error and failure type can be observed in Table
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4.15. It can be noted that the percentage of errors reported by the MUT changes

at varying the error types in the case of CRASH failures in SUT1, which are the

only type of failures reported by the MUT2. For example, the percentage of experiments

where at least an error notification is raised ranges from 5.24%, for errors of type e5-AC,

i.e., data size error, to 50.94%, for errors of type e2-AC. It should be noted that only error

of type e2-AC and e3-AC, i.e., forced assertion execution, led to false positives whit respect

to the failures.

An extract of the obtained dataset has been submitted to the Random Forest classifier

in order to measure the Error Determination Degree of the assertion checking with respect

to the failure type, i.e., the ability of its error notifications to suggest what is the type

of failure occurred in the system as consequence of the error(s) behind those notifications.

The extracted dataset contains (i) the failure occurred in the system and (ii) the number

of error notifications generated by the assertion checking for each error type of its inferred

Figure 5.16: Percentage of reported errors by cluster and failure type for MUT2.
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error model, for each fault injection experiment where at least one error notification has

been generated by the MUT. The numbers of error notifications for each type are used as

features of the classification, while the failure type is used as class to predict. A K-fold

cross-validation has been conducted, with K=30. The third row of Table 5.5 reports the

results of the classification. The classifier was able to predict the failure type from the error

notifications with a very high accuracy; in fact, the percentage of correct classification,

i.e., the considered Error Determination Degree, is equal to 98.87%. This result confirms

the finding inferred from Figure 5.16. Indeed, the high variability of the error behavior

inferred by means of the MUT2 at varying the failure type led to the very good prediction

performance of the classifier.

Based on these findings, it should be noted that also assertion checking can potentially

allow the determination of the failure type occurred in the communication middleware from

the obtained error notifications, while nothing can be said about the ODC class and type

of the fault that has been injected.

5.2.4 Error Propagation Reportability

The propagation paths of the errors raised in SUT1 during the experimental campaign, as

consequences of the injected faults, have been inferred by means of the error notifications

generated by MUT2 in the SUT. As a reminder, the error notifications generated by assertion

checking in the SUT1 provides the component, and also the function, that has generated the

notification. Therefore, the knowledge of the component, and also of the function, where

the faults have been injected (both provided by the tool used for the fault injection), along
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with the knowledge of the source component and function of each error notification, allowed

to build the error propagation graphs that summarize the error propagation phenomena

obtained during the experimental campaign.

Figure 5.17 shows the directed graph that summarizes the major error propagation paths

through the components of the SUT1, which are generated as a consequence of ALG faults.

Noteworthy, the number of faults considered in the graph refers to the number of faults

that have led to at least an error notification to be raised by assertion checking. It can be

observed that most of MFC and MLPA faults led to errors that have not been

reported by the assertion checking in the kernel . For example, 71.25% and 51.02%

of MFC and MLPA faults, respectively, did not lead to an error notification in the kernel.

On the other hand, 77.27% and 65.52% of MIFS and MIEB fault, respectively, led to an

error notification in the kernel. In particular, 49.38% and 36.55% of MFC and MLPA faults,

respectively, have led to at least an error that has generated at least an error notification in

the database component of the SUT1; while 20.63% and 12.28% of MFC and MLPA faults,

respectively, have led to at least an error that has generated at least an error notification

in the ddsi2 component of the SUT1.

This finding is also confirmed by the proposed Error Propagation Reportability, which

exhibits a value of 36.64%, i.e., (336/917) · 100 (last cell of first row in Table 5.6), that

suggests the low ability of MUT2 at reporting the propagation of the errors generated

as consequence of ALG faults. This suggest that there is the need to improve the error

detection ability of the assertion checking in the kernel by adding some EDMs. A closer

look into the error notifications generated by the MUT in the SUT’s components can allow
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Table 5.6: Error Propagation Reportability (EPR) of MUT2 with respect to ALG and ASG
faults.

ODC
# experiments with at least # experiments with at least an error

EPR (%)
an error notification notification generated in the kernel

ALG 917 336 36.64
ASG 397 250 62.97

to understand the type of error the EDM have to consider. For example, a closer look into

the error notifications generated by the database during the experiments, where no other

components have reported an error, allowed to understand that most of them belong to

the e2-AC type. Therefore, a potential EDM into the kernel have to consider this kind of

error, e.g., by inserting a number of assertions that checks the values returned by functions

in order to detect unexpected results. Another findings that can be inferred from Figure

5.17 is that a limited number of errors have been reported in the function where

the fault has been injected, as shown by the low probability of the kernel-immediate

node, i.e., 0.13. In addition, almost all the errors reported by assertion checking

in the kernel are not reported in any other components, as shown by the high

probability of the self-loop of the nodes kernel-immediate and kernel-quick, i.e., 0.98 and

0.99, respectively.

Figure 5.17 also shows that errors reported by assertion checking in different

system components have led to same type of failure in the SUT, i.e., CRASH

failures. For example, in all the components that are shown in Figure 5.17 the only type

of reported failure is CRASH. This is an expected result since, as seen in 5.2.2, assertion

checking is able to report only CRASH failures in the SUT1. Based on this findings,
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practitioners can find potential positions for ERMs. For example, since almost all the

errors that propagated to ddsi2 component of the SUT1 were not reported by any other

component, and all these errors led to a CRASH failure, practitioners can decide to put an

ERM in this component. A closer look into the error notifications generated by assertion

checking in this component allowed to understand that most of them are of type e4-AC ;

therefore, it could be useful to add an ERM in the ddsi2 component that tries to avoid that

NULL value error can further propagate into the system.

Figure 5.18 shows the directed graph that summarizes the major error propagation paths

through the components of the SUT1, which are generated as a consequence of ASG faults.

Again, the number of faults considered in the graph refers to the number of faults that

have led to at least an error notification to be raised by event logging. It can be observed

that more than half of the errors reported by the assertion checking have been

reported by the kernel component of the SUT1. In fact, 62.91% of MVAE faults,

i.e., the most recurrent fault type in the ASG class, have led to at least an error that has

generated at least an error notification in a the kernel. On the other hand, 23.35% of MVAE

faults have led to at least an error that has generated at least an error notification in the

database component of the SUT1.

This finding is also confirmed by the proposed Error Propagation Reportability, which

exhibits a value of 62.97%, i.e., (250/397) · 100 (last cell of last row in Table 5.6), which

means that 62.97% of the error reported by the assertion checking are reported by the kernel

component. Noteworthy, EPR value exhibited by the MUT2 for ASG class is greater than

the one obtained for the ALG, which means that for ASG class this MUT exposed better
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performance at reporting error propagation. However, also for ASG there is the need to

further improve the error detection ability of the assertion checking in the kernel by adding

some EDMs. A closer look into the error notifications generated by the MUT in the SUT’s

components can allow to understand the type of error the EDM have to consider. For

example, the error notifications generated by the database during the experiments where

no other components have reported an error, belong to the e4-AC type, as in the case

of ALG class. This similarity is an expected result since in Section 5.2.3 has been found

that ALG and ASG exposed a very similar error behavior. In addition, almost all the

errors reported by assertion checking in the kernel are not reported in any

other components, as shown by the high probability of the self-loop of the nodes kernel-

immediate and kernel-quick, i.e., 1.00 and 0.98, respectively.

Figure 5.18 also shows that also for the ASG class the errors reported by assertion

checking in different system components have led to same type of failure in the

SUT, i.e., CRASH failures, as in the case of ALG class. In fact, in all the components

that are shown in Figure 5.17 the only type of reported failure is CRASH. Again, this is

an expected result since, as seen in 5.2.2, assertion checking is able to report only CRASH

failures in the SUT1. Regarding the placement of ERMs, same considerations made for

ALG apply here, since the classes exposed a very similar error behavior.

The findings obtained from the analysis of assertion checking provide part of the answer

to the Research Question 1, i.e., RQ1, the Research Question 2, i.e., RQ2, and

the Research Question 3, i.e., RQ3. In fact, the analysis of the Error Propagation



Chapter 5. Experimental Results: Analysis of the target Techniques 145

Reportability allowed to understand that assertion checking can be used both to characterize

the error behavior of the considered SUT (RQ1 ) and to provide insights about the placement

of EDMs and ERMs (RQ2 ). In addition, this analysis also allows to understand that the

Error Propagation Reporting Ability of the assertion checking changes when different ODC

fault class are considered (RQ3). Differently, the analysis of Recall and Precision, of Failure

coverage and of Error Determination Degree exhibited by assertion checking during the

experiments allowed to infer how its Recall and Precision values change between the SUTs,

how its failure reporting ability changes at varying the failure and fault type, and also the

values exhibited by its EDD with respect to the fault type, ODC class and failure type

(RQ3 ).

