
!Via Claudio, 21 – I-80125 Napoli - "[#39] (0)81 768 3813 - # [#39] (0)81 768 3816

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II

Dottorato di Ricerca in Ingegneria Informatica ed Automatica

ON-LINE DETECTION OF ANOMALIES IN

MISSION-CRITICAL SOFTWARE SYSTEMS

ANTONIO BOVENZI

Tesi di Dottorato di Ricerca

(XXV Ciclo)

Aprile 2013

Il Tutore Il Coordinatore del Dottorato

Prof. Stefano Russo Prof. Francesco Garofalo

DIPARTIMENTO DI INGEGNERIA ELETTRICA E

TECNOLOGIE DELL'INFORMAZIONE

A. D. MCCXXIV

Comunità Europea

Fondo Sociale Europeo

On-line Detection of Anomalies in

Mission-Critical Software Systems

By

Antonio Bovenzi

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

UNIVERSITY OF NAPLES FEDERICO II

VIA CLAUDIO 21, 80125 – NAPOLI, ITALY

APRIL 2013

c© Copyright by Antonio Bovenzi, 2013

ii

Table of Contents

Table of Contents iii

List of Tables v

List of Figures vi

Introduction 1

1 The Role of Anomaly Detection for Dependable Systems 10
1.1 Basic Concepts and Definitions . 10
1.2 The Genesis of Software Anomalies . 18
1.3 The Anomaly Detection Problem . 32
1.4 Anomaly Detection Challenges in Mission-Critical Software Systems 33

2 Monitoring and Detection: Approaches and Frameworks 36
2.1 Background . 36
2.2 Approaches and Frameworks . 43

2.2.1 Monitoring . 45
2.2.2 Detection . 63

2.3 Metrics for Quantitative Evaluation . 77

3 OS-level Detection of Anomalies 83
3.1 Requirements and Assumptions . 83
3.2 High-level Architecture of the Framework 90
3.3 Internals of the Framework . 94

3.3.1 OS Monitoring Infrastructure . 94
3.3.2 The Statistical Predictor and Safety Margin Algorithm 103
3.3.3 The α-counter . 107

3.4 Parameters Tuning and Computational Cost 110

iii

4 Experimental Methodology 112
4.1 Motivations . 112
4.2 The Adopted Methodology . 113

4.2.1 Overview . 113
4.2.2 Definition . 116
4.2.3 Planning . 120
4.2.4 Execution . 125
4.2.5 Analysis . 126

5 Experimental Results 128
5.1 The SWIM-BOX Case Study . 128

5.1.1 Definition phase . 129
5.1.2 Planning phase . 135
5.1.3 Execution phase . 139
5.1.4 Analysis Phase . 141

Conclusion 153

Bibliography 156

iv

List of Tables

1.1 Some examples of ODC defect types . 24

1.3 Proportion of ODC defect types in field studies 26

1.5 Some examples of ODC defect triggers . 26

2.1 Most common indirect monitoring approaches 50

2.2 Differences among LTT, Systemtap and DTrace tracing mechanisms 58

2.3 Most relevant monitored indicators of the surveyed frameworks 62

2.4 Perspectives of analysis for model-based detection approaches 64

2.6 Surveyed detection approaches and techniques 77

2.7 Basic metrics for characterizing detector performance 78

2.8 Performance metrics to evaluate anomaly detectors 82

3.1 Monitored variables for Linux and Windows 100

5.1 Considered fault types . 135

5.2 Source-code faults injected in the case study 136

5.3 Distribution of failures observed in faulty runs 140

5.5 Coverage and accuracy of the detectors . 144

v

List of Figures

1.1 A high-level overview of system and its operational environment 11

1.2 Scope of the dissertation . 18

1.3 Origin and detection of anomalies during development and operational phases 19

1.4 The pathology of failures . 21

1.5 Proportions of Bohr-Mandelbugs across a timeline 31

1.6 Different fault tolerance strategies that can be used with Bohr-Mandelbugs 31

2.1 A general high-level overview of monitoring and detection infrastructures . 37

2.2 The perspectives of analysis for the monitoring and detection approaches . 40

2.3 An example of contextual anomaly . 40

2.4 An example of collective anomaly in electrocardiogram (medical domain) . 41

2.5 A high-level overview of distributed detectors 44

2.6 Push- vs pull-style monitoring approach . 47

2.7 The architecture of Ganglia . 53

2.8 Example of probes at multiple levels . 55

2.9 LTT architecture . 56

2.10 DTrace architecture . 57

2.11 Conceptual view of Magpie . 60

2.12 Pinpoint architecture . 76

2.13 Time line showing true positives according to the parameter Time to Detect 80

3.1 A simplified architecture of ATC systems 84

3.2 A high-level overview of the sosmon framework 87

3.3 The high-level architecture of the framework 90

vi

3.4 An example of trace collected by sosmon . 92

3.5 The SystemTap tool overview . 97

3.6 The monitoring infrastructure for Windows 101

3.7 An example of adaptive vs static anomaly detection thresholds 105

4.1 The experimental methodology . 114

4.2 An example of star schema . 124

5.1 SWIM-BOX high-level architecture . 130

5.2 Interaction scenario for the case-study . 132

5.3 Data repository designed for OLAP analysis 138

5.4 Best experimental results in Linux using coverage c = 0.9999, memory m =

20, combination window w = 5 and G = 0.2 142

5.5 Best experimental results in Windows using coverage c = 0.99, memory m =

40, combination window w = 20 and G = 0.4 143

5.6 Experimental results for Linux using coverage c = 0.9999, memory m = 20,

combination window w = 5 and varying global threshold G 146

5.7 Experimental results for Linux using coverage c = 0.9, memory m = 20,

combination window w = 5 and varying global threshold G 147

5.8 Experimental results for Linux using coverage c = 0.9999, combination win-

dow w = 5, global threshold G = 0.18 and varying memory m 148

5.9 Experimental results for Linux using coverage c = 0.9999, memory m = 20,

global threshold G = 0.2 and varying w . 149

5.10 Overhead for the SWIM-BOX varying the invocation period of the operations 150

5.11 Results of sensitivity analysis of Coverage and Accuracy to the number of

monitored indicators in Linux . 152

5.12 Results of sensitivity analysis of Coverage and Accuracy to the number of

monitored indicators in Windows . 152

vii

Introduction

“The integrating potential of software has allowed designers to contemplate more ambitious

systems encompassing a broader and more multidisciplinary scope”, stated Michael Lyu in

1996 [1]. After twenty years this is completely perceived by our society. Almost every daily

activity is related to the software: the simplest actions, such as turning on the light, and the

more complex activities, e.g., organizing a business trip with your boss, depend, directly or

indirectly, upon the underlying software. Hence, everyone needs dependable software, i.e.,

software that can be justifiably trusted.

There is a category of software systems for which failures cannot be admitted since they

may be critical for the success of their mission. These are called mission-critical software

systems. Examples are the SCADA systems in power grids, the software infrastructure

in banking and transportation systems, and the control software in spacecraft. Hence,

depending on the domain of systems, software failures may be business-critical, i.e., when

they affect essential operations that dramatically impair company affairs, or even safety-

critical, i.e., when failures may hamper human life. Revealing anomalies in such scenarios

is fundamental to avoid unexpected failures that may lead to loss of business or even may

endanger our lives.

The IEEE Standard 1044-2009 defines anomalies as abnormality, irregularity, inconsis-

tency, or variance from expectations. Expectations represent nominal or desired behaviors

that may be derived from requirements, design documents, standards and on-field experi-

ence.

1

2

Anomalies can be observed at each stage of the software development life cycle. This dis-

sertation focuses on runtime software anomalies, hereafter anomalies, namely the deviations

from the expected behavior that occur during operation.

In business- and life-critical infrastructures –e.g., power grids, transportation systems,

financial services –anomalies need to be revealed timely to support diagnosis procedures

for the identification and the activation of proper countermeasures before they lead to ir-

remediable failures. For example, anomalies in system call traces of privileged processes

and then anomalies in the network traffic in a server may be related to malicious actions of

intruders that have compromised the machine and are communicating sensitive information

to unauthorized destinations [2]. An anomalous pattern in entering or leaving critical sec-

tions may be related to process hang, (i.e., the process is indefinitely blocked or is endlessly

wasting CPU cycles) [3]. Anomalies in memory consumption, when not properly treated,

can lead to performance degradation and to crash [4].

New industry trends in designing and developing mission-critical software systems lead

towards (i) the use of commercial off-the-shelf (OTS) for minimizing costs and time to mar-

ket and (ii) larger and more complex systems to push performance to the limit. Revealing

anomalies in such a scenario is an intricate task for a bunch of reasons that are discussed

as follows.

The notion of expectations encompassing every possible normal behavior is very difficult

to apply. This is especially true for OTS items since expectations typically depend on the

type of component, the application domain, and the operating environment, and very often

a thorough assessment of OTS failure modes and theirs vulnerabilities is not unavailable [5].

Furthermore, the operating environment, i.e., the combination of network, hardware, OS,

virtualization and required components may force the conditions to trigger the activation

of residual software faults leading to failure modes, which are not foreseen at design time.

Indeed, the operating environment in which the OTS item is deployed may have been not

3

well-tested because of time constraints and technical limitations –indeed exhaustive testing

is typically unfeasible. The difference between production and operating environments can

be so large that there have been movements in the software warehouses to encouraging early

release of software so that customers can do the debug [6]. Thus, for all these reasons the

boundaries between normal and anomalous behavior are often not precise.

The integration of several interconnected and interdependent components emphasizes

another aspect of OTS-based mission-critical systems: the domino effect, i.e., the propaga-

tion of undesirable effects from an entity to another that depends on it.

A further problem in architecting anomaly detection framework for mission-critical sys-

tems is due to the evolution they undergo during the lifetime; indeed, they may be integrated

with other systems, and/or extended to fulfill new demanding requirements. This may force

the integrated (sub)systems to operate beyond the original design conditions [7]. Perfor-

mance anomalies, e.g., in overload conditions due to changes in the workload with respect

to what the system was originally designed for, may arise in such scenarios. For this reason,

the adopted detection mechanism shall adapt to the evolving situation to be effective.

Mission-critical software systems are also exposed to intentional malicious faults [8],

such as worms, and cyber-attacks. Attackers can target the border of the system (e.g.

Distributed Denial of Service) or maliciously sneak within its boundaries and act internally,

such as the recent Stuxnet worm in 2010 [9]. The U.S. Department of Transportation

report [10] determined that the Air Traffic Control’s Web-based applications are far to be

secure against attacks or unauthorized access, and that many intrusion-detection systems

cannot support remediation in a timely manner. In such a scenario the attackers may mask

anomalies to make their actions appearing like normal.

Last but not the least, the type and the amount of load imposed to the systems may

also contribute to jeopardize its dependability. Indeed, many studies have observed how the

the type of failures and the failure rates may vary dramatically depending on the workload

4

being executed [11, 12, 13]. For instance, in [12, 14] and in our work [15, 16] the workload is

observed to be an important software aging factor. It is noteworthy that the term software

aging in this dissertation refers to the accumulation of errors in the software components

and/or in their operating environment that causes performance degradation and increasing

failure rate of software systems and eventually lead to system hang or crash [17].

Revealing anomalies by monitoring the operating environment in which OTS items are

deployed is a promising approach when traditional detection mechanisms have poor perfor-

mance or cannot be applied [3, 18]. The driving idea is to shift the observation perspective

to the operating environment by monitoring the communication and the resource usage pat-

ters between the component(s) and the OS. Indeed, operating systems, especially the most

recent, offer facilities to collect a wealth of data, such as system call errors, scheduling de-

lays and waiting time on shared resources, useful to reveal when the application components

deviate from expectations.

The approach is particularly suited for OTS-based systems, since it does not require to

modify the components. Furthermore, a framework monitoring the components from the OS

perspective can be of general use and applied to a variety of circumstances and applications

in a much more efficient and cheap way than instrumenting the application components

themselves; in fact, instead of re-instrumenting every OTS item and application each time,

it will be just necessary to tune a ready-to-use framework.

Understanding how to exploit OS-level tracing facilities for anomaly detection is an

intricate task. First, the selection of the probe points, i.e., the (kernel- and user-level) OS

functions that need to be monitored, has to be carefully addressed. Indeed, a fine-grained

tracing enables to accurately reveal and diagnose component anomalies [19]; however, the

prize to pay for such level of detail is a high overhead for the target application which is

unaffordable for production environments.

5

Second, OS-level anomaly detection requires to collect large amount of data, e.g. coming

from probes spread over the system, that needs to be analyzed to reveal that something is

not working as expected. The amount of data is usually so huge that the detection and

diagnosis processes are still performed off-line [18, 19] and even with human support that

guides the process of filtering and correlating the relevant information [18].

Third, the effectiveness of OS-level detection approaches to timely reveal software anoma-

lies is still somehow unknown. Different operating environments and the monitored OS

indicators may influence the possibility to reveal relevant anomalies and/or the accuracy of

the detection. Very few studies have exploited such approaches to perform on-line anomaly

detection and, furthermore, only specific classes of anomalies, such as application hangs and

system crashes, or one specific environment (e.g., Linux or Windows) have been addressed

[3, 20].

Finally, existing OS-level anomaly detection techniques are based on worst-case static

thresholds, or on lengthy profiling phases, or on training, e.g.,[3, 18, 20] and are not suited

for systems subject to highly variable and non-stationary operating conditions.

Contribution

This dissertation investigates the suitability of the OS-level anomaly detection

for OTS-based mission-critical software systems. In particular, the effort has been

devoted to address the following fundamental issues: (i) evaluate the effectiveness of the

approach under different worklaod, faultload (which lead to anomalies) and under variable

and non-stationary operating conditions; (ii) assess the applicability of the approach un-

der different operating systems; (iii) investigate the intrusiveness of the approach and its

overhead.

The work has been conducted by following a bottom-up approach. First, literature

6

addressing on-line detection of software anomalies has been reviewed. Then, current OS-

level detection approaches and their shortcomings have been explored. The results of this

preliminary phase have driven the definition of the requirements and the design a novel

framework for OS-level anomaly detection. The proposed framework, called sosmon, hinges

on kernel-level tracing facilities and on on-line statistical analysis. The framework is con-

figurable in the types and number of monitored indicators; the detection algorithm in turn

has configuration parameters that allow tuning the way indicators are combined to reveal

anomalies.

The proposed OS-level detection framework effectiveness has been evaluated

by means of extensive experiments based on fault injection conducted on an OTS-

based mission-critical system for Air Traffic Management (ATM). The considered industrial

case study is the SWIMBOX, a middleware for the interoperability of future ATM systems,

developed in the context of the SESAR European research project 1. The injected faultload

represents a share of representative faults that can be commonly found in software systems

[21]. Furthermore, the experimental methodology is also meant to support practitioners to

the framework configuration.

The suitability of the approach under different OSs has been investigated

by implementing the framework for two operating systems used in production

environments, namely Red Hat EL 5 and Windows Server 2008, and in which the SWIM-

BOX is deployed. The results corroborate the thesis that the OS-level anomaly detection is

valuable approach when traditional detection mechanisms have poor performance or cannot

be applied since the sosmon framework is indisputably useful to detect anomalies. However,

the framework, and in particular the monitored indicators, need to be carefully selected to

achieve comparable performance in both environments.

Finally, the work has explored the framework performance varying the level
1http://www.sesarju.eu/about

7

of intrusiveness of the monitoring infrastructure. Indeed, when the detection is

on-line and timely decisions ought to be taken, the framework has to limit the impact on

the mission of the system, and the overhead needs to be minimized. For this reason, the

performance of the framework has been analyzed by varying the number of instrumentation

points. Results are encouraging since the anomalies due to the activation of the injected

faults can still be revealed at the prize of a slightly lower accuracy.

The work includes material from the following research papers, already published in

peer-reviewed conferences and journals or submitted for review:

• A. Bovenzi, F. Brancati, A. Bondavalli, S. Russo, An OS-level Framework for Anomaly

Detection in Complex Software Systems. IEEE Transactions on Dependable and

Secure Computing, under revision.

• A. Bovenzi, F. Brancati, A. Bondavalli, S. Russo, A statistical anomaly-based algo-

rithm for on-line fault detection in complex and critical system. The 30th Interna-

tional Conference on Computer Safety, Reliability and Security (SAFECOMP 2011).

Napoli, Italy. September 19-21, 2011. Lecture Notes in Computer Science Volume

6894/2011, pp. 128-142. DOI: 10.1007/978-3-642-24270-0 10

• A. Bovenzi, F. Brancati, A. Bondavalli, S. Russo, Towards Identifying OS-level Anoma-

lies to Detect Application Software Failures. The IEEE International Workshop on

Measurements and Networking (M&N 2011). Anacapri (NA), Italy. October 10-11,

2011. DOI: 10.1109/IWMN.2011.6088494

• A. Bovenzi, M. Cinque, D. Cotroneo, R. Natella, G. Carrozza, OS-level hang detection

in complex software systems. International Journal Critical Computer-Based Systems,

Vol. 2, Nos. 3/4, pp.352-377.DOI: 10.1504/IJCCBS.2011.042333

8

• A. Bovenzi, G. Carrozza, D. Cotroneo, R. Pietrantuono, Error Detection framework

for Complex Software Systems. Proceedings of 15th European Workshop on Depend-

able Computing (EWDC 2011). Pisa, Italy. May 11-12, 2011.ACM, New York, NY,

USA, pp. 61-66. DOI: 10.1145/1978582.1978596

• A. Bovenzi, G. Carrozza, Monitoring Infrastructure for Diagnosing Complex Software.

Innovative Technologies for Dependable OTS-based Critical Systems: Challenges and

Achievements of the Critical Step Project. D. Cotroneo Ed., 2012. Springer-Verlag

New York.

• A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo, On the Aging Effects due to

Concurrency Bugs: a Case Study on MySQL. The 23nd International Symposium on

Software Reliability Engineering (ISSRE 2012). Dallas, Tx, USA. November 27-30,

2012. DOI: 10.1109/ISSRE.2012.50

• A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo, Workload Characterization for

Software Aging Analysis. The 22nd International Symposium on Software Reliability

Engineering (ISSRE 2011). Hiroshima, Japan. November 29-Dicember 2, 2011. DOI:

10.1109/ISSRE.2011.18

The following material is related to the design and the implementation of a fault injection

tool that can be used for assessing the dependability of OTS items, in particular for assessing

their robustness. The material is not included in this dissertation since it is more focused

on the dependability assessment during the testing phase and not during operation:

• A. Bovenzi, A. Napolitano, G. Carrozza, C. Esposito, JFIT: an Automatic Tool for

Assessing Robustness of DDS-Compliant Middleware. Innovative Technologies for

Dependable OTS-based Critical Systems: Challenges and Achievements of the Critical

Step Project. D. Cotroneo Ed., 2012. Springer-Verlag New York Incorporated.

9

• A. Napolitano, A. Bovenzi, G. Carrozza, C. Esposito, Automatic Robustness As-

sessment of DDS-Compliant Middleware. The 17th IEEE Pacific Rim International

Symposium on Dependable Computing (PRDC 2011), Industry Track. Pasadena,

CA, USA. December 12-14, 2011. DOI: 10.1109/PRDC.2011.51

• A. Bovenzi, G. Carrozza, S. Celentano, C. Esposito, A. Napolitano Automatic Robust-

ness Testing of a DDS-compliant middleware. Workshop on Real-time, Embedded and

Enterprise-Scale Time-Critical Systems. Washington, DC, USA. March 22-24,2011.

The dissertation is organized as follows:

Chapter 1 provides the basic concepts of dependability and the adopted terminology and

motivates the importance of anomaly detection in dependable systems. Furthermore,

the anomaly detection problem addressed in this dissertation and its challenges are

discussed.

Chapter 2 discusses the state-of-the-art concerning monitoring and detection approaches

and techniques, their benefits and their limitations for the target systems. A synthetic

description of the contribution provided by this work, which is detailed in successive

chapters, is also presented.

Chapter 3 details the proposed OS-level anomaly detection framework, the requirements,

the design and the implementation.

Chapter 4 presents the experimental methodology used to assess the performance of the

framework.

Chapter 5 discusses the results of the experiments, conducted using the methodology

explained in Chapter 4.

Chapter 1

The Role of Anomaly Detection for
Dependable Systems

This chapter provides the basic definitions and notions that will be used in the rest of the dissertation.
Indeed, during the past decades many terms have entered into use to address anomaly detection issues
since software systems have permeated through different domains (e.g., avionics, space, automotive,
railway, power grids, medical). First, dependability, i.e., the ability to deliver a service that can be
justifiably trusted, and the fundamental aspects as defined by the IFIP WG 10.4 are discussed. This
is because, by using a top-down approach, they provide a comprehensive concept of dependability that
encompasses many fundamental aspects, including dependability threats and means, that need to be
introduced to understand the anomaly detection problem. Furthermore, this lays the ground for the
subsequent analysis regarding the genesis of anomalies, their role in the system failure behavior and
the actual challenges to anomaly detection in mission-critical software systems.

1.1 Basic Concepts and Definitions

Dependability issues have been addressed since the beginning of computer systems. Indeed,

the first attempt to provide the principles of dependable computing were already discussed

by Von Neumann in 1957 [22] –even if the paper only discusses general tendencies– and by

Avizienis in 1967 [23] where detection, diagnosis and recovery concepts were integrated into

fault-tolerant systems. Despite many efforts during successive decades, the seminal paper

that defines the basic concepts of dependability (and security) and related terminology has

been published only in 2004 [8] – even if the ideas were around since 1980 when the joint

10

Chapter 1. The Role of Anomaly Detection for Dependable Systems 11

committee on “Fundamental Concepts and Terminology” was founded. Hence, the concepts

and the definitions provided in the following are taken from [8].

First, the dependability definition provided in the abstract of the chapter –the ability to

deliver a service that can be justifiably trusted– has been further refined in the ability of the

system to avoid service failures that are more frequent and more sever than is acceptable.

With respect to the previous definition, which was given in 1985 by Laprie [24], three

fundamental concepts need to be explained in order to understand this alternative definition:

system, service and failures.

!"#$%&'(

)*)$&+(#'(

),-.)*)$&+(

!

"#$%&'!

!

($&)$!

/0'1&$(2*)$&+(3#,"40'5&)(

!"&)*+,&!-.%&)/0,&!

"&)*+,&!

1.*+)2.'&.%!

Figure 1.1: A high-level overview of system and its operational environment

In order to explain these concepts Figure 1.1 is introduced. The system is defined

as the entity that interacts with other entities, i.e., other systems, which may include

hardware, software, human operator and the physical world. The system boundary is the

common frontier that separates the given system from other entities, which constitute its

Chapter 1. The Role of Anomaly Detection for Dependable Systems 12

environment.

The other basic concept, i.e., the service, can be explained introducing two other defi-

nitions: the function and the behavior. The former, as described by the functional and non

functional specification, is what the system is intended to do. The latter is what the system

does to implement its function and it is described by a sequence of states. The service

is thus defined as the behavior of the system as perceived by its user(s); the portion of the

boundary of the system where the service is delivered is called service interface.

A service failure, hereafter failure, is an event that occurs when the delivered service

is no more implementing the system function; in other words, a transition from correct

service to incorrect service according to the specification.

Finally, in order to quantify the dependability, the specification of a system needs to

include the requirements in terms of (i) the “acceptable frequency and severity” of service

failures and (ii) the given operational environment.

It worth to mention that the system is usually the result of –and this is the case of

actual mission-critical systems– the integration and cooperation of other (sub)systems, or

components. For dependability analysis, the recursion stops when a further internal de-

composition is not of interest, or impossible to discern, so that the component is considered

atomic. In OTS-based mission-critical systems most of atomic entities can be OTS compo-

nents or legacy components. It is worth to note that the term legacy system used in this

dissertation refers to a software system for which maintenance actions (e.g., modifications

to the source code) are prohibitively costly because (i) the component is written in a pro-

gramming language which has become obsolete as compared to the rest of the technologies

Chapter 1. The Role of Anomaly Detection for Dependable Systems 13

used by the enterprise and/or (ii) the component is not well-documented [25].

The behavior of a given system is thus the result of the sequence of its total state that

is a set of computation, communication, storing, interaction and physical condition states.

