
	

	

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II
	

PH.D. THESIS IN
INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

	

DEPENDABILITY BENCHMARKING OF NETWORK
FUNCTION VIRTUALIZATION

	

LUIGI DE SIMONE

TUTOR: PROF. DOMENICO COTRONEO

XXIX CICLO

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE

3

To my family. To Ilaria, my beloved wife.

4

Abstract

Network Function Virtualization (NFV) is an emerging networking
paradigm that aims to reduce costs and time-to-market, improve man-
ageability, and foster competition and innovative services. NFV exploits
virtualization and cloud computing technologies to turn physical network
functions into Virtualized Network Functions (VNFs), which will be imple-
mented in software, and will run as Virtual Machines (VMs) on commodity
hardware located in high-performance data centers, namely Network Func-
tion Virtualization Infrastructures (NFVIs). The NFV paradigm relies on
cloud computing and virtualization technologies to provide carrier-grade
services, i.e., the ability of a service to be highly reliable and available,
within fast and automatic failure recovery mechanisms. The availability
of many virtualization solutions for NFV poses the question on which vir-
tualization technology should be adopted for NFV, in order to fulfill the
requirements described above. Currently, there are limited solutions for
analyzing, in quantitative terms, the performance and reliability trade-
offs, which are important concerns for the adoption of NFV. This thesis
deals with assessment of the reliability and of the performance of NFV
systems. It proposes a methodology, which includes context, measures,
and faultloads, to conduct dependability benchmarks in NFV, according
to the general principles of dependability benchmarking. To this aim, a
fault injection framework for the virtualization technologies has been de-
signed and implemented for the virtualized technologies being used as case
studies in this thesis. This framework is successfully used to conduct an
extensive experimental campaign, where we compare two candidate virtu-
alization technologies for NFV adoption: the commercial, hypervisor-based
virtualization platform VMware vSphere, and the open-source, container-
based virtualization platform Docker. These technologies are assessed in
the context of a high-availability, NFV-oriented IP Multimedia Subsystem

5

(IMS). The analysis of experimental results reveal that i) fault manage-
ment mechanisms are crucial in NFV, in order to provide accurate failure
detection and start the subsequent failover actions, and ii) fault injection
proves to be valuable way to introduce uncommon scenarios in the NFVI,
which can be fundamental to provide a high reliable service in production.

6

Acknowledgements

I would like to thank my advisor Prof. Domenico Cotroneo. He be-
lieved in me and supported me to pursue the PhD.
Thanks to Prof. Russo that gives me valuable tips especially during the
thesis period.
Thanks to Prof. Neeraj Suri and all DEEDS guys! I would like to thank
in particular Stefan. He was my guardian angel (in every senses) during
my visiting in Darmstadt.
Thanks to Prof. Peter Popov and Prof. Henrique Maderia to revise my
thesis and give me precious comments.
Thanks to my (practically :D) second advisor Roberto. During this years
he taught me the most of scientific things I know today. Thanks to all my
colleagues, Antonio, Roberto P., Stefano, Ken, Fabio, Raffo, Mario, Anna,
Flavio, Salvatore, Alma (also if you are not an eng XD). They were been
really part of me during my PhD program.
Thanks to my family because the man who I am now is only due to them,
my father, my mother, my bro, and my sisters. Thanks to my second
family where I’ve always been a son.
Thanks to my sisters and brothers (in God :D) because they supported
me, by crying and smiling in all situations.
Thanks to love of my life, Ilaria, because without her I don’t know if I
would still be alive today. She always been there for me, really for better,
for worse, for richer, for poorer, in sickness and health. I will love you until
death do us part!!!
It seemed impossible to me, but I did it...my (crazy, of course) way :D
I want to finish as I finished the acknowledgements in my MSc thesis.
I hope I’ll be ok,I hope I’ll succeed! (“Io speriamo che me la cavo!”)

Naples, Italy, 10th April 2017 Luigi De Simone

7

This page intentionally left blank.

Contents

List of Acronyms . 13
List of Tables . 15
List of Figures . 17

1 Dependability in NFV: Challenges and Contributions 1
1.1 Dependability in Network Function Virtualization 1
1.2 Dependability threats in NFV scenarios 5
1.3 Dependability Benchmarking in NFV 9
1.4 Thesis Contributions . 10

2 Related Work 13
2.1 Dependability Benchmarking 13

2.1.1 Basic Concepts . 14
2.1.2 Dependability Benchmarking studies 18

2.2 Fault Injection . 19
2.2.1 Introduction . 19
2.2.2 Overview of Fault Injection Testing 20
2.2.3 Basic Concepts of Fault Injection Experiments . . . 21
2.2.4 Key Properties of Fault Injection Testing 24

2.3 Fault Injection Testing of Virtual Machines 26

9

2.3.1 D-Cloud and DS-Bench Toolset 27
2.4 Fault Injection Testing of Cloud Management Stack 31

2.4.1 OpenStack Fault Injection Testing 32
2.4.2 PreFail . 40
2.4.3 The Netflix Simian Army 48

2.5 Fault Injection Testing of Hypervisors 55
2.5.1 CloudVal . 55
2.5.2 Xen failure mode analysis 57

3 The Proposed Methodology 63
3.1 Benchmark Elements . 64
3.2 Benchmark Measures . 67

3.2.1 Service-level measures 68
3.2.2 Infrastructure-level measures 75

3.3 Fault Model . 78
3.4 Workload . 87

4 Fault Injection Tool Suite 89
4.1 Virtualization Technologies Background 89

4.1.1 The VMware ESXi Architecture 91
4.1.2 Container-Based Virtualization 97

4.2 Fault Injection Tool . 106
4.2.1 Architecture . 108
4.2.2 Network Faults . 109
4.2.3 Storage Faults . 111
4.2.4 CPU Faults . 113
4.2.5 Memory Faults . 115

5 Experimental Analysis of Virtualization Technologies 117
5.1 The Clearwater IMS . 118
5.2 NFV Testbed . 119

10

5.3 Experimental results . 122
5.3.1 Service-level evaluation: Physical Layer 123
5.3.2 Service-level evaluation: Virtual Layer 128
5.3.3 Infrastructure-level evaluation 135

5.4 Benchmark validation . 140

6 Conclusion 143
6.1 Summary . 143
6.2 Analysis of Results . 145
6.3 Discussion . 148
6.4 Future directions . 149

11

This page intentionally left blank.

List of Acronyms

The following acronyms are used throughout this text.

CCE Cloud Computing Ecosystem

COTS Commercial Off-The-Shelf

ETSI European Telecommunications Standards Institute

FTAM Fault Tolerance Algorithms and Mechanism

HBA Host Bus Adapter

MANO Management and Orchestration

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NIC Network Interface Controller

OS Operating System

PM Physical Machine

VM Virtual Machine

13

VMFS VMware Virtual Machine File System

VNF Virtual Network Function

14

List of Tables

2.1 D-Cloud Fault Types [16] 27
2.2 OpenStack Fault Injection results [79] 38
2.3 OpenStack bug categories [79] 40
2.4 CloudVal results . 58

3.1 Overview of the fault model. 85

5.1 Fault free REGISTER requests’ Latency and Throughput
for VMware ESXi and Docker testbed. 122

5.2 Fault free INVITE requests’ Latency and Throughput for
VMware ESXi and Docker testbed. 123

5.3 Fault detection and fault recovery coverage. 136
5.4 Fault detection and fault recovery latency. 137

15

This page intentionally left blank.

List of Figures

1.1 NFV architecture. 3

2.1 Benchmark Target (BT), System Under Benchmark (SUB),
Fault Injection Target (FIT), Faultload, Workload, and Mea-
surements relationship. 16

2.2 Conceptual schema of fault injection [71]. 22

2.3 D-Cloud architecture [16] 28

2.4 DS-Bench Toolset architecture [59] 30

2.5 Target system of DS-Bench Toolset evaluation [59] 32

2.6 Example of OpenStack execution graph 34

2.7 Fault Injection framework 36

2.8 Code snippet example of Zookeeper application 44

2.9 Example of FIP [67] . 45

2.10 PreFail architecture [67] . 45

2.11 PreFail Test workflow . 46

2.12 AspectJ Example . 47

2.13 Example of source location filter policy 47

2.14 Example of source location cluster policy 48

2.15 PreFail optimization results 49

17

2.16 Amazon availability zones and regions 52
2.17 BurnCPU script . 53
2.18 BurnIO script . 54
2.19 NetworkCorruption script 54
2.20 CloudVal architecture [125] 57
2.21 Diagram of the experimental setup. [29] 59

3.1 Overview of dependability benchmarking methodology. . . . 64
3.2 Architecture of Network Function Virtualization 65
3.3 The benchmark target in NFV. 67
3.4 NFV dependability benchmark measures 68
3.5 VNF Latency and Throughput. 70
3.6 Examples of VNF latency distributions 71
3.7 VNF Unavailability . 73
3.8 VNF Unavailability definition 74

4.1 ESXi virtualization architecture using a traditional setup
(no CPU virtualization extensions, no I/O paravirtualization). 92

4.2 ESXi virtualization architecture, using a modern setup (CPU
virtualization extensions, I/O paravirtualization). 95

4.3 Container-based architecture 98
4.4 Docker architecture platform [51] 102
4.5 Docker networking subsystem. 104
4.6 Docker Swarm architecture. 105
4.7 Overview of I/O faults supported by the fault injection tech-

nologies. 107
4.8 Overview of CPU and memory faults supported by the fault

injection technologies. 107
4.9 Overview of the fault injection tool architecture. 109
4.10 Internals of kernel-level tools for injecting network faults. . . 110
4.11 Internals of kernel-level tools for injecting storage faults. . . 112

18

4.12 Internals of kernel-level tools for injecting compute faults. . 114

5.1 The Clearwater IMS architecture [99]. 119
5.2 The NFVI testbed, running an IMS. 121
5.3 VNF Unavailability under fault injection in the physical layer.124
5.4 VNF Latency under fault injection in the physical layer for

VMware ESXi/vSphere. 124
5.5 VNF Latency under fault injection in the physical layer for

Linux/Docker. 125
5.6 VNF throughput under fault injection in the physical layer. 125
5.7 VNF Unavailability under fault injection in the Homestead

VNF. 129
5.8 VNF latency under fault injection in the Homestead VNF

for REGISTER requests. 129
5.9 VNF latency under fault injection in the Homestead VNF

for INVITE requests. 130
5.10 VNF throughput under fault injection in the Homestead VNF.130
5.11 VNF Unavailability under fault injection in the Sprout VNF. 133
5.12 VNF latency under fault injection in the Sprout VNF for

REGISTER requests. 133
5.13 VNF latency under fault injection in the Sprout VNF for

INVITE requests. 134
5.14 VNF throughput under fault injection in the Sprout VNF. . 134

19

Chapter 1
Dependability in NFV:
Challenges and Contributions

1.1 Dependability in Network Function Virtual-
ization

Network Function Virtualization (NFV) [111, 112] is an emerging net-
working paradigm that aims to reduce costs and time-to-market, improve
manageability, and foster competition and innovative services [112, 96].
NFV will take advantage of virtualization and cloud computing technolo-
gies to turn network functions (such as IMS, EPC, DPI, NAC, etc.) into
Virtualized Network Functions (VNFs), which will be implemented in soft-
ware, and will run as Virtual Machines (VMs) on commodity hardware
located in high-performance data centers, namely Network Function Vir-
tualization Infrastructures (NFVIs).

Despite its recent introduction, NFV has already gained significant
market traction. A recent report [147] shows that the global NFV market
is growing at a CAGR of 32.88% during the period 2016-2020. Further-

1

2 Chapter 1. Dependability in NFV: Challenges and Contributions

more, there is an increasing offer and a high number of NFV vendors that
compete on VNF, NFV management and orchestration (MANO), and net-
work acceleration products [134, 104]. Moreover, in the foreseeable future,
VNFs and NFVIs will be provided on a pay-per-use basis, according to the
as-a-service cloud business model.

NFV solutions have to compete not only in cost and manageability, but
also in performance and reliability: telecom regulations impose carrier-
grade requirements to network functions, which need to achieve extremely
low packet processing overheads, controlled latency, and efficient virtual
switching, along with quick and automatic recovery from faults (in the
order of few seconds) and extremely high availability (99.999% or higher)
[130]. It is well known that these requirements are well satisfied by tradi-
tional (hardware-based) network functions, which have been proven very
reliable over the last decades. However, performance and reliability is
definitively a big challenge to achieve in next generation of network func-
tions, where most of the control logic will be implemented by means of
software and virtualization technologies.

Figure 1.1 briefly shows the architecture of an NFV system. It is char-
acterized by three kinds of components.

• Virtualized Network Functions (VNFs) are network functions
implemented in software. VNF are used to process the network traf-
fic (according to the specific network protocol and network topol-
ogy). They use both virtual and physical resources. Furthermore,
the Element Management (EM) components perform management
functions for a specific VNF (such as monitoring, configuring, etc.);

• NFV Infrastructure (NFVI) abstracts and manages access to
physical resources. It includes the hardware resources, a virtualiza-
tion layer to create virtual resources on the available hardware, and

1.1. Dependability in Network Function Virtualization 3

VIM(s)'VIM(s)'

VNF'
Managers'
VNF'

Managers'

Virtualized'Network'Func9ons'(VNFs)'

NFV'Infrastructure'(NFVI)'

VNF1' VNF2' VNF3'

Virtual'
Compute'

Virtual'
Storage'

Virtual'
Network'

Virtualiza9on'Layer'

Compute' Storage' Network'

Hardware'resources' NFV'MANO'

EM1' EM2' EM3'
NFV'

Orchestrator'

VIM(s)'

VNF'
Managers'

Figure 1.1. NFV architecture.

the virtual resources themselves1;

• NFV Management and Orchestration (MANO) acts as coor-
dinator of the overall NFV system. It includes three types of sub-
components: an Orchestrator, which allocates and releases resources
of the NFVI to the VNFs, by using the VIM, and manages the lifecy-
cle of network services (creation, scaling, configuration, upgrading,
termination); VNF managers, which are used to manage the lifecycle
of VNFs. Each VNF is linked to a VNF manager; the Virtualized
Infrastructure Managers (VIMs), which are controlled by the NFV
Orchestrator and VNF Managers to manage physical and virtual re-
sources in the NFVI.

The NFV paradigm relies on cloud and virtualization technologies,
which add more complexity and new risks: since these technologies are

1In the context of virtualization, the term Virtual Machine generally refers to an
isolated domain with abstract resources. However, the ETSI NFV framework does not
restrict the application of NFV to a particular virtualization technology [119].

4 Chapter 1. Dependability in NFV: Challenges and Contributions

not still well studied and understood in the context of NFV, they may
represent a threat for the performance and reliability of network infras-
tructures. It is well known that telecom services are expected to be highly
available and, as soon as a failure or an outage occurs, they must be re-
covered within a short period of time (e.g., milliseconds), using automatic
recovery means. Therefore, achieving dependability in NFV has been rec-
ognized as a big challenging issue, and is currently being discussed by
the European Telecommunications Standards Institute (ETSI) within the
resiliency2 term. ETSI GS NFV-REL (2015) [115] identifies use cases,
requirements and architectures that will serve as a reference for the emerg-
ing NFV technologies, including resiliency requirements that the emerging
NFV architectures will have to meet.

In this document, the ETSI addresses the problem of NFV resiliency by
recommending design practices, including failure detection and isolation,
automated recovery from failures, prevention of single points of failure in
the architecture, and so on. The document also introduces service conti-
nuity as the capability of assuring quality of service goals when anomaly
conditions, such as failure ones, occur. NFV systems have to assure service
continuity even if a component fails, or if the workload is much higher than
the nominal one. Another aspect of resiliency is the service availability level
of network functions. The VNFs must guarantee that the provided quality
of service is the same as hardware-based network functions (i.e., legacy
networks). In order to meet these objectives, the ETSI NFV architecture
will include resiliency mechanisms both at the VNF layer and at the NFV-
MANO (Management and Orchestration) layer [116]. Finally, the ETSI
NFV use cases envision the adoption of both stateless and stateful VNFs.
In the former case, VNF instances can be scaled to accommodate high
volumes of traffic, and to recover from failures. As for stateful VNFs, they

2Resiliency is the capability of a system to adapt itself properly when facing faults
or changes in the environment [89]

1.2. Dependability threats in NFV scenarios 5

will require mechanisms for storing and recovering the state of network
sessions and connections in a reliable way.

In particular, the ETSI identifies two main conditions that can cause a
service to deviate from normal operation: congestion conditions and failure
conditions. Congestion conditions occur when an unusual volume of traffic
saturates the capacity of VNFs. This situation may result from special
events (e.g., Chinese New Year festival, TV shows, etc.) or from a cyber-
attacks (e.g., DDoS attack). Instead, during failure conditions, a service
may be interrupted or it becomes unavailable due to faulty components.

In these situations, two key factors play a crucial role: priority of
restoration and failure recovery time. The priority of restoration level
denotes which is the service that has the main impact on the NFVI avail-
ability as a whole. Thus, restoring a service with a high priority increases
the overall service availability. The failure recovery time is the time needed
to recovery from failures, and it depends both on the amount of redundant
resources available and effectiveness of fault management mechanisms im-
plemented. Furthermore, it is worth noting the real-time nature of network
functions: a latency-sensitive service need to be recovered as fast as pos-
sible, rather than a lower priority service in which the availability level is
not stringent.

It is clear that all these requirements introduce the need for fair and
accurate procedures to benchmark both the quality of service and the re-
liability level of competing NFV solutions and providers.

1.2 Dependability threats in NFV scenarios

The NFV paradigm relies on cloud computing and virtualization tech-
nologies to provide carrier-grade services. As mentioned before, in the
context of telecommunication domain, carrier-grade means the ability of
a service to be highly reliable and available, well tested, and with proven

6 Chapter 1. Dependability in NFV: Challenges and Contributions

capabilities. In this section, we discuss which dependability threats impact
NFV-based telecommunication services.

Cloud computing was born to avoid the need for many corporations to
build and manage their own IT data centers. Cloud paradigm is meant
to provide computational resources, in such a way to allocate and deal-
locate them on demand, based on a pay-per-use business model, avoiding
expensive hardware platforms and big initial capital costs. Such comput-
ing resources include Internet services, storage facilities, compute power,
all provided just like a service. In the last years, both industry and re-
searchers are debating about how much we can trust in cloud computing
[21, 103]. Recently, several cases of cloud failures such as Amazon Web
Services (AWS) [11] (a race condition in the code on the servers which
manage data storage), Microsoft Azure [62] (a network device misconfigu-
ration) and Google Docs [161] (software fault in the memory management
component), have raised concerns on cloud computing. From the cloud
provider perspective, failures can lead to billion of money losses, just for
an hour of offline time [42]. These outages result from faults that occur in
a component of the cloud system, and that propagate through the entire
ecosystem. Thus, delivering a trustworthy cloud computing service (rang-
ing from IaaS to SaaS [97]) is a priority. In general, many organizations
and companies rely on cloud computing services (e.g., in traffic manage-
ment system for decision support [92], in finance [2], in healthcare [3], etc.),
therefore, cloud services will become more critical in the near future.

Currently, there is a wide spectrum of approaches in the virtualiza-
tion panorama, but mainly Hypervisor-based and Container-based virtu-
alization are the two main solutions actually in use in cloud computing
infrastructures [64, 10].

Hypervisor-based virtualization technologies provide a full emula-
tion of a computer machine. It allows guest operating systems to run
on top of a so-called hypervisor, which is a piece of software that manages

1.2. Dependability threats in NFV scenarios 7

multiple virtual machines on top of a single physical machine. Examples of
hypervisors are VMware ESXi [155], KVM [86], Microsoft Hyper-V [102],
Xen [17].

On the other side of spectrum, Container-based virtualization, also
called Operating System-level virtualization, allows to run multiple in-
stances of an OS, but without the overhead of fully emulating computer
machines. The idea is to enhance the traditional system call interface of
OSes, in order to provide isolated environments (containers) to applica-
tions. A container is not a virtual machine in the traditional sense, but it
is an environment with its own filesystem, network interfaces, processes,
etc., by leveraging on resource abstraction mechanisms (e.g., namespaces
in Linux [94]) and resource management capabilities (e.g., cgroups in Linux
[98]) provided by the kernel of the OS. Examples of container-based virtual-
ization technologies are LXC (LinuX Container [95]), Docker [49], OpenVZ
[122].

The availability of many virtualization solutions for NFV architects
poses the question on which virtualization technology should be adopted
for NFV. On the one hand, container-based virtualization is perceived as
a promising solution to reduce the overhead of virtualization, and thus to
achieve higher performance and scalability. On the other hand, traditional
hypervisor-based virtualization enforces a stronger isolation among virtual
machines and the physical machines, and it is regarded as a more secure
and reliable solution [138]. However, there are limited solutions (as will
be shown in the discussion of related work, see Section 2.2) for analyzing,
in quantitative terms, performance and reliability trade-offs. This lack is
especially problematic in the case of NFV, where both performance and
reliability aspects are important concerns.

The problem of testing and validating cloud computing infrastructures
is a big challenge. Since a cloud computing infrastructure consists of many
elements, it is hard to understand how individual elements impact on the

8 Chapter 1. Dependability in NFV: Challenges and Contributions

reliability of the cloud service/infrastructure, and how to prevent failures
[47]. In the context of NFV, telecom operators are concerned by the avail-
ability of their products and the user-perceived dependability because (i)
unreliable services are likely to be discarded by users and (ii) the total
costs of system failures can be tremendous. Potential causes of failures in
NFV are:

• Hardware Faults: the use of Commercial Off-The-Shelf (COTS) hard-
ware (instead of application-specific hardware equipment) is a poten-
tial source of faults in the NFVI, since these hardware components
have not been designed for carrier-grade requirements (e.g., in terms
of time-to-failure of hardware components). Ideally, these faults can
be masked by using redundant hardware components and by taking
advantage of this redundancy in the virtualization layer (e.g., the
virtualization layer can mask physical disk faults by replicating data
on several physical disks, and by exposing only one, reliable virtual
disk to the business layer);

• Software Faults: NFVI will also reuse COTS software components
at various levels of the virtualization stack, including the hypervisor,
guest OSes, management and orchestration software, middleware,
and third-party VNF software; however, COTS software is not sub-
ject to rigorous development and testing processes, thus these com-
ponents are often plagued by residual software bugs [108]. Moreover,
software for NFVI is tightly related to storage and network devices.
These features expose VNFs which is running on top of NFVIs to
robustness and performance issues;

• Operator Faults: the complexity and the large scale of virtualiza-
tion infrastructures expose them to human mistakes during oper-
ations and configuration. Since these infrastructures often involve
thousands of virtual nodes, and since they have complex network

1.3. Dependability Benchmarking in NFV 9

topologies and software/hardware stacks, it is difficult for system
administrators to configure and to operate them, and to make an
accurate capacity plan; thus, these infrastructures are exposed to
mistakes that may happen during deployment and operation.

1.3 Dependability Benchmarking in NFV

Benchmarks are an established practice for performance evaluation in
the computer industry since decades. Examples of successful benchmark-
ing initiatives are the TPC (Transaction Processing Performance Coun-
cil [149]) and the SPEC (Standard Performance Evaluation Corporation
[141]).

More recently, the research community developed dependability bench-
marking procedures, which have significantly matured from both the method-
ological and from technical point of view [55, 87, 54, 153]. However, de-
pendability benchmarking is a more difficult task than performance and
functional benchmarking, as it needs to consider the presence of faults
in the system, which requires elaborated test scenarios and experimen-
tal procedures, by leveraging on dependability evaluation techniques (in
particular, fault injection).

The goal of dependability benchmarking is to measure the depend-
ability properties of a computer system or component, in an automated,
reproducible, portable, and trustworthy way [106, 82]. The ultimate aim
is to enable system designers to make informed purchase decisions about
different system’s and/or component’s choice. Dependability were suc-
cessfully adopted in the context of COTS (Commercial Off The Shelf)
components, such as Operating Systems and Databases. A dependability
benchmark is aimed at addressing the interests (such as fairness and ease
of applicability) of several stakeholders, including product manufacturers
and users. To be accepted both by the computer industry and by the

10 Chapter 1. Dependability in NFV: Challenges and Contributions

user community, the benchmark must state the measures, the procedure
and conditions under which the measures are obtained, and the domain in
which these measures are considered valid and meaningful. The procedures
and rules to be followed have to be specified in detail to enable users to
implement the benchmark for a given system and to interpret the results.

The DBench project [45, 82] proposed the first general framework for
dependability benchmarking. DBench defined dependability benchmarks
for several types of product, such as DBMSs, OSes, and web-servers.

Dependability benchmarking becomes more compelling for NFV, as de-
noted by the interest of standardization bodies to define reliability require-
ments and evaluation procedures for the cloud and for NFV [57, 4], and also
the effort to drive the consistent implementation of an open and standard
NFV reference platform [128]. As mentioned, the need for dependability
benchmarking is exacerbated by the high incidence of the faults, due to the
large scale and complexity of NFVIs, the dynamism of NFV services, and
the massive adoption of commercial off-the-shelf (COTS) hardware and
software components. While COTS components are easily procured and
replaceable, NFV will need to recover from faulty components in a timely
way and preserve high network performance. However, there is a lack of
approaches that could allow NFV vendors, providers and users to evaluate
dependability, with a degree of accuracy and trustworthiness comparable
to performance benchmarks.

1.4 Thesis Contributions

In the light of the context and of the motivations discussed before,
this thesis dissertation contributes towards assessing the reliability and
performance of NFV systems, paving the way for the creation of a general
Dependability Benchmark framework. More specifically, the contributions
of this thesis include the following points.

1.4. Thesis Contributions 11

• Definition of a dependability benchmarking methodology
for NFV (Cap. 3).

This dissertation provides context, measures, and faultloads to con-
duct dependability benchmarks in NFV, according to the general
principles of dependability benchmarking, i.e., representative, sim-
ple, and portable across alternative technologies [44]. Moreover, the
benchmark takes into account the NFV use cases and technologies.
The benchmark allows to: (i) get quantitative measures of worst-case
quality of service; (ii) identify which fault types and faulty compo-
nents impact most on NFV services; (iii) validate the effectiveness of
fault tolerance and high-availability algorithms and mechanisms.

The faultload is obtained by modeling the virtualized infrastructure
for the four domains according to a typical virtualized infrastruc-
ture: network, storage, CPU, and memory. These elements are
present both as virtual resource abstractions, and as physical re-
sources. The fault model is aimed to the benchmark performer, which
builds the faultload for the target infrastructure by systematically
applying the fault model to each resource in the infrastructure (vir-
tual and physical machines, virtual and physical disks and switches).
For each domain (physical and virtual CPU, memory, disk and net-
work), we identify faults according to the following three general
fault types: unavailability (the resource becomes unresponsive and
unusable); delay (the resource is overcommitted and slowed-down);
corruption (the information stored or processed by the resource is in-
valid). These fault types are broad classes that span over the possible
failure modes of a component [126, 106, 19, 38, 73]. We specialize
these general fault types for each resource, by analyzing how hard-
ware, software, and/or operator faults can likely cause these three
possible fault types [44]. In this analysis, we consider the scientific
literature on fault injection and failure analysis in cloud comput-

12 Chapter 1. Dependability in NFV: Challenges and Contributions

ing infrastructures ([79], [67], [77], [125], [91], [90], [12]), well-known
cloud computing incidents ([11] , [62], [161]), and knowledge on the
prospective architecture and products for NFVI [154], to identify a
representative and complete set of faults.

• A Fault Injection toolsuite for virtualization technologies
(Chap. 4). Dependability benchmarking requires fault injection
testing technologies to support the experimental evaluation. There-
fore, this dissertation presents the design and implementation of fault
injection tools for both VMware vSphere and Docker, by adopting
the fault model defined by the dependability benchmarking method-
ology. The faults are injected by emulating their effects on the vir-
tualization layer. In particular, I/O and compute faults can be em-
ulated, respectively, by deliberately injecting I/O losses, corruptions
and delays, and by injecting code and data corruptions in memory
and in CPU registers, by forcing a crash of VMs and of their hosting
nodes, and by introducing CPU- and memory-bound "hogs" (that
is, tasks that deliberately consume CPU cycles and allocate memory
areas) in order to cause resource exhaustion. These faults can be
injected either in a specific virtual domain (a VM or a container), or
in a physical machine (PM) of the NFVI.

• A NFV case study on dependability benchmarking (Chap.
5). This dissertation presents an experimental case study to com-
pare, using the proposed dependability benchmark, two candidate
virtualization technologies for NFV: the commercial, hypervisor-based
virtualization platform VMware vSphere, and the open-source, container-
based virtualization platform Docker. We evaluate these technologies
in the context of a high-availability, NFV-oriented IP Multimedia
Subsystem (IMS), which has been deployed on two alternative NFVI
configurations.

Chapter 2
Related Work

2.1 Dependability Benchmarking

The goal of dependability benchmarking is to quantify the depend-
ability properties of a computer system or component, in an automated,
reproducible, portable and trustworthy way [106, 82]. This goal is espe-
cially important for COTS components and COTS-based systems, since it
would enable system designers to make informed purchase decisions. While
there are well-established benchmarks for functional and performance fea-
tures, the benchmarking of dependability is a more difficult task as it
needs to consider the presence of faults in the system, thus requiring more
sophisticated test scenarios and experimental procedures, by leveraging
on dependability evaluation techniques (in particular, fault injection). A
dependability benchmark is aimed at addressing the interests (such as fair-
ness and ease of applicability) of several stakeholders, including product
manufacturers and users. To be accepted both by the computer industry
and by the user community, the benchmark must state the measures, the
procedure and conditions under which the measures are obtained, and the
domain in which these measures are considered valid and meaningful. The

13

14 Chapter 2. Related Work

procedures and rules to be followed have to be specified in detail to enable
users to implement the benchmark for a given system and to interpret the
results.