5.3 Rule-Based Logging Analysis

The effectiveness of the MUT3, i.e., rule-based logging, has been evaluated by analyzing

the data generated by the MUT during the conducted experimental campaign, which are

summarized in the tables in Section 4.6. The data have allowed the measurement of the

metrics defined in the proposed methodology, i.e., Recall (R), Precision (P), Failure Cover-

age (FC), Error Determination Degree (EDD) and Error Propagation Reportability (EPR).

It should be noted that, as for the other MUTs, Recall, Precision and Failure Coverage of

the MUT have been evaluated on both the considered target SUTs. Differently, the Error

Determination Degree and the Error Propagation Reportability have been evaluated only

for the MUTs implemented by the SUT1.
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5.3.1 Recall and Precision

Figure 5.19 and Figure 5.20 show the percentage of reported errors of the MUT3, i.e., the

percentage of experiments where the MUT has generated at least one error notification,

with respect to the failure and non-failure experiments, i.e., the experiments where the

injected fault led to a failure in the considered SUT or not, respectively, conducted during

the experimental campaign for SUT1 and SUT2, respectively.

Figure 5.19 shows that MUT3 has reported at least an error notification for a high per-

centage of SILENT and CRASH failures occurred in the SUT1, i.e., 70.10% and 67.98%,

respectively, while reported at least an error notification for a limited percentage of ER-

RATIC failures, i.e., 5.70%. However, most of the errors reported by the MUT1 are the

ones that led to a CRASH failure in the SUT1. Indeed, CRASH failures are the most

occurred failures in the SUT1, i.e., 2,639 out of 3,159 failures occurred in SUT1 (as reported

in Table 4.4), which are followed by the SILENT and ERRATIC failures that account for

204 and 316, respectively.

Differently, Figure 5.20 shows that MUT3 has reported at least an error notification for

a high percentage of SILENT and ERRATIC failures occurred in the SUT2, i.e., 93.14%

and 68.10%, respectively, while reported at least an error notification for 46.34% of CRASH

failures. However, in absolute terms, the numbers of errors reported by the MUT3 in the

Figure 5.19: Percentage of reported errors of MUT3 by failure type for SUT1.
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Figure 5.20: Percentage of reported errors of MUT3 by failure type for SUT2.

SUT2 are quite similar for SILENT and ERRATIC failures. Indeed, MUT3 has generated

at least an error notification in 258 experiments where a SILENT occurred in the SUT2,

while has generated at least an error notification in 222 experiments where an ERRATIC

occurred. In addition, Figure 5.19 and Figure 5.20 show also that MUT3 has generated error

notifications also when no failures occurred in both the SUTs. These error notifications

represent False Positives with respect to the failures.

Table 5.7 reports FP, FN, TP, P and R for the MUT3 for each SUT. It can be noted that

the precision is very close to 1 in SUT1 but not in SUT2. Therefore, almost all the failures

reported by the MUT are actual failures occurred in the SUT1. The number of FNs is 1,204

out of total 3,159 failures in the SUT1 and 167 out of total 685 failures occurred in the

SUT2. These findings suggest that rule-based logging might miss some failures, especially

in the SUT1. The rightmost column of Table 5.7 reports the recall of the MUT.

It should be noted that the density of the MUT, which is reported by Table 4.2 (i.e.,

Table 5.7: False Positive (FP), False Negative (FN), True Positive (TP), Precision and Recall
of MUT3 for each SUT.

FP FN TP Precision Recall
MW-RB 20 1,204 1,955 0.990 0.619
AM-RB 139 167 518 0.788 0.756
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RB), is potentially related to the value of recall. For example, the different values of recall

measured for the MW-RB and AM-RB, i.e., 0.619 and 0.765, respectively, are likely caused

by the different density of the rule-based logging instructions in the SUTs, i.e., 0.36% and

8.59% out of the total number of rule-based logging instructions placed in the source code

of SUT1 and SUT2, respectively.

5.3.2 Failure Coverage

The overall recall has been broken down by failure type in each SUT. Figure 5.21 shows the

percentage of reported failures of MUT3 by failure type and SUT. It can be noted that the

reporting ability of the MUT3 changes significantly across the SUTs. Moreover,

the MUT might show a different ability at reporting the same type of failure

in different SUTs. In fact, the coverage of rule-based logging ranges from a minimum of

5.70%, i.e., MW-RB (ERRATIC failures), to a maximum of 93.14%, i.e., AM-RB (SILENT

failures).

The overall recall has been also broken down by fault type in each SUT. Figure 5.22

Figure 5.21: Percentage of reported failure of MUT3 by type and case study.
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Figure 5.22: Percentage of reported failure of MUT3 by fault type and case study.

shows the percentage of activated faults that are reported by MUT3 in both the SUTs. It

can be noted that the reporting ability by fault type of the MUT changes slightly

across the SUTs. Moreover, the MUT might show a different ability at reporting

the same type of fault in different SUTs. In fact, the reported failure by fault type

of rule-based logging ranges from a minimum of 37.04%, i.e., MW-RB (CHK faults), to

a maximum of 68.02%, i.e., MW-RB (INT faults), in the SUT1, and from a minimum of

0.00%, i.e., AM-RB (CHK faults), to a maximum of 94.31%, i.e., AM-RB (ASG faults), in

the SUT2.

5.3.3 Error Determination Degree

The error behavior inferred by the error notifications of the MUT3 has been evaluated by

considering the error model extracted during the error clustering process.

Figure 5.23 shows the breakdown of the errors reported by MUT3 in the SUT1 by error

type, i.e., the error types that belong to the inferred error model reported in Table 4.6, and

fault ODC class. Percentage of the errors reported by the considered MUT by error type
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and ODC class can be observed in the total ALG, total ASG, total CHK and total INT

rows of Table 4.13. It can be noted that the percentage of errors reported by the

MUT for each error type slightly changes at varying the ODC class in SUT1.

For example, considering the error type e8-RB, i.e., kernel module errors, the MUT has

generated at least an error notification of this type in 79.49%, 81.15%, 75.00% and 78.13%

of ALG, ASG, CHK and INT experiments, respectively, i.e., experiments where only an

ALG, an ASG, CHK or an INT fault has been injected in the SUT. Similarly, the MUT has

generated at least an error notification of type e1-RB, i.e., writer module errors, in 38.11%,

35.52%, 40.00% and 27.50% of ALG, ASG, CHK and INT experiments, respectively. All

the ODC classes exhibited a very similar error behavior. A closer look into the error

notifications obtained from these ODC classes and the source code of the related injected

faults allowed to understand that often faults of different classes led to error notifications of

the same type, that is from the same module of the kernel in the case of rule-based logging.

Figure 5.23: Percentage of reported errors by cluster and fault ODC type for MUT3.



Chapter 5. Experimental Results: Analysis of the target Techniques 151

Table 5.8: Prediction results for MUT3 (k-fold cross-validation: Random Forest and k=30).

class correct classification (%) incorrect classification (%)
ODC fault class 54.70% 45.30%
fault type 44.90% 55.10%
failure type 91.97% 8.03%

For example, the analysis of the error notifications revealed that different types of fault,

injected in different location of the kernel, generated errors that have propagated often to

the core module of the kernel, leading this module to generate an error notification, which

is than part of the e8-RB cluster. Indeed, it should be noted that e9-RB errors are the

most reported ones by the MUT in all the ODC classes.

An extract of the obtained dataset has been submitted to a classifier in order to measure

the Error Determination Degree of the rule-based logging with respect to the ODC fault

class, i.e., the ability of its error notifications to suggest what is the ODC class of the fault

that have led to those error notifications. The extracted dataset contains (i) the ODC class

of the injected fault and (ii) the number of error notifications generated by the rule-based

logging for each error type of its inferred error model, for each fault injection experiment

where at least one error notification has been generated by the MUT. This dataset has

been submitted to the Random Forest classifier; the numbers of error notifications for each

type are used as features of the classification, while the ODC fault class is used as the

class to predict. A K-fold cross-validation has been conducted, with K=30. The first row

of Table 5.8 reports the results of the classification. The considered classifier was able to

predict the ODC type of a fault from the error notifications the fault have led to with a

not very high accuracy; in fact, the percentage of correct classification, i.e., the considered



Chapter 5. Experimental Results: Analysis of the target Techniques 152

Error Determination Degree, is equal to 54.70%. This result confirm the finding inferred

from Figure 5.23. Indeed, the low variability of the error behavior inferred by means of the

MUT3 at varying the ODC class led to the poor prediction performance of the classifier.