The total state can be partitioned into external and internal state. The former is the part

of the system state that is perceivable at its interface, i.e., by the users; while, everything

else belongs to the internal state. The internal state can also be defined as the combination

of the external states of the atomic components of the system.

The delivered service is perceived by the user(s) as the sequence of the external states

of the systems. Hence, a service failure turns to be a deviation of at least one external state

from the correct state. This deviation is called error. The root cause of an error that when

activated may lead to the incorrect external state is called fault.

Faults have been classified from different perspectives[8]. The most important classes,

which need to be introduced to narrow the scope of this work, are: system boundaries,

dimension, phase, objective.

With respect to system boundaries, a fault can be internal or external. Then, according

to the phase of creation or occurrence, a fault can be a development fault or a operational

fault. According the dimension, i.e., to where they originate or what they affect, faults

are classified into hardware and software faults. Another important distinction arises from

the maliciousness of faults, i.e., the property of being introduced with the precise objective

of causing harm to the system. A concrete example of a malicious fault is represented

by an external fault introduced by an attacker that, by exploiting the presence of a prior

internal fault (also called vulnerability [8]), enables to gain unauthorized access to the

Chapter 1. The Role of Anomaly Detection for Dependable Systems 14

system. Finally, according to its persistence, a fault can be permanent or transient, i.e.,

bounded in time; of course development faults are always permanent. even if they may be

not systematically reproducible, in such case they are called elusive faults.

According to the definition of anomalies provided in the Introduction of this disser-

tation, each error is anomaly but the vice-versa is not valid. The motivations that have

led to detail such difference will be clearer in a while, i.e., when the genesis of anomalies

will be further discussed. However, first the dependability means are briefly introduced in

order to point out the contribution of this work towards dependable mission-critical systems.

Dependability Means

Over the course of the past fifty years many means have been developed to attain depend-

ability. These means can be grouped into four major categories:

• fault prevention: the techniques belonging to this class aim to prevent the occur-

rence or the introduction of faults in the system. Examples are design review, com-

ponent screening, testing, quality of control methods, formal methods and software

engineering methods and best practice in general.

• fault tolerance: it consists of using proper techniques to allow the continued delivery

of services at an acceptable dependability level, after a fault is activated. Fault toler-

ance is carried out by error processing and fault treatment: the first aims at removing

errors from the computational state, possibly before the occurrence of a failure, while

the second aims at preventing faults from being activated again.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 15

• fault removal: these techniques aim to reduce the presence (number, seriousness)

of faults, and they are obtained by means of a set of techniques used after that the

system has been built. They are verification (checking whether the system fulfills

its specifications), diagnosis (identify the fault(s) which prevented the verification

conditions from being fulfilled), and correction.

• fault forecasting: the purpose of the fault forecasting techniques is to estimate the

present number, the future incidence and consequences of faults activation. Indeed,

no existing fault tolerant technique is capable to avoid a failure scenario, then fault

forecasting represents a suitable mean to verify the adequacy of a system design with

respect to the requirements given in its specification.

The first two classes of means aim to provide the ability to deliver a service that can be

trusted, while fault removal and fault forecasting aim to reach confidence in that ability by

justifying that the functional and the dependability & security specifications are adequate

and that the system is likely to meet them.

This dissertation addresses methodologies and techniques that attend to the improve-

ment of fault tolerance mechanisms. For this reason, the fault tolerance mechanisms are

discussed in detail in the following.

The main phases that are typically involved in fault tolerance strategies [8] can be

summarized as follows:

Chapter 1. The Role of Anomaly Detection for Dependable Systems 16

1. Error Detection, i.e., the ability to identify that an error occurred in the system.

Its goal is to trigger a warning in order that an error does not remain latent and prior

that the error leads to a failure for other system components, or for the overall system.

It can be performed on-line (i.e., concurrent detection), i.e., while the system delivers

the service, or offline (i.e., pre-emptive detection), where the system is checked while

the service is not delivered.

2. System Recovery, i.e., the operations that lead the system in an error-free and fault-

free state. Recovery consists of: (a) Error Handling, which aims at removing the error

condition, by bringing the system in a correct state. This can be achieved through

Rollback, Rollforward and Compensation. (b) Fault Handling, which aim is to prevent

fault re-activation. This can be accomplished through different stages, i.e., Diagnosis,

Isolation, Reconfiguration and Re-initialization. Typically, fault handling may be

followed by a corrective maintenance activities to definitely remove the diagnosed

faults.

The most basic strategy for implementing fault tolerance is based on error detection

and recovery. Upon error detection, rollback, rollforward and compensation may be invoked

on demand. With rollback the system is brought back to a saved state that existed prior

the occurrence of the error; hence, this require to periodically save the system state, via

checkpointing techniques. On the other hand, rollforward brings the system to a new but

pre-defined, error-free state. Finally, compensation conceals such errors.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 17

It is worth to note that also proactive techniques can be used during operation to bring

the system in an error-free state. For instance, software rejuvenation [26] is a widely used

technique that allow to remove, or at least mitigate, software aging effects. It consists in

periodically operations, among which components restart, and the reboot of the OS, that

restore a clean state of the system, i.e., without aging effects.

An alternative fault tolerance strategy, the fault masking, is based on the systematic

usage of compensation –i.e., independently on detected errors– by means of redundancy.

Redundancy may be temporal or spatial. The former assumes that failures are transient

since it consists in the re-executioning the operation that caused the failure. The latter

consists in many identical components, i.e., replicas, performing the same task and it is

effective under the assumption that the replicas fail independently. When this assumption

does not hold an alternative, and by far more expensive, fault tolerance technique is design

diversity [27]. This consists in different systems that implement the same function via

separate designs and implementations.

Fault masking does not necessarily require error detection; however, practical imple-

mentations exploit these techniques since if not handled over time errors can lead to a

progressive loss of redundancy because of accumulation and propagation phenomena [8].

The measure of effectiveness of any given fault tolerance technique is called coverage.

Imperfect coverage, is strictly depended upon the ability to accurately detect and recover

from faults activation during system operation. Error detection is thus a crucial aspect in

fault tolerance strategies. Indeed, non-detected or non-timely detected errors may hamper

the possibility to successfully handle such errors or even to mask them.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 18

Figure 1.2: Scope of the dissertation

The focus of this dissertation (Figure 1.2) is on the improvement of error detection

mechanisms of mission-critical software systems made of OTS components. The purpose is

to achieve better fault tolerance coverage, which in turn leads to an overall improvement of

the dependability.

1.2 The Genesis of Software Anomalies

Anomaly has been defined as abnormality, irregularity, inconsistency, or variance from ex-

pectations by borrowing the term used in the IEEE Standard 1044-2009. The standard

also defines a uniform approach for the classification of anomalies regardless of when they

Chapter 1. The Role of Anomaly Detection for Dependable Systems 19

SW Development Phase
Operational

Phase

Anomaly revealed

Root cause of anomaly

Residual anomaly

requirements
misunderstanding

missing
components

memory leaks,
race conditions

faulty
updates/patches

faulty
fixes

Figure 1.3: Origin and detection of anomalies during development and operational phases

are introduced, i.e., during development phase or during use phase, or when they are re-

vealed (see Figure 1.2). This can be used for defect causal analysis, project management,

and software process improvement. This dissertation focuses on the detection of anomalies

occurring during the operational phase of the systems.

Although the standard is indisputable useful to classify software anomalies with respect

to the whole software development life cycle, it does not provide any characterization of

what are the expectations not met when anomalies occur.

In a previous version of the IEEE Standard 1044, published in 1993, it is specified that

the expectations derive from documentation (requirements specification, design documents,

user documents, standards) or from someone’s perceptions or experiences. An attempt was

made to classify (i) the types of symptoms that can be used to reveal anomalies, and also

(ii) the type anomalies based on the semantic of their root cause location, e.g., flow control

logic, computational code, data.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 20

This dissertation shares with the IEEE Standard 1044 both the definition of anomaly

and expectations, but the aforementioned classification of symptom and anomaly types is

misleading. In fact, the term anomaly was confounded with the term fault. Anomalies may

be of course caused, but are not limited to, the activation of software faults. However, this

classification was either too general, e.g., to encompass anomaly leading to performance

issues, or too narrowed and applicable only to specific software systems (e.g., the OS for

the interruption handling type).

The pathology of software anomalies, i.e., the conditions that lead to deviations from

expectations, is far from being simple. A normality region that encompasses every possible

expected behavior is recognized as an intricate task [2]. Furthermore, the boundaries of the

normality region are often not precise. Thus, some observations that, according to actual

expectations, results in anomalies may really belong to the normality region, and vice-versa.

Different perspectives of analysis of software anomalies are introduced in the following

to clarify the concept of deviations from expectations and to identify which kinds of “traps”

are needed to capture anomalies.

The Fault-Error-Failure propagation chain

Figure 1.4 is introduced to characterize the relationship between the failure-behavior of

the systems and anomalies. The figure shows that, with respect to the system, the faults

can be internal or external. In the former case these are harmless –and not leading to

anomalies– till the triggers, i.e. conditions that lead to fault activation, do not occur. In

both cases, the fault turns into error and becomes potentially danger. The term potential is

Chapter 1. The Role of Anomaly Detection for Dependable Systems 21

17

that receives service from A (i.e., external propagation) occurs when, through internal propagation, an error

reaches the service interface of component A. At this time, service delivered by A to B becomes incorrect, and

the ensuing service failure of A appears as an external fault to B and propagates the error into B via its use

interface.

3. A service failure occurs when an error is propagated to the service interface and causes the service delivered by

the system to deviate from correct service. The failure of a component causes a permanent or transient fault in

the system that contains the component. Service failure of a system causes a permanent or transient external

fault for the other system(s) that receive service from the given system.

Figure 3.8: Error
propagation

Internal
Dormant

Fault

Activation

Correct
Service

Incorrect
Service

Failure

External

Fault

Propagation

Component A Component B

Service status
of component A

Propagation

Correct
Service

Incorrect
Service

Service status
of component B

Er-
ror

Er-
ror

Propagation Propagation
Error Error Input

error
Error

Failure

Service
Interface

Propagation

Service
Interface

Boundary

These mechanisms enable the ‘chain of threats’ to be completed, as indicated by Figure 3.9. The arrows in this

chain express a causality relationship between faults, errors and failures. They should be interpreted generically:

by propagation, several errors can be generated before a failure occurs. It is worth emphasizing that, from the

mechanisms above listed, propagation, and thus instantiation(s) of this chain, can occur via interaction between

components or systems, composition of components into a system, and the creation or modification of a system.

Figure 3.9: The fundamental
chain of dependability and

security threats

errorfault failure fault
activation propagation causation ……

Some illustrative examples of fault pathology are given in Figure 3.10. From those examples, it is easily

understood that fault dormancy may vary considerably, depending upon the fault, the given system’s utilization,

etc.

The ability to identify the activation pattern of a fault that had caused one or more errors is the fault activation

reproducibility. Faults can be categorized according to their activation reproducibility: faults whose activation is

reproducible are called solid, or hard, faults, whereas faults whose activation is not systematically reproducible

are elusive, or soft, faults. Most residual development faults in large and complex software are elusive faults: they

are intricate enough that their activation conditions depend on complex

combinations of internal state and external requests, that occur rarely and can be very difficult to reproduce [Gray

1986]. Other examples of elusive faults are:

Figure 1.4: The pathology of failures

used since, as shown in Figure 1.4, the error needs to be propagated to the system interface

to cause a failure, i.e., incorrect service. An error is for definition an anomaly since the

state of the system deviates from the correct one. A first difficult with this definition arises

because which all possible states of the systems cannot usually be included in the so called

expectations.

Figure 1.4 also highlights that, with respect to the components of the system, error

propagation is of two types. Internal error propagation occurs if the errors are confined

into the component. External error propagation occurs when errors are propagated among

at least two dependent components (component B receives the service from component

A in Figure 1.4). Different types of anomalies may occur in case of internal or external

propagation, which in turn may lead to different information that can be used to reveal

anomalies.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 22

However, Figure 1.4 does not show the occurrence of even more complex activation and

propagation phenomena that have been ascertained in recent studies [28, 29] and that lead

to different anomalies – which may of course occur in mission-critical software systems made

of many interacting and interdependent OTS- and legacy-based components. For instance,

the complex activation/propagation consists in the influence of indirect factors, such as the

state of internal components (e.g., hardware and operating system), on failure occurrence.

Concurrency faults, for instance, are becoming increasingly important with the prevalence

of multi-core architectures. These are caused by wrong management of shared resources

access and lead to notorious non-deterministic failures, among which atomicity violation,

data race, deadlock, that are very difficult to reproduce [30] and only manifest when some

specific combination of conditions occurs. Moreover, the repeated activation of the same

fault may lead to errors accumulated overtime, which then lead to a failure (e.g., memory

leak activation may wastes all available memory). This last situation is typical of software

aging phenomena in which a huge time interval passes between the fault activation and the

occurrence of a failure.

The aspects of fault activation and failure-reproducibility and their relation with anomaly

detection will be further discussed in the following sections addressing the ODC methodol-

ogy [31] and the Borh-Mandel bug theory [17] will be introduced.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 23

ODC Concept

Orthogonal Defect Classification (ODC) is a method, first presented in 1992 [31], that

allows the quantitative analyses of the software development process with practical insights

to developers team. ODC tries to gather the benefits of defects/process analysis techniques

(e.g., root cause analysis) and of quantitative measures (e.g., reliability growth analysis).

Although ODC is more focused on the development process and not on the fault clas-

sification, the ODC system captures some important attributes, i.e., defect type and defect

triggers, that are useful to understand the sources of most of anomalies and the triggering

conditions 1.

The defect type captures the meaning of the fix, expressed in a value set describing

design or programming terms. The defect trigger maps into the test process and expresses

conditions leading to a defect to surface. It is worth to underline that these definitions have

been designed for software development process improvement; however, they still hold for

use phase. Indeed, for instance, certain triggers represent a complex operation when this

is experienced in the field [6]. The different fault types have been defined by looking at

the type of fixes a programmer can make. Some of these classes can be useful to establish

which kind of indicators need to be monitored to reveal anomalies. The following basic

fault types, defined in [31] and summarized in Table 1.5, should be taken into account:

• Function - The fault affects significant capability, end-user interfaces, interface with
1It is worth to note that in this dissertation the terms fault and defect are interchangeable; however, in

the classification provided by IEEE Standard 1044-2009 a defect is a fault if it is encountered during software
execution (thus causing a failure).

Chapter 1. The Role of Anomaly Detection for Dependable Systems 24

Table 1.1: Some examples of ODC defect types

Defect type Examples
Function missing implementation of functionality
Interface missing/wrong return value; missing/wrong

parameter in function call.
Assignment missing/wrong initialization of variable;

missing/wrong parts of logical expression.
Checking missing if statement; missing/wrong and/or condition

or data in conditional statements.
Timing/Serialization missing/wrong resource serialized;

wrong serialization technique used.
Algorithm wrong branch/flow construct; missing

“if (cond) else statement(s)” around statement(s)
requesting a design change.

Build/package/merge problems due to library systems,
management of changes, or version control.

hardware architecture or global data structures and should require a formal design

change. Usually these faults affect a considerable amount of code and refer to capa-

bilities either implemented incorrectly or not implemented at all.

• Interface - This fault type corresponds to errors in interacting with other components,

modules or device drivers, via services, macros, call statements, control blocks or

parameters list.

• Assignment - The fault involves a few lines of code, such as the initialization of

control blocks or data structures.

• Checking - This fault addresses program logic that has failed to properly validate

Chapter 1. The Role of Anomaly Detection for Dependable Systems 25

data and values before they are used. Examples are incorrect validation of parameters

or data in conditional statements.

• Timing/Serialization - The management of shared resources access (e.g., wrong

resources serialized) is not done properly. Examples are deadlocks or missed deadline

in hard real time systems.

• Algorithm - This fault includes efficiency and correctness problems that affect the

task and can be fixed by (re)implementing an algorithm or local data structure without

the need for requesting a design change.

• Build/package/merge - Describe faults that occur because of library systems, man-

agement of changes, or version control.

In a further extension of ODC fault types, made by Duraes et al. [21], this classification

has been further refined by taking into account other factors, such as those related to

language programming constructs being used. Indeed, different fixes can occur for the same

fault. With such modifications each fault type is also distinguished in the subtypes missing,

wrong and extraneous. For instance, it is possible to have Missing Function Calls (MFC)

type. This is a particular kind of algorithm fault in which a required function call is missing.

Developers may come to this detailed classification by adopting the ODC as a first step,

and then, in a second step, by grouping faults according to their nature, defined from the

mentioned “programming constructs” perspective. Finally, in the third and last step, faults

are further refined and classified in specific types.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 26

Table 1.3: Proportion of ODC defect types in field studies

ODC Fault Type Distribution (min-max)
Checking/Assignment 38-56%
Interface 2-10%
Algorithm 20-43%
Function 2-12%
Timing/Serialization 6-14%
Build/Package/Merge 2-4%

Table 1.3 shows the minimum and maximum (rounded) distribution of defect types in

different field studies [21, 32, 31]. These studies have been conducted on mature software

such as IBM operating systems and databases [31, 32] but also on open source software

of different size [21] (small such as vim to larger such as the Linux kernel). These results

suggest that a share of faults, i.e., due to function, algorithm or assignment, is very difficult

to reveal using black-box approaches since a deeper knowledge of the component at hand

is required. However, anomalies due to bad shared resources management, library systems,

checking and interactions with other components can be revealed by monitoring the usage

patterns of the component, e.g., by means of kernel-level tracing facilities. In Chapter 3 the

OS-level indicators exploited to monitor such behaviors will be discussed.

Table 1.5: Some examples of ODC defect triggers

Trigger type Examples
Boundary Conditions / Workload low memory, heavy network traffic, many users
Concurrency simultaneous use of the same resources
Timing particular sequence of operations performed
Logic Flow the delivered service is inconsistent or incorrect
Recovery activation of standby spare, backup procedure
Exception Handling execution of a “catch” clause

A trigger as previously discussed is the condition that allows a fault to be activated.

Particularly of interest for this work are the following trigger categories.

• Boundary Conditions - faults are triggered when the system runs in particularly

critical conditions such as low memory.

Chapter 1. The Role of Anomaly Detection for Dependable Systems 27

• Concurrency - it applies when shared resources are accessed simultaneously. It has

implications of security, locking mechanisms, and performance.

• Logic Flow - it relates to those situation when the operational semantics are in

question.

• Side Effects - it applies to faults that are characterized by seemingly unrelated

conditions, often difficult to diagnose.

• Recovery - the fault is activated when the system is recovering from a previous

failure.

• Exception Handling - the fault is activated after an unforeseen exception-handling

path is executed.

• Timing - the fault is activated when particular timing conditions occur.

• Workload - the fault is activated only when a particular workload condition occur.

• Normal Mode - is a trigger which says, in effect, that no special conditions need

to exist in order for the fault to be activated. Of course, a real trigger exists, maybe

associated with earlier operations.

We argue that these triggering conditions can be valuable guidelines to design black-box

anomaly detection approaches. In particular, we believe that these can be useful in limiting

false positives (see Section 2.3). Indeed, when the knowledge on the monitored component

is limited and the boundaries of the normality region are not precise, it is very common

Chapter 1. The Role of Anomaly Detection for Dependable Systems 28

to trigger false positives when in effect, no anomaly occurs. By monitoring most common

defect triggering specified by ODC and the indicators related to specific defect type, the

accuracy of the anomaly detector could be higher. For instance, let assume the workload

trigger and the indicators related to timing/serialization are monitored. The former are for

instance the number of concurrent requests, the amount of byte write/read, and theÊlatter

the time to acquire/release locks. It is more likely that an anomaly caused by bad syn-

chronization occur when the combination of two events occur: the number of concurrent

requests is over the average and the time to release locks increases.

Bohr-Mandelbug Theory

The ODC classifies software faults according to the semantic of their fix. However, in [8]

it has been recognized that the faults can be elusive, i.e., the failure are not systematically

reproducible. A crucial concern for software engineers is thus to understand what are the

conditions that makes failures reproducible. The reproducibility problem was first discussed

in 1986 by Jim Gray [33]. In that work, Gray first distinguished faults whose activation

is easily to achieve, i.e., solid or hard faults, from faults whose activation conditions are

not systematically reproducible, i.e, elusive or soft faults. Thus, solid faults manifest con-

sistently under a well-defined set of conditions and that can easily be isolated, since their

activations and error propagations lack complexity.

Gray’s paper used the term Bohrbug for solid faults. This is because their activation

conditions recall the rather simple atomic model of the physicist Niels Bohr: Bohrbugs, like

Chapter 1. The Role of Anomaly Detection for Dependable Systems 29

the Bohr atom, are solid, easily detected by standard techniques, and hence boring [33]. Using

again ODC concepts, these include the easy fixes (e.g., deleting an extraneous checking),

but also more complex fixes (e.g., algorithm change).

As for Mandelbugs, there is no common and widely accepted definition –and, it will be

probably true for a long time. In this dissertation, by using ODC concepts, we provide the

following definition: software faults whose activation conditions are intricate enough that

they can only be met when a complex combination of triggers occur. According to Grottke

et al. [28], the “complexity” may arise from (i) a time interval between the fault activation

and the occurrence of a failure, and/or (ii) the influence of one or more of the following

indirect factors: interactions with the operating environment (hardware, operating system,

other components); the influence of the timing/sequence of inputs and operations (relative

to each other, or in terms of the system runtime or calendar time).

According to this view, Mandelbugs also include those faults which activation is non-

deterministic. This kind of faults were initially named Heisenbugs (conied by Lindsay

when working with Gray [28]) referring to the uncertainty principle investigated by the

physicist Werner Heisenberg.

Heisenbugs were envisioned as bugs in which clearly the system behaviour is incorrect,

and when you try to look to see why it’s incorrect, the problem goes away. The term recalls

the uncertainty principle since the measurement process (in this case the fault probing)

alters the observed phenomenon. One typical example is a fault that only occurs during

testing but not when diagnosed under debug-mode. The common reason for this non-

deterministic behaviour is that executing a program in debug mode often cleans memory

Chapter 1. The Role of Anomaly Detection for Dependable Systems 30

before the program starts, and forces variables onto stack locations, instead of keeping

them in registers. Indeed, many Heisenbugs are caused by uninitialized variables and when

variables are non initialized the activation of the fault depends on previous state of the

memory.

For this reasons, Heisenbugs are very difficult to reproduce, due to their non-deterministic

activation, and are considered as special case of Mandelbugs. Indeed, the fault activation

is influenced by the system-internal environment.

Another, subclass of Mandelbugs that devotes further explanations is the one of aging-

related bugs that are the underlying cause of software aging phenomena [17]. These

are faults whose activation and/or error propagation is influenced by the total time the

system has been running and the type and amount of workload served. Their repeated

activation causes the accumulation of internal error states (hence, not propagated to the

interface) that leads to increasing failure rate and/or degraded performance, and eventually

to system crash or hang. As a concrete example of aging-related bug let consider a memory-

leak in program’s heap area, which is memory allocated and never released. Under repeated

memory-leak activation over time, free memory will be no more available.