The following section presents the necessary background to understand
all the specifics of dependability benchmarking, as well as all the prior work
on this subject.

2.1.1 Basic Concepts

The DBench project [45, 82] proposed a general framework for depend-
ability benchmarking, and defined dependability benchmarks for several
types of product, such as DBMSs, OSes, and web-servers. In order to
rigorously define a benchmarking methodology for NFV, we briefly review
the basic elements of this framework.

A dependability benchmark distinguishes between the Benchmark
Target (BT), which is the component or system under evaluation, and
the System Under Benchmark (SUB), which includes the BT along
with other resources (including hardware and software) that are needed to
run the BT. The evaluation process is driven by the benchmark context,
which identifies the benchmark user (which takes advantage of the results)
and the benchmark performer (which carries out the benchmark experi-
ments), the life cycle phase of the benchmark target at the time of the
benchmark (such as, the system integration phase), and the benchmark
purpose (such as, identifying weak points during the testing phase, or to
qualitatively/quantitatively validate dependability features supported or
claimed). Finally, the benchmark defines measures that reflect the de-
pendability and performance of the BT, either qualitatively (e.g., in terms
supported fault-tolerance capabilities) or quantitatively (e.g., system avail-
ability and response time in the presence of faults). Moreover, the mea-
sures can be either comprehensive (e.g., reflect the quality of service of
the system as a whole) or specific (e.g., related to a specific fault-tolerance

2.1. Dependability Benchmarking 15

capability).

Dependability benchmarks apply two forms of stimuli on the system,
namely the workload and the faultload. The workload represents the
typical operational profile for the considered system, and it is defined ac-
cording to similar considerations that are made for classical performance
benchmarks [76, 139, 148]. The faultload is a peculiarity of dependability
benchmarks: it defines a set of faults and exceptional conditions, which
are injected to emulate the real threats that the system is expected to
face. The definition of a realistic faultload is probably the most difficult
part of defining a dependability benchmark, as it requires a pragmatic
process based on knowledge, observation, and reasoning [43]. The most
important source of information is the post-mortem analysis of failures
in operational systems (e.g., running previous versions of the product, or
similar products). These data can be gathered from empirical studies, or
it can be directly collected from end-users and service providers. Alterna-
tively, the faultload can be identified from a systematic analysis of system’s
components and their potential faults, based on expert judgment. A com-
mon approach is to define selective faultloads, each addressing one class of
faults: hardware, software, and operator faults [66, 143, 54, 24, 123, 153].

It is important to remark that dependability benchmarks separate the
BT from the so-called Fault Injection Target (FIT), that is, the com-
ponent subject to the injection of faults. This separation is important
since it is desirable not to modify the BT when applying the faultload,
in order to get the benchmark accepted by its stakeholders. For this rea-
son, fault injection introduces perturbations outside the BT. Moreover,
this approach allows to compare several BTs with respect to the same set
of faults, since the injected faults are independent from the specific BT.
Figure 3.2 summarizes the relationship between elements described before.

Once these elements are defined, a dependability benchmark entails
the execution of a sequence of fault injection experiments. In each fault

16 Chapter 2. Related Work

System Under Benchmarking (SUB)

Benchmark Target (BT)

Faultload

Workload

Measurements

Fault Injection Target (FIT)

Figure 2.1. Benchmark Target (BT), System Under Benchmark (SUB),
Fault Injection Target (FIT), Faultload, Workload, and Measurements rela-
tionship.

injection experiment, the SUB is first deployed and configured; then, the
workload is submitted to the SUB and, during its execution, faults from the
faultload are injected; at the end of the execution, performance and failure
data are collected from the SUB, and the experimental testbed is cleaned-
up before starting the next experiment. This process is repeated several
times, by injecting a different fault at each fault injection experiment,
while using the same workload and collecting the same performance and
failure data. These data are processed after the experimental campaign, to
compute the dependability measures of the benchmark. The execution of
fault injection experiments is typically supported and automated by tools
for test infrastructure management, workload generation, fault injection,
and monitoring [72, 162, 109].

After running the dependability benchmark, we must assure that the
results are meaningful, relevant and can be shared among various bench-

2.1. Dependability Benchmarking 17

mark users (e.g., computer industry, researcher, practioners) without any
mystification. As mentioned in Sec. 1.3, the benchmark must fulfill differ-
ent key objectives including:

• Representativeness, which embraces the measures, the faultload, and
the workload ability to be representative regarding the system un-
der test. The definition of the measures have to be done thinking
about the real usefulness for the benchmark users. The workload
must include realistic profiles that we found in real systems during
operations. Finally, the faultload must consider the real threats that
the system can experience during operations. In general, the repre-
sentativeness strongly impacts on the relevance of the results;

• Repeatability and Reproducibility. Repeatability is the property of
the benchmark to show statistically equivalent results when it is per-
formed several time in the same environment (i.e, adopting the same
workload, faultload, SUB). That property is fundamental to guar-
antee the trustworthiness of the benchmark results. Reproducibility
instead regards the implementation from another party of a bench-
mark from the given specifications;

• Portability, which includes the ability of the benchmark to run on
different target systems, allowing comparison of different systems or
their components. The portability of the benchmark heavily depends
on the portability of the faultload;

• Non-intrusiveness, which reflects the implementation of the bench-
mark and the changes (if needed) in the system under benchmark.
Naturally, it would be desirable minimum changes in the SUB to
make the benchmark less intrusive as possible;

• Scalability, which is the property related to the ability of the bench-
mark to be applied on systems of different sizes. In particular, this

18 Chapter 2. Related Work

property affects the workload in terms of number of inputs submitted
to the SUB; however, the scalability is also related to the faultload
because for larger systems the number of components that can fail
simultaneously increase, thus the number of faults gets higher;

2.1.2 Dependability Benchmarking studies

Several dependability benchmarks have been proposed to compare al-
ternative components, such as operating systems [55, 87], web servers [54],
and DBMSs [153].

In [87, 55, 8], UNIX and Windows OSs were compared with respect to
the severity of their failures: for each experiment, the behavior of the OS
has been ranked according to a failure severity scale, to reflect the impact of
the fault on the stability and responsiveness of the system. The measures
provided are related to the OS robustness against failing system calls, the
OS reaction time for faulty system calls, and the OS restart time, that is
the time needed to the OS to reboot after a faulty system calls is activated.
Finally, they consider three different workloads: (i) an application that
implements the experiments control system of the TPC-C performance
benchmark [148], (ii) the PostMark [85] file system performance bench-
mark for operating systems, and (iii) the Java Virtual Machine (JVM).
Regarding the fault load, it is based on the corruption of systems call pa-
rameters. It is worth to mention another study [53] which characterize the
operating system (in particular they target the Windows operating system
family) in the presence of software faults in OS components.

In [54], the SPECweb benchmark [139] has been extended to evalu-
ate web servers with respect to throughput, response time, error rate,
autonomy and availability in the presence of software faults (“bugs”) in-
jected in the OS. Similarly, in [153], the TPC-C benchmark [148] has been
extended to evaluate OLTP products and configurations with respect to
number of transactions performed per minute and availability, in the pres-

2.2. Fault Injection 19

ence of operator faults (e.g., faults affecting the database schema or the
filesystem). More recently, the ISO/IEC Systems and software Quality Re-
quirements and Evaluation (SQuaRE) standard [1] defined an evaluation
module (ISO/IEC 25045) that integrates the concepts from dependability
benchmarking [58] to assess recoverability (i.e., ability of a product to re-
cover affected data and re-establish the state of the system in the event of
a failure).

In this dissertation, we develop these concepts in the context of Net-
work Function Virtualization, by identifying possible use cases and context
for a dependability benchmark, and by proposing appropriate measures
and faults for this domain.

2.2 Fault Injection

2.2.1 Introduction

In the context of business- and mission-critical scenarios, intense testing
activities are of paramount importance to guarantee that new systems and
their built-in fault-tolerance mechanisms are behaving as expected. In such
contexts, ensuring that the system behaves properly in the presence of a
fault is a problem that requires something more than traditional testing.
Fault injection is the process of introducing faults in a system, with the
goal of assessing the impact of faults on performance and on continuity of
service, and the efficiency (i.e., coverage and latency) of its fault tolerance
mechanisms.

Fault Injection is a kind of what-if experimentation, and it may take
place along with, or after, other testing activities. The target system is
exercised with a workload, and faults are inserted into specific software
components of the target system. The main goal is to observe how the
system behaves in the presence of the injected faults, by reproducing com-
ponent faults that will eventually affect the system during operation. Fault

20 Chapter 2. Related Work

injection is used in several scenarios: to validate the effectiveness and to
quantify the coverage of software fault tolerance, to assess risk, and to
perform dependability benchmarking [159, 30, 82].

2.2.2 Overview of Fault Injection Testing

The development of fault injection approaches followed the evolution of
computer systems. In the beginning, only simple hardware systems were
used in the most critical application sectors. Thus, first fault injection
approaches consisted of injecting physical faults into the target system
hardware (e.g., using radiation, pin-level, power supply disturbances, etc).

The growing complexity of the hardware turned the use of these physi-
cal approaches quite difficult or even impossible, and a new family of fault
injection approaches based on the runtime emulation of hardware faults
through software (Software Implemented Fault Injection - SWIFI) become
quite popular. SWIFI tools emulate the effects of hardware faults on soft-
ware, thus avoiding the costs and the complexity of physical fault injection.
SWIFI injects corruptions in the program state (e.g., data and address reg-
isters, stack and heap memory) and in the program code (e.g., in memory
areas where code is stored, before or during program execution), using
simple hardware fault models, such as bit flipping or bit stuck-at.

With the spread of computer systems in many application domains,
such as transportation, telecommunications, and e-commerce, we are wit-
nessing an increasing complexity of the software part of these systems,
which became a non-negligible cause of IT failures. The recent outages
of leading IT services providers, such as Amazon, Google and Microsoft
[48, 135, 100], were in fact due to software bugs, incorrect administration
actions, and excessive load. Thus, more recent fault injection approaches,
which are referred to as Software Fault Injection (SFI), were developed to
extend the scope of fault injection to faults related to software.

In practice, Software Fault Injection consists of the introduction of cor-

2.2. Fault Injection 21

rupted inputs and outputs values at the interface of software components
(such as at the Application Programming Interface of the component),
and of small changes in the code of the component. The use of SFI has
been recently recommended by several safety standards, such as the ISO
26262 standard for automotive safety [75], which prescribes the corruption
of software components for evaluating error detection and handling mech-
anisms in software, and the NASA standard 8719.13B for software safety
[107], which recommends fault injection to assess system behavior in the
presence of faulty off-the-shelf software.

2.2.3 Basic Concepts of Fault Injection Experiments

Throughout this dissertation, we will use the terminology defined by
Avizienis et al. in [15]. A fault is the adjudged or hypothesized cause of an
incorrect system state, which is referred to as error. A failure is an event
that occurs when an incorrect service is delivered, that is, an error state is
perceived by users or external systems.

Fault injection experiments follow the common schema presented in [71],
and shown in Figure 2.2. The system under analysis is usually named tar-
get. There are two entities that stimulate the system, respectively the load
generator and the injector. The former exercises the target with inputs
that will be processed during a fault injection experiment, whereas the
latter introduces a fault in the system. The set of inputs and faults sub-
mitted to the system are respectively referred to as workload and faultload,
which are typically specified by the tester through a library by enumerat-
ing inputs/faults or by specifying the rules for generating them. A fault is
injected by tampering with the state of the system or with the environment
in which it executes. Fault injection usually involves the execution of sev-
eral experiments or runs, which form a fault injection campaign, and only
one or few faults from the faultload are injected during each experiment.

The monitor entity collects from the target raw data (readouts or mea-

22 Chapter 2. Related Work

Figure 2.2. Conceptual schema of fault injection [71].

surements) that are needed to evaluate the effects of injected faults. The
choice of readouts depends on the kind of system considered and on the
properties that have to be evaluated. They may include the outputs of
the target (e.g., messages sent to users or to other systems) and the inter-
nal state of the target or its parts (e.g., the contents of a specific area of
memory). Readouts are used to assess the outcome of the experiment: for
instance, the tester can infer whether the injected fault has been tolerated,
or the system has failed. In order to obtain information about the outcome
of an experiment, readouts are usually compared to the readouts obtained
from fault-free experiments (referred to as golden runs or fault-free runs).
All the described entities are orchestrated by the controller, which is also
responsible for iterating fault injection experiments forming the fault in-
jection campaign as well as for storing the results of each experiment to
be used for subsequent analysis.

Let’s now see the phases of a fault injection experiment. Initially the
system is assumed to work in the “Correct” state. As soon as a fault is

2.2. Fault Injection 23

injected and a workload is applied, two behaviors can be observed. First,
the fault is not activated and it remains latent. In this case, after a timeout
the experiment runs out and no failure is produced. Second, the fault is
activated and it becomes an error. At this stage, an error i) may propagate,
by corrupting other parts of the system state until the system exhibits a
failure, ii) can be latent in the system, and iii) can be masked by fault
tolerance mechanisms. On the basis on the collected readouts, the monitor
should be able to identify the previous effects as well as the case in which
the fault is not activated at all.

In some cases, only a fraction of fault injection experiments are able
to activate faults and to produce errors; the others are useless since no
effects can be observed. In order to accelerate the occurrence of failures, a
different, and cheaper, form of fault injection can be adopted, namely error
injection. Here, the effects of faults are introduced in place of the actual
faults. A well known technique of error injection is Software-Implemented
Fault Injection (SWIFI), in which the effect of hardware faults (e.g., CPU
or memory faults) are emulated by corrupting the state of the software,
instead of physically tampering with hardware devices.

A very important aspect of fault injection is the set of measures that
are adopted to evaluate the target system in the presence of faults. The
goal of these measures is to represent the ability to tolerate faults of one
or more fault tolerance algorithms and mechanisms (FTAMs) in the sys-
tem. The effectiveness of fault tolerance can be hampered by flaws in the
design or implementation of FTAMs, which cause the lack of error and
fault handling coverage. Moreover, fault tolerance can be affected by the
lack of fault assumption coverage, that is, developers can make incorrect
or incomplete assumptions about faults that can occur during operation
(e.g., assumptions about how a faulty component would behave, or on the
independence between multiple faults) [14, 127].

Given an FTAM, its effectiveness is quantified using a coverage factor

24 Chapter 2. Related Work

[14, 127], which is defined as the conditional probability that a fault is cor-
rectly handled, given the occurrence of a fault and an input workload. In
practice, the coverage factor of an FTAM can be evaluated by measuring
the percentage of fault injections that are tolerated, and the number of
failures caused by fault injections. It is important to note that the fault
tolerance of a system is strongly dependent on the faults and inputs that
are faced during operation: thus, fault injection experiments should realis-
tically emulate these faults and inputs. Another measure of fault tolerance
effectiveness is the mean coverage time (also referred to as latency) [14],
that is, the expected time required to handle a fault, which can also be
estimated using fault injection.

2.2.4 Key Properties of Fault Injection Testing

The quality of results obtained by Fault Injection is strongly dependent
on several key properties of the experiments, namely:

• Representativeness refers to the ability of the faultload and the
workload to represent the real faults and inputs that the system will
experience during operation. If this is not the case, fault injection
tests will be ineffective and not meaningful. Representativeness of
faultloads is achieved by defining a realistic fault model, and by using
a tool that accurately reproduces this fault model during an experi-
ment.

• Usability requires to support developers in applying fault injection
quickly and with low effort, by making easy the setup and execution of
fault injection experiments, and the analysis of results. It is desirable
that Fault injection tools are reusable across different target systems,
and can support several fault models.

• Reproducibility is the ability of obtaining the same (or statistically

2.2. Fault Injection 25

equivalent) results when fault injection experiments are repeated, in
order to allow developers to reproduce a failure discovered by fault
injection, and to fix the system.

• Non-intrusiveness of fault injection tools is required in order to
produce accurate measures. To be non-intrusive, the presence of the
tool in the target system (e.g., for inserting faults and for collect-
ing data) should not introduce significant perturbations that would
distort the results of the experiments.

• Efficiency is the ability to achieve relevant and useful results with a
reasonable number of experiments. A fault injection approach is not
efficient when it requires an unfeasibly high number of experiments
to obtain a statistically significant validation of the system, and to
discover FTAM issues. To achieve efficiency, a fault injector should
be designed to inject faults that actually put the target system un-
der stress (i.e., to avoid the injection of faults that cannot have an
impact on the target, such as faults in unused components and inter-
faces) and that provide useful feedback (i.e., to avoid the injection
of redundant faults that would provide identical results).

Virtualization is an enabling technology to set up a cloud computing
infrastructure. Virtualization allows to abstract physical resources (e.g.,
CPUs, network devices, storage devices, and so on) in order to share and to
provide resources, making a physical machine as a soft component to use
and manage very easily. Virtualization software is used to run one or more
so-called Virtual Machines (VMs) (a software abstraction of a physical
machine) on a single physical machine, providing the same functionalities
as if they were many physical machines. This virtualization software is
named Hypervisor, which is responsible of executing and managing multi-
ple VMs in order to synchronize the access to the CPU, memory and other
I/O resources of the physical machine.

26 Chapter 2. Related Work

Therefore, to assure the reliability of cloud systems, it is necessary to
assess the reliability of the virtualization environment as a whole, focusing
both on VMs and on the Hypervisor, as well as on the Cloud Management
Stack software that orchestrates them (such as the well-known OpenStack
framework) to efficiently manage cloud infrastructures. In the subsequent
sections, we present an overview of related studies that adopt fault injection
to assure a high-level of reliability of cloud systems, focusing on Virtual
Machines (subsection 2.3), Cloud Management Stack (subsection 2.4), and
Hypervisors (subsection 2.5).

2.3 Fault Injection Testing of Virtual Machines

Testing in distributed and parallel systems in many cases is an hard
task due to complexity of such systems in operational phase. In particu-
lar, cloud-based systems have to be high dependable, thus they must have
fault tolerance mechanisms that consider not only software failures but
hardware failures too. In this section, we consider fault injection testing
of Virtual Machines, focusing on user software and operating system (e.g.,
Linux) that runs on those VMs. This fault injection testing aims to high-
light reliability issues against hardware faults. The latter are emulated
within VM, just modifying virtual devices, such as hard disk and network
controller, and tampering memory and CPU state. Moreover, that ap-
proach includes software bug at operating system’s level, by corruption of
source code into memory.

In this section, we present D-Cloud and DS-Bench Toolset, fault injec-
tion tools that adopt virtualization for performing Fault Injection Testing
of distributed software.

2.3. Fault Injection Testing of Virtual Machines 27

2.3.1 D-Cloud and DS-Bench Toolset

D-Cloud [16] is a dedicated simulated test environment, based on QEMU
for virtualizing physical machines, and on Eucalyptus cloud computing
system for managing these VMs for testing purposes. D-Cloud adopts
QEMU to emulate hardware faults, by injecting various typical faults into
the guest OS.

Conversely, DS-Bench Toolset [59] is a framework that computes de-
pendability metrics of the overall system under test (SUT), using various
benchmark programs, by injecting anomaly loads; furthermore, it provides
the evidence for the assurance case based on the benchmark results.

Faultload. D-Cloud considers hardware faults in memory, hard-disk
and network devices. It performs fault injection by simulating data cor-
ruptions in the emulated devices. The fault types (see Table 2.1) include
the corruption of individual sectors of the disk (e.g., the sector was dam-
aged by wear-out), of packets sent through the network (e.g., loss or bit
corruption of a packet), and of memory cells. Moreover, it can simulate a
unresponsive or slow hard disk and network devices.

Table 2.1. D-Cloud Fault Types [16]

Physical Device Fault Type

Hard Disk

Error of specified sector
Specified sector is read-only
Error detection by ECC

Received data contains error
Response of disk becomes slow

Network Controller

1bit error of packet
2bit error of packet

Error detection by CRC
Packet Loss

NIC is not responding

Memory Bit error
Byte at specified address contains error

Architecture. In Figure 2.3 is shown D-Cloud architecture. There are

28 Chapter 2. Related Work

Figure 2.3. D-Cloud architecture [16]

three main components:

1. QEMU nodes: QEMU provides fault injection facilities leveraging
on mechanisms that emulate many hardware devices. Moreover, be-
ing open source, allow to edit hardware emulation code in order to
add fault injection code;

2. Controller node: it manages QEMU nodes exploiting Eucalyptus,
which manages machine resources using virtual machines;

3. D-Cloud front-end: it provides an interface to the tester, that
allows him to configure system test environments and logging mech-
anisms, and to analyze results.

A tester can describe a test scenario through an XML-based description
format. A test scenario includes:

2.3. Fault Injection Testing of Virtual Machines 29

• the configuration of hardware environment, that specifies hardware
configuration of the virtual machines (i.e., number of CPUs, number
of NICs, amount of memory and ID of OS image to be booted);

• the configuration of software environment, that specifies a system
definition, consisting of a number of hosts with specific configuration,
that describe the installed applications and the network configura-
tion;

• the fault injection definition, that specifies the target device, the
fault type and the time duration of injection experiment;

• the configuration of test execution, that specifies the number of tests
to be executed (runs), each of which include the finish time, and
tester defined script to be executed in the test.

The D-Cloud front-end issues commands to the Controller Node (the
Eucalyptus controller), which dispatches fault injection experiments to the
available QEMU nodes. VMs are used to execute the software, to perform
fault injection, and to take a snapshot of the system at the end of an ex-
periment. Once tests are completed, the tester can download test outputs,
system logs, and VM snapshots, analyze them and obtain results.

Figure 2.4 shows an overview of DS-Bench Toolset architecture, and
consists of:

• DS-Bench, a benchmark test framework for system dependability.
It includes a controller, that has a benchmark database, in which
is stored benchmark scenario (described via XML), benchmark pro-
grams (e.g., httperf), anomaly generators and benchmark results;

• D-Case Editor, a requirements description and agreement support
tool;

• D-Cloud, an execution testing environments (see above);

30 Chapter 2. Related Work

Figure 2.4. DS-Bench Toolset architecture [59]

In depth, a tester interacts with the toolset via the D-Case Editor (im-
plemented using Eclipse Graphical Modeling Framework), that allows to
specify a so-called D-Case diagram; that diagram contains some require-
ments, such as performance requirements (e.g., latency), or availability
requirements (e.g., downtime less than a specific time).

D-Case Editor imports the suitable benchmark from benchmark database
(if there is not exist, it creates new one), and then requests to DS-Bench to
execute such a benchmark test. The target machines can be both physical
and virtual machines. DS-Bench execute selected benchmark on target
machine with the aid of D-Cloud controller.

D-Cloud controller generates anomaly loads which encompasses two
main types: first, it include programs that run on target machines, which
consume computing resources, such as CPU, memory and I/O bandwidth;
second, injects fault from outside of target machines, both on physical
machine (e.g., cut an external power source, or cut a physical link) and
on virtual machine, by emulating hardware faults via VM injection (e.g.,
memory bit flip, disk I/O error, packet drop and so on). D-Cloud controller

2.4. Fault Injection Testing of Cloud Management Stack 31

sends a list of all available resources to the DS-Bench controller, and then
assigns target machines to execute the benchmark.

A similar study was presented [16], with the difference that in this work
is used OpenStack, a popular open source cloud-management software that
allow to manage and assign physical and virtual machine. Upon the test
complete, D-Case Editor analyses results and checks if requirements are
met.

Results. In this section, the results are related to the evaluation of
the DS-Bench Toolset. The target is a system that simulates a typical web
server system that hosts the MoinMoin Wiki system [105], simply a wiki
engine that runs a wiki server. Figure 2.5 shows the target system, which
consists of a front-end web servers with an Apache HTTP Server, that are
set up as physical machines (server performance is much more critical than
clients machine, so it is better test on the actual hardware), and the client
that access the server, that are set up as virtual machines. The experiments
are conducted focusing on web server failure, simulated via a script that
cuts down a network link by controlling a network switch connected to the
target physical machine, using the SNMP (Simple Network Management
Protocol) protocol. As benchmark program is used a tool based on httperf.
The benchmark takes 60 seconds and at t = 30s is injected a network link
failure. The requirement goal is to achieve a response time (latency) of
web server within 3000ms, when the access rate is within 4 request/s, even
in presence of network failure.

2.4 Fault Injection Testing of Cloud Management
Stack

By Cloud Computing stack it is meant the set of software and of tech-
nologies responsible for the creation and management of cloud platforms,
via the cooperation of distributed services. In particular these services take

32 Chapter 2. Related Work

Figure 2.5. Target system of DS-Bench Toolset evaluation [59]

care about instantiation of VMs on hypervisor, VMs migration, creating
and deleting VMs, storage facilities and network communication. More-
over, due to unreliable hardware platforms, cloud computing stack is also
responsible for providing a protocol that recovers from various hardware
failure such as machine crashes, disk errors and network errors.

In this section we overview two main studies, [79] is one of the firsts
on fault resilience in OpenStack [120], a popular cloud management stack
software, and [77], a summa of studies on multiple failure injection, which
evaluate various cloud management software like HDFS [136], Cassandra
[88] and Zookeeper [74].

2.4.1 OpenStack Fault Injection Testing

An important dependability aspect of cloud computing software is re-
lated to resiliency, still not studied in depth. For example, as soon as
faults occur, VM creation or VM migration may fail or take much more
time than expected, and VMs may be labelled as successfully created but

2.4. Fault Injection Testing of Cloud Management Stack 33

probably with a lack of critical resources (e.g., network related, such as IP
addresses). So, fault resilience issues may be lead to unusable and unstable
cloud platform.

One of the most important open cloud computing software is Open-
Stack [120], that controls compute, storage and networking resources in a
whole data center, managed and provisioned through a web-based dash-
board, command-line tools or a RESTful API. The goal of OpenStack is to
allow the creation of private or public cloud computing platforms, simple
to implement and massively scalable.

Ju et al. [79] presents a systematic study on fault resilience of this
cloud computing software. The proposed framework injects network faults
targeting communications among OpenStack’s services like compute, im-
age and identity services, but also database, hypervisor and messaging
services. The authors evaluate the framework on two OpenStack versions,
identifying bugs, such as timeout between services communication, or lack
in periodic checking of service liveness (VM creation API has completed
its job?) and so on, more described in the next sections.

Faultload. The fault injection is focused on the execution graph,
that is the execution of OpenStack during the processing of an external
request. OpenStack uses two main communications mechanisms: com-
pute services (see below) use Remote Procedure Calls (RPCs) for internal
communications within the service group; the other services, conform to
REpresentational State Transfer (REST) architecture, communicate with
each other through the Web Server Gateway Interface (WSGI) (for more
details on OpenStack architecture see [121]).

The execution graph is generated starting from logs of fault-free request
processing task, where:

• each vertex represents a communication event ; each communication
event is a pair of the communication entity(e.g., image-api service)
and the communication type (e.g., REST request and send opera-

34 Chapter 2. Related Work

Figure 2.6. Example of OpenStack execution graph

tion);

• each edge describes the causality among events.

Figure 2.6 shows an example of execution graph related to VM creation,
consisting of REST and RPC communications.

The external APIs are related to the following services:

• Compute service, that allow to manage VMs (e.g., creating and delet-
ing VMs);

• Image service, that allow to manage VM images (e.g., registration
and deployments of VMs);

• Identity service, that allow to manage users, tenant and roles, and
authentication related issues.

The authors consider only two common faults, well studied in literature:

2.4. Fault Injection Testing of Cloud Management Stack 35

• Server (or service) crash, lead to the unavailability of specific service.
This fault is injected simply by killing important service processes
using systemd, a Linux service manager;

• Network partition, lead to network split, that is no communication
between two subnets. This fault is injected installing iptable rules
on service hosts that should be partitioned.

Architecture. Basically, this approach performs fault injection con-
sidering the evolution of the request execution, and the state of the overall
system, focusing on state transitions. Figure 2.7 shows the framework,
that consists of three main components:

1. Logging and Coordination module: this module is responsible
for log OpenStack services communications and for coordinating the
Fault-Injection module with the execution of OpenStack;

2. Fault-Injection module: this module is composed by a fault-
injection controller, that runs on a test server node, and a fault-
injection stub, that runs with OpenStack. Essentially, using infor-
mation gathered by logging and coordination module, the fault in-
jection controller decides when to inject faults, and triggers the fault-
injection stub component;

3. Specification-Checking module: this module verifies whether,
after each fault-injection experiment, the behavior of OpenStack is
compliant to a predefined behavioral model (i.e., whether OpenStack
is able to provide a reliable behavior).

After logging OpenStack communications in a fault-free execution,
the Fault-Injection module parses logs and creates a fault-free execution
graphs; according to the latter, and with a predefined fault specification,
the Fault-injection module generates a set of test plans. These test plans

36 Chapter 2. Related Work

Figure 2.7. Fault Injection framework

are generated exhaustively, considering all the fault types applicable, with
any specific criteria (e.g., cluster execution graph vertices within a test-
ing priority). Each test plan consists of an execution graph, a fault type
(specified in fault specification) and a fault location (computed through
fault-free execution graph). At this point, Fault-injection controller ac-
tual makes fault-injection decision and communicates it to the stub that
actual injects faults, according to the test plan. Upon test completion,
Fault-injection module collects results and sends them to the Specification-
Checking module, which checks results against specification, and it reports
possible violations.

Since OpenStack developers publish only a few state-diagram transi-
tions, the authors manually generate specification by taking into account
OpenStack developers’ assumption and overall behavior of the system.
Database-related specifications are written through SQLAlchemy library
[140], and for others a generic Python scripts are used.