The ODC fault class has been broken down by fault type in order to understand the

error behavior at varying the fault types. Figure 5.24 shows the percentage of errors that

are reported by MUT3 by error and fault type. Percentage of the errors reported by the

considered MUT by error and fault type can be observed in Table 4.13. It can be noted

that the percentage of errors reported by the MUT for each error type slightly

changes at varying the fault type in SUT1. For example, the error type e3-RB,

i.e., subscriber module errors, has been reported with different percentages at varying the

fault type, e.g., at least an error notification of this type has been reported in 23.53% of

Figure 5.24: Percentage of reported errors by cluster and fault type for MUT3.
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experiments where a MIFS fault has been injected as well as in 45.04% of experiments where

a WPFV fault has been injected. However, many fault types exposed a very similar error

behavior. This finding is strictly related to the one obtained for the ODC classes, where

almost all the ODC classes exposed a very similar behavior. In addition, given a fault

type, in almost all cases the percentage of reported errors strongly changes at

varying the error type. For example, for MFC faults the error type e6-RB, i.e., topic

module error, is reported in 7.14% of experiments, while the error e8-RB is reported in

69.29% of experiments. It should be noted that a limited number of samples have been

collected for some types of fault, i.e., MVIV, MVAV, WVAV, MIA, and MLC, as showed in

Table 4.9 (RB column). Thus, no conclusions can be drawn for these types of fault.

An extract of the obtained dataset has been submitted to the Random Forest classifier

in order to measure the Error Determination Degree of the rule-based logging with respect

to the fault type, i.e., the ability of its error notifications to suggest what is the type of the

fault that have led to those error notifications. The extracted dataset contains (i) the type

of the injected fault and (ii) the number of error notifications generated by the rule-based

logging for each error type of its inferred error model, for each fault injection experiment

where at least one error notification has been generated by the MUT. The numbers of error

notifications for each type are used as features of the classification, while the fault type is

udes as class to predict. A K-fold cross-validation has been conducted, with K=30. The

second row of Table 5.8 reports the results of the classification. The considered classifier was

able to predict the fault type from the error notifications the fault have led to with a not

very high accuracy; in fact, the percentage of correct classification, i.e., the considered Error
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Determination Degree, is equal to 44.90%, which is even worse than the one obtained in the

case where the ODC class has been considered as class to predict. This result confirm the

finding inferred from Figure 5.24. Indeed, the low variability of the error behavior inferred

by means of the MUT3 at varying the fault type led to the poor prediction performance of

the classifier.

Figure 5.25 shows the breakdown of the errors reported by MUT3 in the SUT1 by failure

type, i.e., the failure that the reported error(s) led to, and error type. Percentage of the

errors reported by the considered MUT by error and failure type can be observed in Table

4.16. It can be noted that the percentage of errors reported by the MUT for almost

all error types strongly changes at varying the failure type in SUT1. For example,

the percentage of experiments where at least an error notification of type e8-RB is raised

ranges from 5.56%, for experiments where an ERRATIC failures occurred in the system,

to 81.22%, for experiments where a CRASH failure occurred in the system. Similarly, the

Figure 5.25: Percentage of reported errors by cluster and failure type for MUT3.
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percentage of experiments where at least an error notification of type e5-RB, i.e., network

module error ranges from 7.75%, for experiments where a CRASH failures occurred in the

system, to 66.67%, for experiments where an ERRATIC failure occurred in the system.

An extract of the obtained dataset has been submitted to the Random Forest classifier

in order to measure the Error Determination Degree of the rule-based logging with respect

to the failure type, i.e., the ability of its error notifications to suggest what is the type

of failure occurred in the system as consequence of the error(s) behind those notifications.

The extracted dataset contains (i) the failure occurred in the system and (ii) the number

of error notifications generated by the rule-based logging for each error type of its inferred

error model, for each fault injection experiment where at least one error notification has

been generated by the MUT. The numbers of error notifications for each type are used as

features of the classification, while the failure type is used as class to predict. A K-fold

cross-validation has been conducted, with K=30. The third row of Table 5.8 reports the

results of the classification. The classifier was able to predict the failure type from the

error notifications with a high accuracy; in fact, the percentage of correct classification,

i.e., the considered Error Determination Degree, is equal to 91.97%. This result confirms

the finding inferred from Figure 5.25. Indeed, the high variability of the error behavior

inferred by means of the MUT3 at varying the failure type led to the very good prediction

performance of the classifier.

Based on these findings, it should be noted that also rule-based logging can potentially

allow the determination of the failure type occurred in the communication middleware from

the obtained error notifications, while nothing can be said about the ODC class and type
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of the fault that has been injected.

5.3.4 Error Propagation Reportability

The propagation paths of the errors raised in SUT1 during the experimental campaign, as

consequences of the injected faults, have been inferred by means of the error notifications

generated by MUT3 in the SUT. As a reminder, the error notifications generated by rule-

based logging in the SUT1 provides the module of the kernel, and also the function, that

has generated the notification. Therefore, the knowledge of the component, and also of the

function, where the faults have been injected (both provided by the tool used for the fault

injection), along with the knowledge of the source component and function of each error

notification, allowed to build non-exhaustive graphs that summarize the error propagation

phenomena obtained during the experimental campaign. It should be noted that the MUT3

is implemented only in the kernel component of the SUT1. Therefore, only the propagation

between the node kernel-immediate and kernel-quick can be inferred.

Figure 5.26 shows the directed graph that summarizes the error propagation paths that

can be inferred form the error notifications provided by the MUT3 in the SUT1, which are

generated as a consequence of ALG faults. Noteworthy, the number of faults considered

in the graph refers to the number of faults that have led to at least an error notification

to be raised by rule-based logging. It can be observed that most of errors raised the

4 fault type of the ALG class have been reported immediately, i.e., in the same

function where the fault has been injected. In fact, 70.82% of the faults considered in the

graph have led to an error notification in the same function where they have been injected.
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In addition, only a small fraction of the errors led to these faults have propagated in the

other modules of the kernel, as can be inferred from the high probability of the self loop in

the node kernel-immediate, i.e., 0.72.

Similar considerations apply also to Figure 5.18, which shows the directed graph that

summarizes the error propagation paths that can be inferred form the error notifications

provided by the MUT3 in the SUT1, which are generated as a consequence of ASG faults.

Indeed, the Figureshows that 78.37% of the faults considered in the graph have led to an

error notification in the same function where they have been injected; while only a small

fraction of the errors led to these faults have propagated in the other modules of the kernel,

as can be inferred from the high probability of the self loop in the node kernel-immediate,

i.e., 0.70.

It should be noted that for both the graphs the evaluation of the proposed Error Propa-

gation Reportability is not useful since it exposes a value equal to 100.00% in this case (i.e.,

all the errors notifications of the rule-based logging are generated from the kernel compo-

nent of the SUT1), which is not realistic because the rule-based logging is not implemented

in all the components of the system. However, by considering the obtained perfect value

for the EPR and the absence of notifications form other components of the target system,

one can infer that there is the need of EDMs in the other components.

Figure 5.26 and Figure 5.27 also show that errors reported by rule-based logging

in the kernel of the SUT1 have led to different failure manifestation in the SUT.

In fact, in both the Figures it can be seen that the errors reported in both the kernel nodes

led to all considered types of failure. However, in both the cases, most of the CRASH
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failures are reported by the error notifications generated in kernel-immediate; while most

of the SILENT failures are reported by the error notifications generated in kernel-quick for

the ALG class, i.e., Figure 5.26, and in kernel-immediate for the ASG class, i.e., Figure

5.27.

Based on these findings, practitioners can only define the kernel as potential location

for ERMs. However, they can obtain more detailed information on where put the ERMs

inside the kernel. A closer look into the error notifications generated by rule-based logging

allowed to understand what is the type of the most reported error notifications, i.e., the

module of the kernel that generates more error notifications with respect the other ones.

In particular, it has been found that in both the cases, i.e., ALG and ASG, most of the

error notifications are generated by the core module of the kernel, i.e., the cluster e8-RB.

Therefore, this module represents a good candidate where to locate an ERM.