Figure 1.5 taken from [6] shows the cumulative growth of Bohr-Mandelbugs against

time. Even if the percentage of Mandelbugs is less than half of the percentage of Bohrbugs

it is in any case increasing. This is worrisome since due to their different nature, detecting

anomalies due to Bohr- or Mandel bugs activation (and also the recovery procedure) requires

that distinct techniques are employed [34]. For instance, Figure 1.6 show that different fault

tolerance strategies need to be adopted when dealing with Bohr-Mandelbugs. When dealing

Chapter 1. The Role of Anomaly Detection for Dependable Systems 31

! !"# $ %&'()*#'%# $)'+#,-./ $ (&, $ +"# $ 0&12&'#'+ $ 3$
#4+)1.+# $ &($ 5678 $9.'*#/:;<4 $,;'4 $ (,&1$ 567= $ +&$
56>?$.+ $.'$3/2".$&($56@A6$ $!".+$4.)*B $9.'*#/:;<$
2,&2&,+)&'4$2&)'+$#4+)1.+#4$,.'<#$(,&1$56=@$+&$56>>$
.%,&44$+"#$(&;,$%&12&'#'+46$

! 3+$.$")<"$ /#-#/B $)+ $)4$,#.4&'.:/# $ +&$4+.+# $ +".+ $ +"#$
9.'*#/:;< $,.'<# $C# $ 4## $)' $ +")4 $ 4+;*D $)4 $)' $ +"#$
E75FGG?5F$C)'*&C6$H'$&;,$%.4#B$+")4$+,.'4/.+#4$+&$
.$EI5FGGJ5F$42,#.*$(&,$+"#$K&",:;<46

! 0&12.,)'<$+")4$+&$+"#$LMNGO3P3$4+;*D$Q4##$!.:/#$
=$)'$+"#),$.,+)%/#R$$+"#$K&",:;<$,.'<#$+"#,#$)4$(,&1$
EA5FGGJ5F$ 6 $K&",:;<4 $.,# $. $:#++#, $ %&12.,)4&'$
4)'%# $ C# $ *& $ '&+ $ 2#,(&,1 $ +"# $.<)'< $,#/.+#* $ 4;:$
%/.44)()%.+)&'$&($9.'*#/:;<46

O#S+B$C#$/&&T$.+$.$*)((#,#'+$-)#C$&($+"#4#$*.+.$U$./&'<$+"#$
+)1#$*)1#'4)&'6$V;,$%.4#$4+;*D$*.+.$42.'4$.$/)++/#$&-#,$+",##$

D#.,4$.'*$C#$%.'$4+;*D$ +"#$#((#%+ $&($ +"#$ +)1#$*&1.)'B$&,$
.<)'<$&($+"#$2,&*;%+$)'$+"#$()#/*6$

W)<;,#XIY4"&C4$;4$+"#$K&",G9.'*#/ $:;<$2,&2&,+)&'4$(&,$
+",## $%&'4#%;+)-# $D#.,46 $ $K#/&C$ +"# $ +",## $%".,+4B $C#$./4&$
".-# $ 2/&++#* $ +"# $ %;1;/.+)-# $ <,&C+" $ &($ +"#4# $)'*)-)*;./$
<,&;24B$C")%"$4"&C4$;4$+"#),$,#/.+)-#$<,&C+"46$

3$(#C$&:4#,-.+)&'$(,&1$+"#4#$*.+.$.,#Z$

! !"#,# $)4 $. $ 4+#.*D $ *#%,#.4# $)' $ +"# $ 2,&2&,+)&' $ &($
9.'*#/:;<46 $ [".+ $ 4+.,+4 $ &(($.4 $ >AF $ $ &($
9.'*#/:;<4$)'$D#.,$=B$*,&24$+&$7JF$.'*$7?F$)'$
D#.,7.'*$D#.,$>6$

! !"#$<,&C+"$%;,-#$:#/&C$+"#$+",##$%".,+4$)//;4+,.+#4$
+")4 $ 2"#'&1#'&' $:#++#,6 $!"#,# $ 4##14 $ +& $:# $.'$
;2+)%T$)'$+"#$K&",:;<4$)'$D#.,$+",##B$C"#,#.4$+"#$
9.'*#/:;<$%&'+,):;+)&'4$*&$'&+$,)4#$.4$(.4+6 $!")4$
%.'$:#$*;#$ +&$.$-.,)#+D $&($2"#'&1#'.$%&''#%+#*$
C)+"$)'%,#.4#$*#2/&D1#'+B$4./#4$.4$)4$+"#$%.4#$C)+"$
1.'D$2,&*;%+46 $K;+B $C".+ $*$ 4+.'* $&;+ $)4 $ +".+$
C")/# $ +"#,# $)4 $ 4&1#$ %&,,#42&'*)'< $;2+)%T $)' $ +"#$
9.'*#/:;<4B$+"#D$4##1$+&$:#$/#-#/)'<$&;+6$

! !")4 $ +#//4 $;4 $ +".+ $)+ $)4 $ /)T#/D $ +".+ $ 9.'*#/:;<$
2&2;/.+)&'$*$'&+$*)4.22#., $)'$ +)1#6 $[")/# $ +"#$
';1:#,4 $.'*$2,&2&,+)&'4$1.D$ (.//B $ +"# $ +,#'* $ /)'#$
4##14$ +&$4;<<#4+ $ +".+ $ +"#D$C)// $,#1.)'B $2,&:.:/D$
%/&4#,$+&$+"#$/&C#,$:&;'*$&($+"#$#4+)1.+#46$$

P\993]^

!")4$2.2#,$".4$1.*#$+"#$(&//&C)'<$%&'+,):;+)&'4Z$

=6 [#$*)4%;44$ +"#$K&",G9.'*#/ $ +"#&,D$&($:;<4$.'*$
.,<;#$ +".+ $. $<,#.+#, $)'4)<"+ $.'*$*)((#,#'+).+)&'$)4$
2&44):/#$+",&;<"$+"#$;4#$&(V_0!,)<<#,46

76 [#$%&'*;%+$.$%.4#$4+;*D$+&$1#.4;,#$+"#$2,&2&,+)&'$
&($K&",G9.'*#/$:;<4$;4)'<$V_0$!,)<<#,46$

>6 V;,$%.4# $ 4+;*D$,#4;/+4 $.,# $%&12.,#* $ +&$ +"# $ LMNG
O3P3$4+;*D$&'$K&",G9.'*#/$:;<46

?6 V;, $ #4+)1.+#4 $ &($9.'*#/:;< $ 2,&2&,+)&'4 $,.'<#4$
QE75G?5F $,.'<#R $.,# $ -#,D $ %&12.,.:/# $ +& $ +"&4#$
(&;'*$)'$+"#$LMNGO3P3$4+;*D6$

A6 [#$()'*$ +".+ $ +"#$9.'*#/:;<$2,#4#'%#$)4$;')(&,1$
.%,&44$1;/+)2/#$)12.%+$<,&;24$.'*$%&12&'#'+4$&($
+"#$2,&*;%+6

I6 [#$ (&;'*$ +".+ $)' $&;,$ %.4# $ 4+;*DB $.4 $ +"# $2,&*;%+$
.<#4 $)' $ +"# $()#/*B $ +"#$2,&2&,+)&'$&($9.'*#/ $:;<4$
4##1#* $ +& $ *,&26 $ [")/# $ +")4 $ ()'*)'< $ %.''&+ $:#$
<#'#,./)`#*B $)+ $ * $./#,+ $;4 $ +& $ C.+%" $ +")4$
2"#'&1#'&'$)'$&+"#,$%.4#$4+;*)#46$a&C#-#,B$<)-#'$
+"#$';1:#,4$)+$)4$%/#.,$+".+$1#+"&*4$+&$.//#-).+#$+"#$
)12.%+$&($9.'*#/:;<4$ $#.,/D$)'$+"#$ /)(#+)1#$&($.$
2,&*;%+$C)//$:#$&($4)<')()%.'+$-./;#6$

!"#$%&'()'*%+,+%-"+./'+0'1+2%345.6&7'8$#/'59%+//'5'-":&'
7".&;'<5-5'"/',5%-"-"+.&6'8='=&5%'/2+>".#'925.#&/'".'-2&'
0"%/- '-2%&&'=&5%/;'?2&'7+>&/-'925%-'/2+>/'-2&'9$:$75-"@&'
#%+>-2 ' +0 ' 1+2%345.6&7 ' 8$#/ ' ' 5#5"./- ' -":&A ' "77$/-%5-".#'
/+:&'+0'-2&'6=.5:"9/'5-',75=;'

!"

Figure 1.5: Proportions of Bohr-Mandelbugs across a timeline

Chapter 2. Software Fault Injection: Background and related work 40

individual implementations [129]. Conversely, Mandelbugs can be tolerated by reinitializing

the software state and retrying the failed operation, because their activation conditions

tend to disappear due to their transient nature [83, 34, 88]. This finding enables to devise

fault-tolerant architectures that are more cost-effective, since several software failures can be

avoided without the additional costs of the design diversity, in which the same functionality is

implemented several times by different teams and using different processes and technologies.

It is also advisable to detect and remove Bohrbugs during development via systematic and

thorough testing [88].

!"#$%&'()*!+(,-../'$%&'+(%00/-1%2"345(

6"7&89:4(;%3.'/89:4(
<:-3:=

&'/%>'.(89:4(

!"#$%%&'%(
!")&%'(

*&+",)&-.(

/"-,.(

01",230'(

/")-2,-(

2114&5230'(

/"#00-(

'0*"(

!"+"4016"'-(

172)"(
81",230'24(172)"(

Figure 2.4: Relationships between software fault tolerance and Bohrbugs, Mandelbugs, and
Aging-Related Bugs [192].

Several field data studies found evidence that Mandelbugs account for a significant part

Figure 1.6: Different fault tolerance strategies that can be used with Bohr-Mandelbugs

Chapter 1. The Role of Anomaly Detection for Dependable Systems 32

with the detection of software aging related anomalies it is required that statistical trend

analysis techniques are employed.

1.3 The Anomaly Detection Problem

It is widely accepted that the anomaly detection problem, in its most general form, is

not easy to solve –indeed, most of existing anomaly detection techniques solve a specific

formulation of the problem [2].

This dissertation addresses anomalies that need to be detected on-line and that originate

from software faults created during development but that are activated during the use

phase, i.e., when the system is released and delivering its service. Errors due such fault

activations are both transient, i.e., with a presence that is bounded in time, or permanent,

i.e., continuous overtime. Furthermore, this work focuses on anomalies due to non-malicious

faults activation. Indeed, even if the proposed anomaly detection approach is general can be

applied to detect different classes of anomalies, among which the one caused by vulnerability

exploitation, the experimental evaluation of the framework has been conducted by means of

a fault injection tool that do not allow to emulate malicious activities; thus, the framework

effectiveness against malicious faults has not been assessed.

If all the correct states of the system were enumerable, a straightforward way to detect

anomalies would be to compare current system state with such well-known “normal states”.

Of course, such information is not available, but even if it were, the number of possible sys-

tem states (combination of communication, computation, storing, interaction and physical

condition states for each component) would be so big to make unfeasible to solve the search

Chapter 1. The Role of Anomaly Detection for Dependable Systems 33

problem.

To make the detection of incorrect system behavior feasible, it is typically performed by

(i) monitoring the service delivered by the internal components of the systems at the com-

ponent interface level, so only their external states, or (ii) by checking the warning/errors

messaging it is able to store into the event logs –and these situations are especially true when

dealing with OTS-based components. In the former option, the components are treated as

black-boxes since nothing is known about their internal states and thus, detection is possible

only when an error reaches the component interface. The latter relies on the component

internal built-in detection mechanism that signal anomalous conditions. Of course, mixed

approaches are also possible.

However, the available information to reveal anomalies is often limited (e.g., no failure

modes and effect analysis performed), imprecise (e.g., inconsistent data in logs) and not

always well-suited for to automatic on-line analysis. These and other challenges to the

on-line anomaly detection are discussed in the following section.

1.4 Anomaly Detection Challenges in Mission-Critical Soft-
ware Systems

Thirty years ago the predominant cause of failures in mission-critical systems was the hard-

ware components. On the contrary, most of the runtime anomalies occurring in modern

computing industry systems are due to software [5]. This is true also for mission-critical

systems. For instance, some studies of anomalies of NASA space missions Voyager and

Chapter 1. The Role of Anomaly Detection for Dependable Systems 34

Galileo, which are collected in an institutional reporting system, has revealed that anoma-

lies of the most recent mission, i.e., Galileo that was launched in 1989, are mostly due to

software and are fixed by changing in-flight or ground-software systems [35, 36]. This imply

that the monitoring, the detection and the mitigation means need to be more sensitive to

software anomalies than before.

As discussed previously, the Borhbug vs Mandelbug theory classifies software faults

based on their intrinsics difficult to reproduce the failure (i.e., independently from the skills

of the reproducer). In fact, different indicators need to be collected and different detection

mechanisms are required to timely reveal anomalies depending on the nature of software

fault. For instance, the difficult of reproducing aging-related bugs is due to the complex

error propagation phenomena that lead to component(s) or even OS failures. The problem

in revealing software aging-related anomalies rely on the detection of an aging trend, namely

the occurrence of progressive resource and performance degradation not due to load peaks

or other transitory phenomena. However, software aging trends are intricate to detect. In

fact, in [16] we have shown that according to the applied workload and to the type of aging-

related bug, software aging can lead to quite smoothly and linear trends or to extremely

non-linear performance degradation.

Another important aspect of modern mission-critical systems is that they increasingly

rely on the integration of OTS and third party components, such as OS, communication

middleware and database. This is indispensable to reduce time to market but leads to

systems that show unexpected behaviors due to unforeseen components interdependency

[5]. These anomalies often arise in the production environments under specific conditions

Chapter 1. The Role of Anomaly Detection for Dependable Systems 35

due to the occurrence of special states of hardware/software and/or workload (e.g., load

peak, processes schedule, allocated memory over a threshold). Moreover, OTS components

often do not have a specification, and when this is present, it is not precise and complete,

as the hardware counterpart [5]. So it is very difficult to have a clear distinction between

failing and non-failing behaviors of the components.

The quality of information sources is often not adeguate. For instance, logs, which

represent one of the most common source of information to analyze and to diagnose systems

behavior [37, 38, 39], have been discovered to be inadequate for the assessment of system

reliability [40]. This is basically due to the lack of a systematic approach for the production

of logs that is currently dependent on skills and competencies of developers [38].

Finally, the operating environments may be variable and not stationary. Sources of

variability are (i) the alternation between periods with heavy load, which may imply high

demand of cpu, memory and network bandwidth, and periods having low resource usage,

(ii) the occurrence of background activities (e.g., logs rotations, backup procedures, clock

synchronization), (iii) the reconfiguration of components and communication elements, (iv)

the recovery procedures. In such cases, the monitoring infrastructure should “adapt” its

internal logic to the changing situation. For instance, detectors that typically use worst case

bounds to reveal anomalies have little efficacy in case of structural changes to the operating

environments, such as after the reconfiguration of the network. The recent cascade failures

of the Amazon Elastic Block Storage have been ascertained to be in part caused by timeouts

that were too conservative for timely detecting the failing components [41].

Chapter 2

Monitoring and Detection:
Approaches and Frameworks

Monitoring computer-based systems consists in collecting information about their activities, with
the aim of verifying (i.e., detecting) if these are compliant with the expected or specified behaviors.
This thesis focuses on approaches and techniques for on-line monitoring, i.e., the output of the
verification activity is meant to be produced at runtime. On-line monitoring is crucial for timely
activate mitigation means in face of anomalies that may lead to irremediable or even catastrophic
failures. This chapter surveys monitoring and detection approaches and frameworks proposed in
the field of dependable computing. A classification of monitoring and detection approaches and
techniques is provided with the purpose of better identifying and analyzing the suitability and/or the
limitations of actual solutions. Finally, the chapter is concluded by discussing the set of metrics that
allow to characterize the performance of on-line anomaly detectors.

2.1 Background

The academic work on on-line monitoring and detection of software anomalies is surely

endless. In fact, since computers have started to replace human or mechanical devices the

monitoring and detection problems have arisen.

A typical infrastructure for monitoring computer systems, which is depicted in Figure

2.1, is composed of the following logical layers: (i) sensing, (ii) transforming, (iii) commu-

nication and (iv) detection. The sensing layer separates the concrete elements, hereafter

probes, that gather relevant system information from the rest of the infrastructure. The

36

Chapter 2. Monitoring and Detection: Approaches and Frameworks 37

!

"#$%&$'!

!

!

()*$%+,)-&$'!

!

!

.,--/$&0*1,$!

!

!

2#3#01,$!

!

Figure 2.1: A general high-level overview of monitoring and detection infrastructures

probes collect at predefined time, on-demand, or when an event occurs data of interest

about system behavior. The probes can be realized in hardware or software and with re-

spect to the system, these can be placed internally or externally. In the former case, the

monitored system needs to be modified accordingly.

The transforming layer is in charge to prepare the collected data in order to be best

processed in the upper layer. The operations typically performed are: changing format,

filtering, correction and aggregation. The result of these operations are called hereafter

processed data.

The communication layer consists in protocols and communication means used to deliver

data to the detection layer. If the detection logic is placed in a different node with respect

to the sensing and transforming modules, this layer needs to guarantee that the monitored

information is correctly delivered to the detection module, i.e., the monitored processed

data are delivered timely, in order and unmodified. Usually, a dedicated network can be

Chapter 2. Monitoring and Detection: Approaches and Frameworks 38

used to send the monitored data by limiting the impact on the bandwidth used by the

applications.

The detection layer encompasses the logic needed to reveal anomalies. For large scale

distributed systems the detector cannot consist in a central and unique point, but the

detection logic is usually spread across several modules, often called agents. Each agent

can have only a partial view of the system state. Hence, the decision about the health of

the system as whole, can only be obtained by aggregating the views of agents. Usually, an

agent, which monitors only a part of the system, can also request some information to other

agents to make the decision about the part of the system state whose is responsible.

It is worth to note that depending on the target system, the separation between these

layers could not be perfectly clear.

In this chapter the focus has been devoted to the analysis of the first and the last layer,

i.e., the sensing and detection, by discussing in detail the monitoring and detection ap-

proaches and frameworks proposed in the field of dependable computing.

The type of target system, its dependability requirements and the available knowledge

about the behavior of system and its components determine the constraints that engineers

need to take into account when architecting the monitoring and detection infrastructure.

These constraints impact on:

• the detection performance, i.e., the requirements of the verification activity, such as

timeliness, coverage and accuracy, that also drives the design of other layers. More

Chapter 2. Monitoring and Detection: Approaches and Frameworks 39

details about the metrics commonly used to evaluate detection performance are dis-

cussed in Section 2.3.

• the overhead of the monitoring infrastructure, i.e., the extra work imposed to the

target system because of the integration of the probes, the transforming, the commu-

nication and the detector elements.

• the intrusiveness of the sensing elements, i.e., the degree of modifications that can be

performed to the components and the operating environment to add the monitoring

probes.

• the type of sensing, i.e., the possibility to use hardware, software or hybrid probes to

collect data. In this dissertation only software probes are discussed.

Furthermore, beside the aforementioned aspects, to architect efficient and effective mon-

itoring and detection strategies engineers also need to take into account the issues discussed

in Section 1.4. In particular, the characteristics that the framework should have are: (i) be

suited for OTS-based systems, (ii) adapt to changing operating environments, (iii) be of

general use, i.e., useful to reveal different kinds of anomalies.

The literature review has been performed by taking into account the reference mon-

itoring and detection architecture (see Figure 2.1), the discussed monitoring issues and,

in particular, different perspectives of analysis, which are summarized in Figure 2.2 and

discussed as follows:

Chapter 2. Monitoring and Detection: Approaches and Frameworks 40

Detection Approaches/
Techniques

Application Domain

Non-malicious

Malicious

Performance

Detector Nature
Local

Distributed

Detection Grain

function

thread/process

component

node

Anomaly Type

Point

Contextual

Collective

Monitoring
Direct
Indirect

Processed Data
Numeric Indicator

Object

Probe Nature
HW/SW

Internal/External

Figure 2.2: The perspectives of analysis for the monitoring and detection approaches

8 · Chandola, Banerjee and Kumar

(1) Contextual attributes. The contextual attributes are used to determine the
context (or neighborhood) for that instance. For example, in spatial data sets,
the longitude and latitude of a location are the contextual attributes. In time-
series data, time is a contextual attribute which determines the position of an
instance on the entire sequence.

(2) Behavioral attributes. The behavioral attributes define the non-contextual char-
acteristics of an instance. For example, in a spatial data set describing the
average rainfall of the entire world, the amount of rainfall at any location is a
behavioral attribute.

The anomalous behavior is determined using the values for the behavioral attributes
within a specific context. A data instance might be a contextual anomaly in a given
context, but an identical data instance (in terms of behavioral attributes) could
be considered normal in a different context. This property is key in identifying
contextual and behavioral attributes for a contextual anomaly detection technique.

Monthly Temp

Time

Mar Jun Sept Dec Mar Jun Sept Dec Mar Jun Sept Dec

t2t1

Fig. 3. Contextual anomaly t2 in a temperature time series. Note that the temperature at time
t1 is same as that at time t2 but occurs in a different context and hence is not considered as an
anomaly.

Contextual anomalies have been most commonly explored in time-series data
[Weigend et al. 1995; Salvador and Chan 2003] and spatial data [Kou et al. 2006;
Shekhar et al. 2001]. Figure 3 shows one such example for a temperature time series
which shows the monthly temperature of an area over last few years. A temperature
of 35F might be normal during the winter (at time t1) at that place, but the same
value during summer (at time t2) would be an anomaly.

A similar example can be found in the credit card fraud detection domain. A
contextual attribute in credit card domain can be the time of purchase. Suppose an
individual usually has a weekly shopping bill of $100 except during the Christmas
week, when it reaches $1000. A new purchase of $1000 in a week in July will be
considered a contextual anomaly, since it does not conform to the normal behavior
of the individual in the context of time (even though the same amount spent during
Christmas week will be considered normal).

The choice of applying a contextual anomaly detection technique is determined by
the meaningfulness of the contextual anomalies in the target application domain.
To Appear in ACM Computing Surveys, 09 2009.

Figure 2.3: An example of contextual anomaly

Chapter 2. Monitoring and Detection: Approaches and Frameworks 41

Figure 2.4: An example of collective anomaly in electrocardiogram (medical domain)

• application domain, i.e., the scope in which the detector has been used. These are

classified into: non-malicious activities (e.g., due to infinite loops, memory bloating,

crash), malicious activities (e.g., intrusions, worms, viruses) and performance issues

(e.g., overload, bottleneck identification, which are not caused by fault activation or

malicious attacks).

• detector nature, i.e., the way the decision process is made. It can be local if the

decision about the processed data is independent of other detectors (the hexagons in

white boxes in Figure 2.5), i.e., the agents; or distributed if the decision is dependent

upon the data processed in more than one node of the system and on the decisions of

other agents (the hexagons in the grey boxes in Figure 2.5).

• detection grain, i.e., the granularity of the revealed anomaly. Usually, the finer

the grain, the greater the overhead of the monitoring and detection framework. The

following levels can be generally found for on-line detection: function, thread, process,

Chapter 2. Monitoring and Detection: Approaches and Frameworks 42

component, node.

• anomaly nature, according to [2] there are three kinds of anomalies: point anomaly,

which is a processed data that is always considered anomalous independently of the

rest the information; contextual anomaly, i.e., processed data that can be judged to

be anomalous only in a specific context (e.g., spacial or time), which may depend on

the application domain (see Figure 2.3 taken from [2]); collective anomaly, namely a

collection of data in a given context (e.g., in a ordered sequence), which can only be

considered anomalous with respect to the whole data set (see Figure 2.4 taken from

[2]).

• processed data, the type of data that are managed by the detector to reveal an

anomaly. These can be generally divided into the following classes: numeric indicator,

hereafter simply indicator, for which exists a mapping from the monitored entity to a

measurement value; object, which has a particular structure and properties (e.g., the

vertexes of a graph, the event logs, the packets sent/received). The numeric indicators

can be further classified according to the scale, i.e., the type of mapping, used to obtain

the measure. The most common scale types are the following [42]: categorical, ordinal,

interval, ratio, absolute. An indicator with categorical scale takes values from a set

of exclusive, unordered values (e.g., male/female). An indicator with ordinal scale

takes a value from a set of exclusive, ordered values (e.g., low/medium/high) such

that the difference between any two values is undefined but the relative difference is

meaningful. An indicator with interval scale takes values for which differences can be

Chapter 2. Monitoring and Detection: Approaches and Frameworks 43

computed. However, the values start from an arbitrary point (i.e., there is no notion

of a zero value, such as in temperature measured in Fahrenheit or Celsius). If there

exists a meaningful zero value and the ratio between two indicators is meaningful, then

the ratio scale can be used (e.g., the Kelvin temperature scale). The absolute scale

is used when the value itself is the only meaningful transformation (e.g., a counter).

The proposed detector focuses on indicators having a ratio scale and absolute scales.

• monitoring approach, i.e., the way the processed data are obtained: directly, when

these are derived straight from the monitored components, or indirectly, if they are

derived from intermediate data.