Regarding the VMs state in OpenStack, Algorithm 1 shows a specifica-
tion example of VM State Stabilization: this specification checks if a VM,
after creation, reaches an ACTIVE state (i.e., stable state) instead of re-

2.4. Fault Injection Testing of Cloud Management Stack 37

maining in a BUILD state (i.e., transient state). Algorithms 2 and 3 shows
others examples of specifications, respectively Ethernet Configuration, that
checks if an ACTIVE VM has the ethernet controller properly configured,
and Image Local Store, that checks if the database of OpenStack image
service is synchronized with the view of filesystem on the service host.

Algorithm 1 VM State Stabilization Specification
query = select VM from compute_database where VM.state in
collection(VMunstable states)
if query.count() = 0 then
return Pass

end if
return Fail

Algorithm 2 Ethernet Configuration Specification
if VM .state() = ACTIV E and ((VM .host.Ethernet not setup) or
(network_controller.Ethernet not setup)) then
return Failt

end if
return Pass

Algorithm 3 Image Local Store Specification
query = select image from image_database where image.location is
local)
if local_image_store_images = query.all() then
return Pass

end if
return Fail

Results. In [79], testing was performed on two OpenStack versions,
essex and grizzly. By injecting crash and partition faults, Table 2.2 shows
the number of injected faults, the number of specification violation and the
number of discovered OpenStack software defects (bugs). As mentioned

38 Chapter 2. Related Work

Table 2.2. OpenStack Fault Injection results [79]

in 2.4.1, the tests are performed on 11 different external OpenStack APIs.
The authors have injected 3848 faults, implemented 26 specifications to
check the overall OpenStack behavior, detecting 1520 violations and finally,
using the proposed framework, they have identified 23 bugs categorized in
the Table 2.3.

Table 2.3 shows the number of discovered bugs, which are classified
using seven categories:

• Timeout bugs are related to a service that is in an indefinite waiting
(or blocked) for a service response. For example, in OpenStack es-
sex version, timeout mechanisms, in REST communications, are not
properly implemented. Thus, a service may be blocked for a response
from another service, via the REST mechanism, if the two services
become network-partitioned (for example, after the service request
is sent but before the response from the other service is received);

• Periodic checking bugs are related to the lack of checking mech-
anisms, that are in charge of monitoring service liveness, resume

2.4. Fault Injection Testing of Cloud Management Stack 39

interrupted execution, clean up garbage and prevent resource loss.
For example, in the VM creation request, VM state transits from
NONE (i.e., not exists) to BUILD (i.e., under construction) to AC-
TIVE (i.e., actively runs). If the creation process is interrupted just
after reaching the BUILD state, it is possible that VM indefinitely
remains in that state.

• State transition bugs are related to the state-transition diagrams
held in OpenStack database. For example, the OpenStack grizzly
version periodically checks if a VM exceeds the maximum given time
allowed to remain in BUILD state; if so, OpenStack convert a VM
from BUILD to ERROR state, without cancel the VM creation re-
quest related to that VM. Thus, if a transient fault occurs during
VM creation request, then a VM may transit from BUILD to ER-
ROR and then to ACTIVE, because the VM can be created, after
periodical check described above, and after the faulty conditions are
not present anymore.

• Return code checking bugs are related to erroneous return code
of OpenStack services. For example, during the VM creation process,
if the OpenStack identity service can not authenticate a user token
passed from a compute API service, then returns an error code to
that service. Due to implementation error within the checking logic,
the compute API service considers such an error due to a wrong
token, producing an improper error message.

• Cross-layer coordination bugs are related to incorrect interpre-
tations of behaviors of different layers in the OpenStack architecture
(see [121]).

• Library interference bugs are related to using of various exter-
nal libraries that may lead to unexpected behavior. For example,

40 Chapter 2. Related Work

Table 2.3. OpenStack bug categories [79]

OpenStack uses patched version of Python library functions to sup-
port thread scheduling; incompatibility in the patched functions may
highlights bugs hard to detect.

• Miscellaneous bugs are related to implementation bugs which not
fall into above categories. For example, in the OpenStack essex ver-
sion, if a connection opening procedure is interrupted, a subsequent
open call is issued without first invoking close to clean up the state
of the connection. When retrying to open connection all attempts
fail with an "already open" error message.

2.4.2 PreFail

A recent trend on fault injection research is to consider the injection
of multiple faults during the same experiment. Multiple injections are
motivated by the observation that, even if multiple faults are rarer than
single ones, they tend to be neglected during development and testing, and
are often less tolerated by a system. Moreover, with the growing scale of
computer systems (see cloud computing systems) and the higher degree of
complexity and integration of hardware and software components, multiple
faults are regarded as a likely future trend.

2.4. Fault Injection Testing of Cloud Management Stack 41

PreFail [77] allows to deal with a very high number of injection exper-
iments, that arises from the "combinatorial explosion” of multiple injec-
tions. The PreFail tool allows the tester to control fault injection using
pruning policies, which select the combinations of faults to be injected
during experiments. The policies offered by PreFail are oriented towards
selecting a small set of faults, and to maximize the efficiency of fault in-
jection tests. This goal is reached by letting the user to specify a pruning
policy. Examples of policies are:

• Failing component: Let’s assume a scenario in which a tester wants
to test a four-nodes system (each of which holds a replica of the
same file), focusing on the used distributed write protocol. Instead
of injecting all possible combination of node failures, a tester can
specify a policy that injects only in a subset of nodes.

• Failure type: Let’s assume a scenario in which the tester knows
that the target is a crash-only system (i.e., a system that handles
any I/O failure simply by translating them into system crash, and
then restarts the system as a recovery action). The tester may want
to inject only I/O failures, without considering crash failures, because
any failure lead to a crash anyway;

• Domain-specific optimization: Let’s assume a scenario where
the OS buffers a file after the first read (which usually happens in
commodity OSs). Considering ten consecutive reads from the same
input file, a tester could run ten experiments, in which a disk failure
is injected at each call. But, bearing in mind the OS buffering, it
is unlikely to have a failure after the first read operation. Thus,
injecting only at the first read operation may reduce the space of
multiple failures;

• Failing probabilistically: a tester may want to inject only multi-

42 Chapter 2. Related Work

ple failures that have an occurrence likelihood greater than a specific
threshold. Furthermore, based on statistical data, a tester can imple-
ment policies that leverage on some failure probability distribution.

Finally, PreFail also supports coverage-based policies, that are re-
lated to:

• Code-Coverage, which aims to achieve a high source code coverage,
with the minimal number of experiments. An example is to achieve
a high coverage of source location of I/O calls, very failure-prone;

• Recovery-Coverage, which aims to cover recovery paths in the
code, such as the code of recovery procedures and exception handlers.

Thanks to small and highly-expressive programs, policies can be cus-
tomized to account for domain knowledge, for instance by focusing the
type and location of faults that developers know to be most likely, and
by considering the allocation of processes across nodes and racks to inject
more realistic faults (e.g., network issues among processes that are actually
remote).

PreFail takes into account various faults, such as hardware fault related
to I/O (e.g., network and hard disk) and software faults (e.g., process
crash).

Finally, the considered system targets are three important cloud soft-
ware systems:

• Hadoop Distributed FileSystem [136], a storage system for Hadoop
MapReduce [68];

• Cassandra [88], a distributed storage system;

• Zookeeper [74], a service for coordinating processes of a distributed
system.

2.4. Fault Injection Testing of Cloud Management Stack 43

Faultload. In PreFail, the injection approach is to instrument the
target with the aim of raising an exception (the specific type depends on
the particular operation being performed) instead of normally executing
a system call. Furthermore, that exception must be handled by a specific
recovery protocol.

• Network fault: such type of faults, for example, are related to net-
work partition problems. These can be triggered by an anomaly in
network (e.g., link failure, loss packets), in a node (process crash,
CPU overloading, unhandled exceptions) or disk (sectors corrupted,
increase latency). For example, in order to fail a network connec-
tion between two nodes, or to isolate a node among others, a tester
could inject a fault forcing the system call, that performs network
I/O, to throw an exception (e.g., NoRouteToHostException, PortUn-
reachableException and so on) and to return an error;

• Hard Disk fault: such a type of faults are related to all the hard
disk and data corruption problems. As for network faults described
above, to trigger a disk failure, a tester can force a system call,
that performs I/O operations (read, write, append), to throw an I/O
exception and return unsuccessfully. Instead, to point out a disk data
corruption, it can force the read system call to return random data;

• Software fault: such type of faults are software bugs. For example,
a tester can force to kill a process, which may involve in other oper-
ations that can slow down the overall system, or crash the system.

Figure 2.8 shows a code snippet example from Zookeeper application,
that provide consistence and partition-tolerant service. A network failure
can be triggered by force the run method to throw an IOException.

Architecture. In order to inject different type of failures, the authors
introduce the failure-injection task (FIT), a pair of a failure-injection point

44 Chapter 2. Related Work

Figure 2.8. Code snippet example of Zookeeper application

(FIP), that abstract an I/O call (e.g., system/library calls that perform
disk or network I/Os) in which a failure can be injected, and a failure
type (e.g., crash, disk failure and so on). As Figure 2.9 shows, a FIP can
be generated both from static (e.g., system call, source file) and dynamic
information (e.g., stack trace, node ID) available at that point, and from
domain-specific information (e.g., in network domain, source and destina-
tion node ID, or network exchanged messages). Furthermore, Figure 2.9
shows information fields described above and related FIP values: for ex-
ample, a FIP related to a function call has function call name as value.
Finally, a FIT allows to trace the sequences of failures that have been
explored, and sequences not explored yet.

Figure 2.10 presents an overview of the architecture of testing frame-
work. Workload driver is the component in which a tester can specify
workloads related to targets (e.g., HDFS write, read, append etc.), and
the maximum number of failures injected per run. The Target System is
instrumented by adding a Failure Surface, that builds a FIP at each I/O
point (an execution of an I/O call) and checks wether a previously injected

2.4. Fault Injection Testing of Cloud Management Stack 45

Figure 2.9. Example of FIP [67]

Figure 2.10. PreFail architecture [67]

failure affects the I/O point (this is the case in which we have a perma-
nent failures); if so the Failure Surface returns an error code to emulate
the failure. Otherwise, when the workload runs, Failure surface sends the
generated FIPs to the Failure Server, which combines the latter with all
potential injectable failures into the FITs. The latter makes a failure de-
cision that satisfies tester defined policies, and sends it back to the failure
surface. The workload driver stops when the failure server does not have
any failure injection scenarios to run.

In more detail, the algorithm of PreFail’s test workflow, outlined in
Figure 2.10, takes the maximum number of of failures to inject in an exe-
cution of the system target and it iterates over N starting from 0. At step
i, the Failure-injection engine executes the target system for each different
failure sequence (i.e., a sequence of FITs) of length i. For i equal to zero,
the Failure-injection engine executes the target without any injected fail-

46 Chapter 2. Related Work

Figure 2.11. PreFail Test workflow

ure, it observes the FIPs that are seen during execution, computes FITs
from them, and adds singleton failure sequences with these FITs, which
Failure-injection engine can exercise in the next step (i.e. for i = 1). Fur-
thermore, for i from 1 to N, PreFail prunes down the failure sequence,
according to tester specified policies; then, for each failures, Prefail exe-
cutes the target with the specified workload, injects the failure sequence
and profile the target execution, observing new FIPs and creating a new
FITs of length i+1 added to the next failure sequence to be exercised.

In [77] the Failure Surface interposes Java calls, which emulate hard-
ware failures, to all I/O calls, supporting different failure types, such as
disk failure, network partitioning (at node and rack levels) and software
crash, by instrumenting target system via AspectJ [56], an aspect-oriented
extension for Java language. Figure 2.12 shows the aspects used to inter-
cept when a node becomes the leader or release its leadership in Zookeeper.
When that node become leader, it starts executing the lead() method in

2.4. Fault Injection Testing of Cloud Management Stack 47

before() : (call (void Leader.lead())) {
setAsZkLeader();

}
after() : (call (void Leader.lead())) {
removeAsZkLeader();

}

Figure 2.12. AspectJ Example

1 def flt (fs):
2 last = FIP (fs [len(fs) - 1])
3 return not explored (last, ’loc’)

Figure 2.13. Example of source location filter policy

Leader.java, and set that node as leader (setAsZkLeader() call); the node
exits the lead() method then it is no longer the leader (thus, setAsZk-
Leader() is invoked).

PreFail considers two main types of policies: filter policies, that remove
experiments that do not comply to a user-defined condition; and cluster
policies, that remove experiments that are equivalent to other experiments
according to a user-defined condition. Figure 2.13 and Figure 2.14 are
examples of policies aimed at increasing code coverage (discussed above):
the first policy filters experiments whose last fault injection point code
location has already been covered by a previous experiment, and the second
policy clusters experiments whose last FIPs have the same code location.
Using libraries provided by PreFail (e.g., functions exposing fault injection
points), policies are typically very small, with an average of 17 lines of
Python code [78].

Results. The main target of PreFail evaluation is the HDFS used by
Cloudera Inc. [33]. In [77] the recovery protocol of HDFS was evaluated
against disk/network failures. Fault injection tests were performed under

48 Chapter 2. Related Work

1 def cls (fs1, fs2):
2 last1 = FIP (fs1[len(fs1) - 1])
3 last2 = FIP (fs2[len(fs2) - 1])
4 return (last1[’loc’] == last2[’loc’])

Figure 2.14. Example of source location cluster policy

four different workloads: log recovery (e.g., recovery lost data), read, write
and append (respectively, a high volume of read, write and append re-
quests is submitted). PreFail found 6 known bugs (in version 0.20.0) and
6 unknown bugs (in version 0.20.2+737), which caused the loss and the
unavaibility of files, and the unresponsiveness of HDFS components (e.g.
master node).

The authors found an important bug related to recovery mechanisms
in HDFS, and related to the append protocol. The latter is in charge of
atomically appending new bytes to three replicas of a file, that are stored
in three nodes. By injecting two node failures, PreFail found a recovery
bug, in which the append protocol returns an error and the alive replicas
are in an inaccessible state, since it is not clean.

Finally, the authors prove the efficiency of proposed filter mechanisms,
that prunes down the number of executed experiments, thus the overall
testing time. Figure 2.15 shows the results considering two different work-
loads, write and append, with two and three failures per run, and a policy
that filter crash-only failures on disk I/Os in datanodes: the number of
experiment, using the policy, is reduced by an order of magnitude, still
finding the same number of bugs.

2.4.3 The Netflix Simian Army

In a cloud infrastructure, many factors like software bugs and hardware
failures are beyond of our control, thus failures are not predictable and

2.4. Fault Injection Testing of Cloud Management Stack 49

Figure 2.15. PreFail optimization results: F is the number of in-
jected failures per run , STR is exploration strategy, EXP is the combi-
nations/experiments, FAIL are the failed experiments, and BUGS are the
bugs found. BF and PR stands for brute-force and prioritization (using the
filter policies) respectively. [67]

building a reliable service is a hard challenge. An approach to build more
reliable system is to deliberately introduce failures, in order to validate the
system resiliency, that is, the ability of the system to provide services even
in presence of a fault. Reducing the uncertainty related to faults allows
to reduce the likelihood that the system behaves not properly. The idea
behind the Netflix Simian Army is to deploy an application or an entire
system over several VM instances, leveraging on Amazon Web Services
(AWS). Then, it randomly injects CPU, disk, network, and other faults to
check whether the system is still working properly.

In this section, we overview the Netflix’s approach, The Simian Army
[151], a set of tools (named monkeys) that allow to inject faults into a
cloud computing platform, specifically built within AWS. Simian Army ’s
"monkeys" for assessing resiliency are:

• Chaos Monkey, that allows to randomly terminate virtual instances
(i.e., virtual machines) in the production environment;

• Chaos Gorilla, that allows to cause an entire data center (e.g., an
Amazon availability zone (AZ)) to go down;

50 Chapter 2. Related Work

• Chaos Kong, that allows to bring down an entire region, made up
of multiple data centers;

• Latency Monkey, that allows to inject faults that simulate par-
tially healthy instances.

Faultload. The Simian Army encompasses several fault types, tailored
for each "monkey" described above. Currently, Netflix developed only the
Chaos Monkey and their related fault types. Fault injection is performed
by executing a script that simulates a specific type of fault. In the follow-
ing, we show fault types of the Chaos Monkey tool, each of which is linked
with a specific script that simulates them:

• BurnCPU: executes a CPU stress program on the node, using up all
available CPU. This fault simulates either a noisy neighbor problem,
that is, a VM that uses a huge amount of CPU resource resulting in
a performance degradation for other VMs; this fault also simulates
general issues with a CPU;

• BurnIO: executes a disk I/O stress program on the node, reducing
the general I/O capacity. As before, this fault simulates either a
noisy neighbor problem (in this case related to I/O resources), or
just a general issue with the disk;

• DetachVolumes: force detach operation of all the EBS volumes.
This fault simulates a catastrophic failure of an EBS, even though
the instance could be still keep running (e.g., it should continue to
respond to pings);

• FailsDNS: blocks TCP and UDP port 53 in order to simulate DNS
resolution failures;

• FailDinamoDB: Adds entries to /etc/hosts so that DynamoDB API
endpoints are unreachable.

2.4. Fault Injection Testing of Cloud Management Stack 51

• FailEc2: Adds entries to /etc/hosts so that EC2 API endpoints are
unreachable;

• FailS3: Adds entries to /etc/hosts so that S3 API endpoints are
unreachable;

• FillDisk: creates a huge file on the root device so that the disk fills
up. This fault simulates a disk problem;

• KillProcess: kills processes on the node. This fault simulates the
process crashing due to any reason;

• NetworkCorruption: induces network packet corruption using traffic-
shaping. This fault simulates a problem with network interface con-
troller;

• NetworkLatency: induces network latency using traffic-shaping.
This fault simulates a VM that is unhealthy, thus simulates a service
degradation;

• NullRoute: creates null routes. This fault simulate a node not able
to communicate with other nodes.

• ShutdownInstance: shuts down the instance using the cloud instance-
termination API. This fault simulates a VM crash.

Architecture. As mentioned above, The Simian Army is a set of tools
(monkeys) that provide fault injection facilities at different levels in a cloud
computing system. Figure 2.16 shows that the injection can be focused on
a single virtual machine, a set of virtual machines (i.e., an entire data
center or availability zone in the Amazon jargon), and a set of multiple
data centers (i.e., a region).

The Chaos Monkey is a service which randomly terminates individual
virtual instances during runtime, leveraging on the AWS APIs. The Chaos

52 Chapter 2. Related Work

Figure 2.16. Amazon availability zones and regions

Monkey can be configured, for example, to wake up each hour and choose,
with a specific probability, an instance to bring down. The failure of a
virtual machine, for example, can be caused by emulating a power failure,
a disk failure or a network failure (e.g., network partition). Through the
Chaos Monkey, a system can be validated against single virtual machine
failures. Instead, the Chaos Gorilla service assesses an entire data center,
that consists of multiple virtual machines. It simulates a network parti-
tion failure, that is, the set of virtual machines, that belongs to a specific
zone, can communicate each other but can not communicate outside the
zone; furthermore, the Chaos Gorilla can simulate a total zone failure that
consists in terminating all virtual machines in the zone. Finally, the Chaos
Kong service allow to taking offline an entire region in order to prevent
the isolation between such regions.

Fault injection is performed through the execution of a script on the
node. For example, Figure 2.17, Figure 2.18 and Figure 2.19 show code

2.4. Fault Injection Testing of Cloud Management Stack 53

#!/bin/bash
Script for BurnCpu Chaos Monkey

cat << EOF > /tmp/infiniteburn.sh
#!/bin/bash
while true;

do openssl speed;
done
EOF

32 parallel 100% CPU tasks should hit even the biggest EC2 instances
for i in 1..32
do

nohup /bin/bash /tmp/infiniteburn.sh &
done

Figure 2.17. BurnCPU script

snippets respectively related to a CPU fault (BurnCPU), a disk fault
(BurnIO) and a network fault (NetworkCorruption).

In general, handling a virtual machine failure is often simple, since the
failed virtual machine can be replaced with a new healthy virtual machine
instance. Instead, it is difficult to detecting virtual machines that are only
partially healthy (e.g., a service could randomly return faulty outputs,
or the service could respond with a high latency). The Latency Monkey
provides injection facilities to include this type of problems. For example, it
can allow to inject delays in the RESTful client-server communication layer
to simulate service degradation, node downtime or even service downtime.

Results. During 2012, Chaos Monkey has been applied to terminate
over 65,000 instances running in Netflix production and testing environ-
ments, detecting many failure scenarios. Faults are tolerated most of the
time, but developers continue to find issues caused by Chaos Monkey, al-
lowing to isolate and resolve them so they don’t happen again.

54 Chapter 2. Related Work

#!/bin/bash
Script for BurnIO Chaos Monkey

cat << EOF > /tmp/loopburnio.sh
#!/bin/bash
while true;
do

dd if=/dev/urandom of=/burn bs=1M count=1024 iflag=fullblock
done
EOF

nohup /bin/bash /tmp/loopburnio.sh &

Figure 2.18. BurnIO script

#!/bin/bash
Script for NetworkCorruption Chaos Monkey

Corrupts 5% of packets
tc qdisc add dev eth0 root netem corrupt 5%

Figure 2.19. NetworkCorruption script

2.5. Fault Injection Testing of Hypervisors 55

2.5 Fault Injection Testing of Hypervisors

An important enabler to cloud computing systems are virtualization
technologies. Think about most important clouds like Amazon’s EC2,
that uses Xen hypervisor, or IBM cloud-based systems that uses KVM
hypervisor. The primary goal of hypervisors is to abstract and distribute
computing resources between multiple VMs, leading to better resource uti-
lization and flexibility (dynamic workload migrations). So, in order to have
a high dependable cloud systems, it is desirable to have a solution provid-
ing a high-reliability support for virtualization and an accurate testing
process for clouds.

2.5.1 CloudVal

CloudVal [125] is a framework to test the reliability of hypervisor within
a cloud infrastructure. The framework provides an injector (implemented
using debugger-based techniques) that allows to inject different type of
faults like transient (soft) faults, guest misbehavior, performance faults and
maintenance faults. This work is a starting point to develop a benchmark
for validate cloud virtualization infrastructures.

The CloudVal framework supports fault injection in the KVM and Xen,
both on the guest and on the host domains, and on the core modules of
the hypervisors (i.e., qemu-kvm and the KVM kernel module for KVM
[86]; qemu-dm and xenstored for Xen [18]). The tests are performed to
evaluate VMs guest/host isolation and correlated hypervisor behavior, and
the level of maintainability. Finally, Virt-manager [131] (a libvirt-based
management system) is used by CloudVal for monitoring and managing a
system during fault injection experiments.

Faultload. In this section is described the fault model used by Cloud-
Val.

1. Soft fault: transient faults occurring in memory, CPU registers or

56 Chapter 2. Related Work

in the CPU control unit;

2. Guest system misbehavior: misbehavior of guest system by cor-
rupting the state of a process (i.e., flip one or more bits related to
stack, text area etc.) or raising CPU exception (e.g., machine check,
divide by zero etc.);

3. Performance fault: process/thread delay, due to blocking oper-
ations, CPU overhead or interrupt events; these fautls can expose
timing problems, such as race conditions;

4. Maintenance fault: situation where a specific hardware (e.g., CPU
or memory bank) have to be turned off because of replacement or
power management.

Architecture. As shown in Figure 2.20 CloudVal framework consists
of three main components:

1. Injector: this component is implement as a loadable kernel module
that resides on target machine. It is implemented using debugger-
based techniques: (1) the injector sets a breakpoint in the code (trig-
ger location) of the target component; (2) when the trigger location
is executed, a breakpoint handler (that implements fault injection) is
invoked; (3) a fault is injected, and the target components continues
its execution;

2. Control Host: this component resides on a physical machine dis-
tinct from target machine. It provides all the facilities for testers,
who specify all the parameters for a fault injection experiment (e.g.,
fault type and fault location) and generate scripts based on those, to
perform the experiments. Furthermore, it collects logs and outputs
from fault injection experiments;

2.5. Fault Injection Testing of Hypervisors 57

Figure 2.20. CloudVal architecture [125]

3. Process Manager: this component resides on the same machine
(target machine) of the Injector component, and simply runs the
commands received from the Control Host (e.g., trigger a fault) and
sends back logs to the Control Host.

Results. Considering all fault type mentioned in subsection Fault
Types, in Table 2.4 are reported the results. It is worth mentioning that
CloudVal performs a pre-injection analysis to identify the fault triggers
and fault locations. There are exploited two strategies: stress-based, that
aims to inject faults into the most heavily used components of the target;
path-based, that leverages on the sequence of instructions executed by the
target program under a specific workload; periodically is read the EIP
register1, that contains the current instruction pointer, in order to get the
locations on the execution path used as fault targets.

2.5.2 Xen failure mode analysis

Cerveira et al. [29] characterized Xen hypervisor failure modes by tar-
geting the hybrid para-virtualization and hardware-assisted (PVH) mode.

1The EIP register always contains the address of the next instruction to be executed;
this register can only be read through the stack.

58 Chapter 2. Related Work

Table 2.4. CloudVal results

Fault Type Hypervisor Target # Injected
faults

Guest behavior Hypervisor behavior

Soft (in user space address) KVM Data Segment,
stack segment
and register
of qemu-kvm
process

500 Guest VM stopped when
qemu-kvm crashed; further-
more, management system ex-
hibits hang

120 qemu-kvm crashes. 26 be-
come defunct (zombie) state.
No kernel crash

XEN qemu-dm and
xenstored

100 qemu-dm exhibits a crash, in-
volving Guest VM to stop.
Also xenstored exhibits a
crash.

55 qemu-dm crashes. 12 de-
funct (zombie) state. No
kernel crash. Due to those
crashes, management system
lose control of VMs

Soft (in kernel space address) KVM Data Segment,
stack segment
and register of
KVM kernel
module

1000 N/A 94 kernel crashes

XEN Crashing Dom0
by inserting a
faulty kernel
module

20 All Guest VMs stopped 20 kernel crashes

Guest system misbehavior KVM Code segment,
data segment,
stack segment
and register of
Guest OS kernel

14000 Guest kernel crashed No fault propagation from
guest to host system

XEN Code segment,
data segment,
stack segment
and register of
Guest OS kernel

30000+ 2 cases in which the failure
propagate to the host

N/A

Performance KVM Threads in qemu-
kvm process

400 Guest system is not available
during injected fault

16 kernel crashes, maybe due
to activation of race condi-
tions

XEN N/A N/A N/A N/A

Maintenance (Turn OFF a CPU core) KVM Physical CPU
core and CPU
core in Guest VM

10 No effect No effect

XEN CPU core in
Dom0 and CPU
core in Guest VM

10 No effect No effect

Maintenance (Turn ON a CPU core) KVM Physical CPU
core and CPU
core in Guest VM

10 N/A when target is Physical
CPU core and no effect when
target is CPU core in Guest
VM

10 kernel crashes only when
KVM kernel module is loaded
and when target is physical
CPU core

XEN CPU core in
Dom0 and CPU
core in Guest VM

10 No effect when target is CPU
core in Dom0; When target is
CPU core in Guest VM, Guest
kernel return error, but exe-
cutes normally

Dom0 handles properly CPU
on, rather than DomUs that
does not turned back on CPU
core (maybe due to incom-
plete implementation of the
virtual CPU in Xen)

2.5. Fault Injection Testing of Hypervisors 59

Figure 2.21. Diagram of the experimental setup. [29]

Exploiting the results obtained, the authors propose an approach based on
fault injection testing to pinpoint how it is possible to evaluate the suscep-
tibility of virtualization servers against soft errors, by comparing the PVH
mode with the para-virtualization (PV) mode and the hardware-assisted
virtualization mode (HV).

Faultload. The fault model used by the authors are bit-flips in the
CPU registers. Such fault model is commonly accepted to be representative
of soft errors that affect the CPU.

Architecture. As shown in Figure 2.21, the testbed consists of two
VMs which run the Apache webserver; one of them (VM1) is the fault
injection target, and the other VM (VM2) is running without any fault
injection. These VMs are deployed on the Xen hypervisor, in which also
the Dom0 component is subject to fault injection.

Results. The authors performed fault injection campaigns by targeting

60 Chapter 2. Related Work

(i) the applications running within the guest VM, (ii) the kernel processes
(randomly chosen) within the guest VM, and (iii) the Xen- related pro-
cesses of the Domain-0. Furthermore, the authors classified the results of
the experiments according to the following:

• Incorrect content : The webserver produces syntactically correct HTML
but the associated hash value is wrong;

• Corrupted output : The webserver provides an output that the client
is unable to parse;

• Connection reset : The TCP connection between the client and the
server is reset;

• Client-side timeout. The client triggers timeout because does not
receive responses;

• Hang : The server does not respond to any request, and the client
eventually triggers timeout;

• No effect : The injected fault does not have any impact on the system.

In particular the results show that:

• Fault injection in application processes: The faulty VM showed dif-
ferent failure modes. In the 84.6% of the faults did not have any
effect in the output (the target register it was never used by the
application or the application mask the fault). Furthermore, in the
12.9% of the faults, the client does not receive responses and trigger
timeout. Regarding the isolation, both the fault free VM and the
hypervisor were not affected by the injection;

• Fault injection in guest VM kernel processes: In this case, there are
only little difference with injection in application processes, with a

2.5. Fault Injection Testing of Hypervisors 61

higher percentage (98.6%) of faults with no effects. The authors
explained such behavior by the fact that kernel processes are less
likely to manifest the presence of soft errors. The isolation during
that fault injection campaign was always guaranteed;

• Fault injection in Xen processes in Dom0 : The results show that
only Hang (of both VMs or of the hypervisor) and No effect failure
modes are observed, respectively in the 60.2% and 39.8% of faults.

This page intentionally left blank.