It should be noted that the analysis showed here is intentionally conducted to at an

higher level, i.e., at component level. However, practitioners can leverage the proposed

methodology also to conduct a more fine-grained analysis, reaching the function level. More

in details, by leveraging the tracing ability of the rule-based logging, it is possible to recreate

the actual error propagation between the modules that compose the kernel. For example,

Figure 5.28 shows some of the error propagation paths inside the kernel component, lim-

ited to some MLPA experiments. It can be noted that it has been possible to recreate the

actual error propagation paths between the modules, as shown in the kernel-QUICK node,

occurred during the considered experiments, allowing to understand how the errors propa-

gated inside the kernel during these experiments. Noteworthy, only the absolute values are
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shown on the graph due to not comprehensive set of the considered MLPA experiments.

The findings obtained from the analysis of rule-based logging provide part of the answer

to the Research Question 1, i.e., RQ1, the Research Question 2, i.e., RQ2, and

the Research Question 3, i.e., RQ3. In fact, the analysis of the Error Propagation

Reportability allowed to understand that rule-based logging can be used to characterize the

error behavior of the considered SUT (RQ1 ), as well as that there is the need to improve

the rule-based logging in the other components since error notifications are raised only in

the faulty component (RQ2 ). Differently, the analysis of Recall and Precision, of Failure

coverage and of Error Determination Degree exhibited by rule-based logging during the

experiments allowed to infer how its Recall and Precision values change between the SUTs,

how its failure reporting ability changes at varying the failure and fault type, and also the

values exhibited by its EDD with respect to the fault type, ODC class and failure type

(RQ3 ).

5.4 Practical Implications and Threats to Validity

The conducted analysis allowed to obtain a number of practical implications to improve

the error detection and recovery of the target system. In particular, insights about the

placement of EDM and ERM in the source code of the communication middleware have

been provided. For example, the analysis of the Error Propagation Reportability of event

logging and assertion checking highlighted the need of EDMs in the kernel component,

which have to consider both the e4-EL and e2-AC error types, i.e., Data type errors and
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Unexpected value errors, respectively. In addition, also the need of ERM in the system

has been highlighted. Indeed, the analysis of the Error Propagation Reportability of event

logging revealed that the placement of an ERM, which tries to avoid e5-EL errors, i.e.,

Main daemon errors, into the api, spliced or user component can be beneficial to cope with

SILENT failures, while, in the case of assertion checking, it can be beneficial to insert an

ERM, which tries to avoid that NULL value error, i.e., e4-AC, into the ddsi2 component

can be beneficial to cope with CRASH failures.

Regarding the threats to validity, it should be noted that the study relies on the error

reported by the considered monitoring techniques, therefore the undetected errors cannot

be considered into the analysis. As a result, the propagation graphs have to be considered

non-exhaustive since they do not include all the errors occurred into the system, but only the

ones reported by the techniques. In addition, there is the possibility that some propagation

paths from the faulty component, i.e., where the fault has been injected, to the other ones of

the target system are not reported by a monitoring technique because they are not present

by design in the target system, e.g., when the component that reports the error works as a

detector of the faulty component. Therefore, the proposed EPR metric might provide not

accurate value in this case. However, it can be successfully used to decide where to place

EDMs and ERMs, and, more important, as a comparative metric between MUTs.





Chapter 6

Experimental Results: Comparison
of Monitoring Techniques

A comparison of the considered MUTs, i.e., event logging (EL), assertion checking (AC), rule-based
logging (RB), has been conducted by comparing the measures obtained from the evaluation metrics
presented in Section 3.3. The comparison allowed to understand how the effectiveness of a MUT
varies across the different SUTs in terms of failure reporting and dissimilarity of data, as well as to
understand how the EDD and EPR change between the MUTs of the SUT1. Also the combination
of different MUTs has been analyzed in order to evaluate the potential benefits that can be achieved
by considering multiple MUTs at the same time.

6.1 Comparison of the MUTs

The effectiveness of the MUTs of each SUT have been compared by analyzing the results

obtained for each MUT in the analysis described in Chapter 5. The comparison have been

conducted by studying the measures obtained for each evaluation metric defined in Section

3.3. In addition, the potential benefits that can be obtained by combining different MUTs

have been evaluated in terms of both failure reporting and error propagation reportability.

165



Chapter 6. Experimental Results: Comparison of Monitoring Techniques 166

6.1.1 Recall and Precision

Figure 6.1 and Figure 6.2 show the percentage of reported errors of the MUTs, i.e., the

percentage of experiments where the MUTs has generated at least one error notification,

with respect to the failure and non-failure experiments, i.e., the experiments where the

injected fault led to a failure in the considered SUT or not, respectively, conducted during

the experimental campaign for SUT1 and SUT2, respectively.

Figure 6.1 shows that MUT3, i.e., rule-based logging (RB), has been able to report at

least an error notification for a percentage of CRASH failures occurred in the SUT1 higher

than ones of the other MUTs, i.e., 67.98%, as well as for SILENT failures, i.e., 70.10%.

Differently, the MUT1, i.e., event logging (EL), has been able to report at least an error

notification for a percentage of ERRATIC failures occurred in the SUT1 higher than ones

of the other MUTs, i.e., 20.89%.

Figure 6.2 shows that MUT3 has reported at least an error notification for a percentage

of SILENT failures and of ERRATIC failures occurred in the SUT2 higher than the ones of

the other MUTs, i.e., 94.13% and 68.10%, respectively. Differently, MUT1 has reported at

least an error notification for a percentage of CRASH failures occurred in the SUT2 higher

Figure 6.1: Percentage of reported errors of MUTs by failure type for SUT1.
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Figure 6.2: Percentage of reported errors of MUTs by failure type for SUT2.

than the ones of the other MUTs, i.e., 51.22%.

In addition, Figure 6.1 and Figure 6.2 show also that in bothe the SUTs the MUT1 has

generated at least an error notification for a percentage of experiment where no failures

occurred in the SUTs higher than the ones of the other MUTs. These error notifications

represent False Positives (FPs) in respect to the failures.

Table 6.1 reports FP, FN, TP, P and R for each MUT and each SUT. It can be noted

that the precision is very close to 1 for all the MUTs implemented by the SUT1: almost

all the failures reported by the MUTs are actual failures occurred in the communication

middleware. In the SUT2, only the assertions exhibit a high precision value. In fact, event

Table 6.1: False Positive (FP), False Negative (FN), True Positive (TP), Precision and Recall
of each SUT and MUT.

FP FN TP Precision Recall
MW-EL 50 2,495 664 0.930 0.210
MW-AC 2 1,555 1,604 0.999 0.508
MW-RB 20 1,204 1,955 0.990 0.619
AM-EL 243 604 81 0.250 0.118
AM-AC 0 640 45 1.000 0.066
AM-RB 139 167 518 0.788 0.756
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(AM-EL) and rule-based (AM-RB) logging generate a relevant number of FPs. The number

of FNs in the SUT1 ranges from 1,204 (i.e., MW-RB) to 2,495 (i.e., MW-EL) out of total

3,159 failures. In the SUT2 FNs range from 167 (i.e., AM-RB) to 640 (i.e., AM-AC) out of

total 685 failures occurred in the system. These findings suggest that a monitoring technique

might miss a relevant number of failures. The rightmost column of Table 6.1 reports the

recall of the MUTs.

It should be noted that the density of the MUTs, which is reported by Table 4.2, is

potentially related to the value of recall/precision. For example, the rather different values

of recall measured for the MW-AC and AM-AC, are likely caused by the different density

of the assertions in the SUTs, i.e., 0.99% and 0.18%, respectively. The MW-RB detects a

smaller number of failures when compared to AM-RB: again, the density of RB in SUT2 is

bigger than the SUT1, i.e., 8.59% and 0.36%, respectively. Finally, it can be observed that

the recall of MW-EL is bigger than AM-EL: the percentage of error logging instructions out

of the total number of logging instructions of MW-EL is bigger than AM-EL, i.e, 14.45% and

11.39%, respectively. Nevertheless, the high density of a MUT might affect the precision,

as it can be inferred from the values of precision of AM-EL and AM-RB reported by Table

6.1. In fact, a large number of monitoring instructions might increase the probability to

generate FPs.

These findings provide part of the answer to the Research Question 3, i.e., RQ3.

In fact, Figure 6.1 and Figure 6.2 show that different MUTs of the same SUT exhibited a

very different ability at reporting failures occurred in the SUT. Different MUTs of the same

SUT exhibited also different values of Recall and Precision, as shown in Table 6.1, which
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also shows that the values of Recall and Precision exposed by the MUTs changes at varying

the SUT.