• probe nature, the way the sensing elements are implemented, i.e., hardware, software

or hybrid. A further classification for probes can be made by looking at their placement

with the respect to the target system. Thus the probe can be internal or external.

2.2 Approaches and Frameworks

Detection approaches and techniques have been proposed in different research areas among

which statistics, machine learning, data mining and information theory. The suitability of

the approaches and the techniques that can be exploited to reveal anomalies depends on

the application domain and, of course, on the nature of the anomalies and the processed

data. For instance, in case of statistical detection approaches, different techniques need to

be used for ordinal or ratio numerical indicators.

Complex software systems such as databases, application servers, web servers and data

Chapter 2. Monitoring and Detection: Approaches and Frameworks 44

!"#$%"&'()#"(') !"#$%"&'()#"(') !"#$%"&'()#"(')

!"#$!%

&'('#(")*%
!"#$!%

&'('#(")*%

!"#$!%

&'('#(")*%

"++,#$-."#)/-0'& %%

%%

!"#$%"&$#1)#"(') !"#$%"&$#1)#"(')

($2%&$3,%'()

('%'*%"&2)

($2%&$3,%'()

('%'*%"&2)

+,('),$!%*')-+#'*%

)$./&$($%

0)"#'**'&/&$($%
)$./&$($%

0)"#'**'&/&$($%

)$./&$($%

0)"#'**'&/&$($%

Figure 2.5: A high-level overview of distributed detectors

distribution middleware are enhanced with monitoring tools that can be used independently,

without the need for any pre-existing infrastructure. Since they exploit the knowledge of the

internals of the components such tools feature advanced detection facilities at lowest grain

possible. However, despite their potential, the manual configuration and tuning of such

built-in detector have an adverse effect on their real application and exploitation. Indeed,

since they lack a general management infrastructure, often system administrators prefer

general purpose monitoring framework, such as the IBM Tivoli Monitoring [43].

In the following sections the scientific work in the field of dependable and secure com-

puting addressing anomaly detection problem and proposing general-purpose monitoring

framework is reviewed. In particular, the conducted analysis is divided in two sections.

monitoring and detection. In the former, the literature is analyzed from the perspective

of the monitoring approach (i.e., directly or indirectly), the probe nature, and the process

Chapter 2. Monitoring and Detection: Approaches and Frameworks 45

data, without addressing the detection process. In particular, the architecture of the most

interesting monitoring frameworks are also described.

In the second section, the work is surveyed from the detection perspectives, i.e., the

application domain, the detector nature, the detection grain and the anomaly type. It is

worth to note that some studies also address the diagnosis problem, namely, other than

monitoring and detection issues, the identification of the faulty component(s) and the type

of activated fault is also investigated. Indeed, a timely detection is crucial for efficient

diagnosis (and recovery) procedures [34].

It is worth to recall that our target applications are mission-critical systems consisting

in many interconnected nodes in which OTS components are deployed. The proposed

monitoring and detection framework, which is described in Chapter 3, detects anomalies

at single node by means of indirect monitoring approach and software probes placed at

OS-level. For this reason the literature review is more focused on local rather than global

detectors with particular interest on indirect monitoring approaches.

2.2.1 Monitoring

Many detection techniques exploit direct monitoring approaches to collect useful system

health information. For instance, a component may be queried by means of external probes

[44, 45] or it can be internally prepared to periodically send heartbeats [46, 47] or to store

relevant event logs [48, 49] when some conditions occur.

Log-based mechanisms typically exploit errors and warning in the logs for classical post-

portem analysis [37, 38, 39, 48, 50], i.e., off-line analysis with the aim of diagnosing the root

Chapter 2. Monitoring and Detection: Approaches and Frameworks 46

cause of system failures. This is especially true when dealing with large, complex systems,

consisting of heterogeneous software components for which logs are often the only source

of information about the health status of the monitored system [51]. Several studies also

exploit event logs for on-line anomaly detection activities [52, 49, 53]. For instance, in [49]

logs are collected to detect anomalies that lead to system failures, such as crashes; while,

in [52] these are used along with system activity reports to predict the performance of a

clustered system and take proactive management actions. In [53] event logs are correlated

by means of a bayesian network approach in order to enhance intrusion detection systems

(IDS) and reveal compromised users.

However, several studies have highlighted the inadequacy of the logs for the assessment

of reliability. Hence, the suitability for on-line anomaly detection is also doubtful. The

first issue of current logs are related to their heterogeneity and impreciseness [50]; indeed,

they may provide ambiguous information [38] and often accurate filtering techniques are

needed. As discussed in Section 1.4, this arises from the lack of a systematic approach for

the production of logs that is currently dependent on skills and competencies of developers

[54]. Crucial decisions regarding the production and collection of logs are taken only in the

latter stages of the life cycle of the software (e.g., during the development of the code). For

these reasons, it is reasonable to state that the current logging systems are not designed to

fully support automated on-line anomaly detection.

Other direct probing approaches, especially studied in the work related to fault tolerant

distributed systems, are based external probes, also called pull-based; while, the approaches

relying on heartbeats are also known as push-based monitoring [46]. The differences between

Chapter 2. Monitoring and Detection: Approaches and Frameworks 47

these two approaches are shown in 2.6

!

"#$%&#'()!

*$+&,!

!

!

"#$%&#'()!

*$+&,!

!

!

"#$%&#'!

!

!

"#$%&#'!

!

!"#$%&"#%'

#()*"+'

$",(-'

-./01/&,2(!3#$%&#'%$4!

-.221/&,2(!3#$%&#'%$4!

Figure 2.6: Push- vs pull-style monitoring approach

Direct external probes, i.e., the pull-based approach, are widely used for anomaly detec-

tion. This, indeed, can be performed by appropriately selecting the probes and analyzing

the obtained results. In [55], for instance, the detection of software aging anomalies in

application servers is accomplished by means of external probes. The probes request an

amount of load that exceed the server capacity and the throughput of the application is

measured. Machine learning techniques such as Naive Bayes, J48 and Support Vector Ma-

chine are used to detect the failed responses under heavy workload that are due aging

problems. This probing approach has a non-negligeble overhead because of the excessive

load requested, which, above all, could potentially lead to robustness problems.

In [56] different implementations of unreliable detectors are compared by using both

external and internal direct probing. In [46] a modular detector based on heartbeat and

Chapter 2. Monitoring and Detection: Approaches and Frameworks 48

on the on-line prediction of the timeout is proposed and experimentally evaluated. In

[57] the heartbeat detection mechanism is integrated into the OS, i.e., Minix, to reveal

the failures of unreliable drivers, i.e., those OS components that are expected to fail more

frequently. However, the choice of the timeout is crucial since short values could lead

to an excessive amount of false alarms, which can trigger unnecessary recovery actions.

For instance, in Minix the reincarnation server, which supervises the drivers, can kill and

recreate the processes that implies unnecessary delay of driver operations.

The push/pull monitoring approaches are also envisioned by the Fault Tolerant CORBA

specification [58] that defines an architecture and a framework for resilient, highly-available,

distributed software systems. This infrastructure provides means for transparent replication

and recovery. An object can be monitored by implementing the is alive() function, in the

pull-style mode, or by sending periodically “alive” reports onto the Fault Notifier channels,

in the push-style counterpart.

Designing monitoring approach based on push/pull style depends on the system require-

ments and are usually well-suited when the status of components has to be known only in

some predefined periods. In the case of push-style monitoring the same detection perfor-

mance can be obtained by the half of messages exchanged. Hence, push-style detectors

are generally preferred in mission-critical systems that need to be monitored for the entire

system lifetime [46].

However, the problem with external and internal direct probing lies behind their design.

In particular, the placing of the probe stations, the monitored interval, the probe points,

and the specific probe implementation have to be carefully optimized for the target system.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 49

This task is often accomplished in an ad-hoc manner and it is based on the knowledge of

the system, on engineers experience and on rules of-thumb. Probes are usually selected

off-line and run periodically using a fixed schedule, which depends on the detection latency

requirements. For detection and diagnosis purposes, this approach may be quite inefficient

since it needs to run repeatedly an unnecessarily large set of probes capable of revealing all

possible problems, many of which might in fact never occur [45]. Moreover, existing direct

probing approaches typically assume a static model of the system, i.e., the system state does

not change during the detection process. This contrasts with the nature of software failures

that, as discussed in Section 1, may be also transient (e.g., concurrency bugs, performance

degradation).

The optimization of the probe set selection has been addressed in [44, 59] where the au-

thors propose some approaches based on simple heuristic search that yield close-to-optimal

solutions. In [45] an adaptive incremental probing scheme is proposed.

When the monitored components are black-boxes designed without heartbeat mecha-

nisms and cannot be modified, an alternative to the pull-based scheme is the indirect

monitoring approach. This consists in obtaining the information without directly rely-

ing on the monitored components. Indeed, useful information can be collected at different

probe-points of the system, such as the network, the virtual machine and the operating sys-

tem, by inserting internal or external probes without the components-awareness. Commonly

used techniques use network sniffing, hardware counters, OS-level tracing mechanisms, and

virtualization monitoring facilities. In Table 2.1 some examples of indirect monitoring are

Chapter 2. Monitoring and Detection: Approaches and Frameworks 50

described.

Table 2.1: Most common indirect monitoring approaches

Probe Examples of monitored Examples of monitored
Level entities collected information

Network LDAP servers, Web server, #Packet, Avg packet size,
Database, Application Server #Errors, Source/Destination addresses

HW Machine (pipeline, bus, cache), TLB misses, stall cycles, hang,
Virtualized Env., Applications memory access latency

OS Process and Threads CPU usage, memory, disk/network IO
(user/kernel) syscall, scheduling events, #Threads

JVM / Java and.NET #thread, memory, classes
.NET Applications gc statistcs, cpu time

Several frameworks detect anomalies by sniffing packets exchanged between the compo-

nents on the network. In [60, 61] the authors collect packages to deduce the global behavior

of networked systems and to detect faulty entities. In [62] wavelet analysis on the packet

traces are used to reveal network performance anomalies. In [63] packet size and timing are

used to detect malicious stepping stones, i.e., non authorized opened connections among

machines.

Other detectors use OS tracing facilities to collect the low-level information such as

syscall, interrupts, scheduling times and IPC. One of first studies in this direction has ad-

dressed the intrusion detection problem [64]. The authors propose to detect the intrusions

by identifying anomalous system call traces of privileged processes. This approach has been

extended in many directions. In [65] network connections are considered along with system

call traces. Wagner et al. [66] add several models of the nominal behaviors, which are not

based on statistical inference but on application source code static analysis. However, in

Chapter 2. Monitoring and Detection: Approaches and Frameworks 51

case of OTS- and legacy-based systems the source code may be not available; hence, the

application cannot be analyzed. In [67] the sequence of system call as well as their parame-

ters are considered and cluster analyses are used to characterize the normal behavior. The

overhead experienced to collect all system call traces makes difficult to use these techniques

during operation.

Wang et al. [68] reveal hangs by means of OS signals and hardware performance coun-

ters. In [3] the tracing facilities provided by Linux are exploited to detect application hangs

or crashes. The detection framework is composed of a set of monitors in charge of generating

alarms and a detector that decides about the state of the system by correlating alarms of

the monitors. In [20] the authors use some indicators representing the state of the Windows

OS, e.g. the number of context switches, of semaphores and mutexes, to predict imminent

crashes or hangs.

Among indirect probing strategies, function boundary tracing techniques that monitor

entry/exit events of functions can also be adopted to reveal anomalies in application and

OTS behavior [54] by using instrumentation tools, such as the DTrace [69]. However, these

techniques are more suited for performance bottleneck analysis (e.g., average service time of

functions) or reverse engineering (e.g., by building call graphs). Indeed, they are useful to

monitor the execution of a software component at the binary level and to perform manual

analysis of the observed behavior. Hence, it is difficult to reveal complex anomalies, such

as software aging-related, solely looking at times of function entry/exit.

In [70, 71] the authors use both direct and indirect monitoring approaches. Agarwal et al.

[70] exploit application- and system-level indicators such as number of served requests, CPU

Chapter 2. Monitoring and Detection: Approaches and Frameworks 52

usage, response time, number of queued requests, which are collected at regular instants of

time at the nodes of a clustered multi-tier enterprise application. The aim of the framework

is to identify the root node(s) of anomalies, e.g., application hangs or crashes, overloads and

configuration errors. In [71] the authors identify performance degradation due to software

aging anomalies in a large telecommunication system by means of system-level indicators,

such as the available memory, and user-level indicators, such as number of packet loss in a

time interval, are collected. The degradation is detected when the packet loss and capacity

are over predefined thresholds.

External indirect probes are used by Monitor [61]. This is a hierarchical, application

neutral framework to reveal anomalies at protocol level in large-scale distributed systems

running legacy code. The Monitor is based on indirect probes that observe exchanged mes-

sages between the protocol participants. The messages are used to reconstruct a runtime

state transition diagram of the participants. The Monitor has also been extended to ac-

complish diagnosis tasks by means of a set of test procedures [72] chosen starting from the

inferred state of the participants.

Monitoring frameworks

A lot of research effort has been devoted to the enhancement of data representation and

communication protocol to limit the overhead of the monitoring infrastructure. Proba-

bly, the most popular standard addressing such issues is the Simple Network Management

Protocol (SNMP) [73], which is also part of the Internet Protocol Suite. Other popular

Chapter 2. Monitoring and Detection: Approaches and Frameworks 53

standards for specific technology such as Java, .Net, and Web Service, are JMX [74], WMI

[75], and WSDM [76], respectively.

Many tools focus on reducing communication and storage overheads in a distributed

environment. When monitoring hundreds or even thousand of nodes in cluster and/or grid

systems scalability becomes the main requirement. In [77] the authors present Ganglia,

a distributed infrastructure for monitoring clusters and grids resources (e.g. load, CPU,

memory, disk usage, response time) at different time-scale. The architecture of Ganglia is

depicted in Figure 2.7. To meet scalability requirement, the infrastructure uses a hierarchical

Ganglia federates multiple clusters together using a tree of point-to-point connec-
tions. Each leaf node specifies a node in a specific cluster being federated, while
nodes higher up in the tree specify aggregation points. Since each cluster node con-
tains a complete copy of its cluster’s monitoring data, each leaf node logically rep-
resents a distinct cluster while each non-leaf node logically represents a set of
clusters. (We specify multiple cluster nodes for each leaf to handle failures.) Aggre-
gation at each point in the tree is done by polling child nodes at periodic intervals.
Monitoring data from both leaf nodes and aggregation points is then exported using
the same mechanism, namely a TCP connection to the node being polled followed by
a read of all its monitoring data.

4. Implementation

The implementation consists of two daemons, gmond and gmetad, a command-
line program gmetric, and a client side library. The Ganglia monitoring daemon
(gmond) provides monitoring on a single cluster by implementing the listen/
announce protocol and responding to client requests by returning an XML represen-
tation of its monitoring data. gmond runs on every node of a cluster. The Ganglia
Meta Daemon (gmetad), on the other hand, provides federation of multiple clus-
ters. A tree of TCP connections between multiple gmetad daemons allows monitor-
ing information for multiple clusters to be aggregated. Finally, gmetric is a
command-line program that applications can use to publish application-specific
metrics, while the client side library provides programmatic access to a subset of
Ganglia’s features.

4.1. Monitoring on a single cluster

Monitoring on a single cluster is implemented by the Ganglia monitoring daemon
(gmond). gmond is organized as a collection of threads, each assigned a specific task.

client

gmetad

gmetad

gmetad

Node

gmond

Node

gmond

Node

gmond. . .
Node

gmond

Node

gmond

Node

gmond. . .

dataconnect

failoverpoll

poll poll

failoverpoll

Cluster Cluster

XML over TCP

XDR over UDP

Fig. 1. Ganglia architecture.

822 M.L. Massie et al. / Parallel Computing 30 (2004) 817–840

Figure 2.7: The architecture of Ganglia

architecture and the aggregation of collected data.

Another approach to monitoring large-scale systems that also organizes nodes using

hierarchy has been proposed in Astrolabe [78]. Furthermore, a peer-to-peer gossip-based

protocol is used to share the collected data.

CoMon, presented in [79], also monitors resources of distributed systems, such as the

nodes of PlanetLab. The main purpose is to understand their interactions remaining largely

Chapter 2. Monitoring and Detection: Approaches and Frameworks 54

agnostic about the applications running on the nodes.

Other tools designed to be high scalable and flexible are Nagios, widely recognized by

IT industries as the most used monitoring infrastructure (http://www.nagios.com/users/),

Zabbix (www.zabbix.com) and the Zenoss (www. Zenoss.com) platforms.

IBM Tivoli Monitoring [43] also allows to manage operating systems, databases and

servers in distributed and host environments. The approach used is a centralized monitoring

solutions providing system operators a control centre from which they can oversee the target

system and control what monitoring data gets collected. However, such a solution allows

to monitor a limited number of servers (about 500 1). Furthermore, Tivoli provides a

set of facilities to automate the detection such as the creation of queries for filtering and

correlating events and the setting of thresholds to trigger alarms. However, configuring and

effectively using such tool is the totally responsibility of human operators.

Many monitoring frameworks for networked systems are based on probing technology.

In this case, direct external probes are predefined tests whose outcomes depend on the

health of the monitored components. For instance, in the context of networked systems,

probes can be implemented as programs executing on a particular machine (which is usually

called the probe station) that sends requests to servers or to network elements and evaluates

the responses. The ping and traceroute [80] [81] utilities are probably the most popular

external probing mechanism to detect network availability. At application-level probing

tools, such as IBM’s EPP technology [82], provide more sophisticated tests with respect to

network-level probes since the application logic needs to be known.
1See Section 2.2 at http://www.redbooks.ibm.com/redbooks/SG247217/wwhelp/wwhimpl/js/html/wwhelp.htm

Chapter 2. Monitoring and Detection: Approaches and Frameworks 55

2

Fig. 1. Illustrative example where probing can be used at multiple levels.

For example, probes can be sent in the form of test e-mail

messages, web-access requests, a database query, and so on.

Figure 1 illustrates the core ideas of probing technology. The

bottom left of the picture represents an external cloud (e.g. the

Internet), while the greyed box in the bottom middle and right

represents an example intranet - e.g. a web site hosting system

containing a firewall, routers, web server, application server

running on a couple of load balanced boxes, and database

server. Each of these contains further substructure - the fig-

ure illustrates the various layers underlying the components.

Probing can take place at multiple levels of granularity; the

appropriate choice of granularity depends on the task probing

is used for. For example, to test a Service Level Agreement

(SLA) stating response time one need only probe one point

of Figure 1, the point of contact of the external cloud and the

intranet. In order to find more detailed information about the

system one could probe all network segments as well the web

server, application server, database server - all the elements of

the intranet in the network layer. If we need to do problem

determination or tune up the system for better performance, we

may also need to consider more detailed information; e.g. from

the system layer (some systems allow instrumentation to get

precise information about system components) or component

and modules layer, and so on. For each task appropriate probes

must be selected and sent and the results analyzed.

In practice, probe planning (i.e., choice of probe stations,

targets and particular transactions) is often done in an ad-

hoc manner, largely based on previous experience and rules-

of-thumb. Thus, it is not necessarily optimized with respect

to probing costs (related to the number of probes and probe

stations) and diagnostic capability of a probe set. More recent

work [9], [10] on probing-based diagnosis focused on opti-

mizing the probe set selection and provided simple heuristic

search techniques that yield close-to-optimal solutions. How-

ever, the existing probing technology still suffers from various

limitations:

1) Probes are selected off-line (pre-planned probing), and

run periodically using a fixed schedule (typically, every 5

to 15 min). For diagnostic purposes, this approach can be

quite inefficient: it needs to construct and run repeatedly

an unnecessarily large set of probes capable of diag-

nosing all possible problems, many of which might in

fact never occur. Further, when a problem occurs, there

may be a considerable delay in obtaining all information

necessary for diagnosis of this particular problem. Thus,

a more adaptive probe selection is necessary.

2) Another limitation of existing techniques, including both

event correlation [7] and probing [9], [10], is their non-

incremental (“batch”) processing of observed symptoms

(alarms, events, or probes), which is not quite suitable

for continuous monitoring and real-time diagnosis. An

incremental approach is required that continuously up-

dates the current diagnosis as more observations become

available.

3) Finally, existing approaches typically assume a static

model of the system (i.e., the system state does not

change during diagnostic process). While “hard” failures

of components are indeed relatively rare, “soft” fail-

ures such as performance degradations (e.g., response

time exceeding certain threshold) may happen more

frequently; in a highly dynamic system ‘failure” and

“repair” times may get comparable with the average

diagnosis time. This can lead to erroneous interpretation

of some contradictory observations as “noise” [7] when

in fact they may indicate changes in the system. A more

sophisticated model that accounts for system dynamics

can provide a more accurate diagnosis in such cases.

Figure 2.8: Example of probes at multiple levels

Figure 2.8, taken from [45], illustrates the core ideas of direct external probing technol-

ogy. The bottom left of the picture represents an external cloud (e.g. the Internet), while

the greyed box in the bottom middle and right represents an example intranet, e.g. a web

site hosting system containing a firewall, routers, web server, application server (running

on a couple of load balanced boxes) and database server. Each of these contains further

substructure. Probing can be performed at different levels of granularity that depend upon

what is the objective of the monitoring. For example, in case of Service Level Agreement

(SLA) monitoring, just the response time at the external cloud and the intranet (depicted

in Figure 2.8) may be sufficient. To perform a finer-grain detection all system components,

such as the web server, the application server, the database, should be probed.

SysStat [83] is a monitoring framework for Linux OS that enables the collection of IO,

Chapter 2. Monitoring and Detection: Approaches and Frameworks 56

CPU, memory and interrupts statistics at at node-level. This is simply accomplished by

integrating the most used monitoring utilities, such as sar, sadf , mpstat, iostat, nfsiostat,

cifsiostat and pidstat.

Other monitoring tools use indirect probes to collect raw events, called trace, about the

target system are LTT (Linux Trace Toolkit) [84], Systemtap [85], DTrace [69], Chopstix

[18] and SysProf [86] and WRPM (Windows Reliability and Performance Monitor). These

tools exploit the kernel-level tracing facilities to monitor raw level events such as system

calls, process creation and termination, file open/close/read/write and disk/network I/O.

LTT has been the first attempt to provide a finer-grain monitoring tool capable of tracing

per-process raw level events such as syscall entry/exit, Inter Process Communication (IPC),

page allocation/deallocation, scheduling, interrupts. The architecture of LTT is shown in

2.9. The trace facility module is the unique entry point for all the kernel-level tracing points.

The module trace takes the collected events and then delivers them to the trace daemon

that definitely allows to store the desired events in files.

Trace facility

Kernel

Linux

Daemon

Virtual File System

Trace module

Figure 2.9: LTT architecture

Chapter 2. Monitoring and Detection: Approaches and Frameworks 57

LTT is useful for off-line analysis even if the overhead is kept low, i.e., about 2% when

monitoring kernel-level events. One limitation of LTT is that the tracing facility has no

timer-based probing (i.e., an event issued each time a timeout expires). However, the focus

of the work is on the design and on the implementation of the tool rather than providing

useful insights on anomaly detection mechanisms (this is left to the community since the

project is open source).

DTrace has the ability to dynamically instrument both user-level and kernel-level pro-

cesses and has zero probe effect if not enabled. The Dtrace architecture is shown in 2.10.

Figure 2.10: DTrace architecture

The core elements are a set of providers (e.g., syscall, profile, vminfo) and the consumers

(e.g., intrstat, plockstat) that allow to the users to filter relevant information and to get

some statistics. As LTT, the focus in [69] is on the design and on the implementation. How-

ever, some useful DTrace applications in diagnosing performance problems in production

environments are also presented. Unfortunately, only manual analysis are discussed and no

Chapter 2. Monitoring and Detection: Approaches and Frameworks 58

automatic detector based on DTrace is proposed.