Chapter 3
The Proposed Methodology

In this chapter we present the dependability benchmarking methodol-
ogy for NFV. The methodology consists of three parts Figure 3.1. The first
part consists in the definition of the benchmark elements, the benchmark
measures, the faultload (i.e., a set of faults to inject in the NFVI) and the
workload (i.e., inputs to submit to the NFVI) that will support the experi-
mental evaluation of an NFVI. Based on these elements, the second part of
the methodology consists in the execution of a sequence of fault injection
experiments through the developed fault injection suite (see Chap. 4). In
each fault injection experiment, the NFVI under evaluation is first config-
ured, by deploying a set of VNFs to exercise the NFVI; then, the workload
is submitted to the VNFs running on the NFVI and, during their execution,
faults are injected; finally, the last step consists in collecting performance
and failure data from the target NFVI at the end of the execution. At
this point, the experimental testbed is cleaned-up (e.g., by un-deploying
VNFs) before starting the next experiment. This process is repeated sev-
eral times, by injecting a different fault at each fault injection experiment
(while using the same workload and collecting the same performance and
failure metrics). The execution of fault injection experiments can be sup-

63

64 Chapter 3. The Proposed Methodology

Figure 3.1. Overview of dependability benchmarking methodology.

ported by automated tools for configuring virtualization infrastructures,
for generating network workloads, and for injecting faults. Finally, per-
formance and failure data from all experiments are processed to compute
measures, and to support the identification of performance/dependability
bottlenecks in the target NFVI.

In the following, we describe in details the elements that constitutes the
methodology in NFV, according to its stakeholders and use cases (§ 3.1).
Then, we address the problem of defining appropriate benchmark measures
(§ 3.2), faultload (§ 3.3) and workload (§ 3.4) for NFV.

3.1 Benchmark Elements

In the ETSI NFV framework [111], the architecture of a virtualized
network service can be decomposed in three layers, namely the service,
virtualization, and physical layers (Figure 3.2). On the service layer, each
VNF provides a traffic processing capability, and several VNFs are chained
to provide added-value network services. Each VNF is implemented in soft-
ware and runs on an NFVI, which includes virtual machines and networks
deployed on physical resources. For example, Figure 3.2 shows a case in

3.1. Benchmark Elements 65

PM

PM

PM

PM

SAN

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VNF VNF
Service
Layer

Virtualization
Layer

Physical
Layer

M
an

ag
em

en
t a

nd
 O

rc
he

st
ra

tio
n

(M
A

N
O

)

H
yp

er
vi

so
r

switch

vswitch vswitch

Figure 3.2. Architecture of Network Function Virtualization

which each VNF is implemented by a pool of VM service replica, by an
additional VM to perform load balancing, and by a virtual network seg-
ment that connects the VMs. These VMs are scaled out and dynamically
mapped to physical machines (PMs) in order to achieve high resource ef-
ficiency and performance. These operations are overseen by management
and orchestration software (MANO) that installs and controls VNFs, and
deploys them by using virtualization technology, such as hypervisors.

To identify the benchmark elements (SUB, BT, FIT), we need to con-
sider the potential use cases of the dependability benchmark, which in-
volve telecom service providers, NFV software vendors, NFV infrastructure
providers, and telecom service customers, as users and performers of the
benchmark:

1. A telecom service provider designs a network service, by compos-
ing a VNF service chain using VNF software, that can be developed
in-house and provided by third-party NFV software vendors. The
telecom provider performs the benchmark to get confidence that the
network service is able to achieve SLOs even in worst-case (faulty)
conditions. End-users and other telecom providers, which consume

66 Chapter 3. The Proposed Methodology

network services on a pay-per-use basis (VNFaaS), represent the
benchmark users: they can demand from the telecom provider em-
pirical evidence of high dependability and performance, to make
informed decisions based on both cost and dependability concerns.
This evidence can be produced by the telecom provider in coopera-
tion with an independent certification authority, in a similar way to
certification schemes for cloud services [145, 57, 32].

2. An NFV infrastructure provider setups an environment to host VNFs
on a pay-per-use basis (NFVIaaS) from telecom operators, which are
the benchmark users. The NFVI is built by acquiring off-the-shelf,
industry-standard hardware and virtualization technologies, and by
operating them through MANO software provided by NFV software
vendors. The NFVI provider performs the dependability benchmark
to get confidence on the dependability of its configuration and man-
agement policies, with respect to faults of hardware and virtualiza-
tion components. The NFVI provider revises the configuration and
the MANO according to the feedback of the dependability bench-
mark.

In both use cases, the SUB must include the service layer, the infras-
tructure level (both virtual and physical), and the MANO. The BT is
represented, respectively, by the VNF service chain, and by the MANO.
In the former use case, the benchmark provides feedback on the robustness
of VNF software, on the composition of VNFs into a chain, and on the con-
figuration of the NFVI. In the latter, the benchmark provides feedback on
fault management mechanisms and policies in the MANO. In both cases,
the FIT is represented by the NFVI (both physical and virtualization lay-
ers). The NFVI is built from off-the-shelf hardware and virtualization
components that are relatively less reliable than traditional telecom equip-
ment, and thus represent a risk for the reliability of the NFV network as

3.2. Benchmark Measures 67

Figure 3.3. The benchmark target in NFV.

a whole. Thus, as we will discuss later, the benchmarking process injects
faults in the NFVI, in order to assess the VNF service QoS in spite of faults
in the NFVI, and to evaluate and tune MANO software with respect to
these faults. Figure 3.3 shows the choice of the elements constituting the
benchmark target.

3.2 Benchmark Measures

The measures are a core part of a dependability benchmark, since they
represent the main feedback provided to the benchmark user. According

68 Chapter 3. The Proposed Methodology

NFV Dependability

Infrastructure-level

Fault Detection Fault Recovery

Service-level

Availability Latency Throughput

Figure 3.4. NFV dependability benchmark measures

to the two use cases of the previous section, we identify two groups of
benchmark measures (Figure 3.4):

• Service-level (VNF) measures, which characterize the quality of ser-
vice as it is perceived by VNF users, including measures of perfor-
mance and availability of the VNF services;

• Infrastructure-level (NFVI) measures, which characterize the NFVI
in terms of its ability to detect and to handle faulty conditions caused
by hardware and software components inside the infrastructure.

3.2.1 Service-level measures

We define service-level measures according to the following driving cri-
terion: We want to connect the results of the dependability benchmark to
SLA (Service Level Agreement) requirements of the VNF services under
benchmark. Typically, SLA requirements impose constraints on service
performance in terms of latency and throughput, and on service availabil-
ity in terms of outage duration.

3.2. Benchmark Measures 69

The service-level measures of the benchmark include the VNF latency
and the VNF throughput. It is important to note that, while latency and
throughput are widely adopted for performance characterization, we specif-
ically evaluate latency and throughput in the presence of faults in the un-
derlying NFVI. We introduce latency and throughput measures to quantify
the impact of faults on performance, and evaluate whether the impact is
small enough to be acceptable. In fact, it can be expected that performance
will degrade in the presence of faults, leading the system to exhibit higher
latency and/or lower throughput, since less resources will be available (due
to the failure of components in the NFVI) and since the fault management
process takes time (at least few seconds in the case of automated recovery,
and up to several minutes in the case of manual recovery).

. VNF Latency . In general terms, network latency is the delay that a
message “takes to travel from one end of a network to another” [124]. A
similar notion can also be applied to network traffic processed by a VNF,
or, more generally, by a network of interconnected VNFs (i.e., the VNF
graph [113]), as in Figure 3.5. Latency can be evaluated by measuring
the time between the arrival of a unit of traffic (such as a packet or a
service request) at the boundary of the VNF graph, and the time at which
the processing of that unit of traffic is completed (e.g., a packet is routed
to a destination after inspection, and leaves the VNFs; or, a response is
provided to the source of a request).

The VNF latency is represented by percentiles of the empirical cumu-
lative distribution function (CDF) of traffic processing times. The CDF of
service latency is given by:

Le(x) = P (li,e < x)

where li,e is the latency for the i-th traffic unit in the experiment e, which
is defined as li,e = tresi,e − t

req
i,e , where t

req
i,e and tresi,e refer to the time of

a request and of its response, respectively. In particular, SLAs typically

70 Chapter 3. The Proposed Methodology

VNF
VNF

VNF

VNF

Virtualization Layer

Off-The-Shelf
hardware and

software

End
points

VNF Latency and Throughput

treq

tres

Fault
Injection

End
pointsEnd
points

Figure 3.5. VNF Latency and Throughput.

consider the 50th and the 90th percentiles of the CDF (i.e., Le(50) and
Le(90)), to characterize the average and the worst-case performance of
telecommunication systems [20]. The metric is computed from the time of
fault injection is ended to the end of experiment.

. VNF Throughput . In general, throughput is the rate of successful
operations completed in an observation interval. The VNF throughput is
represented by the rate of processed traffic (e.g., packets or requests per
second) by VNF services in presence of faults (Figure 3.5). The VNF
throughput over a period of time in an experiment e is given by:

Te =
N

tende −t
begin
e

where tbegine and tendi,e refer to the start and the end time of the observation
period, respectively, and N is the total number of traffic units (i.e., all
traffic processed during an experiment e). The metric is computed from
the time of fault injection is ended to the end of experiment.

The example in Figure 3.6 shows three potential cases of latency dis-
tributions: (i) latency in fault-free conditions, (ii) latency in faulty condi-

3.2. Benchmark Measures 71

Figure 3.6. Examples of VNF latency distributions

tions, in which the network is still providing good performance, and (iii)
latency in faulty conditions, in which performance is severely degraded.
The 50th and the 90th percentiles are compared to reference values for
these percentiles, which specify the maximum allowed value of the per-
centile for an acceptable quality of service (for instance, reference values
imposed by SLAs). In the example of Figure 3.6, the maximum allowed
values are 150ms for the 50th percentile, and 250ms for the 90th percentile
(e.g., low-latency, interactive services, such as VoIP [5]). Both values are
exceeded in the faulty scenario with performance degradation; in this case,
the fault affects the performance perceived by VNF users.

The dependability benchmark aggregates VNF latency percentiles and
throughput values from fault injection experiments, by computing the
number of experiments where latency percentiles and throughput exceeded
reference values, which points out the scenarios in which VNF performance
is vulnerable to faults. Moreover, the maximum value among latency per-
centiles and the minimum value among throughput values provide a brief
indication of how severe performance degradation can experience under
faults. These aggregated values can be computed over the entire set of

72 Chapter 3. The Proposed Methodology

fault injection experiments to get an overall evaluation of NFV systems
and compare them. Another approach is to divide the set of experiments
into subsets, with respect to the injected faults, or with respect to the
component targeted by fault injection, and then to compute aggregate
values for each subset. Among these experiments, benchmark users are
interested to know in which ones the latency percentiles and throughput
exceeded their reference values, which point out the specific faults or parts
that expose VNFs to performance issues.

Finally, we introduce the VNF unavailability to evaluate the ability
of VNFs to avoid, or to quickly recover from service failures. Differing
from latency and throughput, which assess whether faults cause perfor-
mance degradation, this measure evaluates whether faults escalate into
user-perceived outages. SLAs require that service requests must succeed
with a high probability, which is typically expressed in nines. It is not
unusual that telecom services must achieve an availability not lower than
99.999%–this implies that the monthly “unavailability budget” of VNF ser-
vices amounts to few tens of seconds [20]. For example, the ETSI “NFV
Resiliency Requirements” [117] reports that voice call users and real-time
interactive services do not tolerate more than 6 seconds of service inter-
ruption, while the TL-9000 forum [130] has specified a service interruption
limit of 15 seconds for all traditional telecom system services. Service dis-
ruptions of longer than a few seconds are likely to be considered service
outages (as they impact not only isolated user service requests, but also
the user retries of those failed requests), and thus accrue downtime and
impact service availability metrics. Therefore, we introduce benchmark
measures to evaluate the duration of VNF service outages.

. VNF Unavailability . A VNF service is considered unavailable if either
a unit of traffic is not processed within a maximum time limit (i.e., it is
timed-out), or an error is signaled to the user as a response. The VNF
Unavailability is defined as the amount of time during which VNF users

3.2. Benchmark Measures 73

experience this behavior (see Figure 3.7).

VNF
VNF

VNF

VNF

Virtualization Layer

Off-The-Shelf
hardware and

software

End
points

VNF
Unavailability

Fault
Injection

End
pointsEnd
points

tfailure

trecovered

Figure 3.7. VNF Unavailability

During an experiment, after the injection of a fault, the VNF service
may become unavailable (i.e., the rate of service errors exceeds a reference
limit), and return available when the service is recovered. Moreover, a
service may oscillate from availabile to unavailable, and viceversa, for sev-
eral times during an experiment (e.g., there are residual effects of the fault
that cause sporadic errors). Thus, the VNF Unavailability is given by the
sum of the “unavailability periods” (denoted with i) occurred during an
experiment:

U =
∑

i t
avail
i − tunavaili

where:

tinjection < tunavaili < tavaili < tend, ∀i

error-rate(t) > error-ratereference, ∀t ∈ [tunavaili , tavaili], ∀i.

Figure 3.8 shows an example of the unavailability definition. If the
VNF service does not experience any user-perceived failure, the VNF Un-
availability is assumed to be U = 0. If the VNF service is unable to recover
within the duration of the experiment (say, ten minutes), we conclude that
the VNF cannot automatically recover from the fault, and that it needs

74 Chapter 3. The Proposed Methodology

to be manually repaired by a human operator. In this case, recovery takes
orders of magnitude more time than required by SLAs: we mark this case
by assigning U =∞ to VNF Unavailability.

Figure 3.8. VNF Unavailability definition

The dependability benchmark aggregates VNF Unavailability values
from fault injection experiments, by identifying the experiments in which
VNFs cannot be automatically recovered (i.e., VNF Unavailability is a finite
value), which points out the scenarios that need to be addressed by the
NFV system designers. Moreover, themaximum and the average of (finite)
VNF Unavailability values indicate how much the VNF is able to mask the
faults. In a similar way to performance measures, the aggregated values
of VNF Unavailability can be computed over subsets of fault injection
experiments (e.g., divided by type or target of injected faults) for a more
detailed analysis.

3.2. Benchmark Measures 75

3.2.2 Infrastructure-level measures

Infrastructure-level measures are aimed at providing insights to NFVI
providers on the fault-tolerance of their infrastructure. Several fault-
tolerance solutions can be leveraged to this goal: the ETSI document
on “NFVI Resiliency Requirements” [117] discusses the strategies that will
likely be adopted in NFV, and our previous study [36] briefly summarizes
them. These fault tolerance algorithms and mechanisms (FTAMs) are pro-
vided by the NFVI (e.g., at hypervisor or at middleware level), and VNF
services should be designed and configured to take advantage of them.
FTAMs be broadly grouped in two areas:

• Fault Detection: FTAMs that notice a faulty component (such as a
VM or a physical device) as soon as a fault occurs, in order to timely
start the fault management process. Examples of fault detection
mechanisms are: heartbeats and watchdogs, which periodically poll
the responsiveness of a service or of a component; performance and
resource consumption monitors; internal checks performed internally
in each component (such as the hypervisor) to report on anoma-
lous states, failures of I/O operations and resource allocations; data
integrity checks;

• Fault Recovery: FTAMs that perform a recovery action to mitigate
a faulty component. Examples of recovery actions for NFVIs include
the (de-)activation of VM replica and their migration to different
hosts, by leveraging virtualization technologies. Moreover, VMs and
physical hosts can be reconfigured, for instance, by updating a vir-
tual network configuration, by deactivating a faulty network inter-
face card, or by retrying a failed operation. The recovery action can
succeed or not, depending on the ability of the VNF and of the hy-
pervisor to maintain a consistent state after the recovery action (i.e.,
the VNF is able to work correctly after recovery). A fault is success-

76 Chapter 3. The Proposed Methodology

fully recovered if the time-to-recovery is below a maximum allowed
time, which depends on the type and criticality of a VNF, rang-
ing from few seconds (e.g., 5 seconds) in the most critical scenarios,
to tenths of seconds (e.g., 25 seconds) in the less critical scenarios.
Moreover, it is required that VNF performance after recovery should
be comparable to the performance of VNFs before the occurrence of
a fault.

Since implementing and combining all these solutions in the fault man-
agement process is a complex task, we introduce benchmark measures to
quantitatively evaluate their effectiveness.

. NFVI Fault Detection Coverage and Latency . We define the Fault
Detection Coverage (FDC) as the percentage of fault injection tests in
which the NFVI issues a fault notification, either on individual nodes of
the infrastructure (e.g., hypervisor logs), or on MANO software. If a fault
is not detected, then a recovery action cannot be triggered. The FDC
is computed by counting both the number of tests in which the injected
fault is reported by the NFVI (#Ffault_detected), and tests in which the
injected fault is not reported but causes service failures or performance
degradations (#Ffault_undetected):

FDC =
#Ffault_detected

#Ffault_undetected+#Ffault_detected
.

The Fault Detection Latency (FDL) is the time between the injec-
tion of a fault (tinjectione), and the occurrence of the first fault notification
(tdetectione). The Fault Detection Latency is computed for the subset of
experiments e in which a fault is actually detected. The FDL is given by:

FDL = tdetectione − tinjectione

. NFVI Fault Recovery Coverage and Latency . The Fault Recov-
ery Coverage (FRC) is the percentage of tests in which a recovery action

3.2. Benchmark Measures 77

(triggered by fault detection) is successfully completed. For example, in
the case of a VM restart, the recovery is considered successful if a new
VM is allocated, and VM software is correctly booted and activated. In
the case of switching to redundant hardware resources, recovery is con-
sidered successful if enough redundant resources are available and they
actually replace failed ones. The FRC is represented by the ratio between
the number of tests in which faults were detected (#Ffault_detected), and
the number of tests in which the recovery action is successfully completed
(#Ffault_recovery):

FRC =
#Ffault_recovery

#Ffault_detected
.

For those experiments in which the NFVI is able to perform a recovery
action, we define the Fault Recovery Latency (FRL) as:

FRL = trecoverye − tdetectede

where trecoverede refers to the time when the NFVI concludes a recovery
action.

78 Chapter 3. The Proposed Methodology

3.3 Fault Model

A fault model defines a fault load, i.e., a list, and their relationships
with system’s components, of faults and exceptional conditions that are
injected to emulate the real threats the system would experience during
operation [44]. According to the DBench initiative [44], the definition of
a “good” faultload is a tricky task, since the following properties need to
be satisfied. The faultload needs to be complete and representative. This
means that the defined faults should i) be representative of real-world op-
erational faulty conditions, and ii) cover all the system’s components. The
faultload has to beacceptable by the benchmark stakeholders; it should be
portable across different systems under benchmark, and should be imple-
mentable with reasonable efforts; it should be adaptable, that is, the bench-
mark users and performers should be able to selectively use only some parts
of the faultload (e.g., to focus the benchmark on the fault-prone parts of
the system, according to their knowledge of the target system).

We have defined the faultload to address the above properties by con-
struction. To be portable across NFV implementations, and to cover the
complete architecture of an NFVI [114], we define a fault model for the
four domains of the NFV framework: network, storage, CPU, and mem-
ory. These elements are present both as virtual resource abstractions,
and as physical resources of the NFVI (Figure 3.2). The fault model is
aimed to the benchmark performer, which builds the faultload for the
target NFVI, by applying the fault model to each resource in the NFVI
(virtual and physical machines, virtual and physical disks and switches).
For each physical and virtual machine in the NFVI, the faultload includes
physical and virtual CPU, memory, disk and network faults for the phys-
ical/virtual CPUs, memory, disk interface and network interface of that
machine. Moreover, for each virtual and physical storage and network el-
ement in the NFVI (virtual/physical disks and switches), the faultload is

3.3. Fault Model 79

extended with common-mode network and storage faults, i.e., faults that
affect, at the same time, all PMs or VMs connected to the physical or
virtual disk or switch (Table 3.1).

In theory, once we identify the root causes of potential hardware or
software problems, the process of injecting the fault (e.g., for hardware
faults, for example, by adopting the bit-flip fault model, and for software
faults, for example, by injecting code changes based on field data statistics
about the frequency of fault types) it is on the one hand always applicable
(highly portability), but on the other hand is extremely inefficient due to
both the infinite potential ways for injecting such kind of faults, because we
are injecting too close to the root cause. Moreover, we need to find faults
that actually impact on the system, and such process has a non-negligible
amount of time generally. These problems may lead the proposed fault
model (and the methodology) to be not useful.

Conforming to the Laprie’s et al. definitions [15] of fault-error-failure
chain, in the scientific literature, as well as in the industrial practice, the
injection of faults has been addressed using several methods. According to
[110], in most cases fault injection is actually implemented through an indi-
rect approach, by emulating the effects of hardware/software/configuration
faults (i.e., the errors in the software state, provoked by the fault), instead
of injecting the actual faults: such approach is named error injection.
Error injection can significantly improve the feasibility and efficiency of
fault injection, since: (i) the injection of the effects is less intrusive and
technically easier to implement, as mimicking the actual faults (such as the
physical electromagnetic interferences) can be cumbersome, difficult to au-
tomate, and even destructive for the system under test; (ii) the injection
of the effects avoids to wait the time required for fault activation and error
propagation, which may be quite significant (e.g., "long latency" faults
that stay latent for most of the experiment duration) and may even not be
activated/propagated at all during the (necessarily limited) period of the

80 Chapter 3. The Proposed Methodology

experiment (since the activation/propagation is not directly controlled by
the tester). For these reasons, error injection has gained popularity in the
last decades. Moreover, error injection is today accepted as an accurate-
enough approximation of hardware faults, such as bit-flips for CPU faults
[125] and data corruption/delays for network and disk I/O [77], and more
recently it has been adopted to also emulate the effects of software faults
[87].

In the context of NFV, the definition of a comprehensive fault model
could be very challenging. Furthermore, applying only one fault model
(e.g., bit-flip model) for each component within the NFV framework can
be not meaningful due to the different functionalities they provide towards
the system. As mentioned before, the definition of a fault model by con-
sidering actual faults has the advantage of portability, but the problem of
efficiency, i.e., the injected faults have to always trigger an error/failure.
Instead, considering errors/failures in the faultload, can speed up and make
more easy the definition of the fault model from a practical point of view;
however, the fault model obtained does not give any guarantee for the
portability because failures of components heavily depend from the inter-
nals of the target component itself.

To overcome these issues, according to the elements of the benchmark
defined in the Sec. 3.1, we consider the “boundaries” that separate the
NFVI (i.e., the fault injection target) from the benchmark targets: the
boundary is the specific interface exposed by the NFVI components. It is
important to note that an interface is not necessarily a physical one, but
may be an abstraction that identifies a point of interaction between the
target component and the rest of system. The fault model is obtained by
identifying, for each target component, its interfaces and the possible ef-
fects of faults on these interfaces (errors, from the perspective of the system
under benchmark). We consider three general types of errors (as discussed
later in this section): unavailability, corruption, and delay of the compo-

3.3. Fault Model 81

nent. To refine these errors in a more specific way for each component, we
look for potential faults (either from software, from hardware, and from
human operators) that may happen inside the component, and that may
cause errors of these three general types. To identify the faults, we studied
the literature and the experience reported by practitioners about failures
in the field.

CPU and Memory Fault Model. CPU and memory hardware devices
are affected by the well-known soft errors. In fact, during system operation,
radiation particles (e.g., alpha particles and atmospheric neutrons), and
power spikes lead to a signal or datum wrong in semiconductor devices.
The classical fault model to assess CPUs and memories is by injecting bit-
flip in main memory areas, and/or registers. In literature, different tools
leverage the bit-flip fault model to emulate hardware faults for CPU and
memory [19, 81, 84, 83, 150, 69, 28, 132, 41].

In the case of the CPU management subsystem (either virtual or phys-
ical), the interface towards the BT is represented by two basic CPU func-
tionalities: (i) create and schedule execution flows (e.g., virtual machines,
processes), and perform the operations of these execution flows (e.g., fetch
and execute instructions, update the CPU registers, etc.). This interface
allows user-space applications and OSs (e.g., guest OSs, hypervisors) to
run. Thus, errors introduced at this level hinder the execution of these
components on virtual and physical CPUs.

A similar reasoning can be done for memory subsystem. The system
allocates memory areas for reading and writing data by using the interface
the memory subsystem provide. Errors in that interface could threaten the
functionalities of the memory subsystem, and may expose the memory to
a high rate of swapping, overloads, corruptions, and other deviations from
normal service. In these cases, the memory subsystem does not allow new
allocations, or even lead the system to crash.

82 Chapter 3. The Proposed Methodology

In the proposed fault model, we consider the interfaces that exports
both the CPU and memory, in order to apply the desired effect for the
target component. For example, we emulate hardware faults by using
the bit-flip fault model (e.g., corruptions of CPU registers and memory
locations), and configuration faults by inject resource exhaustion failures
(e.g., process hog that runs on the CPU, process that induces high memory
swap rate).

I/O Fault Model. In literature, there are different studies that evaluate
the storage subsystem reliability, and the related fault model. Talagala et
al. [146] analyze which are faults that occur more frequently in storage
systems. Over an 18-month period, she found that the majority of failures
affecting disks are media errors, write failures, hardware errors (e.g., device
diagnostic failures), SCSI timeouts, and SCSI bus errors. Based on these
findings, Brown et al. [23] evaluate the availability of software RAID sys-
tems by injecting a variety of faults, such as media errors on reads/writes,
hardware errors on SCSI commands, power failures, disk hangs.

For the evaluation of network subsystem, in [142] the authors leverage
the bit-flip fault model to inject faults into the NIC processor. The ex-
periments lead to different errors, such as dropped or corrupted packets,
NIC resets, and interface hangs. Another study [46] evaluates the robust-
ness of TCP network protocol in spite of typical network faults, which
include dropping, delaying, reordering, and duplicating network packets
among others. Moreover, Fummi et al. [60] evaluate the dependability of
networked embedded systems, by leveraging more or less the same fault
model as the study mentioned previously.

In the proposed fault model, the interface between the FIT (i.e., the
I/O stack, including the NIC for networking and the HBA for storage) and
the BT is represented by the device driver, which is the first software com-
ponent that handles the communication between the device and the rest

3.3. Fault Model 83

of the system. Thus, by introducing anomalies at the interface level, we
can emulate hardware problems (faults) originated at the hardware level
(e.g., the NIC processor is flawed), but also software-related bug in the
context of the kernel OS (e.g., device driver bugs, kernel bugs), as well
as configuration faults more related to the performance provided by the
physical controller.

At this point, for each domain (physical and virtual CPU, memory,
disk, and network), we identify what to inject according to the following
three general fault types:

• Unavailability, the resource becomes unresponsive and unusable;

• Delay, the resource is overcommitted and slowed-down;

• Corruption, the information stored or processed by the resource is
invalid.

These fault types are broad classes that span over the possible failure
modes of a component [126, 106, 19, 38, 73]. We specialize these gen-
eral fault types for each resource, by analyzing how hardware, software,
and/or operator faults can likely cause these three possible fault types
[44]. In this analysis, we consider the scientific literature on fault injec-
tion and failure analysis in cloud computing infrastructures (see Sec. 2.2),
well-known cloud computing incidents [11] , [62], [161], and knowledge on
the prospective architecture and products for NFVI (e.g., VMware ESXi,
Docker containers) [111, 134], to identify a representative, complete, and
acceptable set of faults. Moreover, these faults are feasible to implement
using established software fault injection techniques [110].

The fault mode has been summarized in Table 3.1, which shows, for
each domain and for each fault type, the possible causes of faults, and the

84 Chapter 3. The Proposed Methodology

fault effects to be injected. Moreover, the table shows whether the fault
model applies to physical and virtual machines, and to physical and virtual
disk and network elements (which affect several physical/virtual machines
at the same time). Furthermore, we adopt the most used mechanisms in
literature to emulate faults in the CPU and memory subsystems [19, 81,
84, 83, 150, 69, 28, 132, 41], network subsystem [142, 46, 60], and storage
subsystem [146, 23].

According to the criteria mentioned above, we identified the following
fault models:

• Physical CPUs and memory: These physical resources can be-
come abruptly broken due to wear-out and electrical issues. If these
faults are detected by machine checks, they lead to CPU exceptions
and to the de-activation of failed CPU and memory banks. Other-
wise, these faults cause silent corruptions of random bytes in CPU
registers and memory banks; even in the case of ECC memory, data
can become corrupted before being stored in memory, when flowing
through the CPU or the bus. Software faults in the virtualization
layer (e.g., the VMM (Virtual Machine Monitor, such as a hyper-
visor)) may cause the corruption of whole memory pages, due to
buggy memory management mechanisms (such as transparent page
sharing and compression) or to generic memory management bugs
at virtualization layer level (such as buffer overruns and race condi-
tions). Moreover, physical CPUs and memory can be overloaded by
an excessive number of VMs, or by buggy services that run in the
virtualization layer; in turn, the contention on CPUs and memory
may lead to scheduling and allocation delays of VMs;

• Virtual CPUs and memory: The VMs may lack virtual CPUs
and virtual memory due to optimistic resource reservations to the
VMs. In a similar way to physical CPUs and memory, electrical

3.3. Fault Model 85

Table 3.1. Overview of the fault model.