6.1.2 Failure Coverage

As discussed in Chapter 5, the overall recall has been broken down by failure type in each

SUT. Given a failure type, the bottom row of Table 4.7 and Table 4.8 show the absolute

number and the percentage of failures that have been reported by each MUT in SUT1 and

SUT2, respectively.

Figure 6.3 shows the percentage of reported failures by type, MUT and SUT. It can

be noted that the reporting ability of the MUTs changes significantly across the

SUTs. Moreover, a MUT might show a different ability at reporting the same

type of failure in different SUTs. For example, the coverage of the event logs ranges

from a minimum of 3.61%, i.e., AM-EL (SILENT failures) to a maximum of 65.20%, i.e.,

MW-EL (SILENT failures). Rule-based logging achieves the maximum failure coverage

observed in this study. Assertions are able to detect almost only CRASH failures, as it can

Figure 6.3: Percentage of reported failure by type, technique and case study.
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be inferred by Figure 6.3.

The overall recall has been also broken down by fault type in each SUT, as already

discussed in Chapter 5. Given a fault type, the rightmost column of Table 4.7 and Table

4.8 shows the absolute number and the percentage of failures that have been reported by

each MUT in SUT1 and SUT2, respectively.

Figure 6.4 shows the percentage of activated faults that are reported by the MUTs in

both the SUTs. Percentage of reported failures can be observed in the rightmost column

of Table 4.7 and Table 4.8 for SUT1 and SUT2, respectively. It can be observed that the

reporting ability of the MUTs by fault type changes significantly at varying the

SUT. In fact, the percentages range between a minimum of 18.69%, for MW-EL (ALG

faults), and a maximum of 68.02%, for MW-RB (INT faults), in SUT1; while they range

between a minimum of 0.00%, for AM-AC (CHK and INT faults) and AM-RB (CHK

faults), in SUT2. Moreover, a MUT might show a different ability at reporting the

same type of activated fault in different SUTs.

Figure 6.4: Percentage of reported failure of the MUTs by fault type and case study.
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These findings provide further insights related to the Research Question 3, i.e., RQ3.

In fact, Figure 6.3 and Figure 6.4 show how the failure reporting ability of the MUTs changes

at varying the failure type and the fault type into the two SUTs, respectively.

6.1.3 Orthogonality of the MUTs

Given a SUT, the set of failures of the same type (i.e., CRASH, SILENT, ERRATIC ) is

broken down into 8 disjoint subsets, according to the notation described by Section 3.3.5:

NONE (i.e., the failures reported by no MUT), EL*, AC* and RB* (i.e., the failures re-

ported exclusively by one MUT), (EL·AC)*, (EL·RB)*, (AC·RB)* (i.e., the failures reported

exclusively by two out of the three MUTs), and ALL (i.e., the failures reported by all the

MUTs). The reader might refer to Figure 3.5 for the graphical representation of the sets,

where MUTi=EL, MUTj=AC and MUTk=RB.

Figure 6.5 shows that the MUTs are strongly orthogonal in SUT1. As a result, combining

the data produced by different MUTs might be useful to improve the detection of different

types of failures. For example, both event and rule-based logging, i.e., (EL·RB)* in Figure

Figure 6.5: Orthogonality of the MUTs (SUT1).
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6.5, report 51.96% of SILENT failures; moreover, each EL and RB detects additional 13.24%

and 18.14% of SILENT failures, respectively. AC alone does not give any contribution at

detecting SILENT failures. Similarly, both assertion checking and rule-based logging, i.e.,

(AC·RB)* in Figure 6.5, report 27.09% of CRASH failures; moreover, AC and RB report

further 20.58% and 26.83% of CRASH failures, respectively. Noteworthy, no MUT is able

to report around 75% of ERRATIC failures, which go undetected, as it can be inferred by

the NONE category.

Figure 6.6 shows that the considered MUTs are orthogonal also in the SUT2. For

example, event and rule-based logging, i.e., (EL·RB)* in Figure 6.6, report only 2.44% of

CRASH failures; however, EL and RB report additional 42.68% and 15.85% of CRASH

failures, respectively. This finding indicates that EL and RB report disjoints subsets of

CRASH failures. It can be noted that AC alone does not give a significant contribution

at detecting CRASH failures. For example, 21.95% of CRASH failures reported by means

of AC are also reported by RB. More important, RB is able to report the most part of

SILENT and ERRATIC failures in the SUT2.

Figure 6.6: Orthogonality of the MUTs (SUT2).
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Figure 6.7: Percentage of reported failure by different techniques combination.

Different monitoring techniques can be combined to increase the failure cov-

erage of a given SUT (for instance, by redirecting the notifications generated by different

MUTs to the same log file). Figure 6.7 shows the percentage of reported failures that can

be achieved by combining different MUTs by failure type and SUT. For example, the com-

bination of event and rule-based logging, i.e., EL∪RB, makes it possible to report 83.33%

of SILENT failures in the SUT1. This value is bigger than 70.10%, i.e., the percentage of

SILENT failures reported by RB in the SUT1 (RB is the MUT with the maximum SILENT

reporting ability in the SUT1).

Differently from the SUT1, combining EL and RB is beneficial to improve the detection

of CRASH in the SUT2. EL ∪ RB reports 89.02% of CRASH failures, which is higher

than the 51.22% exhibited by EL (i.e., the MUT with the best CRASH reporting ability in

the SUT2). In both the SUTs the combination of all the MUTs (i.e., ALL in Figure 6.7)

exhibits the maximum coverage in each failure type.

The obtained findings provide further insights related to the Research Question 4,

i.e., RQ4. Indeed, the results obtained from the analysis of the orthogonality of the
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considered MUTs allows understanding that the MUTs are orthogonal in both the SUTs,

which allows to obtain an improvement of the failure coverage in each SUT, as seen in

Figure 6.7.

6.1.4 Dissimilarity of the Monitoring Data

For each SUT three document sets are established based on the data collected during the

campaigns. In the SUT1, the sets contain 664, 1,604 and 1,955 files for EL, AC, and RB,

respectively; while in the SUT2, they contain 81, 45 and 518 files for EL, AC, and RB. The

sets are composed by the files generated under the reported failures by each MUT/SUT.

The total number of reported failures by MUT is in the rightmost cell of the bottom row

of Table 4.7 and Table 4.8 for SUT1 and SUT2, respectively.

Figure 6.8 and Figure 6.9 compare the CDFs obtained for the considered MUTs in the

SUT1 and the SUT2. Given a log.entropy value taken from the x-axis, i.e., l, the y-axis

reports the probability that the log.entropy of the documents generated by a given MUT

Figure 6.8: CDFs of log.entropy estimated for MUTs in SUT1.
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is ≤ l (or, equivalently the percentage of documents whose entropy is ≤ l). For example,

the point marked with a × (MW-RB series) in Figure 6.8 indicates that around 97% of RB

documents produced by the SUT1 under failures have entropy ≤ 1.5.

The log.entropy of the notifications produced by RB under failures is smaller than EL

and AC, with around 3% and 2% of documents exhibiting a log.entropy value > 1.5 in

both SUT1 and SUT2, respectively. It is worth noting that, while RB is the MUT covering

the largest number of failures in both the SUTs, the dissimilarity of the notifications it

generates across different failures is smaller than the other MUTs.

A closer look into the data allowed gaining insights into the causes of the small dissim-

ilarity obtained by the monitoring data of RB. It has been noted that a small number of

notifications occurs across many documents. Figure 6.10 shows the top 5 recurring gener-

ated by RB in both the SUTs. For example, in the SUT1 the SER, v kernelNew, kernel

notification, which notifies that the function v kernelNew did not terminate, was found in

1,325 out of 1,955 documents, i.e., the 67.7%. In the SUT2 the CER, root notification,

Figure 6.9: CDFs of log.entropy estimated for MUTs in SUT2.
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which notifies the unexpected crash of the root software module of AM, was found in 486

out of 518 documents, i.e., the 93.82%. While these notifications ensure high failure cover-

age, they become less useful for troubleshooting because RB frequently generates them.