SystemTap (stap) [85] is a dynamically loadable instrumentation tool that allows to

run user-written script in C-like language to extract, filter and summarize data without to

recompile the kernel, install it, and reboot. This facilitates the diagnosis of a wide types

of complex issues (such as performance problems and functional problems). Compared

to LTT and DTrace, which have a limited number of probes (about a thousand) it can

potentially monitor millions of events. Since version 1.2 stap also allows to monitor Java

Virtual Machine (JVM). For these reasons, stap has been chosen as ready-to-go tool to

implement the proposed framework in Linux platforms.

Table 2.2: Differences among LTT, Systemtap and DTrace tracing mechanisms

LTT Systemtap DTrace
OS support Linux Linux Solaris, OS X, BSD, QNX

processor support x86-32/64, SPARC/64 x86-32/64, x86-32/64,
ppc/64 sh/64, ia64, s390 ppc64, ia64, SPARC, ppc/64

MIPS32/64, ARM (kernel); s390, arm, sparc?
x86-32/64 (user)

overhead low high high
target usage debugging, tracing, debugging, tracing, debugging, tracing,

profiling, monitoring profiling profiling
language style C scripting scripting

speculative tracing work in progress yes yes
binary tracing yes yes ?

probe execution native code native code interpreted
#probes thousands millions thousands

java tracing yes soon yes
timer-based probe no yes yes

built-in in progress no yes
analysis tool yes (lttv) no no

type of analysis offline online online

Table 2.2 summarizes the differences of the LTT, Systemtap and DTrace kernel-level

tracing mechanisms.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 59

The windows counterpart of Systemtap is the Event Tracing for Windows (ETW) [87].

ETW is part of the Windows Reliability and Performance Monitor (WRPM) a monitoring

infrastructure, available on both Windows desktop and Server releases, which provides

several functionalities to: (i) monitor applications and hardware performance counters in

real time; (ii) track the performance impact of applications and services; (iii) generate

alerts and reports; (iv) take actions when user-defined thresholds are exceeded. ETW

collects data from trace providers that report actions or events related to components of

the OS (kernel-mode) or of individual applications (user-mode). Events monitored by this

tool include: Process (Thread) creations or terminations, system call, disk I/O, TCP/UDP

network I/O, context switches. Output from multiple trace providers can be combined into

a trace session. Then, the trace may be analyzed by one or more consumers by allowing

large-scale server applications to write events with a minimum overhead. We have exploited

WRPM to implement our framework for Windows platforms because of the possibility of

collecting raw level events and the low overhead. More details on the WRPM and ETW

are given in Chapter 3.

In case of Chopstix, the authors adopts a non-deterministic monitoring approach that,

with respect to periodic sampling, increases the probability to sample rare events and also

addresses the overhead issue. This work is closer to ours since, even if the authors do not

propose an on-line detection, the collected events are periodically sent to a remote node that

build some “vital sign” of the monitored application. These, along with the stack traces of

monitored applications, can be exploited for off-line diagnosis to identify the activation of

non-malicious faults. On the contrary our proposal is to build this vital sign on-line and

Chapter 2. Monitoring and Detection: Approaches and Frameworks 60

timely detect anomalies.

As for SysProf [86], this tool uses the collected events to evaluate the performance of

client requests, such as response time, average time spent by requests in user-level and

kernel-level, to multi-tier enterprise server. The derived performance can be exploited to

identify the bottleneck component in such systems.

Magpie: online modelling and performance-aware systems

Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan

Microsoft Research Ltd., Cambridge, UK.

Abstract

Understanding the performance of distributed systems

requires correlation of thousands of interactions be-

tween numerous components — a task best left to a com-

puter. Today’s systems provide voluminous traces from

each component but do not synthesise the data into con-

cise models of system performance.

We argue that online performance modelling should be

a ubiquitous operating system service and outline sev-

eral uses including performance debugging, capacity

planning, system tuning and anomaly detection. We de-

scribe the Magpie modelling service which collates de-

tailed traces from multiple machines in an e-commerce

site, extracts request-specific audit trails, and constructs

probabilistic models of request behaviour. A feasibil-

ity study evaluates the approach using an offline demon-

strator. Results show that the approach is promising, but

that there are many challenges to building a truly ubiq-

uitious, online modelling infrastructure.

1 Introduction

Computing today is critically dependent on distributed

infrastructure. E-mail, file access, and web browsing

require the interaction of many machines and software

modules. When end-users of such systems experience

poor performance it can be extremely difficult to find

the cause. Worse, problems are often intermittent or af-

fect only a small subset of users and transactions — the

‘it works for me’ syndrome.

Aggregate statistics are insufficient to diagnose such

problems: the system as a whole might perform quite

well, yet individual users see poor performance. Ac-

curate diagnosis requires a detailed audit trail of each

request and a model of normal request behaviour. Com-

paring observed behaviour against the model allows

identification of anomalous requests and malfunctioning

system components.

We believe that providing such models should be a basic

Event Tracing Event Tracing

Models

Query Engine

Distributed System

A

B

Models

Performance

Queries

The diagram shows how requests move through different soft-
ware components across multiple machines in a distributed sys-
tem. Magpie synthesizes event traces from each machine into
models that can be queried programatically.

Figure 1. Magpie architecture.

operating system service. Performance traces should be

routinely collected by all machines at all times and used

to generate system performance models which are then

made available for online programmatic query. To this

end, we are building Magpie, an online modelling in-

frastructure. Magpie is based on two key design princi-

ples. Black-box instrumentation requires no source code

modification to the measured system. End-to-end trac-

ing tracks not just aggregate statistics but each individual

request’s path through the system.

Fine-grained, low-overhead tracing already exists for

Linux [27] and Microsoft’s .Net Server [17]; the chal-

lenge is to efficiently process this wealth of tracing in-

formation for improved system reliability, manageabil-

ity and performance. Our goal is a system that collects

fine-grained traces from all software components; com-

bines these traces across multiple machines; attributes

trace events and resource usage to the initiating request;

uses machine learning to build a probabilistic model

of request behaviour; and compares individual requests

against this model to detect anomalies. Figure 1 shows

our envisioned high-level design.

In Sections 2 and 3 we describe the many potential uses

of online monitoring and modelling. Section 4 describes

the current Magpie prototype, which does online mon-

itoring but offline modelling. Sections 5 and 6 briefly

describe related work and summarize our position.

Figure 2.11: Conceptual view of Magpie

Another monitoring tool proposed to diagnose performance problems in multi-tier-based

and distributed enterprise systems is Magpie [19]. Unlike previous tools, the goal of the

work is to enrich the OS with a service that provides on-line performance models of the

monitored components. A conceptual view of Magpie architecture is shown in 2.11. The

work is close to our since the authors recognize that, despite several tracing tools collecting

a wealth of data have been already proposed, the real problem lies behind the on-line data

consuming and the reporting of the most useful data to detect anomalies.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 61

PerfMon [88] is a tool proposed by Hewlett Packard (www.hp.com) which exploits hard-

ware performance counters of modern CPU chipset (e.g., ITANIUM, PENTIUM, AMD) to

monitor micro-architectural level events from, for example, pipeline, system bus, caches.

From these events useful performance indicators, such as TLB misses, stall cycles, memory

access latency, are extracted. The goal of PerfMon is to provide a portable and extensible

tool with a standard interface that can be used to monitor a wide set of hardware; hence,

detection issues are not the main focus.

Another interesting tool that can be used to monitor and collect data is Daikon [89].

This is a tool that collect traces of program execution and automatically builds likely invari-

ants, i.e., properties that holds at a given time in a program in execution. For examples,

these include constants, non-null/zero values, ranges, linear relationships, ordering, sort,

and containment. To build the good likely invariants the traces need to be collected by

performing several experiments with different workload. Then the tool also implements

the dynamic detection of likely invariants during program execution since it checks these

invariants at runtime and, when these are violated it signals anomalies. Despite Daikon

has been used for many applications among which predicting incompatibilities in compo-

nent integration, automating theorem proving, it does not scale well for extremely complex

systems that consist of several KLoc such as middleware, application servers, databases.

Tables 2.3 summarizes most relevant information collected by the discussed monitoring

frameworks.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 62

Table 2.3: Most relevant monitored indicators of the surveyed frameworks

Frameworks Collected Information
Ganglia [77] and load, CPU, memory,

Comon [79] swap, disk usage, response time
SysStat [83] IO, CPU, memory,

and interrupts statistics
LTT [84] syscall, trap, interrup,

scheduling, process, file system, timer,
memory, swap,page in/out, socket, IPC

DTrace [69] syscall, lock, timer, stack trace, CPU,
kernel functions

Chopstix [18] disk/net IO, CPU, lock, cache misses,
memory, socket, scheduler, syscall

Systemtap [85] syscall, trap, interrup,
disk/net IO, CPU, timer, file system

WRPM [87] disk/net IO, CPU, timer,
file system,mutex, object, CPU, syscall, memory

SysProf [86] syscall, network, scheduler,
driver, process, file system

Magpie [19] uses WRPM
PerfMon [88] TLB misses, stall cycles, memory access

latency from pipeline, system bus, caches

Chapter 2. Monitoring and Detection: Approaches and Frameworks 63

2.2.2 Detection

As previously discussed, the detection of anomalies requires a notion of the system normal

behavior. This can be (i) derived by building models, (ii) inferred from data collected

during system operation (e.g., analyzing likely invariants, event logs, response times), (iii)

intuitively expressed and then validated with experiments, or even (iv) obtained during the

testing phase.

Models are often used to define a synthetic representation of the system, which can be

useful to abstract its principal proprieties and characterizing its function and behavior, to

correlate relevant events, and to choose the proper remediation in case of failures. Models

can be built exploiting the knowledge of the structure, the behavioral and the functional

principles of the target system [90, 91] that can derive, for example, from documentation,

design artifact and source code. This knowledge can be expressed in mathematical terms,

i.e., relations between the inputs and outputs (quantitative models) or by qualitative fea-

tures (qualitative models).

When the knowledge of the system is limited or even absent data-driven approaches

can be used. These models are usually built by applying techniques coming from machine

learning and statistics to data collected on the field or by means of experiments. Many

studies applies data-driven approaches to detect anomalies, such as [92, 52].

Another perspective of analysis of model-based detection concerns what kind of behavior

is captured from the model. Since failure-related data are usually limited – indeed failures

are rare events –, most of model-based detection approaches reveal anomalies by modeling

Chapter 2. Monitoring and Detection: Approaches and Frameworks 64

the normal behavior of the systems. However, some studies also propose to reveal anomalies

by modeling the anomalous behaviors (e.g., [93, 94]).

Finally, models can be generally distinguished based on what is their specific target of

the model. For instance, many studies [90, 91] propose performance models (e.g., to predict

resource utilization, throughput, and response time) and detect anomalies when the current

predicted performance are different from the actual. Instead of performance, other studies

exploit behavioral or functional models to detect anomalies, such as [95].

Table 2.4: Perspectives of analysis for model-based detection approaches

System Knowledge Present
Absent

What is modeled Normal Behavior
Anomalous Behavior

Type of model Performance
Functional
Behavioral

Table 2.4 summarizes the different perspectives of analysis that are considered to briefly

introduce model-based detection.

Many studies propose models that predict some attributes, such as resource utilization,

throughput, and response time, which are related to the performance of the target system

or its components. The resulting models are used for capacity planning, provisioning and

to tune configuration parameters to maximize the performance; however, they can be also

used for detecting and diagnosing anomalies [90].

Chapter 2. Monitoring and Detection: Approaches and Frameworks 65

A widely used modeling approach for systems serving multiple users is queuing theory.

A queuing model is an abstraction of the system consisting of a set of interconnected queues.

A queue is associated with a service or a resource, which holds requests that are waiting

to be served. For example queuing theory has been used to model a web server. In [91]

the authors use a single queue to model Apache HTTP web server; while, [96] with several

queues are used to model different resources of the system such as disk, network and CPU.

Performance models have a number of limitations to be applied for on-line anomaly

detection. First, they only allow to reveal anomalies in the performance metrics of interest

(e.g., response time and throughput); hence, when anomalies have already propagated to

the system or component interface. Second, they typically need a lengthy profiling phase to

estimate model parameters such as service times, which may require unaffordable manual

effort if the system is made of many components and no historical data is available. Third,

the level of detail that the model can capture arise from a trade-off between accuracy of

the model and computational resources required to solve the model efficiently. When the

timeliness requirements of the detection are very strict the level of detail of the model (and

so its accuracy) may be very low.

Data-driven approaches are often exploited when dealing with complex software systems.

For instance, Li et al. [92] exploit resource usage data collected from a node hosting a web

server and then use auto-regressive moving average (ARMA) models to predict resource

exhaustion (e.g., memory and swap space) due to software aging anomalies. In [52] the

author discuss the use of statistical and machine learning to predict rare event (e.g., failure)

in large clusters. In particular, they analyze the time-series models, rule-based models,

Chapter 2. Monitoring and Detection: Approaches and Frameworks 66

bayesian network. The study reveals that, among the three techniques analyzed, time-

series models are the most accurate for their target system. The model proposed in [97]

allows to predict CPU consumption of the transactions in web applications. This model is

constructed by means of statistical linear regression using measurements on a real system.

The model is then used to detect performance anomalies, which are defined as those changes

in CPU usage not explained by the actual workload.

Rule-based approaches are particularly used for detection and diagnosis purposes. They

were developed in the mid-1970s and have formed the basis for a large number of ex-

pert systems in medicine and other diagnosis-related areas [98]. They are based on a set

of rules that can be represented in the form ”IF condition THEN action” and formal-

ized by the use of the first order logic or more powerful expressive languages, e.g., OWL

(http://www.w3.org/TR/owl-ref/) the language to publish ontology on the web, which can

be used to reveal anomalies. The condition refers to the information about the functions of

the system and the collected events; while, the action usually contains the use of parameters

for choosing the next rule or the countermeasure (e.g., reconfigurations and recovery).

Li and Malony apply rule-based reasoning, by using rules in the CLIPS expert system,

based on architectural patterns [99] for the detection of the performance bottleneck. Benoit

et al. apply the same approach for database systems [100].

In [61] temporal and combinatorial rules, obtained from protocol specifications and sys-

tem administrators, are used to reveal anomalies in distributed applications. Processed data

are collected using the aforementioned Monitor. This has also been extended to accomplish

diagnosis tasks by means of a set of test procedures [72] chosen starting from the inferred

Chapter 2. Monitoring and Detection: Approaches and Frameworks 67

state of the participants. However, the rulebase approach is very difficult to manage in

dynamic environments where the frequency of rules update may be excessive.

Another rule-based approach is proposed in [101]. The authors describe a system ex-

ploiting event logs and identifies episode rules, i.e., a temporal ordering of events. They

correlate the errors in the logs by counting the number of similar sequences. For example,

an episode rule is in the form “if errors A and B occur within five seconds, then error C

occurs within 30 s with probability 0.8”. Several parameters such as the maximum length

of the data window, types of error messages, and ordering requirements have to be a-priori

specified. However, the algorithm returns too many rules such that they need to be pre-

sented to human operators having system knowledge to filter out the most relevant. In the

field of power system process an interesting rule-based anomaly detection has been pro-

posed in [102]. The authors exploited fault tree analysis. However, since fault tree analysis

offers a statical view of the system, i.e., without taking into account the current state of

the system, they combine the leaf nodes with on-line detectors, and logical expressions are

transformed into a set of rules so that they can be used as an on-line detector [103].

The advantage of rule-bases approaches is that the rules are easily readable by the user,

and their effect is intuitive. However, the this approach is suitable for cases in which the

relations between events are well known and can be clearly formulated. Furthermore, there

are intrinsic limitations in the management of the rules due to the frequency of changes

in the operating environment of mission-critical systems. In other words, if the system

changes rapidly, it is hard to maintain an accurate set of rules. Finally, these approaches

do not deal with incomplete, incoherent and uncertain information that can be collected in

Chapter 2. Monitoring and Detection: Approaches and Frameworks 68

complex software systems.

Another model-based approach is the Hidden Markov Model (HMM), which is used

for both anomaly detection and diagnosis tasks [104, 49]. Indeed, HMMs allow both the

definition of a framework through which the detection and diagnosis problem can be for-

malized, and the adoption of a detection and diagnostic mechanism. HMM is basically a

Markov chain whose state is not observable (indeed, the state is “hidden”); however, when

the system is in a given state, observable symbols are emitted depending upon a proba-

bilistic function of the state. HMMs can be used to represent probability distributions over

sequences of observations. A good tutorial about HMMs and their use can be found in

[105]. In [104] the authors propose to use HMM to infer whether the state of a monitored

component is anomalous or not by means of a sequence of probing results and the use of

the forward algorithm, which is an efficient dynamic programming algorithm, to compute

the sequence likelihood of hidden Markov models.

In [106, 49] the authors propose to use hidden semi-Markov models (HSMM) that encode

restrictions on properties of errors in the event logs and on the given sequences. They

associate the detection with the observations that are generated by the states of the HSMM;

errors may be mapped to groups of hidden states of the chain. With HSMMs, similarity of

error sequences can be obtained by the use of the forward algorithm; these are then used

to detect anomalies leading to system failures. The HMM mechanism is flexible enough to

take into account the uncertainty of both observed events and observers, so that it can be

also used to detect malicious attacks. For instance, in [107] HMMs are used to implement

an anomaly-based intrusion detection system.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 69

Bayesian approaches are also widely adopted. In [108] the authors exploit a set of a

monitors with limited coverage, i.e., that cannot obtain all relevant information, whose

outputs are correlated to detect the faulty component. The reasoner exploits a Bayesian

inference engine to update the probabilities of having a faulty component. Nickelsen et al.

[109] apply Bayesian Networks (BNs) for probabilistic fault detection and diagnosis for TCP

end-to-end communication both in the wireless and wired domains. BNs are used to infer

system insights and a-priori system knowledge, by using the probabilistic reasoning systems.

The structure and the initial parameters of the BNs depend on the prior knowledge of the

domain expert. However, if the system is properly modeled, these techniques lead to high

performance in terms of accuracy and detection latency.

In [110] clustering techniques are used to identify normal behavior. Then, the anomalies

are detected observing the entropy of the clusters of similar metrics, which are grouped by

means of Normalized Mutual Information.

In [111] the authors exploits invariants between indicators, defined as stable correlations

in monitored variables. These are obtained without the knowledge of the system structure

and are exploited to build a behavioral model of the system. The detection of the acti-

vation of a fault, e.g., memory leak, missing file, hang, is performed by revealing missing

invariants. Another detection approach, which also uses invariants is proposed in[112]. In

[112] the authors combine both models and on-line analysis by means of an on-line reli-

ability monitoring that periodically evaluates system reliability (during operation). The

approach combines static reliability modeling and dynamic analysis. In particular, the re-

liability model is obtained by means of Discrete Time Markov Chain (DTMC) and takes

Chapter 2. Monitoring and Detection: Approaches and Frameworks 70

into account the architectural model of the system, the single component reliability and the

interactions among components. Then, the operational reliability is estimated by taking

into account invariant violations, where the likely invariants are found at testing time by

means of the Daikon tool [89]. Even if the approach is promising to reveal anomalies in

system level reliability, it has critical limitations because of the use of a static threshold

for discriminating reliability level violations and the high number of false positives (i.e.,

an alarm is triggered but no anomaly occurs), which is about 69%; hence, untolerable for

mission-critical systems.

A similar approach has been proposed in our previous work by combining static analysis

performed during the testing phase and dynamic analysis performed during operation [113].

Likely invariants between data exchanged among components, interactions pattern among

components, OS-level indicators (e.g., number of syscall errors, task scheduling times, I/O

throughput and waiting/holding times in critical sections) are collected during the testing

phase to build known normal and failing behaviors. These models are exploited on-line

to detect anomalies in application behaviors. However, this approach has non-negligible

overhead since many data need to be recorded (e.g., system call parameters are recorded

or IO invariants). Moreover, it is not well-suited to build a reliable failing models to detect

the activation of faults that cannot be easily reproduced during testing, such as Mandelbugs.

Instead of focusing on the normal behavior the system, approaches that model the

anomalous behavior have also been exploited to reveal anomalies. In [93, 94] the authors

assume that exist a unique combination of information which correlates with performance

Chapter 2. Monitoring and Detection: Approaches and Frameworks 71

violations due failure occurrence. The signatures are hence used to detect anomalies. In

[94] Agarwal et al. define the problem signature as a unique combination of changes (or

absence of changes) in one or more monitored indicators. By means of change point detec-

tion algorithm alarm are triggered when such indicators show a sudden variation from their

mean values. These alarms are then filtered by means of user specified policies to reduce

false positives. The final alarms from the metrics that are part of the problem signature are

then correlated according to the problem signature to detect the occurrence of the given

anomaly. In [114] a bayesian belief network, which encodes both healthy statuses and known

problems, and a set of of models, including generic statistical and resource-specific mod-

els, are exploited to identify specific fault activations. However, this approach requires that

experts encode system components and their specific dependencies in the Bayesian network.

Simple mechanisms suggested by intuitive reasoning and then validated by experiments

or modeling are the so-called heuristic approaches. An example of a heuristic mechanism

for the discrimination between transient and permanent faults is the α− count mechanism

[115]. This heuristic implements the “count-and-threshold” criteria to discriminate between

transient, intermittent and permanent faults. The following assumptions are made: failures

of the system components can be permanent, intermittent and transient; many repeated

error conditions within a little time window are easily evidence for permanent or intermittent

failures; isolated errors collected over-time could be evidence for transient failures. Hence,

the α − count increases a counter when error messages and signals are collected over-time

and decreasing the counter when no errors are collected. An anomaly is detected when the

Chapter 2. Monitoring and Detection: Approaches and Frameworks 72

counter passes a predefined threshold.

The first attempt to detect transient failures has been proposed for mainframes (e.g.,

IBM 3081): in [116] they count the number of errors accumulated in a time window. When

the errors are over a predefined threshold, a permanent failure of the component is detect

and a maintenance intervention is triggered. In the architecture proposed in [117] for

the TMR MODIAC railway interlocking system by Ansaldo, a detector operates in the

following way: two failures experienced by the same hardware component, which is part

of a redundant structure, in two consecutive operating cycles make the other redundant

components to consider it as definitively faulty. In [118], it has been implemented in the

GUARDS architecture for assessing the extend of the damage in the individual channels

of a redundant architecture. Romano et al. [119] use the α − count for detecting replica

failures in OTS-based replicated systems.

Several studies also investigate the tuning of the α − count mechanisms. For instance,

in [115], the trade-off between promptness and accuracy is evaluated. A discussion about

the dynamic selection of thresholds for QoS adaptation can be found in [120]. Finally, other

variants (e.g. the double-thresholds) are described in [25, 121].

The detector proposed in [3] is the most similar to our framework since it exploits

heuristic detection approach and the tracing facilities provided by the Linux kernel to reveal

application hangs or crashes. The detector is composed of a set of monitors in charge of

generating alarms and a module that decides about the state of the system. Monitors collect

raw events, such as the times to acquire/release semaphores and mutexes, the syscall errors,

OS signals, processes/threads creation/termination and disk and network I/O throughput.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 73

These signal anomalous conditions by means of counting and threshold approach. For

instance, the semaphore monitor triggers an alarm if the number of expirations of the

timeout to acquire a semaphore is out of bounds in a given time window. Finally, the

detector reveals the occurrence of an anomaly if, by summing all the received alarms,

these are over the anomaly detection threshold. Thresholds, for both the detector and

the monitors, are determined after a preliminary profiling phase. More details about the

detector are provided in Chapter 3 where also a comparative analysis is discussed.

Another OS-level approach is proposed in [20]. Indeed, quantities representing the state

of the OS, e.g. the number of context switches, of semaphores and mutexes, are used to

predict imminent crashes or hangs.

The techniques proposed in [3, 20, 68] all detect anomalies by using static thresholds

that are tuned by administrators [68] or are set after a profiling phase [3, 20]. However,

often boundaries between normal and anomalous behaviors cannot be exactly known. The

static definition of a normality region including every nominal behavior can be inadequate

for long-running systems. Indeed, the normal behavior may considerably change according

to the actual load, system updates, reconfigurations. Hence, static thresholds, invariants or

learned clusters appear not suited for systems with variable and non-stationary behavior

if not well adapted to the operational environment. The need of adaptive solutions is well

highlighted also in literature as shown in the following.