Virtual	machines	
(individual	end-point),	

virtual	disks	(multiple	end-
points)	

Delay	 The	virtualization	layer	is	
overloaded	[op.,	sw.,]	

Virtual	storage	delayed	

Corruption	 Elecromagn.	interferences,	
virtualization	layer	bugs	[hw.,	sw.,]	

Virtual	storage	corrupted	

Elecromagn.	interferences,	
virtualization	layer	bugs	[hw.,	sw.,]	

Physical	storage	I/O	corrupted	

Virtual	
storage	

Unavailability	 Misconfiguration	[op.,]	 Virtual	HBA	interface	disabled	

Network	frames	corrupted	on	
virtual	NIC	

Physical	
storage	

Unavailability	 HBA	or	storage	cable	permanently	
broken	[hw.,]	

Physical	HBA	interface	disabled	 Physical	machines	
(individual	end-point),	
physical	disks	(multiple	

end-points)	

Delay	 Storage	link	saturated	[op.,]	 Physical	storage	I/O	delayed	

Corruption	

Virtual	
network	

Unavailability	 Misconfiguration	[op.,]	 Virtual	NIC	interface	disabled	 Virtual	machines	
(individual	end-point),	

virtual	switches	(multiple	
end-points)	

Delay	 The	virtualization	layer	is	
overloaded	[op.,	sw.,]	

Network	frames	delayed	on	
virtual	NIC	

Corruption	 Elecromagn.	interferences,	
virtualization	layer	bugs	[hw.,	sw.,]	

Physical	machines	
(individual	end-point),	

physical	switches	(multiple	
end-points)	

Delay	 Network	link	saturated	[op.,]	 Network	frames	delayed	on	
physical	NIC	

Corruption	 Elecromagn.	interferences,	
virtualization	layer	bugs	[hw.,	sw.,]	

Network	frames	corrupted	on	
physical	NIC	

Elecromagn.	interferences,	
virtualization	layer	bugs	[hw.,	sw.,]	

Memory	page	corruption	in	
virtual	node	context	

Physical	
network	

Unavailability	 NIC	or	network	cable	permanently	
broken	[hw.,]	

Physical	NIC	interface	disabled	

Memory	page	corruption	in	the	
virtualization	layer	context	

Virtual	
memory	

Unavailability	 Insufficient	capay	planning	[op.,]	 Memory	hog	in	the	virtual	node	
context	

Virtual	machines	Delay	 Virtual	machine	is	overloaded	[op.,	
sw.,]	

Memory	trashing	in	the	virtual	
node	context

Corruption	

Physical	
memory	

Unavailability	 Physical	memory	bank	
permanently	broken	[hw.,]	

Memory	hog	in	the	
virtualization	layer	context	

Physical	machines	Delay	 Virtual	machine	is	overloaded	[op.,	
sw.,]	

Memory	trashing	in	the	
virtualization	layer	context

Corruption	 Elecromagn.	interferences,	
virtualization	layer	bugs	[hw.,	sw.,]	

Virtual	machines	Delay	 Virtual	machine	is	overloaded	[op.,	
sw.,]	

CPU	hog	in	VM	context	

Corruption	 EMIs,	virtualization	layer	bugs	[sw.,	
hw.,]	

CPU	register	corruption	in	VM	
context	

Physical	machine	is	overloaded	
[op.,	sw.]	

CPU	hog	in	the	virtualization	
layer	context	

Corruption	 Electromagn.	interferences,	
virtualization	layer	bugs	[hw.,]	

CPU	register	corruption	in	the	
virtualization	layer	context	

Virtual	
CPU	

Unavailability	 Insufficient	capay	planning	[op.,]	 Virtual	CPU	disabled	

Root	cause	 Fault/Error	to	be	injected	 Applicable	to	

Physical	
CPU	

Unavailability	 Physical	CPU	permanently	broken	
[hw.]	

Physical	CPU	disabled	

Physical	machines	Delay	

86 Chapter 3. The Proposed Methodology

issues and VMM bugs may lead to data corruptions in VM context.
Finally, software and operator faults inside the VM may overload
virtual CPUs and memory;

• Physical storage and network: Storage and network links (re-
spectively, HBA and NIC interfaces, and connections between ma-
chines, and network switches and storage) may fail due to wear-out
and electrical issues. Moreover, electrical issues and software bugs
in device drivers may cause the corruption of block I/O and network
frames. The storage and network bandwidth may get saturated due
to excessive load and insufficient capacity planning, causing the over-
all delay of I/O traffic;

• Virtual storage and network: Storage and network interfaces of
individual VMs, and virtual switch and storage connections, may
become unavailable due to human faults in their configuration. In a
similar way to physical storage and network, wear-out and electrical
issues may affect the I/O traffic of specific VMs, and the I/O traffic
may be delayed due to bottlenecks caused by the emulation of virtual
switches and storage.

It is important to note that the proposed fault model can be adapted
to the specific target NFVI. In particular, software faults in the virtualiza-
tion layer (in particular, bugs in device drivers and in other extensions to
the virtualization layer developed by untrusted third-parties) may be omit-
ted depending on the integrity and maturity of this software. Overloads
may be omitted in the case that resources are over-provisioned, or in the
case that capacity planning has been carefully performed. Operator faults
may be omitted in the case that configuration of the virtualization layer
is fully automated, and configuration policies are carefully checked. The
fault model allows removing specific faults according to their root causes;

3.4. Workload 87

another possible approach is to give different weights to faults when eval-
uating the experimental results of the benchmark [37].

3.4 Workload

The definition of the workload includes the identification of how to
exercise the system during the faultload is exercised. In order to obtain
reasonable and realistic results from dependability benchmark, these work-
loads should be representative of what usually the NVF will face once
deployed in a real scenario. Typical workloads in the network domain
are network traffic that follows a specific pattern, such as staircase load
pattern or a flat load pattern with ramp up, and so on [118]. A realistic
workload can be automatically generated by using existing load generators
or benchmarking tool. Note that the selection of workloads also depends
on the kind of network service that is hosted on the NFVI. For these
reason, we refer the reader to existing network performance benchmarks
and network load generators. Suitable examples of workloads for NFVIs
are represented by performance benchmarks specifically designed for cloud
computing systems [34, 22, 137] and by network load testing tools such as
Netperf [70].

This page intentionally left blank.

Chapter 4
Fault Injection Tool Suite

4.1 Virtualization Technologies Background

Virtualization is the cornerstone technology of NFV. Indeed, it allows
to abstract the specific details of physical resources (e.g., CPUs, network
and storage devices, etc.), providing and sharing them for applications
at higher levels. This perspective completely changes the way we see a
physical machine (or a pool of physical machines), making it a simply
soft component to use and manage at the push of a button. A main con-
cept within virtualization is the Virtual Machine (VM), which provides
an isolated execution context running on top of the underlying physical
resources. The Hypervisor actually runs VMs and it is also responsible of
coordinating multiple VMs in order to discipline the access to the under-
lying CPU, memory and I/O resources.

Currently, in the virtualization panorama there is a spectrum of ap-
proaches, but mainly Hypervisor-based and Container-based (or Operating
system-level) virtualization are actually in use.
Hypervisor-based virtualization technologies provide an environment
that allows for a guest operating system to run on top of a so-called Hy-

89

90 Chapter 4. Fault Injection Tool Suite

pervisor. As mentioned above, hypervisor is a piece of software that runs
multiple virtual machines, each of which run a guest operating system.
There are two main types of Hypervisor-based virtualization:

• Full virtualization, in which the hypervisor completely isolates the
guest OS and completely abstracts hardware resources to guest. The
task of the hypervisor is to emulate privileged CPU instructions and
I/O operations, and to multiplex resources between concurrent VMs.
Examples of hypervisors with full virtualization are VMware ESXi
[155], KVM [86], and Microsoft Hyper-V [102].

• Paravirtualization (partial virtualization), in which the guest OS is
aware that it is running in a VM, that is, it is modified in order to
communicate directly with the hypervisor (via a system call mecha-
nism called hypercalls) to achieve better performance. An example
of hypervisor with paravirtualization is Xen [17].

On the other side of spectrum, Container-based virtualization, also
called Operating System-level virtualization, allows to runs multiple guest
OSes without hardware virtualization. OSes have been already designed
to provide resource isolation, but among processes. Thus, the idea is to use
a traditional OS to run virtual appliances, by enhancing the (host) kernel
OS to provide isolation between guest applications that run in so-called
containers. A container is not a Virtual Machine in the traditional sense,
but it is an environment that allows to runs a guest application with its
own filesystem, memory, devices, processes, etc., leveraging kernel OS host
process isolation (e.g., namespace in Linux [94]) and resource management
capabilities (e.g., cgroups in Linux [98]). Examples of container-based
virtualization technologies are LXC (LinuX Container [95]), Docker [49],
OpenVZ [122].

In the following, we deeply analyze two alternative virtualization tech-
nologies: VMware ESXi and Docker, respectively an hypervisor-based and

4.1. Virtualization Technologies Background 91

a container-based solution.

4.1.1 The VMware ESXi Architecture

To identify the failure modes of ESXi virtualization mechanisms, we
first need to analyze their architecture. Some of the virtualization tech-
niques developed by VMware have been described in research papers [160,
7, 26]; additional information on VMware ESXi has been obtained from
white papers on VMware products, and from documentation for developers
(such as the device driver DDK documentation).

VMware has developed two main virtualization architectures over time.
The oldest architecture (Figure 4.1) is based on standard x86 hardware
and full emulation of devices, while the newest architecture (Figure 4.2)
takes advantage of virtualization extensions in modern CPUs (hardware-
assisted virtualization) (i.e., Intel VTx [152], and AMD-V [6]), and of
virtualization-aware guest OSes (paravirtualization).

The traditional architecture

In the original architecture of VMware products (Figure 4.1), x86 vir-
tualization did not rely on hardware virtualization extensions, but was
implemented using x86-to-x86 code translation (to emulate virtualization-
sensitive CPU instructions in software) and traditional x86 segmenta-
tion/pagination mechanisms (to virtualize memory). Moreover, the origi-
nal architecture was aimed at executing unmodified commodity guest OSes
(i.e., not aware of virtualization), by fully emulating I/O devices.

A key virtualization component is represented by the VMM (Virtual
Machine Monitor). For each VM executing on an ESXi host, there
exists a VMM, whose responsibility is to virtualize CPU and memory. The
VMM mediates between the VM and the hardware CPU, by intercepting
virtualization-sensitive instructions (i.e., instructions that change the

92 Chapter 4. Fault Injection Tool Suite

VMM!VMM!

User applications!User applications!

VMkernel!

CPU!
Mngt.!

Memory
Mngt.!

Virtual
networking

stack!

Virtual
storage
stack!

VMLinux API! Native DD API!

DD! ...! DD! DD! ...! DD!

Linux / POSIX system call interface!

VMX!

VMM!

User applications!

Guest OS!

Legacy DD!

Page Table!

Shadow
Page Table!

CPU!

Dynamic
binary transl.!

Code basic blocks!
(with sensitive inst.)!

Translated code
basic blocks!

(emulated!
sensitive inst.)!

Direct
exec.!

Tracing!

VMX!VMX!

World
switch!

ioctl()!read(), write()! User mode!

Kernel mode!

VMKCall!

• Lock physical memory!
• Interrupt forwarding!
• Device command emulation!

Memory!Disk! Net!

Hostd!DCUI!Syslog!

Figure 4.1. ESXi virtualization architecture using a traditional setup (no
CPU virtualization extensions, no I/O paravirtualization).

configuration of physical resources). These instructions are emulated in
software, thus providing virtualized resources to the VM, and allowing
more than one VM to execute on the same hardware. Virtualization-
sensitive instructions include instructions for setting privileged CPU flags
(such as enabling/disabling interrupts), I/O instructions, segment/page
table management, etc..

To perform these operations, the VMM takes full control of the CPU
and of its registers. To do so, the VMM acts as a "peer OS" of the
VMkernel. A VMM and the VMkernel alternate in the management of the
CPU, by performing aworld switch (i.e., a context switch involving every
CPU register, including privileged ones). The VMkernel first instantiates
a VMX process (running on the VMkernel side, and representing the VM);
then, the VMX generates a VMM running in parallel with the VMkernel.
The CPU is still scheduled by the VMkernel: when the VMX is scheduled,
the VMX triggers a world switch and the execution of the VMM, using
the ioctl system call. In general, the VMX interacts with the VMkernel
and the VMM using ioctl, in order to initiate, configure, and schedule

4.1. Virtualization Technologies Background 93

the VMM, and to exchange I/O device commands and data with a legacy
device driver running on the guest OS.

In the original VMware architecture, the VMM emulates virtualization-
sensitive instructions using dynamic binary instrumentation: guest
OS code is translated block-by-block, by replacing sensitive instructions
with their emulated counterparts. In particular, I/O instructions (issued
by a legacy device driver in the guest OS) are handled by a legacy I/O
device emulator running int the VMX process (which runs on the VMk-
ernel in VMware ESXi, and on the host OS in VMware Workstation). In
turn, the VMX issues regular system calls (e.g., read, write) on the VMker-
nel to execute I/O operations. VMware developed advanced optimizations
such as code block caching, adaptive translation, partial evaluation, direct
execution of user code, etc., to speed up code translation and to achieve
performance comparable to non-virtualized execution.

The VMM uses a VMKCall interface to send requests for locking mem-
ory pages by the VMkernel (in order to allocate them for the virtual ma-
chines), to forward interrupts to the VMkernel (i.e., interrupts from phys-
ical I/O devices that occur during the execution of the VMM, but that
must be managed by the VMkernel), and to send requests for emulating
I/O commands of virtual I/O devices to the VMX (only in the case of the
traditional VMware architecture, were legacy I/O devices are emulated by
the VMX).

To virtualize memory, the VMM introduces a shadow page table.
The shadow page table mirrors the page table of the guest OS, where
virtual memory addresses are translated into physical memory addresses
actually allocated to the VM. The shadow page table is the one actually
used by the CPU to access memory. Every time that the guest OS changes
its page table (i.e., writing "guest-physical page addresses"), the changes
are intercepted by the VMM and propagated to the shadow page table
(writing "host-physical page addresses"). To intercept such changes, the

94 Chapter 4. Fault Injection Tool Suite

VMM sets the guest OS page table as read-only, thus causing an exception
at each change, which is handled and traced by the VMM.

The physical I/O resources, most notably storage and network, are
managed by the VMkernel. In turn, the virtual networking and storage
stacks of the VMkernel include several components. The most impor-
tant components of the virtual storage stack are the VMFS filesystem (for
managing VM datastores and vmdk virtual disks), the Pluggable Storage
Architecture (for managing physical I/O paths in storage area networks),
and the storage device drivers (for managing iSCSI and FibreChannel stor-
age). The most important components of the virtual network stack are the
vSwitch (for switching network frame to/from VMs and the physical net-
work) and the network device drivers (for accessing to physical networks,
such as Gigabit Ethernet). The VMkernel supports two APIs for develop-
ing and running device drivers: (i) the VMLinux API, for running legacy
device drivers from the Linux OS; and (ii) the Native device driver API,
used by device drivers specifically developed for the VMkernel.

Finally, a set of user-space processes (besides the VMXs) are executed
on the ESXi. These processes are intended for remote management and
monitoring purposes. Among them, the most relevant user-space processes
are hostd (to provide a programmatic API interface to remote clients),
DCUI (an user interface displayed on the ESXi host console), and syslog
(for logging). These processes run on top of the VMkernel, and execute
POSIX system calls to interface with the VMkernel, in a similar way to a
Linux system.

The modern architecture

In the modern VMware architecture (Figure 4.2), the ESXi hypervisor
leverages novel CPU virtualization extensions recently introduced by Intel
and AMD, to further improve the performance of x86 virtualization.

These extensions avoid the need for dynamic binary translation. Using

4.1. Virtualization Technologies Background 95

VMM!VMM!

User applications!User applications!

VMkernel!

CPU!
Mngt.!

Memory
Mngt.!

Virtual
networking

stack!

VMLinux API! Native DD API!

DD! ...! DD! DD! ...! DD!

Linux / POSIX system call interface!

Hostd!

VMM!

Disk! Net!

User applications!

Guest OS!

Page Table!

Nested!
Page Table!

Memory! CPU!

Guest-to-physical
mapping!

User mode!

Kernel mode!

I/O ring!

World
switch!

Paravirt. DD!

Virtual
storage
stack!

Trap-
and-

emulate!

Direct exec.!

VMKCall!

• Lock physical memory!
• Interrupt forwarding!

• Device commands
and data!

VMX!VMX!VMX!

ioctl()!read(), write()!

Balloon
driver!DCUI!Syslog!

Figure 4.2. ESXi virtualization architecture, using a modern setup (CPU
virtualization extensions, I/O paravirtualization).

these extensions, the VMM can instruct the CPU to trap-and-emulate
sensitive instructions. When a sensitive instruction is executed, the CPU
generates an exception, and the trapping instruction is emulated by the
trap handler, which runs in VMM context.

Virtualization extensions also avoid the need for shadow tables, by
introducing nested page tables. The nested page table is managed by
VMM, and specifies guest-memory-to-host-memory mappings (i.e., where a
page of virtual memory should be assigned to physical memory). The guest
OS handles its page table to manage the memory of the VM. When the
guest OS or applications access to VM memory, the CPU uses the nested
page tables to automatically translate (in hardware) guest addresses into
host addresses.

Furthermore, a balloon driver is loaded into the guest OS, in order
to allow the VMkernel to reclaim memory from the virtual machine: when
the ESXi host runs out of physical memory, the VMkernel can request to
the balloon driver to pin virtual memory (by performing memory alloca-
tions on the guest OS), which becomes again available for use to the ESXi

96 Chapter 4. Fault Injection Tool Suite

host. If even more memory is needed, the VMKernel performs memory
compression and hypervisor swapping. The first mechanism consists
in compressing pages whose compression ratio is greater than 50%, and
de-compress those pages on demand. The area for storing compressed
pages is not fixed, but changes dynamically depending on workload con-
ditions. Hypervisor swapping allows the hypervisor to directly swap out
guest-physical memory to a swap area on the disk.

As in the case of the traditional architecture, the physical I/O re-
sources are managed by the virtual networking and storage stacks. To
make I/O more efficient, VMware ESXi introduced the support to I/O
paravirtualization (Figure 4.2). The guest OS in the VM runs a "par-
avirtualized" device driver (such as pvscsi and vmxnet), that is, a de-
vice driver aware of I/O virtualization. The paravirtualized device
drivers interact with the VMkernel using a shared I/O memory ring.
The VMkernel asynchronously consumes commands from the ring, and ex-
changes input and output data with the VM through the ring. The VMk-
ernel accesses to the I/O rings through asynchronous kernel-level threads
(bottom-halves), that are the intermediary between the network/storage
stacks and the guest OSes. This approach reduces world switches and I/O
latency, and avoids the need for the emulation of legacy I/O devices. This
approach requires to install paravirtualized device drivers in the virtual
machine, which are today easily obtained for the most important com-
modity OSes (such as Linux and Windows).

The modern architecture (CPU virtualization extensions and I/O para-
virtualization, see Figure 4.2) is gaining widespread adoption, and will be
the most used one in the near future. VMware ESXi is able to automati-
cally select the best configuration (among the traditional architecture and
the modern architecture) based on the availability of CPUs with virtual-
ization extensions, and on the preferences of the system administrator.

4.1. Virtualization Technologies Background 97

High Availablity in VMware

The VMware HA technology is the main tool in VMware world to pro-
vide high availability for virtual machines and physical host. VMware HA
adopts a mechanism based on heartbeats, in order to be able to contin-
uously monitor all virtualized servers and to detect faults in the physical
resources and failures of the VMs. VMware HA guarantee high availability
for VMs through a primary host, which maintains the cluster state, and
when needed it starts failover actions. VMware HA agents communicate
with each other to detect failures and host network partition. The commu-
nication occurs via heartbeats mechanism. In the case of loss of heartbeats
from the ESXi host, VMware HA automatically migrates and restarts the
affected VMs on an available host in the resource pool [156]. Furthermore,
in case of loss of heartbeats from VMs, VMware HA automatically restart
them.

4.1.2 Container-Based Virtualization

Container-based virtualization, also called Operating System-level vir-
tualization, allows to run multiple appliances without hardware virtualiza-
tion. Resource virtualization in OSs is an old idea, based on the concept
of process. The idea behind container-based virtualization is to enhance
the abstractions of OS processes (so-called containers), by extending the
(host) OS kernel. In container-based virtualization, a container has its
own virtual CPU and virtual memory (like in traditional OS processes).
In this kind of virtualization, it is also added abstractions for a virtual
filesystem (i.e., the container perceives a filesystem structure that is dif-
ferent than the host’s), virtual network (i.e., the container sees a different
set of networking interfaces), IPC, PIDs, and users management. These
virtual resources are distinct for each container in the system.

A container is not a VM in the traditional sense, since there is no

98 Chapter 4. Fault Injection Tool Suite

emulation of physical devices (e.g., NICs, disk HBAs), CPU and mem-
ory. For this reason, this kind of virtualization is more lightweight than
full- and para-virtualization. Container-based virtualization leverages the
process abstractions (e.g., namespace in Linux [94]) and resource manage-
ment capabilities (e.g., cgroups in Linux [98]) of the host kernel. The idea
behind OS-level virtualization has been around since 80s, when was intro-
duced the chroot system call as a first form of virtualization. Later, there
was developed other OS-level virtualization technologies like Jail FreeBSD
[80], and Solaris containers [129], but such approach has gained a big mo-
mentum during recent years. Currently, the most used container-based
virtualization technologies are LXC (LinuX Container [95]), Docker [49],
and OpenVZ [122]. Figure 4.3 depicts the container-based approach.

Host OS Kernel

Resource control manager

Isolated domain 1

Network

Filesystem

IPC
PIDs

Users

Isolated domain 2

Network

Filesystem

IPC
PIDs

Users

Isolated domain 3

Network

Filesystem

IPC
PIDs

Users

Physical resources

CPU Storage Memory Network

Container1

proc1 procN

Container2

proc1 procN

ContainerN

proc1 procN

Figure 4.3. Container-based architecture

We are witnessing an increasing use of container-based virtualization

4.1. Virtualization Technologies Background 99

in cloud infrastructures. Examples are Google [63, 65], Amazon [9], and
Microsoft [101], which are already providing cloud services running on
containers. Containers are expected to be fast, thus providing high per-
formance, since there is no extra overhead due to emulation of devices.
Moreover, containers make virtualization more manageable, since creat-
ing and moving containers is easier and faster.

In the following, is given a background on namespaces and cgroups,
which are the main blocks of currently used container-based virtualization
technologies, e.g., LXC, and, Docker.

Namespaces

Container-based virtualization is built upon the first fundamental block
named namespace. The objective of namespaces is to isolate each container
from others and from the host kernel, by creating different views of shared
resources, which include CPU, memory, storage, network. There are cur-
rently 6 namespaces [93]:

• MNT (mount points, filesystems): allows isolation of filesystem
mount points seen by processes belonging to a specific container.
Such separation enabled processes to view its own filesystem hierar-
chy;

• PID (processes): allows processes on different containers to have the
same PID. The principal benefit is that during container migration
all processes keep its PID number;

• NET (network stack): provides isolation of all the system resources
linked with networking subsystem. Thus, a container has an abstract
network stack with its own network interfaces, routing, firewall rules,
and sockets;

100 Chapter 4. Fault Injection Tool Suite

• IPC (System V IPC): isolates the interprocess communication (IPC)
resources (e.g., share memories, message queues);

• UTS (hostname): allows each container to have its own hostname
and domain name;

• USER (UIDs): isolates the user and group ID number spaces.

Control Groups

Control Groups (cgroups) are the main mechanism behind container-
based virtualization to handle shared resources usage. In fact, cgroups
allow to set resource limits and access controls to specific groups of pro-
cesses belonging to a particular container, in order to guarantee isolation.
Cgroups mechanisms is implemented in Linux kernel by providing a tree-
based hierarchical virtual filesystem. In the context of containers, cgroups
is fundamental to guarantee isolation between host kernel and other con-
tainers. For example, a container must not cause severe delays (e.g., star-
vation phenomena) of other containers or processes on the host.

The fundamental cgroup subsystems in the Linux kernel are the fol-
lowing:

• CPU (cpu, cpuset, cpuacct): The CPU cgroup subsystem is used
to limit a group of processes to run on specific CPUs, or for a specific
amount of time;

• Memory : The memory cgroup subsystem monitors memory alloca-
tion and allow to set limits for a group of processes. Furthermore,
the memory subsystem controls the sum of memory and swap usage,
as well as the kernel memory usage on behalf of processes;

• BLKIO : Storage resources are managed through the BLKIO cgroup
subsystem, which controls the throughput on disk by tune the read

4.1. Virtualization Technologies Background 101

or write speeds, operations per second, queue controls, wait times
and other operations on an associated block device;

• Devices: The devices cgroup subsystem allows or denys access to
devices (char or block) to group of processes;

• Network : allows to control (filter) network packets based on their
class (net_cl subsystem) and on their priority (net_prio subsystem)
within processes that belonging to that groups. The control is per-
formed to all sockets opened by processes in the group. In term of
communication channel, the socket can be one spot.

Docker

Currently, Docker [49] is doubtless an hot topic in the container world,
and in general in the virtualization technology panorama. As mentioned
before (see 4.1.2), Docker is one of the most popular container-based virtu-
alization technology. Docker was born in 2013 as an open source project,
and during years has grown rapidly and has become a company which
provides different container-based products and projects. The main dif-
ferences between other container solutions, is that Docker is designed to
packing and shipping individual software through building applications
and all their dependencies in a easy way. Actually, Docker is not the core
of container-based virtualization, instead is a management platform for
containers, exploiting namespaces and cgroups to provides the basis for
container operations. The Docker architecture (see Figure 4.4) consists of:

• Docker Engine, the core of Docker. Docker Engine is implemented
via libcontainer1, which in turn allows creating the required kernel
namespaces, cgroups, handles capabilities and filesystem access con-
trols to handle containers;

1https://github.com/docker/libcontainer

102 Chapter 4. Fault Injection Tool Suite

Figure 4.4. Docker architecture platform [51]

• Docker Client, which interacts with the Docker daemon, through
commands (see “docker” commands). This command actually inter-
acts the Docker daemon’s REST API, using a UNIX socket;

• Docker Daemon accepts Docker client connections from the REST
interface or UNIX socket and exposes Docker Engine functionality.
Other tasks of docker daemon are monitoring, running, and generally
acting as the “init” process for all deployed containers.

Docker containers consist of so-called images [50], which in turn consist
of a set of read-only layers that represent filesystem differences. Docker
allows using different storage drivers (e.g. AUFS, BTRFS, VFS, Device
Mapper, OverlayFS) to stacking the layers part of a container, providing
a single unified view. Each layer contains the files which have been added,
changed, or deleted relative to its parent layer, starting from a base im-
age, e.g., a version of root filesystem of an Ubuntu distribution. When
a container is created, Docker adds a new readable/writable layer on top
of the base image. All the read/write operations are performed on that

4.1. Virtualization Technologies Background 103

layer, which is deleted when the container will be removed. Best practices
of developing Docker services, implicitly requires that containers should
be ephemereal, that is, the container data should not be persistent, and
as soon as the container fails a new one take place with no additional
configurations. The problem is that, if a container crash, any data in the
read-write layer is lost. To overcome this problem, Docker introduce the
data volumes, which allows mounting a directory on Docker host or on
a shared storage, bypassing the Union File System (used by default by
Docker).

Moving to the networking, Docker generally exploits network names-
paces (see 4.1.2), Linux bridge, virtual ethernet pairs, and iptables. Docker
by default create a linux bridge which allows containers to communicate
each other. Each container implement network device with the virtual eth-
ernet (veth), which is a Linux networking interface that allows two network
namespaces to communicate. The veth is a full duplex link that appear a
single interface in each namespace: the traffic in one interface is directed
out the other interface. Docker network drivers use veths to provide ex-
plicit connections between namespaces when Docker networks are created.
When a container is created and attached to a specific Docker network, one
end-point of the veth is placed inside the container (usually seen as the eth0
interface) while the other is attached to the Docker network. Figure 4.5
summarizes the Docker networking elements described before.

High Availability in Docker

Docker Swarm [52] is a native clustering and management system for
Docker. It allows creating a cluster of Docker hosts in order to orches-
trate containers. Docker Swarm guarantee high availability of containers
by scheduling them across the cluster during failure conditions. In partic-
ular, Docker Swarm provides three different scheduling strategies: spread,
binpack, and random. The spread strategy is the default used by Docker

104 Chapter 4. Fault Injection Tool Suite

Figure 4.5. Docker networking subsystem.

Swarm. That strategy tries to place containers across all nodes in the clus-
ter. The binpack strategy try to place containers on the most-loaded node,
which has still resources for execution of the container being placed. In
order to prevent container fragmentation, in that strategy Docker Swarm
leave space for bigger containers. The random strategy place containers on
a random node on the cluster. Furthermore, Docker Swarm allows speci-
fying filters to schedule containers on host which complies with particular
properties (e.g., host within a specific storage backend, with a specific
name). The Docker Swarm architecture Figure 4.4 consists of:

4.1. Virtualization Technologies Background 105

• Swarm Manager, which manages the nodes in the cluster through
Docker APIs in order to communicate with Docker Daemon (see
Section 4.1.2);

• Swarm Node, which represents a node in the cluster. The swarm
node is identified by an ID, and tracks all the information needed to
the swarm manager in order to orchestrate containers. In particular,
the swarm node store information about all the containers running
on the host, the health state of the host, the total usage of CPU and
memory;

• Discovery Service, which helps swarm manager nodes to adding, dis-
covering, and managing nodes in the cluster. Docker Swarm allows
using different discovery backend service, such as etcd, Zookeeper,
Consul.

Figure 4.6. Docker Swarm architecture.

106 Chapter 4. Fault Injection Tool Suite

4.2 Fault Injection Tool

This section introduces a set of fault injection technologies for test-
ing NFVIs. These technologies are based on a fault model that has been
derived from the analysis of the typical architecture of a virtual infrastruc-
ture.

The fault model (see Section 3.3) is summarized in Figures 4.7 and
4.8. Faults can be grouped in two broad categories: faults affecting I/O
subsystems (virtual/physical networks and storage), and faults affecting
computation-related subsystems (virtual/physical CPUs and memory). Our
analysis of fault modes pointed out that the most likely faults in virtual
network infrastructures are caused by hardware faults in COTS equipment,
and by software and configuration faults in the virtualization layer. These
faults manifest as disruptions in I/O traffic (e.g., the transient loss or cor-
ruption of network packets, or the permanent unavailability of a network
interface) and erratic behavior of the CPU and memory subsystem (in
particular, corruption of instructions and data in memory and in registers,
crashes of VMs and of physical nodes, and CPU and memory saturation).