The top 2 recurring notifications of EL are reported in Figure 6.11. The Description

Type mismatch notification of the SUT1 was found in 110 out of 664 documents, i.e.,

the 16.6%. In the SUT2 the Descr Not Implemented notification was found in 35 out

of 81 documents, i.e., 43.2%. The event logs generated under different failures are rather

dissimilar in both the SUTs. This dissimilarity allows EL to achieve log.entropy values

Communication Middleware (1,955 documents)
1 ,325 SER v_kernelNew kernel

648 IER v_builtinNew kernel

506 SER v_dataReaderNew reader

353 SER v_writerWrite writer

291 SER v_writerNew writer

Arrival Manager (518 documents)
486 CER service root

273 SER StateEventTrans Main

268 SER StartThd Main

265 SER RunInit EligThd

263 IER read Main

Figure 6.10: Top 5 recurring notifications in RB.

Communication Middleware (664 documents)
110 Description Type mismatch object . . .

. . . type is OBJ but OBJ was expected

94 Description Could not claim DDSdeamon

Arrival Manager (81 documents)
35 Descr Not ImplementedNUM NUM

34 NUM NUM NUEXCEPTION Code ENUMh from . . .
. . . Task Search in Table PidNUM NUM

Figure 6.11: Top 2 recurring notifications in EL.
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Communcation Middleware (1,604 documents)
162 Sender codecsyncc122 cmutexUnlock . . .

. . . Assertion osthdIdToInt mtx owner . . .

. . . osthIdToInt osthdIdSelf failed

159 Receiver codecsyncc122 cmutexUnlock . . .
. . . Assertion osthdIdToInt mtx owner . . .
. . . osthdIdToInt osthdIdSelf failed

Arrival Manager (45 documents)
45 TIMESTAMP TST WARNING EXCEPTION . . .

. . . Assertion Failed

Module Procedure Line Instruction

2 MAIN MAINTEST 2446 B7A81588

Figure 6.12: Top 2 recurring notifications in AC.

greater than or equal to AC and RB logging in both the SUTs (i.e., around 50% and 40%

of documents exhibiting a value > 1.5 for SUT1 and SUT2, respectively). The experiments

suggest that the monitoring data generated by means of event logging might be

more suitable for manual failure analysis with respect to the other MUTs.

The dissimilarity of the monitoring data obtained by EL is very close to AC in the SUT1:

in both cases, log.entropy is > 1.5 for around 50% of documents. Examples of assertions

occurred in the SUT1 are shown by Figure 6.12, which report the top 2 recurring assert

notifications in both the SUTs.

Differently from SUT1, in the SUT2 EL and AC have different dissimilarity values. The

log.entropy of AC varies in a small range around 1.5,as it can be noted from Figure 6.9.

There is a lack of differentiation in the notification generated by AC in SUT2. For example,

the top recurring notification TIMESTAMP TST WARNING EXCEPTION (shown by Figure 6.12)

was found in 45 out of 45 documents, i.e., the 100.0%, while the second top recurring

notification MAIN MAINTEST 2446 B7A81588 was found in 2 out of 45 documents, i.e., the
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4.4%. The lack of differentiation leads to very similar log.entropy values in the monitoring

data generated by AC.

The obtained findings provide further insights related to the Research Question 3,

i.e., RQ3. Indeed, the results obtained from the dissimilarity analysis shows that the

monitoring data generated by means of event logging might be more suitable for manual

failure analysis with respect to the other MUTs, since event logging generate data rather

dissimilar under different failures.

6.1.5 Error Determination Degree

The Error Determination Degrees, i.e., EDD with respect to the ODC fault class, the fault

type, and the failure type, exhibited by each MUT of the SUT1 have been compared. In

addition, the EDDs have been also measured for the combination of all the MUTs of the

SUT1, i.e., the ones obtained by considering all the MUTs at the same time. Table 6.2

contains the values of the before mentioned EDDs.

It can be noted that all the MUTs of the SUT exhibited an EDD lower than 60% with

respect to the fault type and ODC fault class, which means that no MUT of the SUT1

allows to infer either the fault type or the ODC class of the fault that have led

to the error from its error notifications. On the other hand, all the MUTs of the SUT

exhibited an EDD greater than 88% with respect to the failure type, which means that

each MUT of the SUT1 allows to infer the type of the failure occurred in the

SUT from its error notifications.

Similar considerations apply to the the combination of the MUTs. Indeed, the EDD
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Table 6.2: Error Determination Degrees exhibited by each MUT of SUT1 and by their
combination.

EDD w.r.t.
EDD (%)

MW-EL MW-AC MW-RB all MUTs
ODC fault class 57.10 56.30 54.70 58.98
fault type 43.47 42.12 44.90 47.08
failure type 88.92 99.87 91.97 96.36

with respect to both the ODC fault class and the fault type exhibited a value lower than

60%. However, an improvement can be observed in both the cases; in fact, the EDDs of the

combination of all the MUTs outperforms all other in the case of ODC fault class and fault

type, exhibiting a value of 58.98% and of 47.08%, respectively. Differently, the combination

of the MUTs does not allow to obtain the highest EDD with respect to the failure type.

Indeed, the combination exhibited a value of 96.36% that is lower than the 99.87% of

the MW-AC. However, it should be noted that assertion checking was able to detect only

CRASH failures in the SUT1, as discussed in Section 5.2.2. Therefore, in absolute terms,

the value exhibited by the combination of the MUTs can be considered as an improvement

of the EDD with respect to the failure type. Both the findings suggest that the combination

of all the MUTs of the SUT1 can be useful to obtain a little improvement in terms of EDDs.

The obtained findings provide further insights related to both the Research Question

3, i.e., RQ3 and the Research Question 4, i.e., RQ4. Indeed, Table 6.2 allows under-

standing that the MUTs implemented in SUT1 exhibited very similar ability to determine

the type/ODC class of the fault that have led to an error reported by the MUT as well as

the type of the failure that the reported error have led to. On the other hand, Table 6.2

allows also understanding that a combination of the MUTs implemented in the SUT1 can
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be useful to improve the EDDs.

6.1.6 Error Propagation Reportability

The Error Propagation Reportability values exhibited by each MUT of the SUT1 with

respect to the ALG ODC class, i.e., the one for which the higher number of samples has

been obtained, have been compared. In addition, the EPR with respect to the same ODC

class has been also measured for the combination of all the MUTs of the SUT1, i.e., the

one obtained considering all the MUTs at the same time. Table 6.3 contains the values

of the before mentioned EPRs. Noteworthy, the best highest EPR have been exposed by

the rule-based logging. However, as discussed in Section 5.3.4, this value is not realistic

because the rule-based logging is not implemented in all the components of the system,

but only in the kernel component; thus, it can be excluded from the comparison. Based

on this consideration, the best EPR is exhibited by the combination of the MUTs, i.e,

79.78%, which significantly outperformed both MW-EL and MW-AC, i.e., 26.01% and

36.64%, respectively. Therefore, the combination of the MUTs of the SUT1 allow

obtaining an improvement in terms of Error Reporting Ability.

The EPR of the combination of the MUTs of the SUT1 has been evaluated by analyzing

Table 6.3: Error Propagation Reportability (EPR) of each MUTs of SUT1, and of their
combination, with respect to the ALG faults.

MUT EPRALG (%)
MW-EL 26.01
MW-AC 36.64
MW-RB 100.00
all MUTs 79.78
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the related directed graph. Figure 6.13 shows the obtained graph, which summarizes the

major error propagation paths through the components of the SUT1 that which are gener-

ated as a consequence of ALG faults. The number of faults considered in the graph refers

to the number of faults that have led to at least an error notification to be raised by at

least one of the considered MUTs. The analysis of the graph shows that an improvement

has been obtained by combining the MUTs. For example, it can be noted that, differently

form the information inferred form the graph generated considering only the event logging,

Figure 5.8, all the errors that led to some error notifications in the api, spliced and user

components of the SUT1 at the same time, i.e., api+spliced+user node in the graph, are

propagated through the kernel component. Therefore, the assumption that the errors are

expected to arise in the kernel component of the SUT1 since all the faults have been injected

into this component is correct for these components.

Similar considerations apply to the ddsi2 and database components. Indeed, it can be

noted that, differently form the information inferred form the graph generated considering

only the assertion checking, Figure 5.17, where only the 0.8% of the errors that led to

at least an error notification in the ddsi2 component have been reported as propagated

through the kernel component, the combination of the MUTs reported that 24.78% of those

error have been propagated through the kernel component. Similarly, more than the half

of the errors that led to at least an error notification in the database component have

propagated through the kernel component, differently from the information inferred form

the graph generated considering only the event logging and only the assertion checking.