Agarwal et al. [70] exploit a monitoring framework, that as previously discussed, collet

application- and system-level indicators with the purpose of identifying the root node(s) of

Chapter 2. Monitoring and Detection: Approaches and Frameworks 74

anomalies (i.e., hangs, crashes, overloads and configuration errors). The detection technique

is based on eigenvalues analysis and change point detection. In particular, the principal

eigenvector is extracted from the covariance-matrics of the collected events and the anomaly

is revealed by comparing recent means of the principal eigenvalue, where recent refers to the

last D seconds. However, the detection is not triggered timely since the proposed detection

approach needs 2×D to reveal an anomaly.

In [45] an incremental approach is proposed that continuously updates the current diag-

nosis as more observations become available and a more sophisticated model, which accounts

for system dynamics, can provide a more accurate diagnosis in such cases.

In [122] it is presented Stardust, i.e., general purpose framework for adaptive and efficient

(in terms of time and space complexity) window-based feature extraction and for indexing

multiple time-series. This can be useful for burst and trend detection and for pattern

matching in time-series that may occur at different time scale.

In [123] the authors investigate detection mechanisms for hang OS components in

microkernel-based architecture such as Minix (www.minix3.com). The detection is based

on OS-level probes that periodically ping monitored processes. The work is close to our

since an adaptive timeout mechanism is used. Indeed, an anomaly is detected if no response

is received from the process before a timeout expires. In particular, the authors explore

several heuristics, among which exponential moving average and weighted sum, to compute

on-line the adaptive timeouts starting from previous response times. The study proves the

efficacy of adaptive timeouts with respect to the static timeout adopted in Minix using

both simulation and experiments. Unfortunately, the proposed heuristics are difficult to be

Chapter 2. Monitoring and Detection: Approaches and Frameworks 75

tuned since the parameters need to be found empirically and it is only suited for infinite

loops or deadlock detection.

Adaptive methods are also implemented in the solutions offered by the industry such

as BMC ProactiveNet [124] and Netuitive [125]. These solutions are based on periodical

evaluation of the application workload and the thresholds are properly adjusted. The work

in [126], like our, copes with the variability issue; it addresses service-level anomalies of

multi-tier Web-based systems. The on-line service dependencies are tracked through a

dependency matrix. Then, the principal left singular vector is used to capture the normal

dependencies over time. Finally, anomalies are detected using a windowing approach to

extract the principal eigenvector. The method is designed specifically to detect faults in

Web-based systems with redundancy; it is computational heavy and it is not appropriate

for anomaly detection of rarely invoked services.

Among the frameworks that also address diagnosis process it is worth to mention Pin-

point. In [95] the Pinpoint diagnosis framework is proposed to recognize the most likely

faulty component in large networked systems. The conceptual architecture of Pinpoint is

depicted in Figure 2.12 (taken from [95]). It employs statistical learning techniques to “learn

from system behavior” and to diagnose the root cause of failures in a Web farm environ-

ment. The approach relies on collecting client traces and clustering techniques to identify

the components most relevant to a failure. The authors modify the middleware to insert

the probe for tracing requests and components used along with a set of accessory infor-

mations (e.g., component version) to find dissimilarity that explain the observed behavior.

They use built-in detector at middleware level, such as exception handling and assertion,

Chapter 2. Monitoring and Detection: Approaches and Frameworks 76

A B C

Communications Layer
(Tracing & Internal F/D)

External
F/D

Statistical
Analysis

1,A
1,C
2,B
...

Trace
Log

1,Success
2, Fail
3, ...

Fault
Log

Detected
Faults

Components

#3

#1

#2

Requests

Figure 1. The Pinpoint Framework.

Failure Detection: Pinpoint provides both internal and ex-

ternal monitoring of a system to detect whether client

requests are succeeding or failing. Internal fault-

detection is used to detect assertion failures and ex-

ceptions, including errors that are later masked by the

system. External fault-detection is used to detect end-

to-end failures not otherwise detectable.

Data Clustering Analysis: Pinpoint combines the data

from tracking client requests with success and failure

data for each request and feeds it into a data analysis

engine to discover faulty components and component

interactions.

2.1. Client Request Tracing

As a client request travels through the system, we are in-

terested in recording all the components it uses, at various

granularities. At a coarse granularity, we are interested in

the machines and, depending on the size of the service, the

clusters being used. At a finer granularity, we are interested

in logging individual software components, component ver-

sions, and, if practical, even individual data files (such as

database tables, and versions of configuration files). Our

goal is to capture as much information about possible dif-

ferentiating factors between successful and failed requests

as is practical.

When a client request first arrives at the service, the re-

quest tracing subsystem is responsible for assigning the re-

quest a unique ID and tracking it as it travels through the

system. To avoid forcing extra complexity and excessive

load on the components being traced, the tracing subsystem

generates simple log outputs in the form of request ID,

component ID pairs. This information is separately col-

lated into complete lists of all components each request

touched.

By modifying the middleware beneath the application

components we are interested in, we can record the ID of

every request that arrives at a specific component without

having any knowledge of the applications and without mod-

ifying the components. When an application component

makes a nested call to another component, the middleware

records that another component is about to be used, and

forwards the request ID to the next component along with

the call data. The changes required to implement this sub-

system can often be restricted to the middleware software

alone, thus avoiding modifying application-level compo-

nents. Whether this is possible depends on the specific mid-

dleware framework used and details of the inter-component

communication protocol.

2.2. Failure Detection

While the tracing subsystem is recording components

being used by client requests, an orthogonal subsystem is

attempting to detect whether these client requests are suc-

cessfully completing. Though it is not possible to detect all

failures that occur, some failures are more easily noticeable

from either inside or outside of the service. Therefore, our

framework allows for both internal and external failure de-

tection to be used.

Internal failure detection is used to detect errors that

might be masked before becoming visible to users. For ex-

ample, a frontend failure that gets replaced by a hot swap

may have no externally visible effects. Though these fail-

ures do not become visible to the users, system adminis-

trators should still be interested in tracking these errors to

repair the systems. Internal failure detectors also have the

option of modifying the middleware to track assertions and

exceptions being generated by application components.

External failure detection is used to detect faults that will

be visible to the user. This includes complete service fail-

ures, such as network outages or machine crashes. External

detection can also be used to identify application-specific

errors that generated user-visible messages.

Whenever a failure or success is detected, the detection

subsystem logs this along with the ID of the client request.

To be consistent with the logs of the client tracing subsys-

tem, the two subsystems must either pass client request ids

between each other, or use deterministic algorithms for gen-

erating request IDs based on the client request itself.

Figure 2.12: Pinpoint architecture

and implement a packet sniffer to detect error in HTTP packet or TCP datagram. The

major limitations of this approach are that (i) the tracing mechanisms need to modify the

middleware (ii) it exhibits a significant false positive rate of 40− 50%.

Another framework design to diagnose performance or unexpected behavior in networked

systems is Pip [127]. This tool, like Pinpoint, constructs causal paths and reveals anomaly

by means of expectations violation. The approach presumes that the expected behavior is

encoded by programmers by means of annotations.

The Rainbow framework [128] also uses monitoring techniques to detect Quality of Ser-

vice (QoS) violations by comparing the considered indicators with the predefined threshold.

However, the goal of the framework is to close the loop when changed environment or/and

specification occur by adapting the running software system.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 77

Table 2.6 summarizes the surveyed detection approaches and frameworks.

Table 2.6: Surveyed detection approaches and techniques

Reference Approach/ Application Remark
Technique Domain

[111] Model-based Non-malicious Invariants are used to build the models
[112] Model-based Non-malicious Reliability Model (DTMC) in combination

with on-line invariant violations detection
[97] Model-based Non-malicious, Model is built from measurements

Performance on a real system
[19, 90] Model-based Performance Off-line analysis
[104, 49] HMM Non-Malicious Uncertainty (observations and

obervers) taken into account
[107] HMM Malicious Anomaly-based intrusion detection

[61] [72] Rule-based Non-Malicious, Protocol specific;
Malicious Difficult to manage in dynamic environments

[101, 127] Rule-based Malicious Rules filtered by Human Operators
[52] Rule-based, Non-Malicious To predict rare event (e.g., failure)

Time-series, Bayesian in large clusters
[92] Time-series Non-Malicious To predict resource exhaustion

analysis due to software aging anomalies
[94] Time-series Non-malicious Assume linear correlation

among monitored indicators
[108] Bayesian Non-malicious The main focus is on automated recovery
[109] Bayesian Non-malicious The focus is on network-level faults
[114] Bayesian Non-malicious Require experts knowledge

of system dependencies
[110] Clustering and Non-malicious Identify also the faulty component(s)

Information Theory
[70] Clustering and Non-malicious Assume linear correlation

PCA among monitored indicators
[95, 93] Clustering Non-malicious Main focus is on diagnosis

[115, 116, 117] Heuristics Non-malicious To discriminate transient,
[3, 119, 128] intermittent and permanent faults

[45] Active-Probing Non-malicious Account for system dynamics

2.3 Metrics for Quantitative Evaluation

In this Section criteria that should be used to characterize on-line detectors performance

for the target systems are analyzed. First, some of the most used metrics in literature are

surveyed; then, the most representative metrics in the considered scenario are discussed.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 78

Roughly speaking the aim of an on-line anomaly detector is to generate some detection

events that allows to timely reveal all the occurring anomalies, by not generating a detection

event when no anomaly occurs. In other words, the detector need to reveal anomalies caused

by the activation of non-malicious faults, malicious faults, and by performance issues (e.g.,

overload) from the normal behavior of the system.

To ease the description of metrics and to precisely understand their meaning some basic

definitions are introduced, summarized in Table 2.7:

Table 2.7: Basic metrics for characterizing detector performance

Anomaly Occurs No Anomaly
Anomaly Detected True Positive (TP) False Positive (FP)

Anomaly Not Detected False Negative (FN) True Negative (TN)

• True Positive (TP): an anomaly correctly detected;

• False Positive (FP): a detection event that does not correspond to an actual anomaly;

• False Negative (FN): an anomaly that is not detected;

• True Negative (TN): no anomaly occurs and no detection event is triggered.

Metrics coming from the diagnosis literature are usually used to compare the perfor-

mance of detectors [129, 130]. For instance, the coverage measures the detector ability to

reveal all anomalies; accuracy is related to mistakes that a detector can make. Coverage

can be measured as the number of detected anomalies divided by the overall number of

anomalies; while for accuracy there are different metrics.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 79

Chen, Toueg and Aguilera [130] propose three primary metrics to evaluate detectors

quality, in particular their accuracy. The first one is Detection Time (DT), which informally

accounts for the promptness of the detector –basically, its coverage. The second one is the

Mistake Recurrence Time (TMR), which accounts for time elapsed between two consecutive

erroneous transitions from Trust to Suspect. Finally, they define Mistake Duration (TM),

which is related to the time that the detector takes to correct the mistake. Other metrics

can be simply derived from the previous ones. For instance, Average Mistake Rate (λM),

represents the number of erroneous decisions in the time unit; Good period duration (TG)

measures the length of period during which the detector event is not a false positive; Query

accuracy probability (PA) is the probability that, given no anomaly occurs, the detector’s

output at a random time is correct, (i.e., TN).

Basseville et al. [131] consider the mean delay for detection (MDD) and the mean time

between false alarms (MTBFA) as the two key criteria for on-line detection algorithms.

It is worth to note that such metrics can be evaluated by using Chen and Tueg primary

metrics. For instance, MDD, can be evaluated by averaging DT ; while, MTBFA can be

computed from TMR and TM . The best performance can be usually found by minimizing

the mean delay for a given MTBFA and on other indexes derived from these criteria.

In [103] metrics borrowed from information retrieval research are used, namely precision

and recall. In their context recall (R) measures the ratio of the failures that is correctly

detected, i.e., TP/(TP + FN), while precision (P) measures the portion of the anomalies

that lead to real failures, i.e., TP/(TP + FP). Thus perfect recall (R = 1) means that all

failures are detected and perfect precision (P = 1) means that there are no false positives.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 80

A convenient way of taking into account precision and recall at the same time is by using

F −measure, which is the harmonic mean of the two quantities. It is worth to note that,

since in the field of detection and diagnosis literature the recall is also called coverage, in

the following we use only the term coverage.

TF TF +TD

Detection

 Event

TF TF +TD

Detection

 Event

True Positive No True Positive

Figure 2.13: Time line showing true positives according to the parameter Time to Detect

A useful parameter for coverage evaluation is the Time to Detect, TD. This parameter

can be used to distinguish TP detection events. It represents the maximum delay to detect

an anomaly. For instance, let consider an anomaly caused by the activation of a fault. Let

be TF the time of fault activation. If a detection event is raised after TF +TD (see right side

of Figure 2.13), it needs not to be accounted as a TP . Hence, this parameter can be used to

take into account the detector promptness, since only TPs that are effectively useful into

the diagnosis and recovery processes are considered to evaluate the coverage.

However, precision and coverage alone are not enough to fully evaluate the performance

of the detector. Indeed, they do not account for true negatives. Since anomalies usually

Chapter 2. Monitoring and Detection: Approaches and Frameworks 81

occurs rarely, it is mandatory to evaluate the detector mistake rate when no anomaly oc-

curs. Hence, False Positive Rate (FPR) needs to be used in combination with precision

and coverage. FPR can be defined as the ratio of incorrectly detected anomalies to the

number of all non-anomalies, thus FP/(FP +TN). Fixing P and C, the smaller the FPR,

the better. Another metric accounting for TN is Accuracy [103], which is defined as the

ratio of all correct decisions to the total number of decisions that have been performed, i.e.,

(TP + TN)/(TP + TN + FP + FN).

Bearing in mind that our target applications are long running mission-critical systems

in which just the detection of one anomaly may be sufficient to trigger the needed actions

(e.g., the activation of a stand-by spare component), we believe that mistake duration

and, thus, TG are less appropriate than coverage, accuracy and mistake rate. Indeed,

coverage is essential because if the detector does not reveal an anomaly, then more severe

(and potentially catastrophic) consequences may happen. Accuracy and (λM) are useful to

take into account false positives because each detector mistake may result in costly actions

(such as reconfiguration, roll-back, shut down, reboot). Furthermore, the query accuracy

probability is not sufficient to fully describe the accuracy of a failure detector. In fact, for

application domains in which every mistake causes a costly interrupt, the mistake rate is

an important accuracy metric [130].

In Table 2.8 we summarize the discussed metrics and the way to compute them start-

ing from basic metrics, i.e., TPs, FPs, TNs and FNs that are the total number of true

positives, false positives, true negatives, and false negatives, respectively.

Chapter 2. Monitoring and Detection: Approaches and Frameworks 82

Table 2.8: Performance metrics to evaluate anomaly detectors

Metric Formula
C TPs

TPs+FNs

A TPs+TNs
TPs+FPs+TNs+FNs

TD Interval for fault activation and detection
λM

1
E(TMR)

TM Time to correct a wrong decision
PA E(TMR−TM)

E(TMR)

Chapter 3

OS-level Detection of Anomalies

The detection of anomalies in mission-critical systems is a challenging task due the use of black-
box OTS-components, unreliable information sources (e.g., the event log) and variable and non-
stationary operating conditions. In Chapter 2 we have observed that most of detection mechanisms
can reveal anomalies when errors are propagated to the component interfaces. Indeed, the use of
external direct probes cannot allow to understand the internal behavior of the component since only
its output is analyzed. On the other hand, detection mechanisms based on tracing mechanisms (such
as function boundary tracing or kernel-level tracing) observe the monitored components from a grey-
box perspective since allow (i) to collect finer-grain information about the components, (ii) to infer
their internal behavior and (iii) detect any deviation from the healthy status. However, despite this
wealth of data has been indisputably useful to find performance bottleneck and root cause of anomalies,
the analysis is mostly done manually or off-line [69, 18]. In this Chapter, we describe a monitoring
and detection framework, called sosmon, that exploits the low-level information collected by means of
kernel-level tracing mechanisms (e.g., ETW and stap) and statistical analysis, performed by means
of a novel algorithm (i.e., Statical Prediction and Safety margin, SPS), for on-line automatically
detection of relevant anomalies. First, the requirements that drive the design of the framework
and the applicability assumptions are introduced; then, the high-level architecture and the internal
components of the framework are described.

3.1 Requirements and Assumptions

Our target applications are dedicated (but possibly also open) distributed mission-critical

software systems; examples are air traffic control systems, command and control and surveil-

lance systems. Such systems are in general the result of the integration of many strongly

interacting heterogeneous subsystems, including legacy components and, often because of

time and budget constraints, commercial OTS components. These are typically deployed

83

Chapter 3. OS-level Detection of Anomalies 84

on many remote nodes communicating through a network.

In order to guarantee high levels of reliability and performance, important components

of the system are typically replicated by using active or stand-by schema. For instance,

Façade Processing
Server

Load
Balancer

MIDDLEWARE

Client
Requests

Tracks
Correlator

ATC System

Figure 3.1: A simplified architecture of ATC systems

Figure 3.1 shows a typical (simplified) architecture of air traffic control systems. This is a

complex distributed application for Flight Data Plan (FDP) processing; in particular, the

system is in charge of processing flight plans and radar tracks by updating the contents of

Flight Data Object and distributing them to flight controllers (the clients). The system

consists of domain-specific and general purpose components to guarantee high reliability

and performance. Domain specific components are the track correlator, which collects flight

tracks generated by radars and associates them to FDPs, and the processing server, which

performs other calculations on the route flight information by taking into account the data

coming from the correlator, and, finally, the facade component, which implements the inter-

face between the clients (e.g., the flight controller) and the rest of the system, and provides

Chapter 3. OS-level Detection of Anomalies 85

the remote management API for addition, removal, and update of FDPs.

Reliability and performance features are offered by the middleware fault tolerance mech-

anisms, such as replication, heartbeat and automated transparent recovery of faulty compo-

nents. For instance, the facade is replicated using to the warm-passive replication schema.

As for the processing server, it has several active replicas on different nodes (usually three)

and a load balancer routes the operations to the servers.

Because of the criticality of the domain, human operators may also track the system’s

behavior and performance (e.g., by continuously visualizing summaries of system perfor-

mance). It is also common that, along with internal detectors, system operators exploit

some external monitors that trigger warnings when conditions of the system require a man-

ual check. These monitors are typically based on rules of thumb that are not always effective

and require huge manual effort to be tuned for each monitored component.

The operating environment in which these components are deployed can alternate sta-

ble periods, during which the required resources (e.g., cpu, memory, IO, and network band-

width) and the monitored indicators have some stability properties (i.e., they are under con-

trol) [111, 132], with transient periods (smaller compared with the stable periods), during

which a variation occurs because of the workload, new configurations, recovery procedures,

or fault activation.

Despite the use of fault tolerance and human monitoring, due to the interactions and

component interdependences, errors can propagate among components, resulting in other

errors and eventually in a system failure. Thus, the timely, and automatically, detection of

anomalies is vital for fast root cause analysis and isolation of the issue, and to avoid any

Chapter 3. OS-level Detection of Anomalies 86

non-remediable system failures.

These characteristics of such class of systems pose the following requirements on the

detection framework:

• to limit modifications to the monitored systems to deal with OTS-based and legacy

components;

• to be independent of components and protocols, and to work with different OSes, in

order to cope with the heterogeneity of the integrated subsystems and their operating

environments;

• to deal with non-stationary and variable operating conditions;

• to reveal anomalies timely, in order to cope with propagations and domino effects;

• to reveal different kinds of anomaly related to unintentional and malicious faults, and

to performance issues;

• to be easy configurable for the specific system and detection needs;

To fulfill the requirements, we propose sosmon, i.e, a detection framework that relies

on OS-level probes and on on-line statistical analysis to timely reveal anomalies. The

kernel-level monitoring infrastructure allows to collect several information about the running

components (among which cpu usage, syscall errors, scheduling time, triggered OS signals,

acquired semaphores/mutexes); however, it remains independent of the type and the number

Chapter 3. OS-level Detection of Anomalies 87

of deployed components. Statistical analysis allows to exploit the framework even when the

operating conditions are variable and non-stationary.

Figure 3.2: A high-level overview of the sosmon framework

Figure 3.2 provides a conceptual high-level overview of sosmon and allows to explain

the basic idea that has driven the design of the framework. The detection is based on

revealing through the kernel-level tracing probes suspicious behaviors related to user-level

or privileged processes, such as middleware daemons and services, that are responsible of

important system operations.

The sosmon framework can reveal the anomaly by means of on-line statistical analysis

performed on crutial monitored indicators. As depicted in 3.2 raw events are captured by the

probes; such events are then transformed into indicators, i.e., the vital system signals, that

need to be in control, i.e., have to show some stability properties during a certain interval

of time. Then, statistical analysis is performed on the extrapolated signals to reveal when

they are out of control.

The detection approach is based on combining adaptive thresholds computed by means

of the on-line statistical analysis and α-count methods to group together suspicious vital

Chapter 3. OS-level Detection of Anomalies 88

signals that may be the symptoms of relevant anomalies. The details of the framework will

be provided in the following Sections.

To emphasize the basic differences with traditional detection mechanisms let assume the

detector needs to reveal an anomaly of the load balancer (LB), see Figure 3.1. The LB is

a critical component since any issue (e.g., overload) may be propagated the to processing

servers. Using sosmon this can be accomplished by deploying the framework in the same

node of LB. Let assume the LB becomes unresponsive due to an active hang, i.e., the

process is incorrectly using cpu cycles. Traditional built-in detection mechanisms of the

middleware can detect this anomaly when no heartbeat is received within the timeout TLB.

Hence, before instantiating another LB at least TLB needs to pass. The critical problem

is that, since the LB is a very busy component that has to dispatch each request received

from the clients, such timeout is typically very large to avoid false positive, i.e., the LB does

not send the heartbeat just because it is busy dispatching the requests. It is worth to note

that a similar problem has in part caused the tremendous, in term of business lost, Amazon

outage of the 2010 [41].

An anomaly caused by an active hang of the LB-related processes may be detected by

sosmon when, for instance, the cpu usage of the processes becomes “suspiciously” high and

the bytes sent on the network become “suspiciously” low. The central point of the detection

is how to determine such suspiciousness of the monitored vital signals, i.e., cpu usage, net-

work IO. Indeed, the dynamics described above are rarely known a priori and it is difficult

to profile each component and each node of the system to derive descriptive statistics of

Chapter 3. OS-level Detection of Anomalies 89

the nominal behavior. For this reason, on-line statistical analyses and the α− count meth-

ods turn to be an cost-effective way to to reveal suspicious behaviors avoiding preliminary

training and instrumentation.

The assumptions needed by sosmon are on the data used for statistical analysis. These

need to be numerical indicators received at regular time intervals by the monitoring infras-

tructure. Let x1,...,xK be the K monitored indicators. We define:

Def. 1. Time-series Xi[t]: the sequence of j samples of xi up to time t, xi[t1], xi[t2], ...,

xi[tj], t1 < t2 < ... < tj ≤ t, tj+1 > t.

The time series correspond to the behaviors of the system which need to be analyzed for

anomaly detection. The stream of samples X[t] = (X1[t], X2[t], .., XK [t]) ∈ RK constitutes

the collection of measures at time t.

We model Xi dynamics as a random walk, and we consider suspicious the changes in

the features of Xi caused by non-random factors, such as: the activation of a residual fault;

an overload condition, e.g. due to a burst of requests; a malicious activity.

The definition of anomaly provided by the IEEE standard[133] is thus specialized as

follows:

Def. 2. Anomaly: a change in one or more indicators characterizing the behavior of

the system caused by specific and non-random factors (e.g., the activation of faults and

malicious attacks).

This means that for each monitored indicator the admitted variability is the result of the

Chapter 3. OS-level Detection of Anomalies 90

cumulative effects of constant and casual factors. On the other hand, changes due to non-

random factors (such as overload condition, the activation of a residual fault and a malicious

activity) produce a variability that violated the properties of the underline random-walk

process, which is not admitted and needs to be detected.

It is worth noting that no assumptions are made about the stationarity of the monitored

OS variables. This means that if their statistical properties (such as the mean and the

variance) change over time, the detection of anomalies is still possible.