These types of faults are injected by emulating their effects on the vir-
tualization layer. In particular, I/O and Compute faults can be emulated,
respectively, by deliberately injecting I/O losses, corruptions and delays
(Figure 4.7), and by injecting code and data corruptions, by forcing a
crash of VMs or containers, and of their hosting nodes, and by introducing
CPU- and memory-bound "hogs" in the system, that is, tasks that delib-
erately consume CPU cycles and allocate memory areas in order to cause
resource exhaustion (Figure 4.8). These faults can affect either a specific
virtual node (VM or container), or a physical machine (PM) in the NFVI:

• Guest-level faults are focused on a specific VM or container: for
instance, faults injected on network traffic from and to a specific VM
or container;

4.2. Fault Injection Tool 107

Figure 4.7. Overview of I/O faults supported by the fault injection tech-
nologies.

Figure 4.8. Overview of CPU and memory faults supported by the fault
injection technologies.

• Host-level faults are focused on a physical node that hosts VMs,
or physical node that hosts containers: for instance, faults injected
on network traffic from and to the NFVI node, including all VMs
running on the node.

These types of faults can be injected either in a permanent way or
in a probabilistic way. Permanent faults persists in the NFVI for the
whole duration of the test. This mode emulates faults that persist for a
long period of time, such as unavailable hardware interfaces, or a failed
upgrade or reconfiguration. To inject permanent faults, the injector drops,
corrupts and/or delays all I/O transfers for the whole duration of a test (for
instance, all network packets are dropped, corrupted or delayed, starting
from a specific time and until the end of the test). Probabilistic faults

108 Chapter 4. Fault Injection Tool Suite

affect the NFVI at random times. This mode emulates temporary faults
that persist for a short period of time, such as failed I/O reads/writes due
to bad disk sectors, electromagnetic interferences, worn-out connectors or
partially damaged hardware interfaces. To inject probabilistic faults, the
injector drops, corrupts and delays individual I/O transfers (e.g., a fault
is injected one time for every ten I/O transfers).

4.2.1 Architecture

The fault injection suite include a set of tools, to be installed both
on the virtualization layer of an NFVI node, and on its virtual nodes.
Specifically, in the case of hypervisor-based virtualization, the virtualiza-
tion layer is the hypervisor. Instead, the virtualization layer is identified
by the Linux kernel in the case of container-based virtualization. Further-
more, for virtual nodes we mean Virtual Machines (VMs), in the case of
hypervisor-based virtualization, and containers, in the case of container-
based virtualization. Given the terminology described before, Figure 4.9
shows the high-level architecture of an NFVI node, along with fault injec-
tion tools. The tools include the following components:

• Fault Injection Controllers. These user space programs can be di-
rectly invoked by the user, for instance through an ssh session. Each
of these tools controls the injection of a specific type of faults. For
instance, one of the tools controls the injection of network faults,
while another tool tools controls the injection of storage faults. In
turn, these tools interact with other kernel-space tools running in the
virtualization layer and in the virtual nodes;

• Fault Injection Modules. These programs can be both kernel modules
and user space programs, and perform the actual fault injection both
for the physical layer and virtual layer 3.1, implementing all the host-
level faults and guest-level faults.

4.2. Fault Injection Tool 109

Figure 4.9. Overview of the fault injection tool architecture.

The internals of the fault injection modules for the virtualization layer
and virtual node are described in the following.

4.2.2 Network Faults

Hypervisor-based scenario

In order to emulate network faults at the host level, we implement
a kernel module that wraps the function responsible of sending packets
over a network link. In Linux, as soon as the kernel needs to transmit a
packet, it calls the xmit() function related to the specific network driver
of the physical NIC [35]. Thus, wrapping the xmit() function allow us to
intercept all the network traffic between physical hosts and between VMs
on the NFVI. Specifically, to inject a network unavailability faults we
drop the packet that is being transmitted by the driver to the physical NIC,
by returning from the xmit() call. In order to inject network delay fault,
we schedule a kernel task (specifically a workqueue [35]) that sends the

110 Chapter 4. Fault Injection Tool Suite

Figure 4.10. Internals of kernel-level tools for injecting network faults.

packet that is being to transmitted after a specified amount of delay time
(e.g., after 20ms). Finally, the network corruption fault is implemented
by obtaining the socket buffer structure (sk_buff), which handle every
network packet in Linux kernel; once obtained the sk_buff belonging to
the packet that is being transmitted, we corrupt the header with a specified
pattern (e.g., bit-flip the first n bits). Figure 4.10 shows the internals for
the network fault injector.

Actually, in order to implement guest-level faults, we exploit the same
approach used for the host-level fault described above.

4.2. Fault Injection Tool 111

Container-based scenario

We exploit the same approach used in the hypervisor-based scenario
by wrapping the virtual ethernet device (veth) (see Section 4.1.2). This
approach is suitable both for host- and guest-level faults.

4.2.3 Storage Faults

Hypervisor-based scenario

In order to emulate storage faults at the host level, we implement a
kernel module that wraps the functions responsible of (i) sending an I/O
request commands towards the physical disk, and (ii) responsible of I/O
command completion. In the Linux kernel, storage device drivers interact
with the Block I/O layer [35] in order to serve I/O requests. In particular,
each SCSI driver provides the queuecommand() function, which is called
to enqueue a new SCSI command; moreover, as soon as the command is
completed, the done() function is called in order to pass the results towards
upper layer in the storage stack. The storage unavailability fault is
implemented by wrapping the queuecommand() function and returning
DID_NO_CONNECT 2 value as result of command completion to the
SCSI upper layers (by explicitly calling the done() function); in this way
we simulate that a physical disk is unplugged or is offline. The storage
corruption fault is implemented by wrapping the done() function in order
to obtain all memory mapped regions related to command that it was
completed; at this time, the fault injector corrupts these regions according
to the fault injection configuration. Finally, the storage delay fault is
implemented as for the network delay fault, that is, by scheduling a kernel
task that enqueue the I/O command that is being to transmitted after a
specified amount of delay time (e.g., after 10000ms). Figure 4.11 shows

2http://www.tldp.org/HOWTO/archived/SCSI-Programming-HOWTO/SCSI-
Programming-HOWTO-21.html

112 Chapter 4. Fault Injection Tool Suite

Figure 4.11. Internals of kernel-level tools for injecting storage faults.

the internals for the storage fault injector.
Actually, in order to implement guest-level faults, we exploit the same

approach used for the host-level fault describe above.

Container-based scenario

We exploit the same approach used in the hypervisor-based scenario by
wrapping the functions of the specific SCSI device which control the I/O
for the shared directory of a specific container. This approach is suitable
both for host- and guest-level faults.

4.2. Fault Injection Tool 113

4.2.4 CPU Faults

Hypervisor-based scenario

In this section we describe the host-level faults implementation, specif-
ically the CPU faults. To emulate CPU unavailability fault, we simply
inject a VMkernel panic to crash the ESXi host machine at specific time.
In order to emulate CPU delay fault, we develop kernel modules that
deliberately consume CPU cycles in order to cause resource exhaustion.
Indeed, the kernel "hog" task interferes with the execution of user space
processes, but also against other running kernel tasks, negatively impact-
ing on the CPU utilization because the kernel gives always the highest
priority to a kernel task. Since VMware ESXi is a proprietary hypervi-
sor solution, the CPU corruption fault is implemented by wrapping the
network device driver (actually we can choice any device driver). In fact,
the driver is periodically triggered by interrupts generated from the device
(i.e., the NIC), thus interrupting a VM on the host that was executing at
the time of the interrupt. At this time, the wrapped device driver corrupts
the current CPU state (represented by CPU registers, which are saved on
a kernel stack by the interrupt handling mechanisms). The corruption of
CPU registers can emulate faulty logical and arithmetical operations, bus
faults, and faulty memory loads/stores, which all transit through CPU
registers. Figure 4.12 shows the internals for the CPU memory corruption
fault injector.

Guest-level faults bring with them some differences compared to the
host-level faults. In fact, to emulate CPU unavailability fault we inject
a kernel panic to crash the target VM at specific time. In order to emulated
CPU corruption faults we exploit a similar approach compared to the
hypervisor-based scenario. In particular, we instrument the most used
system calls during operation (e.g., open, read, write, mmap system calls),
in order to interrupt the current process execution, corrupting the current

114 Chapter 4. Fault Injection Tool Suite

ESXi	 Host	

VM	

VMkernel	

Wrapped	 device	 driver	

Device	 driver	 (e.g.	 e1000)	

VM	

kernel stack

Saved
CPU

registers

Interrupt	 handler	

Interrupt	 handler	
wrapper	

Interrupt

1. A hardware interrupt occurs,
interrupting the execution of a
vCPU or the VMkernel

Interrupt	 gate	

IP
RAX
RBX
...

2. The interrupt gate of VMkernel saves CPU
registers before the interrupt handling

3. A wrapper function of the
interrupt handler is invoked

4. Fault
injection

5. The original
handler is invoked

6. The interrupt gate restores
the (injected) register state
on the CPU

User-‐space	 tools	
(injector_cpu.sh,	

injector_memory.sh)	

Figure 4.12. Internals of kernel-level tools for injecting compute faults.

CPU state. TheCPU delay fault is emulated following the same approach
of the host-level faults (see above).

Container-based scenario

In order to emulate host-level CPU faults, we exploit the same approach
for the CPU guest-level faults used in the hypervisor-based scenario. In
fact, the Docker physical host is actually a machine running a Linux ker-
nel. Instead, for guest-level CPU faults, we slightly modify the approach.
In order to emulate CPU unavailability fault, we simply crash the con-
tainer’s init process at specific time, by sending the SIGKILL signal3. In
order to emulate CPU delay, fault we can not exploit the same approach

3http://man7.org/linux/man-pages/man7/signal.7.html

4.2. Fault Injection Tool 115

of host-level, because we can not execute kernel tasks within the con-
tainer. To overcome the problem, we emulate CPU delay fault by running
a user space program that creates (i.e., fork) continuously new processes
that consumes CPU cycles, until the maximum number limit of running
processes is reached. Also for CPU corruption fault we exploit a similar
approach compared to the host-level faults. In particular, we instrument
the most used system calls during container running, in order to interrupt
its execution and corrupt the current CPU state.

4.2.5 Memory Faults

Hypervisor-based scenario

In order to emulate host-level memory faults, we adopt the same ap-
proach used for host-level CPU faults in the hypervisor-based scenario. In
particular, for memory unavailability fault we develop a kernel mod-
ules that deliberately allocate memory areas in order to cause resource
exhaustion. As before, a kernel task has higher priority rather than user
processes. Thus, is more likely to generate page allocation failures, or even
the activation of mechanisms to free up the allocated memory (e.g., Out
Of Memory killer). The memory corruption fault is emulated by ex-
ploiting the CPU corruption approach. In fact, by intercepting the CPU
state, we choice a register that contains a memory address; subsequently,
we corrupt the first n bytes pointed by that memory address (according to
overlay memory error in [144], we corrupt the first 100 bytes after the target
memory address). Figure 4.12 shows the internals for the CPU and mem-
ory corruption fault injector. Finally, to emulate memory delay fault,
we create a virtual machine such that overcommit the physical memory on
the host. In fact, such VM interferes negatively with the other VMs by
increasing the page in/page out rate, leading to an overall degradation of
the memory performance.

116 Chapter 4. Fault Injection Tool Suite

Instead, for the guest-level memory faults, we implement memory
corruption fault as for the host-level (see above). In order to implement
memory delay fault we execute a user space program with the aim of lead
to memory trashing. In particular, that program allocates new memory
areas until the VM swap space is close to zero, in order to prevent the
execution of OOM killer. Using this approach will substantially lower the
overall memory performance. For the memory unavailability fault we
reuse the same approach of host-level fault.

Container-based scenario

The implementation of host-level memory faults follows the same ap-
proach used in the hypervisor-based approach for the guest-level memory
faults.

Instead, for guest-level memory faults, the unique difference compared
to the hypervisor-based scenario for the guest-level memory unavailabil-
ity, is that we can not execute kernel task within the container. Thus, we
overcome that problem by intercepting the mmap and the brk system calls,
which are the core system calls for the user space program memory allo-
cation. Once we interrupt the execution of these system calls, we force to
return an ENOMEM value, simulating that no more memory is currently
available.

In the case of container-based virtualization, the fault injection ap-
proach described before can be easily used for the host-level faults, since
it is the same as we injected guest-level faults. The problem is that in
containers there is no virtualization of physical resources in the traditional
sense(see 4.1.2), thus the approach of fault injection used in hypervisor-
based virtualization for VMs is not applicable immediately. Thus, we
firstly analyze how container-based virtualization abstract the physical re-
sources, which are the target of the fault injection.

Chapter 5
Experimental Analysis of
Virtualization Technologies

To better understand how to apply the dependability benchmark, and
to showcase the results that can be obtained from the proposed dependabil-
ity benchmark, we perform an experimental analysis on an NFV system
running a virtualized IP Multimedia Subsystem (IMS). We deploy the IMS
on two NFVIs based on different virtualization technologies: a commercial
hypervisor-based virtualization platform (VMware ESXi), and an open-
source container-based solution (Linux containers). The ETSI envisions
the use of both hypervisor-based and container-based virtualization for
NFV [119], and these two products are going to be extensively used in
NFV infrastructures [157, 133, 39, 13]. Moreover, along with these two
virtualization solutions, we consider two virtualization management so-
lutions: VMware vSphere and Docker, paired respectively with VMware
ESXi and Linux.

In these experiments, we adopt fault injection to analyze:

• whether degradations/outages are more frequent or more severe

117

118 Chapter 5. Experimental Analysis of Virtualization Technologies

than reasonable limits;

• the impact of different types of faults, to identify the faults to
which the NFVI is most vulnerable;

• the impact of different faulty component, to find the components
to which the NFVI is most sensitive.

5.1 The Clearwater IMS

The VNFs running on the NFVI under evaluation are from the Clear-
water project [31, 27], which is an open-source implementation of an IMS
for cloud computing platforms. Figure 5.1 shows the components of the
Clearwater IMS that are deployed on the NFVI testbed. They are:

• Bono: the SIP edge proxy, which provides both SIP IMS Gm and
WebRTC interfaces to clients. The Bono node is the first point of
client’s connection to the Clearwater system. Clients are linked to a
specific Bono node at their registration;

• Sprout : the SIP registrar and authoritative routing proxy, and han-
dles client authentication. In Clearwater, the Sprout nodes form a
cluster which includes a redundant memcached ([40]) cluster, which
stores all the registration data and other node information;

• Homestead : provides an interface to Sprout nodes for retrieving au-
thentication credentials and user profile information. Homestead
nodes form a cluster using Cassandra [88] database;

• Homer : XML Document Management Server that stores MMTEL
service settings for each user. The Homer nodes run as a cluster
using Cassandra database;

• Ralf : a component that provides billing services.

5.2. NFV Testbed 119

Figure 5.1. The Clearwater IMS architecture [99].

5.2 NFV Testbed

Figure 5.2 shows the testbed used for the experimental evaluation of the
IMS NFV system. The same testbed has been used for experiments with
both virtualization technologies, by switching between VMware ESXi with
vSphere, and Linux containers with Docker Swarm, and using the same
IMS VNF software in both configurations. The testbed includes:

• Host 1 (Fault Injection Target): A machine equipped with an Intel
Xeon 4-core 3.70GHz CPU and 16 GB of RAM. In the hypervisor-
based scenario, this machine runs the VMware ESXi hypervisor v6.0,
and hosts VMs running the VNFs of Clearwater (one VM for each
VNF). In the container-based scenario, this machine runs Ubuntu
Linux 14.04 OS and Docker v1.12, and hosts containers running the
VNFs (one container for each VNF). Moreover, faults are injected
in the resources (virtual and physical) of this host according to the
fault model.

120 Chapter 5. Experimental Analysis of Virtualization Technologies

• Host 2 : A machine with the same hardware and software configura-
tion of Host 1. Moreover, this machine hosts active replicas of the
same VNFs of Host 1, to provide redundancy to tolerate faults in the
other host.

• Tester Host : A Linux-based computer that runs an IMS workload
generator. Moreover, this machine runs a set of tools for managing
the experimental workflow. These tools interact with the NFVI to
deploy the VNFs, to control fault injection tools installed on the
target Host 1, and to collecting performance and failure data both
from the workload generator and from the other nodes of the NFVI.

• Name, Time and Storage Server : A machine that hosts network ser-
vices (DNS, NTP) to support the execution of VNFs. Moreover, this
machine hosts a shared storage service with iSCSI. The shared stor-
age holds the persistent data of Cassandra managed by the Home-
stead and Homer VNFs, and the virtual disk images of the VNFs.

• High-Availability (HA) Management Node: A machine that runs
management software: in the case of hypervisor-based virtualiza-
tion, this machine runs the VMware HA service of VMware vSphere
(see section 4.1.1); in the case of container-based virtualization, this
machine runs the Docker Swarm master node (see 4.1.2).

• Load Balancer : A machine that runs a load balancer that forwards
IMS requests to both Bono nodes on the two main host machines.

• A Gigabit Ethernet LAN connecting all the machines.

The workload consists of the set-up of several SIP sessions (calls) be-
tween end-users of the IMS. Each SIP session includes a sequence requests
for registering, inviting other users, updating the session, and terminat-
ing the session. This workload is generated by SIPp [61], an open-source

5.2. NFV Testbed 121

ISCSI

HA Management
Node

Tester
Node

Host 1 Host 2

SIP session
SIP REGISTER
SIP INVITE
SIP UPDATE
SIP BYE

SIP session
SIP REGISTER
SIP INVITE
SIP UPDATE
SIP BYE

Clearwater IMS

Bono-2
(P-CSCF)

Sprout-2
(I/S-CSCF)

Homestead-2
(HSS Mirror)

Homer-2
(XDMS)

Ralf-2
(Rf CTF)

Clearwater IMS

Homer-1
(XDMS)

Sprout-1
(I/S-CSCF)

Ralf-1
(Rf CTF)

Bono-1
(P-CSCF)

Homestead-1
(HSS Mirror)

Figure 5.2. The NFVI testbed, running an IMS.

tool for load testing of SIP systems. An experiment exercises the IMS by
simulating 10,000 users and 10,000 calls.

We will consider a high-availability set-up, in which each VNF is ac-
tively replicated across the hosts (Figure 5.2). The VNFs in Clearwater are
designed to be stateless and to be horizontally scalable, in order to load-
balance the SIP messages between the replicas using round-robin DNS.
We also enable fault-tolerance capabilities provided by MANO software.
In VMware vSphere, the HA cluster [25] capability automatically restarts
a VM (in the case of virtual machine failures) or migrates it on another
node (in the case of physical host failures). In the Docker configuration,
we enabled Docker Swarm [52] to provide failure detection and automated
restart for containers. To allow migration in VMware HA, we stored all
VNF data (including the VM disk images) on the shared iSCSI storage; in
Docker, the iSCSI storage is used to store the persistent data of Cassandra
for the Homer and Homestead nodes.

Faults are injected in the Host 1 and its VNF replicas. In particular,
we focus on injecting faults in the physical host and in the Homestead and

122 Chapter 5. Experimental Analysis of Virtualization Technologies

Sprout nodes, as these are the two main VNFs strictly required by the use
cases of the IMS. Each experiment lasts for about 300s. We inject a fault
after 80s from the start the workload, and remove the fault after 60s. As
discussed in section 3.3, we consider both I/O and CPU/memory faults.
Network and storage corruptions, drops, and delays are injected in the
network and storage interfaces of the host, and on the virtual network and
storage interfaces of Homestead and Sprout. We performed five repeated
experiments for each type of fault. Overall, for each testbed configuration
(hypervisor- and container-based), we perform 180 experiments (60 on the
physical layer, 120 on the virtual layer), for a total of 360 experiments.

5.3 Experimental results

We computed the metrics defined by our dependability benchmark (see
Section 3.2) using performance and failure data from the experiments. As
basis for comparison, we computed the latency and throughput of the IMS
NFV system in fault-free conditions, and compare them to the measures in
faulty conditions to quantify the performance loss of the IMS. Moreover,
as basis to compare the IMS unavailability, we consider that the service
cannot be unavailable for more 30 seconds. This choice is an optimistic
bound for the unavailability of a network service provider, as the budget
can be even stricter for highly-critical services; but, as we will see in our
analysis, achieving this goal using IT virtualization technologies is still a
challenging problem.

Table 5.1. Fault free REGISTER requests’ Latency and Throughput for
VMware ESXi and Docker testbed.

Testbed Latency 50th %ile
average [ms]

Latency 90th %ile
average [ms]

Throughput [req/s]

VMware
ESXi

29.6244 57.0758 136.2439

Docker 41.5495 69.9290 135.8780

5.3. Experimental results 123

Table 5.2. Fault free INVITE requests’ Latency and Throughput for
VMware ESXi and Docker testbed.

Testbed Latency 50th %ile
average [ms]

Latency 90th %ile
average [ms]

Throughput [req/s]

VMware
ESXi

35.43 71.34 35.8525

Docker 39.67 72.70 35.8513

The fault free analysis give to the benchmark users a basis to compare
quantitatively the performance of IMS during faulty conditions The plots
in the following have on x-axis each fault defined in the fault model (see
Sec. 3.3), and on y-axis the value of metric computed during the fault
injection experiment.

5.3.1 Service-level evaluation: Physical Layer

In this paragraph we evaluate the performance metrics related to the
physical layer of NFVI, comparing VMware ESXi/vSphere and Linux/Docker
scenarios. Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 show respectively
the unavailability, the 50th and 90th percentile of the registers’ and in-
vites’ latency, and the registers’ and invites’ throughput computed during
experiments in the VMware ESXi/vSphere and Linux/Docker.

Both VMware ESXi/vSphere and Docker experiments show that all
faults impact more or less on the unavailability of the system. The storage
corruption fault in the VMware ESXi/vSphere scenario impact severely,
by leading the service to be not recovered, both in terms of latency and
throughput. In 4 out of 5 experiments, storage corruption lead ESXi host
target to crash. In the other experiment, the fault lead to randomly cor-
ruption of files belonging to VMs (in one experiment corruption is about
the sprout node). All the experiments trigger the failover of VMs run-
ning on failed host, i.e., restarting VMs on the healthy host. The problem
was that in such cases the migration of VMs takes long time (about 5
minutes), just before the end of experiment. Of course, if we consider a

124 Chapter 5. Experimental Analysis of Virtualization Technologies

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Un
av

ai
la

bi
lity

 [s
]

Unavailability Time
Unavailability budget (30s)

(a) VMware ESXi/vSphere

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Un
av

ai
la

bi
lity

 [s
]

Unavailability Time
Unavailability budget (30s)

(b) Linux/Docker

Figure 5.3. VNF Unavailability under fault injection in the physical layer.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

100

101

102

103

104

Ti
m

e
[m

s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

(a) REGISTER requests

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

100

101

102

103

104

Ti
m

e
[m

s]

INVITE Latency 50th Perc.
INVITE Latency 90th Perc.
INVITE Latency 50th Perc Fault Free
INVITE Latency 90th Perc Fault Free

(b) INVITE requests

Figure 5.4. VNF Latency under fault injection in the physical layer for
VMware ESXi/vSphere.

5.3. Experimental results 125

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

100

101

102

103

104

Ti
m

e
[m

s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

100

101

102

103

104

Ti
m

e
[m

s]

INVITE Latency 50th Perc.
INVITE Latency 90th Perc.
INVITE Latency 50th Perc Fault Free
INVITE Latency 90th Perc Fault Free

Figure 5.5. VNF Latency under fault injection in the physical layer for
Linux/Docker.

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Th
ro

ug
hp

ut
 [r

eq
ue

st
s

/ s
]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(a) VMware ESXi/vSphere

CPU Corr
up

t

CPU Dela
y

CPU Una
va

ilab
ility

MEM Corr
up

t

MEM Dela
y

MEM Una
va

ilab
ility

NET Corr
up

t

NET Dela
y

NET Una
va

ilab
ility

STO Corr
up

t

STO Dela
y

STO Una
va

ilab
ility

20

40

60

80

100

120

140

160

180

200

Th
ro

ug
hp

ut
 [r

eq
ue

st
s

/ s
]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(b) Linux/Docker

Figure 5.6. VNF throughput under fault injection in the physical layer.

126 Chapter 5. Experimental Analysis of Virtualization Technologies

longer experiment, the system’s performance eventually will be restored,
but such prolonged outage time is not acceptable in carrier-grade services.
In the case of network corruption in ESXi, we can observe also an high
unavailability. Such behavior is explained by the fact that ESXi heavily
rely on heartbeats mechanisms to manage datastores and VMs; thus, after
network corruption, the system is unable to quickly recovery.

Other type of injected faults show that in the worst case the system
experiences about 100s of unavailability, and in the best cases under the
unavailability budget of 30s. In particular, in the VMware ESXi/vSphere
scenario, storage delay faults has a little impact on the system. This
behavior is explained by the fact that VMs’ virtual disks are collocated
on a shared storage (iSCSI). Thus, all I/O workloads on local disk is very
limited, and delay faults (10s for all I/O requests) are very well masked.

CPU faults show similar effects between VMware ESXi/vSphere and
Docker testbed, except for CPU corruption faults, which does not crash the
Docker host without triggering any container migration by Docker Swarm;
that lead to a high unavailability. CPU unavailability fault is slightly less
worse in Docker than VMware ESXi/vSphere, because of migration of con-
tainers is faster than VMs. In fact, during failover VMware ESXi/vSphere
migrate and restart VMs. Instead, Docker Swarm simply restart contain-
ers, actually does not migrate anything.

Different discussion is about memory faults. Indeed, Docker scenario
shows higher unavailability rather than VMware ESXi/vSphere. The be-
havior is what we can expect because memory isolation between virtual do-
mains (VM and containers) and host is stronger in VMware ESXi/vSphere.
In Docker, there is no virtualization layer that try to isolate perfectly guests
from each other and from the host; in fact, in Docker is the Linux kernel
that acts as virtualization layer, which in turn have to guarantee memory
isolation through the classical OS mechanisms (pagination and segmen-
tation). Furthermore, during memory unavailability faults, linux kernel

5.3. Experimental results 127

triggers the OOM killer, which could kill, and subsequently force processes
restart, more likely related to the workload.

Network faults impact very differently in the two scenarios. ESXi hy-
pervisor is very complex piece of software, within a very high management
network traffic volume (e.g., managing datastores liveness and locking,
handling heartbeats, and so on). Furthermore, network faults in VMware
ESXi/vSphere trigger failover mechanisms which impact on the unavail-
ability of the system. On the other side, Docker exploits Swarm to handle
host failover, but not network partition. Thus, network faults does not trig-
ger failover mechanisms in Docker, with zero impact on the unavailability.
Furthermore, is worth nothing that TCP/IP protocol implementation is
different between ESXi and Linux.

Continuing discussion about unavailability, storage corruption fault is
(with the network corruption fault) the worst for VMware ESXi/vSphere,
even if all virtual disks are on shared storage. Trying to figure out why
ESXi host fails, we found that storage corruptions lead the ESXi hypervisor
to be unable to create new threads, and to properly handle VMFS (filesys-
tem) operations. Concerning Docker, it shows a little amount of unavail-
ability time due to filesystem problems, with some applications that result
in segmentation fault. However, Docker host remounts filesystem in read-
only, preventing host failures. Storage delay and unavailability faults have
little impact on VMware ESXi/vSphere, differently from Docker scenario,
in which I/O traffic on local disk is more high due to Docker subsystem
processes (e.g., docker daemons).

About performance metrics, VMware ESXi/vSphere and Docker show
different behaviors according to unavailability times seen before. It is worth
nothing that in general the performance for VMware ESXi/vSphere, both
latencies and throughput, are better than Docker in the case of CPU and
memory faults. This behavior is due to the ability of hypervisor-based
virtualization to guarantee stronger isolation between host and virtual

128 Chapter 5. Experimental Analysis of Virtualization Technologies

machines compared to container-based virtualization. On the other side,
Docker provides lower latencies and higher throughput against network
faults, because at the end of fault injection it restores correctly the quality
of service. Regarding storage corruption faults, according to the discussion
above, VMware ESXi/vSphere provide better throughput against storage
delay and storage unavailability faults.

5.3.2 Service-level evaluation: Virtual Layer

In this paragraph we evaluate the performance metrics (see 3.2) related
to the virtual layer of NFVI. In particular, we analyze the Homestead and
the Sprout node (see 5.1), which are the most involved services in the IMS
operations.

Homestead VNF

Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10, show respectively the
unavailability, the 50th and 90th percentile of registers’ and invites’ la-
tency, and the registers’ and invites’ throughput computed during experi-
ments for the VMware ESXi/vSphere and Linux/Docker testbed.

CPU faults impact significantly both on VMware ESXi/vSphere and
Docker scenario, within an important amount of unavailability for CPU
unavailability in the Docker scenario. In fact, such faults are emulated
by crashing the VM (in the VMware ESXi/vSphere scenario) and the con-
tainer (in the Docker scenario) that hosts the VNF. As soon as the crash is
injected, the fault management mechanism try to failover the virtual node.
In the case of VMware ESXi/vSphere, VMware HA detects the failed VM
and try to restart it, within a certain amount of time. Instead, in the
Docker scenario, crashing the virtual node means killing the container’s
init process. Docker has a built-in mechanism that automatic restart con-

5.3. Experimental results 129

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

U
na

va
ila

bi
lit

y
[s

]

Unavailability Time
Unavailability budget (30s)

(a) VMware ESXi/vSphere

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

U
na

va
ila

bi
lit

y
[s

]

Unavailability Time
Unavailability budget (30s)

(b) Linux/Docker

Figure 5.7. VNF Unavailability under fault injection in the Homestead
VNF.