Therefore, the assumption is correct also for these components. It should be noted that
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this improvement is substantially due to the presence of the rule-based logging, which

reports only errors occurred in the kernel. Indeed, as it can be inferred form Figure 6.14,

where the detection node is shown, the number of errors reported by rule-base logging in

the considered components is almost equal to the number of error that are reported as

propagated from the kernel.

However, the presence of errors for both the components that generated an error noti-

fications without leave any traces in the kernel component, suggest that there is the need

of further EDMs in the SUT1 in order to improve the reporting of errors, as well as of the

error propagation. A closer look into the obtained error notifications in these cases allowed

to understand that most of the errors that are reported by the database and not from ker-

nel are of the type e2-AC, i.e., unexpected value errors; while most of the errors that are

reported by the ddsi2 and not from kernel are of the type e4-AC, i.e., NULL value errors.

Therefore, the EDMs to insert into the system have to cope to this kinds of errors. It should

be noted that both the types belong to the error model of the assertion checking. Indeed,

most of the error notifications raised in both the components have been raised by means of

assertions, as can be inferred into the Figure 6.14, where the detection node is shown. In

fact, 94% and 92% of error notifications reported in the database and ddsi2, respectively,

are raised by means of assertions.

Finally, Figure 6.13 allows also inferring that there is the need of ERMs in the system

since almost all the errors reported by the MUTs led to a failure in the systems. For

example, the error notifications reported by the api, spliced and user components at the

same time led to almost SILENT failures, while the ones reported by the database led to
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only CRASH failures; therefore, ERMs can be added in these components to cope with

these kinds of failure.

The obtained findings provide further insights related to all the Research Questions

addressed in this dissertation. Indeed, Figure 6.13 allows understanding that it is possible to

use monitoring techniques to characterize the error behavior of a complex critical software

system (RQ1), even if in a non-exhaustive way. As a reminder, only the errors reported

by the MUTs can be considered in the analysis. In addition, there is the possibility that

some propagation paths from the faulty component to the other ones are not reported by a

MUT because they are not present by design in the target SUT, e.g., when the component

that reports the error works as a detector of the faulty component, i.e., where the fault has

been injected. Therefore, the proposed EPR metric might provide not accurate value in this

case. Moreover, the analysis of the graph also allows to understand that the information

obtained from the error data collected by the MUTs can be leveraged to improve the

error detection/recovery of the MUTs of the SUT (RQ2), by providing insight about the

placement of EDMs/ERMs. Differently, both Figure 6.13 and Table 6.3 highlight how the

error and error propagation reporting ability changes between the MUTs (RQ3), even if

limited to the only ALG class, as well as that the combination of the MUTs can be useful

(RQ4) to improve the EPR, obtaining better insight about how the error propagates int

the SUT.
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6.2 Practical Implications and Threats to Validity

The content of the monitoring data collected during the experiments has been further

investigated to gain insights into the motivations underlying the coverage results. The

conducted investigation aims to identify, if any, specific characteristics of the SUTs that

motivate the results and provide practical implications to improve the MUTs.

A key finding of this study suggests that the effectiveness of a MUT is strongly affected

by the SUT and type of failure. It has been noted that MW-EL and AM-EL report 17.62%

and 51.22% of CRASH failures, respectively; on the contrary MW-EL outperforms MW-AC

under SILENT failures, i.e., 65.20% and 3.61% of reported SILENT failures, respectively.

A closer look into the monitoring data generated by EL in the SUTs allowed understanding

the motivations of such a difference.

It has been noted that 34 out of 45 CRASH failures induced in the SUT2 have been

notified by the example pattern in Figure 6.15, where TIMESTAMP and PROCESS PID represent

the timestamp of the log entry and the PID of the mentioned process, respectively. The

analysis of the source code of the SUT2 indicates that the pattern in Figure 6.15 is generated

by a supervisor software module of the arrival manager. The supervisor module is able to

manage the errors raised by its supervised processes (i.e., sequencing and metering processes,

shown in Figure 4.2) by executing different actions based on the given error. If no actions

can be executed, such as the case of a CRASH failure, the supervisor raises an exception

and appends an entry to the event log.

Differently, it has been noted that 92 out of 133 SILENT failures occurred in the SUT1
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were notified by the example pattern in Figure 6.15. The pattern indicates the occurrence

of some problems affecting the main daemon of the middleware, i.e., DDSdaemon. By

means of repeated runs of the middleware, it has been observed that during most of the

SILENT failure manifestations the DDSdaemon has been not responsive. Again, the manual

inspection of the source code allowed understanding that the pattern in Figure 6.15 is

generated by a diagnostic method that performs heartbeat checks on the DDSdaemon.

The method allows detection anomalies occurring under SILENT failures.

The above presented examples indicate that architectural features of a system are

potentially beneficial to event logging. The implementation of the supervisor module

in the SUT2 allowed AM-EL to report more CRASH failures than MW-EL. The heartbeat

checks on the main internal daemon of the SUT1 allowed MW-EL to better report SILENT

failures when compared to AM-EL. The inclusion of diagnostic supports in the system

architecture is beneficial to improve the reporting capability of event logs.

Arrival Manager - CRASH failures
TIMESTAMP EXCEPTION Code E829h from . . .
. . . Task Search in Table Pid PROCESS_PID

Communication Middleware - SILENT failures
//omitted
Description : An error occurring during . . .
. . . exithandling . Unable to determine the . . .
. . . presence of application participants .
The DDSdaemon service object was NULL .
//omitted
Description : Could not claim DDSdaemon .

Figure 6.15: Top recurring EL pattern of CRASH failures in SUT2 and SILENT failures
in SUT1.
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Beside architectural considerations, it has been observed that the placement of mon-

itoring instructions can affect the reporting ability of a MUT. In the SUT1 17.62%

and 60.78% of CRASH failures are reported by EL and AC. The inspection of the source

code of the SUT1 revealed that assertions are often placed before the logging instructions.

It is worth noting that the assertions implemented in the SUT1 belong to the specification of

function interface class (as discussed in Section 4.3): in this respect, they are likely placed

at the beginning of functions. The triggering of an assertion might suppress the notifications

generated by the logging instructions placed later in the source code of a function.

Figure 6.16 shows an example of AC and EL in the SUT1. It can be note that the

assertion (line 6) is placed before the logging instructions (lines 9-10), which is activated

upon the same condition (line 8) of the assertion, i.e., if this is NULL. In the case this is

NULL, the assertion is triggered and the logging instruction is not executed. This placement

of the assertions motivates to the small CRASH reporting ability shown by EL in the SUT1.

Both AC and EL have been enabled in the conducted experiments because one of the goals

of this dissertation is to assess the combined used of different MUTs

As a practical programming implication, developers should place the logging instructions

before the assertions triggered by the same conditions. It is worth noting that placement of

the assertions does not impact RB: the error detection mechanism of RB relies on the lack of

expected events (e.g., the end of a function call) rather than on the execution of a notifica-

tion instruction. Moreover, the experiments suggest that the monitoring instructions should

be placed along the paths where the errors are more likely to manifest. The log.entropy
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1 Communication Middleware (v spliced.c, line 729)
2 //omitted

3 s t a t i c v o i d n o t i f y C o h e r e n t R e a d e r s ( v _ k e r n e l _this ,

4 v _ d a t a R e a d e r S a m p l e r S a m p l e ){
5 //omitted

6 assert( this != NULL);

7 //omitted

8 if ( this == NULL) {
9 OS REPORT(OS WARNING, ”v spliced::notifyCoherentReaders”, 0,

10 ”Received illegal ’ this’ reference to kernel.”);

11 r e t u r n ;

12 }
13 //omitted

Figure 6.16: Example of assert and logging instructions (SUT1).

analysis discussed in Section 6.1.4 indicates that only a limited number of monitoring in-

structions is frequently activated under different failures. In this respect, the knowledge

of the system architecture (in terms of software modules and interactions among them) is

potentially useful to infer strategic source code locations, which are more suitable to contain

the monitoring instructions.

Regarding the threats to validity, it should be noted that the analysis has been conducted

on two datasets generated by the execution of controlled experiments aimed to assess recall,

precision and the three proposed metrics of the considered monitoring techniques (MUTs)

in two target systems (SUTs), under given workload and faultload. The discussed findings

might be subject to both construct and internal validity threats. In fact, special care

must be taken to reproduce realistic operation scenarios and to exercise the MUTs with

representative workload and faultload. The adoption of a scenario that is far from the

real application of the SUT or the execution of simplified workload and faultload represent

potential threats that practitioners replicating this type of analysis should be aware of.