3.2 High-level Architecture of the Framework

P
r
o

b
e

 1

P
r
o

b
e

 2

…

K e r n e l -

l e v e l

P
r
o

b
e

 K

Filtering &
Aggregator

SPS

Suspiciousness
Checker

!-counter

Correlator

s o s m o n

U s e r -

l e v e l

Figure 3.3: The high-level architecture of the framework

The high-level architecture of the framework is depicted in Figure 3.3 and the pseudo-

code of the sosmon detection daemon is in Algorithm 1. It worth to note that the core func-

tion are provided by the SPS algorithm and the α-counter (namely the function combineData

in Algorithm 1), which are described in the following sections.

The core of the monitoring infrastructure that allows to detect anomalies is constituted

Chapter 3. OS-level Detection of Anomalies 91

sosmonDaemon

initConfiguration(); /* Initialize the configuration parameters */
/* t is the current time and ∆t is the monitoring interval
A is a global two-dimensional array storing history of the
suspiciousness of the indicators */

while true do
t← getCurrentTime();

for i← 1 to K do
Xi ← getIndicator(i, t) /* Store the i− th indicator at time t */

Ti ← getSPSThresholds(Xi) ; /* Array containing the upper and
lower thresholds */

/* Check suspiciousness using the thresholds computed by SPS */
if X /∈ [Ti[0], Ti[1]] then

A[i][t]← 1 ; /* Update state variable at time t */
end

end

if combineData(t) then
anomalyF lag ← 1 ; /* Signal to the upper level the anomaly */

else
anomalyF lag ← 0;

end
wait until getCurrentTime() ≥ (t + ∆t)

end

Algorithm 1: sosmon daemon running at user-space

Chapter 3. OS-level Detection of Anomalies 92

by a set of kernel-level probes. The monitored indicators xi (i = 1, 2, ..., K) are obtained

through the kernel-level probes and the filtering and aggregator.

Figure 3.4: An example of trace collected by sosmon

The probes pi, with i = 1, 2, ..., P , are the kernel instrumentation points that allow

to trace raw-level events such as the syscall error, the scheduling times, IPC events, socket

operations. However, the collected traces are not yet suitable to perform statistical analysis

since each entry just consists in a timestamp with an associated message in a predefined

format. For instance, Figure 3.4 shows a trace produced by the probes. The first event

collected is related the syscall error and contains the following information (separated by

the # separator): timestamp, the type of collected event (i.e., the syscall error), the return

code, the process name, the process ID, the thread ID.

The collected trace is analyzed by the filtering and aggregator. This module accomplishes

a set of modifications to the raw data in order to derive the monitored indicators xi (i =

1, 2, ..., K). First, the collected events are filtered by process id. Then, the filtered events

Chapter 3. OS-level Detection of Anomalies 93

are then aggregated by the timestamp and event type, and, when applicable, by the thread

id. Hence, the value of the indicator xi is the result of the such filtering and aggregation

operations.

The processes to monitor, the probe points to enable (and so the collectable event type),

the time unit, i.e., the granularity of the timestamp for derived indicators, and other options

are set by the user by means of sosmon configuration file.

The history of the indicator xi thus represents the time-series Xi that can be analyzed

by means of the Statistical Predictor and Safety margin (SPS) module SPSi. The SPS

module performs some statistical analysis for each indicator xi and returns lower and upper

adaptive thresholds, i.e., T l
i [t] and T u

i [t]. These adaptive thresholds are then used by the

suspiciousness checker to verify that the random walk process associated to the indicator

xi is not out of control. Indeed, when the indicator xi at time t does not fall within the

estimated range, it is judged to be suspicious and the global state variable A[i][t], which

stores this information, is set to 1.

Finally, the α-counter allows to detect an anomaly. This module implements a classical

“count-and-threshold” criteria (see Section 2). These heuristics have been proposed to

discriminate between relevant from non relevant anomalies [115]. In the proposed framework

the α-counter Correlator counts the suspicious variables (A[i][t]) signaled over a time window

w, raising an alarm when the counter overcomes a predefined threshold. The following

assumption is made: suspicious behaviors within a little time window are easily evidence

of anomalies for the monitored components. This assumption is supported by many recent

studies that recognize some stability properties of system indicators when no anomaly occurs

Chapter 3. OS-level Detection of Anomalies 94

[132, 111].

The details about the design and the implementation of these modules are describe as

follows.

3.3 Internals of the Framework

3.3.1 OS Monitoring Infrastructure

This section describes the instrumentation infrastructure to collect kernel-level events through

which OS-level indicators are obtained. In particular, two possible implementations for

Linux and Windows environments are detailed.

As discussed in Chapter 1, this work focus on anomalies that do not require the knowl-

edge of the components internals to be revealed. Each ODC defect type can lead to different

anomalies and hence different indicators need to be used. The indicators that could be used

are discussed as follows.

Timing/Serialization defects may lead anomalies in the usage patterns of OS resources

which are typically exploited to manage shared resources is monitored: i.e., semaphores,

mutexes, and shared memory. For these reasons, we argue that useful indicators to monitor

are the time to acquire shared resources, the holding time of shared resources, the number

of resources used and the time for scheduling processes. Indeed, an indefinite wait condition

(passive hang) may lead to increasing holding times; an infinite busy loop can lead to an

increase in time to schedule processes.

Assignment or Checking defects, such as bad initialization or parameter not validated

before used, usually lead to bad memory accesses; hence, other IPC events, such as OS

Chapter 3. OS-level Detection of Anomalies 95

signals, should also be monitored. For instance, in Linux a bad memory access is reported

by the SIGSEGV signal.

Anomalies between the monitored components and the OS, which may be caused by

Interface defects, e.g., a system call is called with wrong parameters, could be revealed by

monitoring system call (syscall).

To catch anomalies due to Build/Package/Merge defects, the usage pattern of most

important system libraries (e.g., pthread the multi-thread library) needs to be monitored.

The ODC triggers should also be taken into account. For instance, the Workload

and Boundary triggers can be taken into account by counting the number of active pro-

cesses/threads, the amount of bytes sent(received) to(from) network/disk, the CPU activ-

ity and the memory. As for the Concurrency trigger, the number of simultaneous pro-

cesses/threads acquiring shared resources can be monitored. To take into account the

Exception Handling, the errors code returned from syscall could be monitored. Indeed, if

the component gets an error from a system call, then it is likely that the error needs to be

handled (e.g., by an exception handling routine). By exploiting some knowledge about the

system architecture other triggers could also be monitored, e.g., Recovery and Timing.

In order to simplify the sosmon implementation, the monitoring infrastructure has not

been developed from scratch but it exploits existing tracing tools for Linux and Windows,

i.e., SystemTap and WRPM, respectively. Despite this choice has allowed to reduce the

development time, when the framework needs to be deployed on production environments

ad-hoc monitoring infrastructure should be implemented to reduce runtime overhead and

Chapter 3. OS-level Detection of Anomalies 96

the performance penalties. However, the measured overhead of the current implementation

of sosmon is still acceptable (less than 5% in the worst case); the details of such an analysis

is provided in Chapter 5.

Linux Monitors

The collection of raw OS-level events is accomplished by means of probes dynamically

inserted into the kernel, without the modification of the application and the components

source code and the recompilation of the OS.

A probe consists of two basic elements: the breakpoint and the handler routine. The

former is a special CPU instruction that suspends the execution of the specific kernel func-

tion. The latter consists of a set of predefined commands that execute at the breakpoint

to provide the desired information, such as the input parameters and the return values of a

called functions.

The events collected in the trace are then filtered and aggregated in order to compute

the indicators.

As discussed above, this monitoring infrastructure is implemented by means of the

SystemTap, an open source tool downloadable at http://sourceware.org/systemtap/. It has

been specifically designed to simplify the development of systems instrumentation [85].

An overview of SystemTap is provided in Figure 3.5.

SystemTap allows to instrument the system by means of different steps: scripting, elab-

oration, translation and execution. These steps are briefly described as follows; for deeper

Chapter 3. OS-level Detection of Anomalies 97

Figure 3.5: The SystemTap tool overview

details see [85].

The first step to instrument the system consists of writing an instrumentation script,

which is written in a simple language similar to awk scripting (www.gnu.org/software/gawk).

The script describes associations of probe points, i.e. the breakpoints, and the handler

routines. The user can write its own scripts exploiting already implemented probe points,

which are defined into the tapset library. Typical control flow features, such as conditional

statements, can be used to perform the so called speculative tracing, i.e., limit the collected

events by filtering by PID, and by type of event.

Once the script is written, it can be given in input to SystemTap. The first step to

convert the script into an executable that contains the desired instrumentation code is the

elaboration. Elaboration is the preliminary processing phase, analogous to the linking phase

in C/C++ programs. It is needed to resolve references to kernel/user symbols and tapsets

Chapter 3. OS-level Detection of Anomalies 98

by preparing the successive phase, i.e, the translation. The translation allows to insert for

each script subroutine a block of C code that also includes necessary locking and safety

checks (e.g., infinite loops prevention). Furthermore, it is provided a common runtime with

routines for the management of associative arrays, memory, shutdown, startup, I/O.

Then, SystemTap uses a compilation approach to generate the executable from the C

code generated by the translation. This contrasts the interpreter approach that has been

usually adopted by other similar instrumentation tool, e.g., [69]. The C file is compiled and

linked with the SystemTap runtime into a stand-alone kernel module.

The monitoring takes place when the kernel module is loaded. The output that is

extracted from the module is sent to userspace through the relayfs or netlink modules,

which are reliable and high performance transport means. In particular, in the current

implementation these data are sent to a pipe and the event are consumed on-ilne to limit

the amount of memory that can be consumed by the infrastructure. The monitoring ends

when the module is unloaded from the kernel.

The sosmon filtering and aggregation module has been implemented by means of (i) the

basic SystemTap PID and event type filtering facility, and (ii) a simple perl script that

aggregates the events based on the chosen time unit (e.g, the second).

The described monitoring infrastructure produces the following indicators in each time

unit (Table 3.1):

• system call errors: number of errors returned from system calls invocation;

• signals: number of OS IPC signals used for coordination or information purposes

Chapter 3. OS-level Detection of Anomalies 99

(e.g., invalid memory access, process crash, loss of a socket connection, I/O data

available);

• task scheduling timeouts: number of timeouts expired since a process released the

CPU;

• waiting time for critical section timeouts: number of timeouts expired since a

process (thread) started waiting for entering a critical section;

• holding time in critical section timeouts: number of timeouts expired since a

process (thread) entered a critical section;

• process (thread) creation/termination: number of processes (threads) start-

ing/terminating their execution;

• disk I/O timeouts: number of timeouts expired since the last read/write operation

on disks;

• socket I/O timeouts: number of timeouts expired since the last read/write opera-

tion on a network socket;

• disk I/O throughput: the aggregate number of bytes transferred per time unit in

operations on disks;

• network I/O throughput: the aggregate number of bytes transferred per time unit

in operations on network devices.

Chapter 3. OS-level Detection of Anomalies 100

Table 3.1: Monitored variables for Linux and Windows

Indicators Linux Windows
System call errors YES YES
OS Signals YES NO
Task scheduling timeouts YES YES
Waiting time for critical section timeouts YES NO
Holding time in critical section timeouts YES NO
Mutex/semaphore objects NO YES
Process (thread) creations/terminations YES YES
Disk I/O timeouts YES NO
Socket I/O timeouts YES NO
Disk I/O Throughput YES YES
Socket I/O Throughput YES YES

Windows Monitors

The monitoring infrastructure for Windows has been implemented to monitor most of the

same OS-level indicators collected for Linux. As discussed above the Windows Reliability

and Performance Monitor (WRPM) [87] tool has been used. WRPM is a monitoring tool

available on both Windows desktop and Server releases. It provides several functionalities

to system administrators: (i) the monitoring of the application and hardware performance

in real time; (ii) the tracing of the performance-related events of both applications and

services; (iii) the generation of alerts and reports; (iv) the triggering of predefined actions

when thresholds are exceeded.

A high level view of the WRPM architecture is depicted in Figure 3.6. WRPM consists of

three basic monitoring tools: Resource View, Reliability Monitor, and Performance Monitor.

Chapter 3. OS-level Detection of Anomalies 101

The Resource View and Reliability Monitor tools (consumers in Figure 3.6) use data coming

Figure 3.6: The monitoring infrastructure for Windows

from low level monitors (CPU, disk, network, memory) to give a run-time graphical view

of the system status. The former provides information about system resources usage such

as processes’ memory consumption. The latter evaluates an index that help identifying

“configuration failures”, i.e. issues related to bad systems configurations.

The Performance Monitor tool allows viewing performance data (both at run time and

from log files). It is based on a set of Performance counters (such as mutexes, semaphores,

bytes read from devices, bytes write to devices, process elapsed time), which collect measures

related to the system state or its activities. Counters can be embedded in the operating

system or can be part of individual applications.

Another important tool, which can be exploited to observe OS-level indicators, is the

Chapter 3. OS-level Detection of Anomalies 102

Event Tracing for Windows (ETW). ETW collects data from trace providers that report

actions or events related to components of the OS (kernel level) or of individual applications

(user-mode level). Events monitored by this tool include: Process (Thread) creations or

terminations, system call, disk I/O, TCP/UDP network I/O, context switches. Output

from multiple trace providers can be combined into a trace session. Then, the trace may

be analyzed by one or more consumers by allowing large-scale server applications to write

events with a minimum overhead.

Finally, data collection and logging is performed using Data Collector, the component

that also groups data into reusable elements. Once a group of data collectors is stored as a

Data Collector Set, operations such as alerts or scheduling can be applied to the entire set

through a single property change. By means of the Performance counters and ETW (i.e.,

the Data Collector Set we built) OS-level events can be monitored as for Linux (see Table

3.1).

It is noteworthy that WRPM allows to collect a huge amount of data, but some events

have not the same meaning that the corresponding ones in Linux OS. For instance, Windows

signals are exploited from the OS only to send an interrupt to a process to notify events

such as abnormal termination, floating-point error, illegal instruction, CTRL+C signal,

illegal storage access, termination request; while, in Linux signals are widely used for Inter-

Process Communication. Moreover, in Windows we could not monitor the time needed

to acquire/release mutex/semaphore because it had implied to modified the underlying

applications. Therefore, to satisfy the requirement that the monitoring infrastructure is

application-independent, just the number of mutex/semaphore objects is monitored.

Chapter 3. OS-level Detection of Anomalies 103

Finally, WRPM only provides the overall amount for disk I/O, network I/O and system

call errors events, which includes all processes currently running. Therefore, using WRPM

to monitor such events it is not possible to filter by PID and so it has been not possible to

isolate the contribution of processes the target application.

3.3.2 The Statistical Predictor and Safety Margin Algorithm

Overview

The detection of suspicious indicators is based on the SPS algorithm [134]. SPS was orig-

inally designed to estimate the synchronization uncertainty interval of a software clock,

namely, the interval of time that contains the real clock offset. In [134] the goal of SPS is

to provide an uncertainty interval that most of the times contains the real clock offset.

In this work SPS is used in the reverse way. The nominal behavior of any monitored

indicator is modeled with a random walk. An anomalous behavior is detected if the interval

estimated by SPS with coverage c does not contain the actual value of the indicator. The

coverage c represents the probability that, given no anomaly occurs, the adaptive thresholds

contains the real value of the indicator.

At time t , when the function getSPSThresholds is invoked (see Algorithm 1), SPS is

requested to compute adaptive threshold for the specific indicator xi. The adaptive upper

and lower thresholds (T u
i [t+ k] and T l

i [t+ k], respectively) computed by the SPS algorithm

at time t for the indicator xi consist in a combination of left and right bounds:

T u
i [t]=xi[t− 1] + P [t] + SM [t− 1] (3.1)

T l
i [t]=xi[t− 1]− P [t]− SM [t− 1] (3.2)

Chapter 3. OS-level Detection of Anomalies 104

These bounds are computed from three quantities:

1. the last value of the time-series (xi[t− 1]);

2. the output of a predictor function (P [t]);

3. the value of a the safety margin function at previous step (SM [t− 1]).

The predictor and the safety margin functions are adapted from [134]. The predictor

function provides an estimation of the behavior of the random walk process. Clearly the

parameters of the random walk are unknown and may depend on (i) the specific monitored

variable, (ii) the target components and (iii) the environment in which it operates (such as

the operating system and other active processes).

The parameters to consider for the computation of the adaptive thresholds are estimated

using the last m samples of the series, where m is the memory of the SPS module. The

memory and the coverage of the SPS module can be set in the configuration file and can

be specified for each monitored indicator.

As for the safety margin function, it aims at compensating possible errors in the pre-

diction and/or in the collected measures. The safety margin is computed only when new

measures arrive.

Figure 3.7 shows an example of the adaptive thresholds computed by means of SPS for

the to reveal suspicious behavior in the number of timeouts expired for the scheduling of

processes, which is one of the monitored indicators for the case-study presented in Section

5. Furthermore, the figure shows for reference the static thresholds evaluated by averaging

the maximum and the minimum extracted in preliminary profiling experiments, which have

Chapter 3. OS-level Detection of Anomalies 105

been performed under a normal workload. The dots in Figure 3.7 are the values measured

under a high stressful workload; the two constant lines are the static thresholds, while the

two continuous lines represent the adaptive thresholds. A fault is manually injected in the

source code of a component and it is activated at second 160 when the component stops

serving requests.

Figure 3.7: An example of adaptive vs static anomaly detection thresholds

Due to the stressful workload, some indicator values in the left part of the figures are

higher than the static upper bound. Moreover, the worst-case thresholds do not allow the

timely detection of the suspicious behavior caused by the activation of the injected fault.

On the other hand, SPS provides thresholds useful to correctly signal the anomaly without

producing a false positive before the activation of the fault.

It is noteworthy that after the detection of the anomaly the bounds computed by SPS

are much higher. This is due to the way the SPS algorithm is designed and it is explained

in the following. The adaptive interval becomes initially larger, but after few samples the

Chapter 3. OS-level Detection of Anomalies 106

bounds are again closer to the indicator.

In the following subsections the details of the predictor and safety margin function are

provided.

The Predictor Function

The behavior of the variation of the indicators (i.e. ∆xi) is modeled with the random walk;

however, the parameters of such random walk are unknown and depend on specific factors

among which the operating environments and the target system. To take into account

evolving situations these parameters are computed by using the last m samples. Let s2
d

be the sample variance of the indicator variation. From s2
d a safe upper bound σ2

sd to

the population variance σ2
d is computed with probability c, which is the SPS coverage.

Namely, σ2
sd = s2

d · (m− 1)/χ2
m−1,1−c is the 1− c percentile of the χ2 distribution using the

sample variance of the m samples [135]. Then, the safe bound σ2
sd is used instead of σ2

d to

obtain a Gaussian distribution with mean and variance being 0 and σ2
sd, respectively, and to

compute the diffusion coefficient D, which describes the random walk at hand [136]. D and

the inverse of the Gauss error function erf−1(c), which indicates the interval underlying a

cumulative probability c [135], are finally used to compute an upper bound, Vi(t), to ∆xi

in the time interval [t− 1, t].

Vi(t) = erf−1(c)
√

D(t− (t− 1)). (3.3)

While Vi(t) represents the upper bound to the variation of the indicator, vi(t− 1) is the

absolute value of the real variation of the indicator at time t−1. In case of stable indicators

Chapter 3. OS-level Detection of Anomalies 107

this is supposed to be very small. However, this may be not the case because of several

reasons among which non-stationary operating conditions. Hence, an additional term has

been taken into account to compute the prediction, which is quantity max(0, vi(t− 1)).

The following expression is thus achieved to compute Pi(t) that represents the desired

prediction for the variation of the indicator xi at time t:

Pi(t) =
∫ t

t−1
(Vi(x) + max(0, vi(t− 1))dx =

= erf−1(c)
2
3
·
√

D · (t− (t− 1))2/3 +

+ max(0, vi(t− 1)) · (t− (t− 1))

(3.4)

The Safety Margin Function

The safety margin function is computed to compensate possible errors in the prediction

and/or in the collected measures. As for the ∆xi case, a safe bound σ2
sxi

to the population

variance σ2
xi

of the indicator xi is computed with probability c starting from the last m

samples of the indicator xi. Similarly to eq. 3.5, SM(t− 1) is computed as:

SMi(t− 1) =
√

2 · erf−1(c) · σ2
sxi

(3.5)

3.3.3 The α-counter

The α-counter implements the heuristic that allows to distinguish between relevant and

not relevant anomalies. As discussed above, this is based on the assumption that many

suspicious indicators within a time window w, hereinafter the combination window, are easily

evidence of anomalies for the monitored components, while isolated suspicious indicators

Chapter 3. OS-level Detection of Anomalies 108

triggered over-time could be evidence for transient and not relevant situations such as,

workload change.

However, the aforementioned assumption can be violated in the case a bunch of moni-

tored indicators are more “critical” than others. Let consider the example of systems that

suffer from software aging. In this case just one out of control indicator, e.g., the available

free memory, may be sufficient to trigger the proper countermeasures (e.g., process restart

or OS reboot).

For this reason the α-count heuristic has been implemented using several weights ωi

(i = 1, 2, ..., K), which can be tuned to reveal different kinds of anomalies. The weight ωi

refers to the relevance of the indicator xi in the detection process. An anomaly is detected if

the combination exceeds a threshold G. When the weights are all equal, G accounts for the

number of suspicious indicators that must be revealed during the combination window for

detecting an anomaly. In such case, G is expressed as the number of suspicious indicators

over the total number of indicators.

Depending on the type of components, the target system and the administrator knowl-

edge it is possible to configure more heuristics by setting different sets of weights, com-

bination windows and thresholds in the configuration file. In such a case, an anomaly is

detected if at least one combination exceeds the corresponding threshold.

The pseudo-code of the α-count combinator is shown the Algorithm 2.

Chapter 3. OS-level Detection of Anomalies 109

combineData (t)

input :
t, the current time

output:
flag, a boolean indicating if an anomaly has been detected

/* Initialize the configuration parameters needed by the α counter,
i.e., the weights, the combination window and the threshold; these
are then stored in the structure conf */

conf ← initConfiguration();
flag ← false;

foreach configuration c in conf do
counter ← 0;
weights← c.weights;
window ← c.window;
threshold← c.threshold;
for i← 1 to K do

for j ← (t− window + 1) to t do
if A[i][j] == 1 then

counter ← counter + weights[i];
break;

end
end

end
if counter > threshold then

flag ← true;
end

end
return flag;

Algorithm 2: The α-counter function invoked by sosmon daemon

Chapter 3. OS-level Detection of Anomalies 110

3.4 Parameters Tuning and Computational Cost

It is worth to recall that the configurable parameters of the framework are (i) the global

threshold G, (ii) the combination window w and (iii) the weights ω for the α-counter com-

binator; while, (iv) the memory m and (v) the coverage c for the SPS module. Different

configurations can be defined for each indicator and the corresponding SPS module; fur-

thermore, different settings (i.e., weights, combination window and global threshold) can

be defined for the α-counter module in order to reveal different kinds of anomalies. The

performance achieved by the detector depends on these parameters.

The global threshold G may be expressed as the number of suspicious indicators over

the total number of indicators. The threshold needs to be tuned for the considered system

and the type of anomaly. For instance, safety critical systems should prefer lower values for

G because every suspicious indicator may be related to a non-tolerable misbehavior.

As for the combination window w, a small window decreases the probability to combine

suspicious indicators that are related to the same non-random factor (e.g., the activation of

a fault). A large window increases the probability to combine unrelated suspicious events.

The weights account for the relevance of indicators; when these have the same relevance,

all weights are equal to ωi = 1/K. More in general weights are different, with
∑K

i=1 ωi = 1.

The memory of the algorithm m should be sufficiently large, e.g., m = 30, so that the

assumptions used to estimate the random walk parameters are reasonably satisfied [134].

Small values for m make the computed thresholds more reactive to small changes, which

may cause less accurate detection in term of false positives; the vice-versa, larger values

Chapter 3. OS-level Detection of Anomalies 111

of m lead to high conservative thresholds that may decrease the detector ability to reveal

anomalies.