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

(a) VMware ESXi/vSphere

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

(b) Linux/Docker

Figure 5.8. VNF latency under fault injection in the Homestead VNF for
REGISTER requests.

130 Chapter 5. Experimental Analysis of Virtualization Technologies

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

INVITE Latency 50th Perc.
INVITE Latency 90th Perc.
INVITE Latency 50th Perc Fault Free
INVITE Latency 90th Perc Fault Free

(a) VMware ESXi/vSphere

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

INVITE Latency 50th Perc.
INVITE Latency 90th Perc.
INVITE Latency 50th Perc Fault Free
INVITE Latency 90th Perc Fault Free

(b) Linux/Docker

Figure 5.9. VNF latency under fault injection in the Homestead VNF for
INVITE requests.

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

T
hr

ou
gh

pu
t [

re
qu

es
ts

 /
s]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(a) VMware ESXi/vSphere

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

T
hr

ou
gh

pu
t [

re
qu

es
ts

 /
s]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(b) Linux/Docker

Figure 5.10. VNF throughput under fault injection in the Homestead VNF.

5.3. Experimental results 131

tainers on exit for whatever reason, and in particular for a non-zero exit1.
As the reader might guess, restarting a VM takes more time rather than
a container. In fact, restarting a process is more lightweight rather than
recreating all the hardware abstractions provided by the hypervisor and
reboot a full OS. Such process takes time, also within a small VM image.

Memory faults results show clearly that ESXi isolate memory subsys-
tem better than Docker, as physical layer results have already shown.

Network faults results show that in both VMware ESXi/vSphere and
Docker scenario, the Homestead VNF is critical to deliver service properly.
For network corruption faults, the VNF experience a non-negligible amount
of unavailability time. Analyzing system’s log, we figure out that such
service unavailability is due to corruption over the TCP communication
(specifically, some corruptions on the TCP window scaling process). Net-
work delay faults behave very differently between VMware ESXi/vSphere
and Docker, because the TCP/IP mechanisms are implemented differently.
In fact, the VMware ESXi/vSphere experiments show higher host physical
NIC drop rate due to some packets parse failures. Finally, in both VMware
ESXi/vSphere and Docker scenario, network unavailability faults impact
for a small amount of unavailability time (about 3s) rather network corrup-
tion faults. Such behavior is explained by the fact that once the injector
does not drop packets anymore, the service performance restore almost
immediately.

About storage faults at virtual layer, the results show some differences
between VMware ESXi/vSphere and Docker scenario. During storage fault
corruption experiments, the VMware ESXi/vSphere scenario shows low la-
tencies because during corruptions, after a certain point, the virtual disk is
mounted as read-only, differently from the case of Docker scenario. In fact,
in the Docker scenario, cassandra detects corruptions but does not stop,
leading to higher service latencies. Storage unavailability faults does not

1see https://docs.docker.com/engine/admin/host_integration/ for more details.

132 Chapter 5. Experimental Analysis of Virtualization Technologies

impact on both VMware ESXi/vSphere and Docker testbed, which show
the same behavior with no unavailability time and performances close to
the fault free. In these cases, analyzing more deeply the log, the cassan-
dra instance on the target virtual node detects generic I/O error and stop
itself in order to prevent further service degradation. Storage delay faults
impact on the unavailability time in Docker testbed within few failed re-
quest; on the other side, the VMware ESXi/vSphere scenario shows higher
unavailability time because storage delay faults impact also on the root
filesystem operations, and not only on the Cassandra requests.

Sprout VNF

Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14, show respectively
the Unavailability, the 50th and 90th percentile of registers’ and invites’
latency, and the registers’ and invites’ throughput computed during exper-
iments for the VMware ESXi/vSphere and Linux/Docker scenario.

The results show some few differences compared to the homestead node.
Regarding CPU corruption, the processes within the sprout node are un-
able to execute instructions because the fault impact during the instruction
fetch phase. On the other side, in the VMware ESXi/vSphere scenario, the
corruption is detected and the VM is restarted properly.

Also considering the sprout node, the results confirm that memory
isolation in Docker is weaker than VMware ESXi/vSphere. Indeed, the
unavailability is about 150s on average. Furthermore, the discussion about
differences in implementation of network stack between Docker and ESXi
is also valid targeting the sprout node. In fact, network corruption faults
impact very strongly on the unavailability of the service in the VMware
ESXi/vSphere scenario rather than Docker scenario.

5.3. Experimental results 133

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

U
na

va
ila

bi
lit

y
[s

]

Unavailability Time
Unavailability budget (30s)

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

U
na

va
ila

bi
lit

y
[s

]

Unavailability Time
Unavailability budget (30s)

Figure 5.11. VNF Unavailability under fault injection in the Sprout VNF.

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

(a) VMware ESXi/vSphere

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

REGISTER Latency 50th Perc.
REGISTER Latency 90th Perc.
REGISTER Latency 50th Perc Fault Free
REGISTER Latency 90th Perc Fault Free

(b) Linux/Docker

Figure 5.12. VNF latency under fault injection in the Sprout VNF for
REGISTER requests.

134 Chapter 5. Experimental Analysis of Virtualization Technologies

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

INVITE Latency 50th Perc.
INVITE Latency 90th Perc.
INVITE Latency 50th Perc Fault Free
INVITE Latency 90th Perc Fault Free

(a) VMware ESXi/vSphere

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

100

101

102

103

104

T
im

e
[m

s]

INVITE Latency 50th Perc.
INVITE Latency 90th Perc.
INVITE Latency 50th Perc Fault Free
INVITE Latency 90th Perc Fault Free

(b) Linux/Docker

Figure 5.13. VNF latency under fault injection in the Sprout VNF for
INVITE requests.

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

T
hr

ou
gh

pu
t [

re
qu

es
ts

 /
s]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(a) VMware ESXi/vSphere

CPU C
or

ru
pt

CPU D
ela

y

CPU U
na

va
ila

bil
ity

M
EM

 C
or

ru
pt

M
EM

 D
ela

y

M
EM

 U
na

va
ila

bil
ity

NET C
or

ru
pt

NET D
ela

y

NET U
na

va
ila

bil
ity

STO C
or

ru
pt

STO D
ela

y

STO U
na

va
ila

bil
ity

20

40

60

80

100

120

140

160

180

200

T
hr

ou
gh

pu
t [

re
qu

es
ts

 /
s]

REGISTER Throughput
INVITE Throughput
REGISTER Throughput Fault Free
INVITE Throughput Fault Free

(b) Linux/Docker

Figure 5.14. VNF throughput under fault injection in the Sprout VNF.

5.3. Experimental results 135

5.3.3 Infrastructure-level evaluation

We here analyze more in detail fault management in the two test config-
urations, by evaluating the coverage and latency of both fault detection and
recovery. These measures are complementary to the service-level measures:
after a fault, while the network traffic is forwarded to the healthy replicas
of the VNFs, the detection and recovery are performed in background to
restore the capacity of the NFV system. We use the logs collected from
VMware HA and the VMkernel in the VMware ESXi/vSphere scenario,
and from the Linux kernel and Docker Swarm in the other scenario. A
fault is considered detected when there is at least an occurrence of log
message related to fault management and to internal errors (e.g., unusual
high-severity messages, and messages with specific keywords); and it is
considered recovered when there is any specific message that denotes the
completion of a recovery action (e.g., restart and migration) and reports
that a VM or container is in a running state. The detailed results are
summarized in Tables 5.3 and 5.4.

In the VMware ESXi/vSphere scenario, the fault detection coverage
is about 95%, within a detection latency of 38.7s on average. For fault
recovery, the coverage represents the cases where the recovery mechanisms
are activated and performed successfully. The results show that in most,
but not in all of the cases (storage and network corruptions), VMware
ESXi/vSphere successfully performs the recovery of VMs.

In some of the experiments, the fault were tolerated or recovered lo-
cally by an NFVI node, with no interaction with the HA manager (these
cases are counted in the “NFVI” column of Table 5.3, and labeled as local
recovery in Table 5.4). This behavior was observed in the case of CPU and
memory delay faults, in which VMware ESXi/vSphere detects an anoma-
lous state during VM operations, by logging that it received intermittent
heartbeats from VMs; however, after fault injection, the nodes are able to
locally recover a correct service. The experiments with storage delays and

136 Chapter 5. Experimental Analysis of Virtualization Technologies

Table 5.3. Fault detection and fault recovery coverage.

MANO NFVI MANO NFVI
CPU CORRUPT 5 5 5 0 2 0 5
CPU DELAY 5 0 0 5 0 0 5
CPU UNAVAILABILITY 5 5 5 0 5 0 5
MEM CORRUPT 5 5 5 0 5 0 5
MEM DELAY 5 0 0 5 0 0 5
MEM UNAVAILABILITY 5 5 1 4 0 5 5
NET CORRUPT 3 5 1 0 5 0 5
NET DELAY 5 5 1 4 0 5 5
NET UNAVAILABILITY 5 5 0 5 0 5 5
STO CORRUPT 4 5 2 0 3 1 5
STO DELAY 5 0 0 5 0 0 5
STO UNAVAILABILTY 5 5 0 5 5 0 5

Total 57 45 20 33 25 16 60

Percentage 95.00% 75.00% 92.98% 91.11%

Fault Type ESXi Docker Tot.
Exps

DETECTED # RECOVERED

ESXi Docker

unavailability faults show a similar behavior. In particular, during storage
delay fault experiments, the Storage I/O Control (SIOC) module in ESXi
reports errors during the usage of the datastore; for storage unavailability
faults, ESXi detects that the host datastore is inaccessible. In both cases,
the datastore autonomously recovers after the injection.

Instead, the other experiments required a recovery action from the HA
manager, but the recovery could not succeed in some cases. In particu-
lar, during network corruption and unavailability fault injection experi-
ments, the injected host is unable to communicate with the other one, and
VMware HA detects a partitioned state. In this case, VMware HA tries to
migrate the VMs from the injected node to the healthy one, but it is forced
to cancel the migration (as denoted by log messages such as “CancelVm-
Placement”), due to residual data corruptions in the persistent state of
VMs. In a similar way, in storage corruption faults, the migration of VMs
failed to due the corruption of files with data and metadata of the VMs,

5.3. Experimental results 137

Table 5.4. Fault detection and fault recovery latency.

Fault Type ESXi Docker ESXi Docker
CPU CORRUPT 11.3 14.8 66.7 213.8 *

CPU DELAY 58.0 no detection local recovery not detected

CPU UNAVAILABILITY 36.8 39.7 48.0 126.8

MEM CORRUPT 45.7 14.8 60.0 104.8

MEM DELAY 49.2 no detection local recovery not detected

MEM UNAVAILABILITY 34.7 17.4 136.3 local recovery

NET CORRUPT 32.3 18.6 156.7 * 30.2

NET DELAY 92.5 no detection 144.5 local recovery

NET UNAVAILABILITY 35.2 17.8 local recovery local recovery

STO CORRUPT 36.8 15.3 296.2 * 99.7 *

STO DELAY 27.6 no detection local recovery not detected

STO UNAVAILABILTY 4.2 16.2 local recovery 102.8

Average 38.7 19.3 129.8 91.2

DETECTION LATENCY [s] RECOVERY LATENCY [s]

* Latency has been computed only for the recoved cases

which could not be started after the power-off. To avoid these problems,
the services and protocols for fault management should be made more ro-
bust to corrupted data (e.g., by recognizing and discarding corrupted data,
and retrying migration more than one time on replicated data). Moreover,
since these mechanisms are provided by a third-party OTS product, it is
important for the designers of the NFV system to be aware of this kind of
vulnerability in the design of fault management.

Moreover, it is important to remark that the recovery latency is quite
large for VMware ESXi/vSphere. The recovery process takes on average
129.8s. Part of this long time can be attributed to the policy of VMware
HA that several heartbeats should be unanswered before declaring a node
as failed (in the VMware HA terminology, the node goes from green to
yellow state, and then to red [158]). Then, VMware HA takes a long time
to restart the VMs due to the need for accessing to the shared storage,
and then to allocate, initialize, and power-on the VM. Unfortunately, this

138 Chapter 5. Experimental Analysis of Virtualization Technologies

process is too slow for the carrier-grade requirements of NFV.
In the Linux/Docker scenario, we observe a fault detection coverage of

75%, with a detection latency of 19.3s on average. Compared to VMware
ESXi/vSphere, there is an improvement with respect to the fault detection
latency, but a worse result in terms of fault detection coverage. The rea-
son is that Docker Swarm uses a simpler fault detection mechanism, which
monitors the network reachability with the hosts, while VMware vSphere
combines both network and storage heartbeats and collects diagnostic in-
formation from the hosts. Thus, in Linux/Docker, most of the burden of
fault detection is on the host on Linux kernel, which unfortunately provides
little information about anomalous states (e.g., as in the case of memory
overloads and other delay faults, see section 5.3.1).

However, Linux/Docker was able to recover most of the faults that
were detected, as the fault recovery coverage is 91.11% with a latency of
91.2s on average. There are cases in which the fault has been detected but
not recovered, such as the CPU corruption experiments: in this case, the
injected host is in an anomalous state, but it is not crashed, thus Docker
Swarm does not trigger the restart of the containers. In storage corruption
fault injection, Docker Swarm did not migrate the containers because the
fault did not impact on the host network communication, thus the host
was considered alive even if the fault impacted on service availability (see
also Figure 5.3b).

To summarize the results, we can state that:

• The VMware ESXi/vSphere scenario shows a higher fault detec-
tion coverage compared to the Linux/Docker scenario, due to more
robust and ad-hoc components implemented within the fault man-
agement mechanisms provided by VMware in their products. The
Docker Swarm is still to its first versions, and furthermore it imple-
ments simple mechanisms to provide high availability, and it is not

5.3. Experimental results 139

able to handle performance delay faults;

• The Linux/Docker scenario shows a lower fault recovery cov-
erage because for performance delay faults there is any detection.
However, Linux/Docker shows a higher fault recovery cover-
age for network and storage disruptions compared to the VMware
ESXi/vSphere scenario. As described in the section 5.3.1, the VMware
vSphere fault management mechanisms involve a high network traffic
between the node that provides fault management and the nodes be-
ing managed. Thus, network disruptions have a negative impact on
the entire infrastructure, and consequently on the service deployed
on it. Furthermore, in the VMware ESXi/vSphere scenario, storage
corruption faults impact both on the VMs operations (i.e., corruption
of VM’s related files trigger the power off of the affected VMs, but
in some cases they are not restarted) and on the physical host (i.e.,
in one experiment the host crash and some VMs are not correctly
restarted on the healthy node);

• Analyzing the fault recovery latencies, we can observe thatVMware
ESXi/vSphere outperform Linux/Docker for the CPU corrup-
tion (66.7s vs 213.8s) and CPU unavailability (48.0s vs 126.8s) ex-
periments. The lower latencies are due to the heartbeat requests
frequency for detecting failures used by VMware HA, which is equal
to 10s by default; instead, for Linux/Docker scenario, the Docker
Engine refresh minimum interval is equal to 30s by default. How-
ever, the virtual layer analysis (see section 5.3.2) shows that the time
needed to restart a VM is higher than restarting a Docker container.

In general, the results suggest to pay more efforts towards improving
the boot time of the VM, and to increase the capacity of the nodes to
speed-up the recovery process. Again, we remark that a careful fault in-
jection experimentation is required to guide designers towards a reliable

140 Chapter 5. Experimental Analysis of Virtualization Technologies

and performant NFVI. Faults in the system can have a significant impact
on the availability of the system. It is not sufficient to simply provide high-
availability, replicated architectures, since the occurrence of faults quickly
consumes redundant resources (e.g., active replica and hosts) and reduces
performance and reliability. Thus, it is advisable to adopt more complex
fault tolerance strategies, by actively allocating more resources (e.g., us-
ing on-demand cloud computing resource) in the case of faults or adverse
conditions, and/or by reconfiguring and recovering the failed resources.

5.4 Benchmark validation

Representativeness. As we mentioned in Sec. 2.1.1, representative-
ness deal with measures, the workload applied to the benchmark target
(BT), and the faultload used to stimulate the fault injection target (FIT).
Relating to the measures, we consider three general service-level mea-
sures, the throughput, the latency, and the unavailabliity, which are well-
known measures used to describe quantitatively the quality of a provided
network service. In addition to the service-level measures, we consider
infrastructure-level measures, which are more related to the fault manage-
ment. In particular we focused on the coverage and latency of the fault
detection and the fault recovery mechanisms. These kind of measures are
extensively used in literature in order to understand the effectiveness of
the implemented fault handling mechanisms. The workload submitted to
the SUB consists of several SIP sessions (calls) and it is very commonly
used for IMS scenarios. In particular, we exploit the sipp workload gen-
erator that allows testers to define diverse scenarios. Different workloads
and tools can be easily applied. The most difficult part of the validation
for the representativeness property is about the faultload, and it is in
general a hard task for a dependability benchmark approach. The pro-
posed fault model (see Sec. 3.3) is based on three general types of errors,

5.4. Benchmark validation 141

i.e., unavailability, corruption, and delay. We look for potential faults (ei-
ther from software, from hardware, and from human operators) that may
happen inside the target component, and that may cause errors of these
three general types. To identify the faults, we studied the literature and
the experience reported by practitioners about failures in the field.

Repeatability and Reproducibility. The proposed methodology con-
sists among others of execution of a set of experiments for each defined
fault. All the performed experiments are independent from each other,
and the benchmark is repeatable. As outlined in the Sec. 5.2, we perform
five repeated experiments for each fault, and we obtain equivalent results.
Also for fault free campaigns the repeatability is guaranteed. About the
reproducibility of the results, a benchmark user can exploit the proposed
methodology in order to obtain the same results. Indeed, the fault in-
jection tool is easy to configure and run on the fault injection target,
the sipp workload generator is publicly available, and both the VMware
ESXi/vSphere and Linux/Docker scenario are easy to build.

Portability. The portability is basically linked to the ability to adopt
the proposed fault model for different NFVIs. In the experimental analysis,
we smoothly apply successfully the proposed methodology targeting two
different virtualization technologies, i.e., a commercial hypervisor-based
solution, that is VMware vSphere, and an emerging container-based solu-
tion, that is, Docker.

Non-intrusiveness. The proposed fault model is applied to the FIT
through the fault injection tool suite described in Sec. 4.2. The fault
injection tools consists of kernel modules, and user-space scripts, and for
all injected faults (CPU, memory, network, and storage) it does not require
to introduce any modification neither to the benchmark target nor to the

142 Chapter 5. Experimental Analysis of Virtualization Technologies

virtualization layer (i.e., the ESXi hypervisor and the Linux kernel and
Docker engine).

Scalability. The proposed methodology allows benchmark users to com-
pare systems of different size. In our case study, we inject one fault for
each experiment, targeting only one component of the FIT at time . The
faultload size is strictly dependent on the FIT complexity (in terms of the
number of hardware and software components). In this dissertation, the
FIT is the NFVI (see Sec. 3.1), which consists of hardware components
and virtualization softwares. Thus, we already consider a complex target,
and performing fault injection experiments were still feasible in terms of
time and costs.

Chapter 6
Conclusion

6.1 Summary

Network Function Virtualization (NFV) is a new paradigm with the
aim to revolutionize the network infrastructures by software implementing
legacy network functions, such as load balancers, DPI, IMS. Adoption of
NFV will result in dramatically reduction of the capital expenditures by
replacing the expensive dedicated hardware (which constitute the main el-
ements of traditional network infrastructures) with virtual nodes deployed
on general purpose high volume servers, leveraging cloud and virtualiza-
tion technologies. However, the “softwarization” process imposes software
reliability concerns on future networks. While off-the-shelf hardware com-
ponents are expected to fail and to be easily replaced, with very low config-
uration or management efforts, software (and, in particular, virtualization
technologies that will be extensively used in NFV) will represent the weak
point for NFV, raising new questions like: “What are the risks of leveraging
on virtualization technologies in NFV infrastructures? ”, or “How can we
predict and mitigate the impact of faults arising from virtualization tech-
nologies? ”.

143

144 Chapter 6. Conclusion

In this dissertation, we contribute to the literature by addressing the
threats to dependability raised by the NFV paradigm by proposing a de-
pendability benchmarking methodology, trying to understand if we can an-
swer the question of which is the best virtualization technology for NFV.
The proposed methodology allows understanding why the expected be-
haviors of a network service deployed through the NFV can be completely
different from the same service deployed on legacy networks. These dif-
ferences can be in terms of provided performance and reliability, which
heavily depend on the complexity of fault management mechanisms, on
the storage subsystems, and virtualization layer, which is subject to faults
(e.g., software, and configuration faults) that are inevitable in such com-
plex software.

The crucial aspects of the proposed methodology are both the defini-
tion and the representativeness of the fault model. In fact, the fault model
should reflect all the problems the system under observation can experience
in production. Moreover, the fault model should be defined by reasoning
about the failure data reported in the field, or for example by analyzing the
insights provided by existing experimental studies in literature. Finally,
the fault model definition must consider different classes of faults (e.g.,
hardware, software, and configuration) which can be actually experienced
by the system. However, the representativeness of the fault model is also
related to its applicability in real case scenarios, because not all faults can
be emulated accurately by a fault injection technique. To address these
challenges, we analyze the current literature about virtualization technolo-
gies assessment, and fault injection studies for computer-based systems, in
order to derive a comprehensive fault model to assess dependability in
NFV. In particular, in this dissertation we propose a fault model that em-
brace all the components of a typical NFV infrastructure, including the
CPU, memory, network, and storage resources, both at physical and vir-
tual level.

6.2. Analysis of Results 145

To support and apply the methodology correctly, this dissertation presents
the design and the implementation details of a fault injection tool suite.
Developing fault injection in complex software systems is challenging due
to the complexity of the components and their interactions. Furthermore,
the black-box nature of some software solutions can be an impediment to
the real applicability of the methodology. In this dissertation, we con-
sider the two most popular virtualization approaches in use in the NFV
context, and in general in the cloud. In particular, we target a commer-
cial hypervisor-based solution, that is, VMware vSphere, and an emerging
container-based solution, that is, Docker. The fault injection tools allow
putting into the targeted virtualization technologies the desired excep-
tional conditions (e.g., CPU corruptions, memory unavailability, network
and storage disruptions), in order to observe the consequent behavior, and
assessing the performance and dependability of the system by measur-
ing metrics about quality of service and effectiveness of fault management
mechanisms.

6.2 Analysis of Results

The experimental results show clearly that performance and reliability
are critical objectives for the widespread adoption of NFVIs. The case
study on the IMS showed how the proposed methodology can point out
dependability bottlenecks in the NFVI and guide design efforts. In partic-
ular, the results highlight both the strengths and the weaknesses between
the VMware vSphere and Docker. In the following, we summarize the
main insights provided by the experimental results.

Service-level evaluation, faults in the physical layer. The analy-
sis of the physical layer shows that VMware ESXi/vSphere is in general

146 Chapter 6. Conclusion

more robust against memory faults compared to Linux/Docker, especially
for memory corruption and memory unavailability faults, which lead the
system to an unavailability time of around 58.4s and 33.2s respectively.
That behavior is what we would expect because in Docker there is no vir-
tualization layer (in the sense of hypervisor-based solutions) that isolate
guests from each other and guest from host; thus, the memory isolation in
such cases is not perfectly guaranteed. These faults also impact severely
on service latencies. On the other hand, network disruptions and storage
corruption heavily impact on the performance and dependability of the
service deployed on VMware vSphere, which show in the worst case (net-
work corruption fault) an unavailability time of 137s on average, which is
unacceptable for carrier-grade service requirement;

Service-level evaluation, faults in the virtual layer. The analy-
sis of the virtual layer shows again some differences between VMware
ESXi/vSphere and Linux/Docker. Targeting the Homestead node, the
results show that CPU faults impact on the service unavailability on both
scenarios. It is worth noting that the lower unavailability time against
CPU unavailability (i.e., injection of virtual node crash) for Linux/Docker
scenario (around 0.33s) suggest that the process of restarting a container
is more lightweight rather than a VM, as we would expect. Furthermore,
the results reveal also that the different implementations of the network
and storage subsystem for the two virtualization technology produce dis-
tinct performance results. In particular, in the VMware ESXi/vSphere
scenario network delays lead the service to experience a high unavailabil-
ity time due to a consequent high packet drop rate; on the other side, the
same kind of fault do not seems to have much impact on service deployed
on Linux/Docker. Finally, in the VMware ESXi/vSphere, storage delays
impact on the service unavailability because, unlike the Linux/Docker sce-
nario, also the root filesystem is subject to the injected faults. Regard-

6.2. Analysis of Results 147

ing the analysis of virtual layer by targeting the sprout node, the results
confirm that memory isolation in Docker is weaker than ESXi. Further-
more, the discussion above about network delay faults for the Homestead
node, is valid for the network corruption faults in the case of VMware
ESXi/vSphere scenario. Finally, CPU corruption faults seems to be unre-
coverable in the Docker scenario, when such fault does not crash the host
machine (this is the case for the Sprout node);

Infrastructure-level evaluation. The analysis of the fault manage-
ment mechanism provided by the targeted virtualization solutions shows
that VMware ESXi/vSphere provides a higher fault detection coverage
(about 95%) rather than Docker (about 75%). This results is due to
the ad-hoc solutions provided by VMware for fault management, which
is more tested and robust. Furthermore, fault recovery measures high-
lights that the triggered failover actions not always perform a successful
recovery, both in VMware ESXi/vSphere and Linux/Docker. In fact, the
fault recovery coverage in VMware ESXi/vSphere and Linux/Docker is re-
spectively 92.98% and 91.11%. In the VMware ESXi/vSphere scenario,
by analyzing more deeply the fault management logs, we figure out that
in some experiments the migration of VMs is not successful, or even if
the migration is correctly performed, some VMs are not restarted on the
healthy host due to residual effects of injected faults. Instead, for Docker
scenario, in some experiments we observe that the swarm manager node
is not able to detect a dead Docker host, or it is unable to mount correctly
the partition on the shared storage for specific containers. About the fault
recovery latencies, for the VMware ESXi/vSphere and Linux/Docker sce-
nario, we observe respectively 129.8s and 91.2s on average to recovery
from faults. However, analyzing the common faults in which are required
failover actions, ESXi outperform Docker to recover from CPU corruption
and CPU unavailability faults (i.e., 66.7s vs 213.8s, and 48.0s vs 126.8s

148 Chapter 6. Conclusion

respectively), while Docker takes less time rather than VMware vSphere to
recover from network corruption and storage corruption faults (i.e., 30.2s
vs 156.7s, and 99.7s vs 296.3s respectively). Such differences highlight
that the heartbeat mechanism has a significant influence on the recovery
latency, thus experimenting with different configurations of the heartbeat
period could allow designers to achieve a more efficient recovery. More-
over, the results suggest that designers should optimize the time-to-reboot
of VMs to speed-up the recovery process.

6.3 Discussion

Best virtualization technologies for carrier-grade networks. To
answer the question of which is the best virtualization technology for NFV
we need to understand thoroughly how these technologies (including both
the virtualization solutions and the provided fault management mecha-
nisms) behave under faulty conditions. In general, the carrier-grade re-
quirement should be ensured whatever virtualization is intended to be used
by NFV architects. The discussion above underlines that for some faults
categories the VMware vSphere solution guarantee strongest isolation for
memory, but higher unavailability time against network and storage dis-
ruptions rather than the Docker solution. Furthermore, Docker seems to
provide lower recovery latencies for restarting a specific virtual node due
to the lightweight nature of container-based solution. Conversely, the pro-
vided fault detection coverage in Docker is higher than VMware vSphere,
which provides more robust and tested fault management mechanisms (i.e.
VMware HA). Therefore, an NFV developer must consider the trade-offs
seen before between the adoption of different virtualization technologies in
order to be guided for designing of NFVI and developing of countermea-
sures for detecting faults;

6.4. Future directions 149

Virtualization adds new threats to network softwarization. Lever-
aging virtualization to deploy network services through the NFV paradigm
introduce new challenges that need to be addressed. In particular, the ex-
pected behaviors in NFV can be completely different from the same service
provided by deploying it on legacy networks. Such differences are in terms
of provided performance and reliability due to the complexity of fault man-
agement mechanisms, dependence on storage subsystem, and virtualization
layer faults;

Fault injection for NFV assessment. Fault injection proves to be
valuable approach to introduce uncommon scenarios in the NFVI, which
can be fundamental to provide a high reliable service in production. Devel-
oping fault injection tools is hard in complex software systems, especially
within proprietary solution (e.g., the targeted VMware vSphere) and it
needs to be carefully planned in the context of NFV. Developers can easily
reuse the proposed methodology to compare two different VNF products
(e.g., two alternative IMS products) using the same NFVI and virtualiza-
tion technology; or evaluate two different physical setups (e.g., by only
varying the number and type of hardware machines); or compare differ-
ent MANO products using the same NFVI. The purpose of this work has
been to provide a general and flexible methodology that could be used
for benchmarking different configurations. Moreover, it could be possible
to further extend the methodology to evaluate other highly-critical cloud-
based services beyond NFV.

6.4 Future directions

Other technologies and approaches for virtualization. In this dis-
sertation, we analyze two different virtualization approaches, i.e., hypervisor-
based and container-based. However, the technology solutions that can be

150 Chapter 6. Conclusion

adopted to implement a NFV infrastructures can be various, both from
hypervisor-based approaches (e.g., kvm, XEN) and from container-based
approaches (e.g., LXD, Kubernetes). Furthermore, aside from virtualiza-
tion technologies, in last years different approaches to the virtualization
come up. For example, unikernels are extremely optimized and highly
performant kernels (e.g., ClickOS, Mirage OS, OSv) that allows running a
single application on a single VM. That approach rely on the underlying
hypervisor to guarantee isolation. The proposed methodology can be ap-
plied considering this panorama of virtualization technologies in order to
pin point their strengths and weakness.