In this work, special attention has been devoted to exercise both the SUTs according

to representative operations. Both MW and AM are deployed according to the settings
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provided by the industrial developers and are fed with realistic input data. For instance,

in the case of MW the workload consist of real flight data items produced by two legacy

ATC applications and consumed by a real instance of the web-based CWP, which is usually

deployed at customers’ premises. In the case of AM, the system is exercised with the

same test suite used by its developers to emulate the nominal usage of the system at the

production site.

Regarding the faultload, the study relies on faults belonging to the well consolidated or-

thogonal defect classification (ODC) [103] and the fault types that account for around

80% of representative faults found in real-world software systems have been selected, ac-

cording to the estimates in [104]. In addition, the faultload has been generated by using

the SAFE tool [110], which automatically searches for all the locations in the source code

where each of the considered fault types can be injected. As a result, a large number of

representative faults in all the possible code locations has been considered.

As a side effect, given the size of the faultload, some faults could be never activated

during the experiments (e.g., the fault is injected in a piece of code which is not exercised

by the workload, or it causes an error that is tolerated by the SUT). For instance, in the

case of MW, even if the faultload is composed by 12,733 faults, only 3,159 fault injections

resulted in a failure. Practitioners should be aware of this issue when replicating this type

of analysis by introducing faults in a large number of code locations.

Nevertheless, even if faults are exhaustively placed in all possible code locations, still for

some of the fault/failure combinations it might happen to have a small number of samples.

As an example, the (CHK, SILENT ) combination yields 1 failure in the MW case study.



Chapter 6. Experimental Results: Comparison of Monitoring Techniques 191

In these cases conclusions cannot be drawn.

Finally, as for external validity, results observed on two case studies are not statistically

generalizable. However, the reported findings, which are strongly supported by data, are

still useful to get an overall understanding on the type of characterization that can be per-

formed with the proposed method. Results show how the proposed method can be used

to understand the error behavior of complex critical software systems and to assess the

monitoring techniques of a given system, to uncover their limitations and to infer insight

useful to improve them accordingly. In addition, due to the lack of studies on monitoring

techniques of proprietary industrial systems in literature, the reported results can be ex-

tremely relevant to reliability engineers and practitioners in spite of the limitations in terms

of external validity.





Conclusion

The thesis addressed issues and challenges concerning the use of field data for the analysis

of the error behavior of complex critical software systems. Field data contain rich infor-

mation about the system reliability, providing valuable information on actual error/failure

behavior of a software system during the normal system operation. The thesis discussed a

substantial body of literature using field data, which highlighted that the analysis of field

failure data is useful in a variety of application domains, encompassing error and failure

classification, evaluation of dependability attributes, diagnosis and correlation of failures,

failure prediction. Field data are also used to understand the error behavior of software

systems as well as to characterize monitoring techniques, which are one of the main source

of field data. Nevertheless, the analysis of literature also revealed that the application of

existing techniques for the analysis of error behavior of software system is not trivial in the

context of complex critical software systems, as well as that there are no past experiences

on the characterization of the effectiveness of monitoring techniques with respect to failures

and errors.

The work proposed a methodology that leverages field data generated by means of

monitoring techniques already implemented in the target complex critical software system
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in order to understand the error behavior of the system, avoiding intrusive modifications of

its source code for the collection of useful data to analyze. Moreover, the proposal is also

conceived as a methodology to compare the effectiveness of different monitoring techniques

implemented in different target systems. To this aim, the methodology leverages information

retrieval metrics and proposed metrics, i.e., Error Determination Degree, Error Propagation

Reportability, and Dissimilarity of monitoring data.

The proposed methodology has been applied in two real-world critical industrial software

systems in the context of Air Traffic Control domain, i.e., the communication middleware

and the arrival manager. The method leverages and analyzes the data reported by mon-

itoring techniques implemented by the mentioned systems, i.e., event logging, assertion

checking and source code instrumentation.

The obtained results reveal that field data generated by means of monitoring techniques

can be leveraged to understand the error behavior of complex critical software systems,

allowing to infer the types of error that affect the system, the effect they have on the

system and, more important, how they propagate through the components of the system.

The results show that these abilities change in different monitoring techniques, as well as

that the reporting ability of the considered techniques changes across the two systems and

the failure types. Moreover, the methodology suggests that the considered techniques are

strongly orthogonal in the considered case studies: different monitoring techniques can be

combined to increase the failure coverage and the error propagation reportability, obtaining

more detailed information about the propagation of errors. The analysis also indicates that

in the considered systems the monitoring data generated by means of event logging are
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more suitable for failure analysis purposes with respect to the other techniques.

Finally, a closer investigation of the error notifications collected during the experimental

campaigns revealed that the failure reporting ability of the considered monitoring techniques

is impacted by a variety of features, such as architecture of the system and placement of

the monitoring instructions. This finding has a number of practical implications that the

developer should consider in order to implement better monitoring techniques, and also to

place EDM and ERM where they can be more effective.

The general achievements have been summarized in the following, referring to the re-

search questions of this work:

• RQ1: Is it possible to use monitoring techniques to characterize the error behavior in

complex critical software system? The use of the proposed methodology to the mon-

itoring techniques implemented in the communication middleware, along with their

comparison, allowed understanding that it is possible to use the data they provide to

characterize the error behavior of the system. In particular, the proposed methodol-

ogy allowed to infer the types of error that affect the system, the effect they have on

the system and, more important, how they propagate through the components of the

system, according to the considered monitoring technique, even if in a non-exhaustive

way as discussed in the Section 5.4.

• RQ2: Is it possible to improve the error detection/recovery of a complex critical

software system from error data? The analysis of the error propagation graphs created

using the monitoring data of the communication middleware allowed inferring insights
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about potential locations where EDMs and ERMs might be beneficial for the system,

as well as the type of error/failure they have to cope with.

• RQ3: How do the error and failure reporting ability change between different moni-

toring techniques implemented in a given system? And what about the dissimilarity of

their data? Both the analysis of each monitoring techniques implemented in the two

considered target systems, and their comparison, allowed to understand that different

monitoring techniques of the same target system exhibited a very different ability at

reporting occurred failures. In particular, the failure reporting ability of the tech-

niques changed at varying the failure type and the fault type into the two target

systems. In addition, the results obtained from the dissimilarity analysis showed that

the monitoring data generated by different monitoring techniques exposed different

level of dissimilarity, also in different target systems. More in details, the analysis

showed that monitoring data generated by means of event logging might be more

suitable for manual failure analysis with respect to the other techniques, since event

logging generate data rather dissimilar under different failures. Finally, Error De-

termination Degree analysis allowed understanding that the techniques implemented

in the communication middleware exhibited very low ability to determine the type-

/ODC class of the fault that have led to an error reported by the techniques, while

they exhibited very high ability to determine the type of the failure that the reported

error have led to. The Error Propagation Reportability analysis highlighted instead

how the error and error propagation reporting ability changes between the considered
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monitoring techniques in the communication middleware.

• RQ4: Is it useful to combine different monitoring techniques implemented in a com-

plex critical software system? The results obtained from the analysis of the orthogo-

nality of the considered monitoring techniques allowed understanding that the tech-

niques are orthogonal in both the considered systems, which allowed to obtain an im-

provement of the failure coverage in each SUT, as highlighted by the results obtained

from their combination. In addition, the combination of the considered monitoring

techniques allowed also the improvement at reporting the propagation of errors in

the communication middleware, as showed by the results of the analysis on the Error

Propagation Reportability.

The proposed methodology allowed to answer to the research questions of this study,

showing that the field data generated by means of monitoring techniques can be leveraged for

error analysis in complex critical software systems. In particular, useful insights have been

obtained about the propagation of errors through the components of a target system, and on

where the placement of ERM and EDM can be potential beneficial in order to improve the

reliability of the system. Practical implications on how improve the monitoring techniques

implemented by the target system have been also provided.

Future work will be devoted to extend this work on different paths. First, the insights

obtained from this study will be provided to developers of the considered systems in order to

improve their monitoring techniques, as well as to introduce potential beneficial EDMs and

197



ERMs. Second, the methodology will be applied to other software systems, either critical or

not, in order to further validate the proposed approach. In addition, a study on the so-called

indirect monitoring techniques has been started in order to understand if data generated

by operating system-level probes are suitable for error analysis purposes. Finally, also a

study on the suitability of monitoring techniques for the detection of anomalies occurred as

a consequence of security attacks has been started.
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