NFV acceleration technologies. The NFV infrastructure includes al-
most all hardware and software components to provided the network ser-
vice through the VNFs. However, in order to meet the stringent perfor-
mance requirements (e.g., service latency), the VNFs need some form of
network acceleration. Such technologies will be largely used in NFV deploy-
ments, and can be performed both in hardware, with specialized devices
(e.g., 6Wind virtual accelerator) and in software, with specific frameworks
(e.g., Intel DPDK, OpenDataPlane); however, the accelerators can be im-
plemented also in an hybrid form. The proposed methodology can ben
applied in scenarios where these accelerator are implemented.

Software Defined Networking (SDN). Software Defined Networking
(SDN) is an emerging network architecture where network control is de-
coupled from data forwarding, and which is directly programmable. In
SDN, a (logically) centralized controller sends commands to the devices
about how to route the packets on the network. The controller is responsi-
ble for maintaining all of the network paths, as well as programming each
of the network devices it controls. This allows a more reliable and efficient
network. The ETSI has clarified that the NFV paradigm is independent

6.4. Future directions 151

from SDN, and that the combination of these technologies is straightfor-
ward. NFV can be used on top of SDN. A key point in the softwarization
process of networks could be apply the proposed methodology to the SDN
context, targeting either a pure SDN or a SDN/NFV scenario.

NFV benchmarking in production. In our case study, we apply the
proposed methodology by targeting a NFV testbed made in laboratory.
The problem is that, network operators have to guarantee that the pro-
vided network service still tolerate failures in production, where there are
different conditions that can not be reproduced precisely in a controlled
environment. In particular, we can leverage fault injection to introduce
uncommon scenarios also in production environment. Thus, we should
understand how the proposed methodology can be applied for NFV pro-
duction scenarios.

This page intentionally left blank.

Bibliography

[1] ISO/IEC 25010:2011, Systems and software Quality Requirements and
Evaluation (SQuaRE), author=ISO/IEC, year=2011.

[2] Cloud computing for financial markets. White Paper, 2011.

[3] Your cloud in healthcare. White Paper, 2011.

[4] Network Functions Virtualisation (NFV) - Network Operator Perspectives
on Industry Progress. White Paper, 2013.

[5] Shehla Abbas, Mohamed Mosbah, Akka Zemmari, and Université Bor-
deaux. Itu-t recommendation g.114, “one way transmission time. Technical
report, 2003.

[6] Advanced Micro Devices, Inc. . Virtualization Solutions. http://www.amd.
com/en-gb/solutions/servers/virtualization.

[7] Ole Agesen, Alex Garthwaite, Jeffrey Sheldon, and Pratap Subrahmanyam.
The evolution of an x86 virtual machine monitor. ACM SIGOPS Operating
Systems Review, 44(4):3–18, 2010.

[8] A. Albinet, J. Arlat, and J.C. Fabre. Characterization of the Impact of
Faulty Drivers on the Robustness of the Linux Kernel. In Proc. Intl. Conf.
on Dependable Systems and Networks, 2004.

[9] Amazon. Amazon EC2 Container Service.

153

http://www.amd.com/en-gb/solutions/servers/virtualization
http://www.amd.com/en-gb/solutions/servers/virtualization

154 Bibliography

[10] Amazon, Inc. Linux AMI Virtualization Types. http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html.

[11] Amazon.com, Inc. Summary of the amazon ec2 and amazon rds service
disruption in the us east region, April 2011.

[12] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran Shlomo.
Virtual cpu validation. In Proc. SOSP, 2015.

[13] Jason Anderson, Hongxin Hu, Udit Agarwal, Craig Lowery, Hongda Li, and
Amy Apon. Performance considerations of network functions virtualization
using containers. In Proc. ICNC, 2016.

[14] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.C. Laprie, E. Mar-
tins, and D. Powell. Fault Injection for Dependability Validation: A
Methodology and Some Applications. IEEE Trans. on Software Engineer-
ing, 16(2), 1990.

[15] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Trans. on
Dependable and Secure Computing, 1(1), 2004.

[16] Takayuki Banzai, Hitoshi Koizumi, Ryo Kanbayashi, Takayuki Imada,
Toshihiro Hanawa, and Mitsuhisa Sato. D-Cloud: Design of a Software
Testing Environment for Reliable Distributed Systems Using Cloud Com-
puting Technology. In 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, pages 631–636. IEEE, May 2010.

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proc. SOSP, pages 164–177, 2003.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In Proceedings of the nineteenth ACM symposium on
Operating systems principles - SOSP ’03, volume 37, page 164, New York,
New York, USA, October 2003. ACM Press.

[19] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault Injection
Experiments using FIAT. IEEE Trans. on Comp., 39(4), 1990.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html

Bibliography 155

[20] Eric Bauer and Randee Adams. Reliability and Availability of Cloud Com-
puting. Wiley-IEEE Press, 1st edition, 2012.

[21] Alysson Bessani, Rüdiger Kapitza, Dana Petcu, Paolo Romano, Spyri-
don V. Gogouvitis, Dimosthenis Kyriazis, and Roberto G. Cascella. A look
to the old-world sky: EU-funded dependability cloud computing research.
SIGOPS Operating Systems Review, 46(2):43–56, July 2012.

[22] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How
is the Weather Tomorrow?: Towards a Benchmark for the Cloud. In Proc.
DBTest, 2009.

[23] Aaron Brown. Towards availability and maintainability benchmarks: A
case study of software raid systems. Technical report, DTIC Document,
2001.

[24] Aaron B Brown, Leonard C Chung, and David A Patterson. Including the
human factor in dependability benchmarks. In Workshop on Dependability
Benchmarking, 2002.

[25] Mike Brown, Anil Kapur, and Justin King. VMware vCenter Server 5.5
Availability Guide. Technical report, 2014.

[26] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman,
and Edward Y Wang. Bringing virtualization to the x86 architecture with
the original VMware workstation. ACM Transactions on Computer Sys-
tems (TOCS), 30(4):12, 2012.

[27] Giuseppe Carella, Marius Corici, Paolo Crosta, Paolo Comi,
Thomas Michael Bohnert, Andreea Ancuta Corici, Dragos Vingarzan,
and Thomas Magedanz. Cloudified IP Multimedia Subsystem (IMS) for
Network Function Virtualization (NFV)-based architectures. In Proc.
ISCC, 2014.

[28] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: Soft-
ware Fault Injection and Monitoring in Processor Functional Units. In
Proc. Intl. Conf. on Dependable Computing for Critical Applications, 1995.

[29] F. Cerveira, R. Barbosa, and H. Madeira. Soft errors susceptibility of
virtualization servers. In Proc. PRDC, 2017.

156 Bibliography

[30] J. Christmansson and R. Chillarege. Generation of an Error Set that Em-
ulates Software Faults based on Field Data. In Proc. Intl. Symp. on Fault-
Tolerant Comp., 1996.

[31] Clearwater. Project Clearwater - IMS in the Cloud, 2014.

[32] Cloud Watch HUB. Cloud certification guidelines and recommendations.

[33] Cloudera. Cloudera Homepage. http://www.cloudera.com/.

[34] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM symposium on Cloud computing - SoCC ’10,
page 143, New York, New York, USA, June 2010. ACM Press.

[35] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers, 3rd Edition. O’Reilly Media, Inc., 2005.

[36] Domenico Cotroneo, L De Simone, AK Iannillo, Anna Lanzaro, Roberto
Natella, Jiang Fan, and Wang Ping. Network function virtualization: Chal-
lenges and directions for reliability assurance. In Software Reliability En-
gineering Workshops (ISSREW), 2014 IEEE International Symposium on,
pages 37–42. IEEE, 2014.

[37] Domenico Cotroneo, Luigi De Simone, Antonio Ken Iannillo, Anna Lan-
zaro, and Roberto Natella. Dependability evaluation and benchmarking of
network function virtualization infrastructures. In Proc. NetSoft, 2015.

[38] F. Cristian. Exception handling and software fault tolerance. IEEE Trans.
on Computers, C-31(6), 1982.

[39] Richard Cziva, Simon Jouet, Kyle JS White, and Dimitrios P Pezaros.
Container-based network function virtualization for software-defined net-
works. In Proc. ISCC, 2015.

[40] Danga Interactive. Memcached Home Page. https://memcached.org/.

[41] Antonio Dasilva, José-F Martínez, Lourdes López, Ana-B García, and Luis
Redondo. Exhaustif®: A fault injection tool for distributed heterogeneous
embedded systems. In Proc. EATIS, 2007.

[42] David Linthicum. Calculating the true cost of cloud outages.

http://www.cloudera.com/
https://memcached.org/

Bibliography 157

[43] DBench Project. Fault Representativeness. http://webhost.laas.fr/
TSF/DBench/Deliverables/ETIE2.pdf, 2002.

[44] DBench project. DBench Final Report. http://www.laas.fr/DBench/,
2004.

[45] DBench Project. Dependability Benchmarking Concepts. http://
webhost.laas.fr/TSF/DBench/Final/DBench-ch1.pdf, 2004.

[46] Pradipta De, Anindya Neogi, and Tzi-cker Chiueh. Virtualwire: A fault
injection and analysis tool for network protocols. In Distributed Computing
Systems, 2003. Proceedings. 23rd International Conference on, pages 214–
221, 2003.

[47] Luigi De Simone. Towards fault propagation analysis in cloud computing
ecosystems. In Proc. ISSREW, 2014.

[48] Larry Dignan. Amazon explains its S3 outage. http://www.zdnet.com/
blog/btl/amazon-explains-its-s3-outage/8010.

[49] Docker Inc. Docker HomePage.

[50] Docker, Inc. Docker Image Specification v1.0.0. https://github.com/
docker/docker/blob/master/image/spec/v1.md.

[51] Docker, Inc. Docker Overview. https://docs.docker.com/engine/
understanding-docker/.

[52] Docker Inc. Docker Swarm. https://www.docker.com/products/
docker-swarm.

[53] J. Durães and H. Madeira. Characterization of Operating Systems Behavior
in the Presence of Faulty Drivers through Software Fault Emulation. In
Proc. Pacific Rim Intl. Symp. on Dependable Computing, 2002.

[54] J. Durães and H. Madeira. Generic Faultloads based on Software Faults for
Dependability Benchmarking. In Proc. IEEE/IFIP Intl. Conf. Dependable
Systems and Networks, pages 285–294, 2004.

[55] J. Durães, M. Vieira, and H. Madeira. Multidimensional Characterization
of the Impact of Faulty Drivers on the Operating Systems Behavior. IEICE
Trans. on Inf. and Sys., 86(12):2563–2570, 2003.

http://webhost.laas.fr/TSF/DBench/Deliverables/ETIE2.pdf
http://webhost.laas.fr/TSF/DBench/Deliverables/ETIE2.pdf
http://www.laas.fr/DBench/
http://webhost.laas.fr/TSF/DBench/Final/DBench-ch1.pdf
http://webhost.laas.fr/TSF/DBench/Final/DBench-ch1.pdf
http://www.zdnet.com/blog/btl/amazon-explains-its-s3-outage/8010
http://www.zdnet.com/blog/btl/amazon-explains-its-s3-outage/8010
https://github.com/docker/docker/blob/master/image/spec/v1.md
https://github.com/docker/docker/blob/master/image/spec/v1.md
https://docs.docker.com/engine/understanding-docker/
https://docs.docker.com/engine/understanding-docker/
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm

158 Bibliography

[56] Eclipse Foundation. The AspectJ Project. http://eclipse.org/
aspectj/.

[57] European Union Agency for Network and Information Security. Cloud
computing certification.

[58] Jesús Friginal, David de Andrés, J-C Ruiz, and Regina Moraes. Using
Dependability Benchmarks to Support ISO/IEC SQuaRE. In Proc. PRDC,
pages 28–37, 2011.

[59] Hajime Fujita, Yutaka Matsuno, Toshihiro Hanawa, Mitsuhisa Sato, Shin-
pei Kato, and Yutaka Ishikawa. DS-Bench Toolset: Tools for dependability
benchmarking with simulation and assurance. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), pages 1–8.
IEEE, June 2012.

[60] Franco Fummi, Davide Quaglia, and Francesco Stefanni. Network fault
model for dependability assessment of networked embedded systems. In
Defect and Fault Tolerance of VLSI Systems, 2008. DFTVS’08. IEEE In-
ternational Symposium on, pages 54–62. IEEE, 2008.

[61] Gayraud, Richard and Jacques, Olivier and Day, Robert and Wright,
Charles P. SIPp. http://sipp.sourceforge.net/.

[62] Gigaom.com. Windows azure outage hits europe, July 2012.

[63] Google Inc. Google Cloud Platform.

[64] Google, Inc. Google Compute Engine - IaaS | Google Cloud Platform.
https://cloud.google.com/compute/.

[65] Google Inc. Kubernetes.

[66] J. Gray. Why Do Computers Stop and What Can Be Done About It? In
Proc. of SRDS, 1985.

[67] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik
Sen, and Dhruba Borthakur. FATE and DESTINI: a framework for cloud
recovery testing. page 18, March 2011.

[68] Hadoop. Hadoop Homepage. http://hadoop.apache.org/.

http://eclipse.org/aspectj/
http://eclipse.org/aspectj/
http://sipp.sourceforge.net/
https://cloud.google.com/compute/
http://hadoop.apache.org/

Bibliography 159

[69] S. Han, KG Shin, and HA Rosenberg. DOCTOR: An IntegrateD SOftware
Fault InjeCTiOn EnviRonment. In Proc. CPDS, 1995.

[70] HP Networking Performance Team. Netperf HomePage. http://www.
netperf.org/netperf/.

[71] M.C. Hsueh, T.K. Tsai, and R.K. Iyer. Fault injection techniques and tools.
IEEE Computer, 30(4), 1997.

[72] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection
techniques and tools. Computer, 30(4):75–82, 1997.

[73] JJ Hudak, B.H. Suh, DP Siewiorek, and Z. Segall. Evaluation and Com-
parison of Fault-Tolerant Software Techniques. IEEE Trans. on Reliability,
42(2), 1993.

[74] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: wait-free coordination for internet-scale systems. page 11, June
2010.

[75] ISO. Product development: software level. ISO 26262: Road vehicles –
Functional safety, 6, 2011.

[76] Raj Jain. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling. John Wiley
& Sons, 1990.

[77] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. PREFAIL. In Pro-
ceedings of the 2011 ACM international conference on Object oriented pro-
gramming systems languages and applications - OOPSLA ’11, volume 46,
page 171, New York, New York, USA, October 2011. ACM Press.

[78] Pallavi Joshi, Haryadi S Gunawi, and Koushik Sen. Prefail: a pro-
grammable tool for multiple-failure injection. ACM SIGPLAN Notices,
46(10), 2011.

[79] Xiaoen Ju, Livio Soares, Kang G. Shin, Kyung Dong Ryu, and Dilma Da
Silva. On fault resilience of OpenStack. In Proceedings of the 4th annual
Symposium on Cloud Computing - SOCC ’13, pages 1–16, New York, New
York, USA, October 2013. ACM Press.

http://www.netperf.org/netperf/
http://www.netperf.org/netperf/

160 Bibliography

[80] Poul-Henning Kamp and Robert NM Watson. Jails: Confining the om-
nipotent root. In Proceedings of the 2nd International SANE Conference,
volume 43, page 116, 2000.

[81] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. FERRARI: A tool for
the validation of system dependability properties. In Proc. FTCS.

[82] K. Kanoun and L. Spainhower. Dependability Benchmarking for Computer
Systems. Wiley-IEEE Computer Society, 2008.

[83] W.-I. Kao and R.K. Iyer. DEFINE: A Distributed Fault Injection and
Monitoring Environment. In Proc. Workshop on Fault-Tolerant Parallel
and Distributed Systems, 1994.

[84] W.-I. Kao, R.K. Iyer, and D. Tang. FINE: A Fault Injection and Monitoring
Environment for Tracing the UNIX System Behavior under Faults. IEEE
TSE, 19(11), 1993.

[85] J. Katcher. Postmark: A New File System Benchmark. Technical Report
TR-3022, 1997.

[86] Avi Kivity. kvm: the Linux virtual machine monitor. In OLS ’07: The
2007 Ottawa Linux Symposium, pages 225–230, July 2007.

[87] P. Koopman and J. DeVale. The Exception Handling Effectiveness of
POSIX Operating Systems. IEEE Trans. on Software Engineering, 26(9),
2000.

[88] Avinash Lakshman and Prashant Malik. Cassandra. ACM SIGOPS Oper-
ating Systems Review, 44(2):35, April 2010.

[89] Laprie, J.-C. From dependability to resilience. In Proc. Intl. Conf. DSN,
Supplemental Volume, Fast Abstracts, 2008.

[90] Michael Le and Yuval Tamir. Rehype: Enabling vm survival across hyper-
visor failures. In ACM SIGPLAN Notices, volume 46, pages 63–74, 2011.

[91] Michael Le and Yuval Tamir. Fault injection in virtualized sys-
tems—challenges and applications. Dependable and Secure Computing,
IEEE Transactions on, 12(3):284–297, 2015.

Bibliography 161

[92] Zhenjiang Li, Cheng Chen, and Kai Wang. Cloud computing for agent-
based urban transportation systems. Intelligent Systems, IEEE, 26(1):73–
79, Jan 2011.

[93] Linux man-@pages project. NAMESPACES(7). Linux Programmer’s Man-
ual. http://man7.org/linux/man-@pages/man7/namespaces.7.html.

[94] LWN.net. Namespaces in operation, part 1: namespaces overview.

[95] LXC. LXC - Linux Containers.

[96] Antonio Manzalini, Roberto Minerva, E Kaempfer, F Callegari, Aldo
Campi, Walter Cerroni, Noël Crespi, E Dekel, Y Tock, Wouter Tavernier,
et al. Manifesto of edge ICT fabric. In Proc. ICIN, pages 9–15, 2013.

[97] Peter M. Mell and Timothy Grance. SP 800-145. The NIST Definition
of Cloud Computing. Technical report, NIST, Gaithersburg, MD, United
States, 2011.

[98] Paul Menage. CGROUPS.

[99] Metaswitch Networks. Clearwater Architecture. http://www.
projectclearwater.org/technical/clearwater-architecture/.

[100] Microsoft Azure Blog. The Windows Azure Malfunction This
Weekend. http://azure.microsoft.com/blog/2009/03/17/
the-windows-azure-malfunction-this-weekend/.

[101] Microsoft Azure Team. New Windows Server containers and Azure support
for Docker.

[102] Microsoft Corporation. Hyper-V.

[103] Microsoft Corporation. Trustworthy computing homepage.

[104] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip
De Turck, and Raouf Boutaba. Network function virtualization: State-
of-the-art and research challenges. IEEE Communications Surveys & Tu-
torials, 18(1).

[105] MoinMoin. The MoinMoin Wiki Engine. http://moinmo.in/.

http://man7.org/linux/man-@pages/man7/namespaces.7.html
http://www.projectclearwater.org/technical/clearwater-architecture/
http://www.projectclearwater.org/technical/clearwater-architecture/
http://azure.microsoft.com/blog/2009/03/17/the-windows-azure-malfunction-this-weekend/
http://azure.microsoft.com/blog/2009/03/17/the-windows-azure-malfunction-this-weekend/
http://moinmo.in/

162 Bibliography

[106] A. Mukherjee and D.P. Siewiorek. Measuring software dependability by
robustness benchmarking. IEEE TSE, 23(6), 1997.

[107] NASA. NASA Software Safety Guidebook. NASA-GB-8719.13, 2004.

[108] R. Natella, D. Cotroneo, J.A. Duraes, and H.S. Madeira. On Fault Repre-
sentativeness of Software Fault Injection. IEEE Transactions on Software
Engineering, 39(1), 2013.

[109] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira. Assessing
dependability with software fault injection: A survey. ACM Computing
Surveys (CSUR), 48(3):44, 2016.

[110] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing
dependability with software fault injection: A survey. ACM Comput. Surv.,
48(3), February 2016.

[111] NFV ISG. Network Functions Virtualisation - An Introduction, Benefits,
Enablers, Challenges & Call for Action. Technical report, ETSI, 2012.

[112] NFV ISG. Network Functions Virtualisation (NFV) - Network Operator
Perspectives on Industry Progress. Technical report, 2013.

[113] NFV ISG. Network Functions Virtualisation (NFV) - Virtual Network
Functions Architecture. Technical report, ETSI, 2013.

[114] NFV ISG. Network Function Virtualisation Infrastructure Architecture -
Overview. Technical report, 2014.

[115] NFV ISG. Network Function Virtualisation (NFV) - Resiliency Require-
ments. Technical report, ETSI, 2014.

[116] NFV ISG. Network Functions Virtualisation (NFV) - Management and
Orchestration. Technical report, ETSI, 2014.

[117] NFV ISG. GS NFV-REL 001 - V1.1.1 - Network Functions Virtualisation
(NFV); Resiliency Requirements. 2015.

[118] NFV ISG. Network Functions Virtualisation (NFV); Assurance; Report on
Active Monitoring and Failure Detection . Technical report, 2016.

Bibliography 163

[119] NFV ISG. Report on the application of Different Virtualization Technolo-
gies. Technical report, 2016.

[120] Openstack. Openstack.

[121] OpenStack. OpenStack Architecture. http:
//docs.openstack.org/training-guides/content/
module001-ch004-openstack-architecture.html.

[122] OpenVZ. OpenVZ Main Page.

[123] D. Oppenheimer, A. Ganapathi, and D.A. Patterson. Why Do Internet
Services Fail, and What Can Be Done About It? In USENIX Symp. on
Internet Technologies and Systems, 2003.

[124] Larry L. Peterson and Bruce S. Davie. Computer Networks, Fifth Edition:
A Systems Approach. Morgan Kaufmann Publishers Inc., 5th edition, 2011.

[125] Cuong Pham, Daniel Chen, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
CloudVal: A framework for validation of virtualization environment in
cloud infrastructure. In 2011 IEEE/IFIP 41st International Conference
on Dependable Systems & Networks (DSN), pages 189–196. IEEE, June
2011.

[126] D. Powell. Failure Mode Assumptions and Assumption Coverage. In Proc.
FTCS, 1992.

[127] D. Powell, E. Martins, J. Arlat, and Y. Crouzet. Estimators for Fault
Tolerance Coverage Evaluation. IEEE Trans. on Computers, 44(2), 1995.

[128] Christofer Price and Sandra Rivera. Opnfv: An open platform to accelerate
nfv. White Paper. A Linux Foundation Collaborative Project, 2012.

[129] Daniel Price and Andrew Tucker. Solaris zones: Operating system support
for consolidating commercial workloads. In Proceedings of the 18th USENIX
Conference on System Administration, pages 241–254, 2004.

[130] Quality Excellence for Suppliers of Telecommunications Forum (QuEST
Forum). TL 9000 Quality Management System Measurements Handbook
4.5. Technical report, 2010.

[131] RedHat. Virt-manager. http://virt-manager.et.redhat.com/.

http://docs.openstack.org/training- guides/content/module001-ch004-openstack-architecture.html
http://docs.openstack.org/training- guides/content/module001-ch004-openstack-architecture.html
http://docs.openstack.org/training- guides/content/module001-ch004-openstack-architecture.html
http://virt-manager.et.redhat.com/

164 Bibliography

[132] M. Rodríguez, F. Salles, J.C. Fabre, and J. Arlat. MAFALDA: Microkernel
assessment by fault injection and design aid. Proc. EDCC.

[133] Csaba Rotter, Lóránt Farkas, Gábor Nyíri, Gergely Csatári, László Jánosi,
and Róbert Springer. Using linux containers in telecom applications. Proc.
ICIN, 2016.

[134] SDNCentral LLC. 2016 Mega NFV Report Part I:
MANO and NFVI. https://www.sdxcentral.com/reports/
nfv-mano-nfvi-2016-download/, 2016.

[135] Stephen Shankland. Google App Engine suffers outages. http://www.
cnet.com/news/google-app-engine-suffers-outages/.

[136] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The Hadoop Distributed File System. In 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1–10. IEEE, May
2010.

[137] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hu-
bert Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David
Patterson. Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0. In Proc. CCA, 2008.

[138] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. Container-based operating system virtualization: A scal-
able, high-performance alternative to hypervisors. SIGOPS Oper. Syst.
Rev., 41(3), 2007.

[139] SPEC. SPECweb99 v1.02. http://www.spec.org/web99/, 2000.

[140] SQLAlchemy. SQLAlchemy Homepage. http://www.sqlalchemy.org/.

[141] Standard Performance Evaluation Corporation. SPEC Homepage. https:
//www.spec.org/.

[142] David T Stott, Greg Ries, Mei-Chen Hsueh, and Ravishankar K Iyer. De-
pendability analysis of a high-speed network using software-implemented
fault injection and simulated fault injection. Computers, IEEE Transac-
tions on, 47:108–119, 1998.

https://www.sdxcentral.com/reports/nfv-mano-nfvi-2016-download/
https://www.sdxcentral.com/reports/nfv-mano-nfvi-2016-download/
http://www.cnet.com/news/google-app-engine-suffers-outages/
http://www.cnet.com/news/google-app-engine-suffers-outages/
http://www.spec.org/web99/
http://www.sqlalchemy.org/
https://www.spec.org/
https://www.spec.org/

Bibliography 165

[143] M. Sullivan and R. Chillarege. Software Defects and their Impact on System
Availability: A Study of Field Failures in Operating Systems. In Proc. Intl.
Symp. on Fault-Tolerant Comp., 1991.

[144] Mark Sullivan and Ram Chillarege. Software defects and their impact on
system availability: A study of field failures in operating systems. In FTCS,
volume 21, 1991.

[145] Ali Sunyaev and Stephan Schneider. Cloud services certification. Commu-
nications of the ACM, 56(2):33–36, 2013.

[146] Nisha Talagala and David Patterson. An analysis of error behaviour in a
large storage system. Technical report, 1999.

[147] Technavio. Global Network Function Virtualization Market 2016-2020. ,
2016.

[148] TPCC. TPC Benchmark C. http://www.tpc.org/tpcc/, 2010.

[149] Transaction Processing Performance Council. TPC Homepage. http://
www.tpc.org/.

[150] T.K. Tsai and R.K. Iyer. Measuring Fault Tolerance with the FTAPE Fault
Injection Tool. In Proc. Intl. Conf. on Modelling Techniques and Tools for
Computer Performance Evaluation: Quantitative Evaluation of Computing
and Communication Systems, 1995.

[151] Ariel Tseitlin. The antifragile organization. Commun. ACM, 56(8):40–44,
August 2013.

[152] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Mar-
tins, Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H Leung,
and Larry Smith. Intel virtualization technology. Computer, 38(5), 2005.

[153] M. Vieira and H. Madeira. A dependability benchmark for OLTP applica-
tion environments. In Proc. Intl. Conf. on Very Large Data Bases, 2003.

[154] Inc. VMware. VMware vSphere 6 Fault Tolerance - Architecture and Per-
formance. Technical report, 2016.

[155] VMware Inc. VMware ESXi Overview.

http://www.technavio.com/report/global-data-center-global-network-function-virtualization-market-2016-2020
http://www.tpc.org/tpcc/
http://www.tpc.org/
http://www.tpc.org/

166 Bibliography

[156] VMware, Inc. VMware website. http://www.vmware.com/.

[157] VMware Inc. Delivering high availability in carrier grade nfv infrastruc-
tures. White Paper. VMware vCloud NFV, 2010.

[158] VMware Inc. vSphere Virtual Machine Administration, 2016. https://
www.vmware.com/support/pubs/.

[159] J.M. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting
How Badly "Good" Software Can Behave. IEEE Software, 14(4), 1997.

[160] Carl A Waldspurger. Memory resource management in VMware ESX
server. ACM SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[161] Alan Warren. What happened to google docs on wednesday, September
2011.

[162] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto Natella, Neeraj
Suri, and Domenico Cotroneo. Grinder: on reusability of fault injection
tools. In Proceedings of the 10th International Workshop on Automation of
Software Test, pages 75–79. IEEE Press, 2015.

http://www.vmware.com/
https://www.vmware.com/support/pubs/
https://www.vmware.com/support/pubs/

	List of Acronyms
	List of Tables
	List of Figures
	Dependability in NFV: Challenges and Contributions
	Dependability in Network Function Virtualization
	Dependability threats in NFV scenarios
	Dependability Benchmarking in NFV
	Thesis Contributions

	Related Work
	Dependability Benchmarking
	Basic Concepts
	Dependability Benchmarking studies

	Fault Injection
	Introduction
	Overview of Fault Injection Testing
	Basic Concepts of Fault Injection Experiments
	Key Properties of Fault Injection Testing

	Fault Injection Testing of Virtual Machines
	D-Cloud and DS-Bench Toolset

	Fault Injection Testing of Cloud Management Stack
	OpenStack Fault Injection Testing
	PreFail
	The Netflix Simian Army

	Fault Injection Testing of Hypervisors
	CloudVal
	Xen failure mode analysis

	The Proposed Methodology
	Benchmark Elements
	Benchmark Measures
	Service-level measures
	Infrastructure-level measures

	Fault Model
	Workload

	Fault Injection Tool Suite
	Virtualization Technologies Background
	The VMware ESXi Architecture
	Container-Based Virtualization

	Fault Injection Tool
	Architecture
	Network Faults
	Storage Faults
	CPU Faults
	Memory Faults

	Experimental Analysis of Virtualization Technologies
	The Clearwater IMS
	NFV Testbed
	Experimental results
	Service-level evaluation: Physical Layer
	Service-level evaluation: Virtual Layer
	Infrastructure-level evaluation

	Benchmark validation

	Conclusion
	Summary
	Analysis of Results
	Discussion
	Future directions