As for the coverage parameter, decreasing c implies that SPS algorithm computes more

unreliable thresholds. Hence, the probability that the estimated bounds contain the mon-

itored indicator is smaller. On the other hand, if the coverage is increased, larger bounds

for the monitored indicator are computed and the occurrence of suspicious behaviors may

not be detected. The requirements of the system in which the anomaly detector is deployed

should guide the tuning of this parameter.

In Section 5, a sensitivity analysis for the discussed parameters is provided using exper-

imental data.

The computational cost of the detector depends on the computation of a population-

weighted variance. Since the variance is computed using sums of the elements, the compu-

tational cost of the detector is linear with the number of samples. If we use accumulators

to store the value of the sums in memory, the computational cost becomes constant. This

last solution is obviously preferred when the detection framework has to be used run time

with a large set of samples.

Chapter 4

Experimental Methodology

This chapter details the experimental methodology used to evaluate the effectiveness of the framework.
First, the motivations that lead to the use of such a methodology are discussed. These encompass
(i) the reduction of the cost of the analysis, in terms of time and resources, (ii) the sharing, the
comparison and the reuse of the obtained results and (iii), from practitioners perspective, the sim-
plification of the configuration and tuning of the framework.
The methodology consists of several steps: (i) Definition, where the objectives of the study, the system
under test, the quantities to assess, the workload and the faultload are established; (ii) Planning, in
which the experiments and the type of outcomes are defined; (iii) Execution, which encompasses the
identification of the tools needed to perform the tests (e.g., the workload generator), and the carrying
out of all the experiments; (iv) Analysis, which consists of the computation of the quantities to assess
and the results analysis.

4.1 Motivations

Experiments are crucial for engineers who are involved in evaluating and choosing among

different methods, techniques, languages and tools [137]. When dealing with heteroge-

neous, OTS-based and distributed mission-critical systems many challenges may jeopardize

experimental campaigns, among which issues in measurement process (e.g., as discussed

in Chapter 2, incomplete observation, semantic gap, intrusiveness), the analysis of huge

amount of data and non-determinism [138].

It is well-known that the dependability assessment is an intricate task, especially when

the experiments produce huge amounts of data, that may be also difficult to interpret. Many

112

Chapter 4. Experimental Methodology 113

tools can ease the data analysis. However, to assure the comparability and the consistency

of the results, which are collected in different experiments and by different subjects, ad-hoc

approaches need to be used.

The need of the methodology also arises from the requirement of providing a sound

and thorough assessment of the proposed framework and to enable the comparison of its

performance with other detectors of the same class (e.g., the ones proposed in [3]).

For these reasons, we have adopted a general methodology that is based on (i) the

principles of design of experiments (DoE), (ii) dependability basics and (iii) data warehouse

and OLAP techniques. This allows to perform experiments in heterogeneous systems, to

share and cross-exploit raw data from different experiments, to analyze and to compare

obtained outcomes in fair way and from different perspectives, and, finally, to increase the

experimenter trust on the obtained results.

4.2 The Adopted Methodology

In this Section, the steps, which are summarized in the Figure 4.1), of the adopted exper-

imental methodology are described. First, an overview of the method is provided; then,

each step is described in a separate paragraph.

4.2.1 Overview

As discussed above, the methodology is based on (i) the principles of design of experiments,

(ii) dependability basics and (iii) data warehouse and OLAP techniques.

Very briefly, DoE helps to minimize the experimental error and to get statistically sig-

nificant answers in the investigation of systems or processes [139]. DoE principles state that

Chapter 4. Experimental Methodology 114

Results
Analysis

Planning Definition Execution

Objectives

Target
System(s)

Quantities
to assess

Workload

Faultload

Experiments

Outcomes

Workload
Generators

Faultload
Injector

Data
Staging

Data
Analysis

Figure 4.1: The experimental methodology

the first step in planning an experimental campaign is the formulation of a clear statement

of the objectives of the investigation. Then, the experimenter needs to identify the response

variables, also called quantities to assess, i.e., important measures that deserve deep anal-

ysis, and the factors of interest, which are those variables that can potentially affect the

response variables but are not the primary objectives of the analysis. The value of the

factors chosen in the experiments are called levels. A factor is said to be controllable if its

level can be set by the experimenter, whereas the levels of an uncontrollable factor cannot

be set, but only observed. When response variables, factors, and levels are identified, the

test plan is completely determined by defining a list of experiments, called treatments.

Previous studies on dependability have highlighted the importance of two factors for

experiments: a representative workload [140, 13, 141], i.e., the computational load that the

target system has to process, and a representative faultload [21, 142, 143], i.e. the fault

Chapter 4. Experimental Methodology 115

types, the fault locations, the fault activation times that will be injected to the target

system.

Indeed, many studies have observed how the the type of failures and the failure rates

may vary dramatically depending on the workload being executed [11, 12, 13]. For instance,

in [12, 14] and in our work [15, 16] the workload is observed to be an important software

aging factor.

As for the faultload, the injection of representative faults is a valuable mean to test

and validate fault tolerance mechanisms [142, 32, 5]. Several approaches and techniques are

available both for hardware and software fault injection. In case of software fault injection

the ODC classes of faults [31] can be used as staring point for selecting a faultload [21].

Main challenges regarding workload and faultload are representativeness, i.e., the capa-

bility to closely match the “real” world situation, and portability, the property to be not

dependent upon any particular system or component, in other words, the capability to be

easily implemented in many heterogeneous systems. This last property is more difficult to

obtain since, for instance, in case of hardware faults, these could not have any effect using

some specific hardware components.

Last but not the least, the need for a common way to store, organize, share and access

experimental results is a well-known problem [144]. Centralized repositories that allow to

store and to share important data about dependability experiments have emerged and are

the natural choice to simplify this task [145].

Chapter 4. Experimental Methodology 116

Summarizing, the adopted methodology allows to perform experiments in heterogeneous

systems, to share and cross-exploit raw data from different experiments, to analyze and

to compare obtained outcomes in a thorough and fair way and, finally, to increase the

experimenter trust on the obtained results.

4.2.2 Definition

This phase defines the objectives of the study and the target system, which is the entity

that is investigated in the experiments, e.g., products, processes, theories. Moreover, it

establishes the quantities to assess. These represent, according to the objectives of the

analysis and to the target system, the most relevant output of the experiments. Then, all

the important factors, especially those of interest for dependability experiments that may

influence the quantities to assess, need to be taken into account. For instance, as previously

discussed, important factors when dealing with dependability experiments are the workload

and, especially when fault tolerance means need to be evaluated, the faultload.

Objectives

As suggested by DoE principles the first step for experiments definition is the formulation

of a clear statement of the objectives of the investigation. This consists in a synthetic and

precise description of the goals of the experiments that answers the following question: what

is the issue/problem/theory the experimenter wants to address? This is fundamental to

ensure that important aspects of experiments are defined before the planning and, especially,

the execution take place [137].

Chapter 4. Experimental Methodology 117

The experiment objectives can be generally formalized by formulating two hypotheses:

H0 – the null hypothesis – states that there are no real underlying trends or patterns in

the treatments and the only reasons for differences in the observations are due to

experimental errors.

Hα – the alternative hypothesis – is the one in favor of which the null hypothesis is rejected.

For instance, a possible hypothesis formulation may include the comparison between

two different techniques (e.g., two detectors).

Target system

The system under test, or target system, is the entity under investigation for which the

experimental campaign need to be designed. The target system may interact with other

entities (e.g., other systems). For this reason, the target system has to be unambiguously

separated from the environment in which it operates by identifying the system boundaries

[8] – as discussed in 1.

It is worth to note that system boundary identification also allows to pinpoint the enti-

ties that may influence and alter the system behavior and so the quality of the experiments,

namely, the so called disturbing factors.

Chapter 4. Experimental Methodology 118

Quantities to assess

The quantities to assess, commonly called response variables, are the most relevant output

of the treatments. These are usually defined according to the primary effect under study,

i,e, the objectives of the analysis, and to the target system.

The quantities to assess may be directly measurable by means of the instrumentation of

the target system or may be indirectly derived from raw or intermediate measures. Quanti-

ties to assess should be as intuitive as possible, especially in case of well-known and countable

metrics; for instance, in this dissertation, these may be defined using the relevant metrics

defined in Section 2.3.

Workload and faultload

The workload is the computational load that the system under test has to process, which

influences, as well as the hardware and the software components, the performance and the

failure behavior of the target system.

The choice of workload can be considerably simplified by the existence of standard

benchmarks that allow to exercise all more crucial functionalities of the target systems as-

suring a large degree of representativeness. Otherwise, other different types of workload can

be considered for experimental purposes: real workloads, realistic workloads, and synthetic

workloads [146].

Real workloads may be defined based on the knowledge of the software and the operating

environment. It has to be privileged when the target system has to operate in particular

Chapter 4. Experimental Methodology 119

and specific scenarios. Realistic workload is an artificial workload composed of a subset

of representative operations performed by the target system. This has the advantage to

reflect real situations and to be more general than real workloads. Synthetic workload can

be a set of randomly selected target system functionalities. This is easier to use but, its

representativeness is doubtful [146].

Another important aspect that can be addressed at this stage is the workload characteri-

zation. This consists in a synthetic model of the essential features of the real load imposed to

the system during operation. The characterization is indisputable useful to design synthetic

workload generators that mimic the real workload and allow to design accurate capacity

planning [147]. Moreover, as observed by recent study, workload characterization is also

useful to accelerate the surface of dependability problems. Indeed, in recent studies [14]

and in our work [15, 16] some workload factors, such as the amount byte sent or the type

of request, have been demonstrated to influence the failure rate of software systems when

considered into the experiments.

The faultload represents the residual faults that typically affect the target system during

operation. A complete definition of the faultload consists in the description of the fault

types, the fault locations, the fault activation times and their distributions for the target

system [142].

The approaches and the techniques that can be used for inject repesentative faults

generally depend upon answering three important questions: what, where and when to

inject? Answering the first question allows to choose between techniques based on fault or

Chapter 4. Experimental Methodology 120

errors (i.e., the effect of fault activation) injection.

Answering the where question is important especially when dealing with OTS-based

systems. For instance, the injection of faults at component interfaces or into the component

internal modules has demonstrated to be not equivalent [21].

Choosing the triggers that activate the injection, i.e., the when question, is the last

aspect to be addressed. The approaches typically adopted for the injection use the first oc-

currence, i.e., as soon as the injection code is is executed), the time-based, i.e., by means of

timeout for injection, or a combination of the two. However, recent studies, e.g., [148], have

observed that completely different failures can be obtained changing the injection triggers.

A good discussion on how to select the proper workload and faultload can be found in [140].

4.2.3 Planning

This phase consists of experiments, in which the design of the experimental campaign is

carried out, and outcomes, in which the structure and the organization of the outputs of

the experiments, also called observations, are established.

It is worth to note the planning activities may also help to refine the key aspects defined

at the previous phase of the methodology.

Furthermore, the successive phase, i.e., analysis, is closely related to the planning. In-

deed, for instance, when statistical analysis techniques are used to draw meaningful con-

clusion, the capability to apply typical statistical tests strictly depends upon the type of

design and upon the nature of the collected outcomes.

Chapter 4. Experimental Methodology 121

Experiments

The experiments to perform are defined when quantities to assess, factors of interest, and

factor levels are identified. The design the test plan describes how the experiments are

organized and it is formally determined by defining a list of tests, usually called treatments.

The goal of a proper experimental design is to obtain the maximum information with

the minimum number of experiments [149]. Moreover, the experimenter has to carefully

design the test plan in order to minimize the variability of the response variables due to the

experimental errors.

The plan can be generated according to the objectives of the study using a statistical

tool, like JMP (www.jmp.com), that allows to adhere to the general DoE principles, i.e.,

randomization, replication and, when needed, blocking.

Randomization is used to meet the requirement that the experiment outcomes are inde-

pendent random variables –indeed, this is fundamental when statistical techniques are used

since it is a crystal requirement.

Replication refers to the repeated execution of the treatments in order to have a more

precise estimation of the error in the observations.

Blocking is used to systematically eliminate the undesired effect of a factor that the

experimenter knows to influence the response variables but he/she is not interested in

studying its effect. The test plan may adopt the blocking design to increase the accuracy

of the experiment when such the effect of the factor is known and controllable.

Chapter 4. Experimental Methodology 122

When experiments are too costly, in terms of time and physical resources used, different

design plans can be adopted such as the fractional experimental design. More details about

the different design strategies can be found in [139, 150].

At this stage some preliminary experiments can be defined too. Usually, preliminary

tests are mandatory to acquire some knowledge on the target system. For instance, capacity

tests may be useful to determine the levels of some workload factors, such as the maximum

number of requests in the time unit. Given a chosen system configuration, capacity tests

consist in preliminary experiments in which the stress level imposed to the target system

is progressively increased and performance, e.g., throughput and response time, are mea-

sured. When the performance reach a knee, this point represents the system’s capacity.

Preliminary tests may be also needed for determining the experiment minimal duration or

the best testbed configurations [151, 15].

Outcomes

This stage is useful to define the structure and the organization of the experiment out-

puts. Indeed, text files or spreadsheet can be used for specific analysis, but they become

clearly inadequate when the amount of data is huge, the required analysis is complex, and,

especially, when the experimenter deals with heterogeneous data. For these reasons, the

methodology exploits the data warehouse and OLAP approaches [145].

OLAP (On-Line Analytical Processing) refers to a set of techniques and systems that

Chapter 4. Experimental Methodology 123

are conceived to perform sophisticate analysis on a huge amount of data with the aim to

support the management and the decision making process. As discussed above it has been

recently adopted for dependability benchmarking and experiments [145, 140]. Systems that

implement the OLAP technology allow to analyze a data set by different points of view in

a easily and interacting way, without having to reorganize the data.

The central element of this approach is the repository, called data warehouse (DW),

which is populated with the data coming from monitored system or process.

A fundamental aspect of the DW is the multi-dimensional abstract model used to rep-

resent and to organize the collected data. The multi-dimensional model includes two kinds

of data: facts and dimensions. Facts are data that represent the specific activity of interest

(e.g, the output of the treatments); facts have some specific properties, e.g., a numeric

attribute or are countable, which are the subject of the analysis. As for dimensions, they

represent different perspectives of analysis, e.g., factor of interests, blocking factors.

This model in data warehousing is usually implemented in relational database using the

star schema.

In Figure 4.2, taken from [145], the dimensions are the tables, product, store, and time,

while the facts contain the important information (e.g., total sales and profit) for a given

product in a given store on a single day. It is worth to note that the facts are just numerical

quantities and only becomes meaningful when referenced to the dimensions.

The star schema is the starting point for the implementation of the central repository to

store the raw data, that are successively required by the OLAP approach to perform analysis

and cross-checks with different perspectives in a general and efficient way. According to

Chapter 4. Experimental Methodology 124

the raw results produced during experiments, in order
to read them into the data warehouse.

- The results analysis setup is based on standard OLAP
technologies, which are the general-purpose tools for
the analysis of multidimensional datasets.

• It is easy to compare and cross-exploit raw results from
different experiments, as all the raw data is stored in a
common data warehouse.

• It is easy to share raw results world wide as the data
stored in a data warehouse can be explored by web-
enabled versions of OLAP tools. This way, it is possible
to make available to the entire dependability community
the raw data of dependability evaluation experiments
(data is available for analysis through a web page).

The system presented in this paper is currently being
used in the DBench project for the analysis and sharing of
dependability benchmark results in several scenarios:
analysis of raw data of single experiments, analysis and
comparison of benchmark results obtained in different
systems, and sharing and cross-exploitation of results
among project partners. Some experimental examples and
the corresponding raw results that can be analyzed
through a web based OLAP tool can be found here:
www.dei.uc.pt/~henrique/DBenchDW/examples. We see
this possibility of making the raw results available to the
dependability community, together with a tool to analyze
them, as an important step to increase the exchange of
results among researchers and practitioners. This way,
people can not only read the traditional paper presenting
the final results, but they will also have access to the raw
data and they will be able to use that data for other
purposes or to compare with their own results.

This paper is organized as follows: section 2 provides
some background on data warehousing and OLAP and
presents the proposed approach in more detail. Section 3
illustrates the approach with a concrete example. Section
4 explains how to use the proposed approach and section
5 proposes some possible scenarios to use this idea.
Section 6 concludes the paper.

2. DBench-OLTP specification outline

Data warehousing refers to “a collection of decision
support technologies aimed at enabling the executives and
managers to make better and faster decisions” [8]. A data
warehouse is a global repository that stores large amounts
of data that has been extracted from heterogeneous
systems. OLAP (On-Line Analytical Processing) is the
technique of performing complex analysis over the
information stored in a data warehouse [7]. The data
warehouse coupled with OLAP enable decision makers to
analyze and understand business trends and to transform
raw data into strategic decision making information.

In data warehousing the data is organized according to
the multidimensional model, which includes two kinds of
data: facts and dimensions. Facts are numeric or factual
data that represent a specific business or process activity
and each dimension represents a different perspective for
the analysis of the facts. Each dimension is described by a
set of attributes. For instance, in the classical example of a
chain of stores [7] represented in figure 1, some of the
dimensions are products, stores, and time while the facts
(the small cubes) contain the total sales, profit, etc for a
given product in a given store on a single day. Note that
the facts are just numerical quantities and only acquire
meaning when referenced to the dimensions. Normally,
there are more than three dimensions and the dimension
attributes represent a detailed description of the
dimensional data. The OLAP analysis over a
multidimensional cube consists of dicing and slicing the
data in order to compute the desired measures.

Normally, data warehouses store the data in a
relational database. That is, the multidimensional model is
implemented as one or more star scheme [8] formed by a
large central fact table surrounded by several dimensional
tables related to the fact table by foreign keys.

 Typical data warehouses are periodically loaded with
new data that represents the activity of the business since
the last load. For example, at the end of the day, the data
that represents the daily business activity is extracted

Product

St
or

e

Jan Feb Mar Apr

Milk

Soap

Sugar

Coffe

Store 2

Store 1

Sales

Time

Product

St
or

e

Product

St
or

e

Jan Feb Mar Apr

Milk

Soap

Sugar

Coffe

Store 2

Store 1

Sales

Time

Jan Feb Mar Apr

Milk

Soap

Sugar

Coffe

Store 2

Store 1

Sales

Time

Product

product_key

description

full_description

SKU_number

package_size

brand

subcategory

category

department

package_type
diet_type

weight

weight_unit_of_measure

units_per_retail_case

units_per_shipping_case

cases_per_pallet

shelf_width_cm

shelf_height_cm

shelf_depth_cm

<pk>

Sales Fact

time_key

product_key

store_key

dollar_sales

unit_sales

dollar_cost

customer_count

<fk1>

<fk2>

<fk3>

Store

store_key

name

store_number

store_street_address

city

store_county

store_state

store_zip

sales_district

sales_region
store_manager

store_phone

store_FAX

floor_plan_type

photo_processing_type

finance_services_type

first_opened_date

last_remodel_date

store_sqft

grocery_sqft

frozen_sqft

meat_sqft

<pk>

Time

time_key

date

day_of_week

day_number_in_month

day_number_overall

week_number_in_year

week_number_overall

Month

quarter
fiscal_period

year

holiday_flag

<pk>

Figure 1 – Simple example of multidimensional model: logical view (left) and a physical star schema (right).

0-7695-1959-8/03 $17.00 (c) 2003 IEEE
Proceedings of the 2003 International Conference on Dependable Systems and Networks (DSN’03)

Figure 4.2: An example of star schema

the experimenter needs, the repository may be implemented using a relational database.

Depending upon the amount of data that he/she needs to store, the repository may be

supported by normal desktop hardware, which can handle up to 20GB of data, to more

powerful workstations with parallel processing unit in order to manage terabytes of data.

It is worth to note that the outcomes, defined at this stage, allows to identify in an

unambiguous way the purposes (and the contexts) of the analysis. This may also help in

refining the objectives, the quantities to assess and the other crucial elements of the exper-

iments, such as the measures to collect.

Chapter 4. Experimental Methodology 125

4.2.4 Execution

In this phase the experiments defined at the previous steps are executed. Of course all the

tools needed to execute the defined workload or, for instance, to injection realistic software

faults should be identified and developed when not available. In this phase, intermediate

processing software can also be developed, e.g., log parsers and database loaders.

Once all the tools are available the experimental campaign can be executed.

Monitors

The instrumentation infrastructure needs to be defined to accurately collect the informa-

tion of interest by minimizing the impact on the performance and the behavior of the target

system. Ready-to-use monitoring tools or existing operating systems probes should be pre-

ferred.

Workload generator and Fault injector

The execution of the defined workload is accomplished by the workload generator. It may

be simply adapted from a driver application used during the testing phase that reproduces

the typical load to the system, or it may be designed ad-hoc.

The injection of realistic faults should be performed by means of a tool that supports

the fault types, the fault locations, and the fault activation times defined by the faultload.

Chapter 4. Experimental Methodology 126

Intermediate processing

The intermediate processing consists in the developing of tools that simplify the operations

needed to evaluate the quantities to assess and to process the experiment outcomes, such

as log parsers and filters.

4.2.5 Analysis

This is the last step of the methodology. It consists of the computation of the quanti-

ties to be assessed and the analysis of the results in order to draw meaningful conclusion

from the experiments. For instance, possible analysis are: (i) the evaluation of the detec-

tor performance with different configurations, different target systems; (ii) the comparison

of the performance with other detectors. Further types of analysis, which were not fore-

seen at the early stage of the definition phase, may be performed for different investigations.

Data staging

Data staging refers to the preliminary operations needed to get results ready for the analysis.

Indeed, the central idea of using data warehouse (DW) and OLAP approach is to store

the raw data collected during experiments in a multidimensional data structure (i.e., the

data warehouse), where the share, the cross-exploitation of the results and the analysis

can be done in an efficient and general way. Data staging is thus devised as a temporary

processing phase that allows to gather and homogenize information from heterogeneous

sources and to purify data by means of the detection (and correction) of corrupted or

Chapter 4. Experimental Methodology 127

inaccurate measures. These operations are usually needed since, as discussed in the previous

Sections, the experiments can be conducted by different peoples, in different operating

environments (e.g., Windows or Linux) and using several monitoring tools having different

format and semantic for the collected data.

A general way of performing such step is by performing the following operations:

1. Extract the data collected by the monitoring infrastructure, such as parsing the ap-

plication and systems logs;

2. Transform the extracted data so that are consistent with the semantic and the struc-

ture of the DW;

3. Develop special programs called loaders that populate the DW.

Data analysis

The analysis is performed to draw conclusions and/or recommendations according to the

objectives defined in the definition phase. The output the analysis determines if the exper-

iments may terminate or have to be extended.

Different techniques may be used. For instance, descriptive statistics, hypothesis tests,

data mining analysis, are practical examples of techniques that can be exploited to uncover

hidden patterns in collected data or to evaluate different solutions and theories.

Chapter 5

Experimental Results

In this chapter the performance of the framework are experimentally evaluated by applying the method
described in Chapter 4. In particular, sosmon has been assessed against anomalies due to the ac-
tivation of non-malicious software faults, that may lead to (i) active hang (i.e., CPU cycles are
improperly consumed by processes/threads), (ii) passive hang (i.e., a process is indefinitely waiting
for acquiring a shared resource), crash (i.e., abnormal termination of processes/threads) and perfor-
mance degradation (e.g., smoothly degradation of the quality of the delivered service as perceived by
the user). Furthermore, the performance of sosmon are compared with another detector proposed in
literature [3], which exploits tracing mechanisms and thresholds approach to detect anomalies.

To this purpose a thorough experimental campaign has been designed, which has led to the execu-
tion of about 100 experiments using the SWIM-BOX as a case study. This is a prototype developed
at SESM (a Finmeccanica company) that enables the interoperability of mission-critical systems in
the ATM domain.

Results of experiments with two different operating systems, namely Linux Red Hat EL5 and
Windows Server 2008, show that the detector is effective for mission-critical systems. Furthermore,
the framework can be configured to select the monitored indicators so as to tune the level of intru-
siveness. Finally, a sensitivity analysis of sosmon parameters is carried out to show their impact on
the performance and to give to practitioners guidelines for its field tuning.

5.1 The SWIM-BOX Case Study

In this section, the methodology described in Chapter 4 is used to evaluate the performance

of the framework for detecting the activation of non-malicious software faults. The exper-

imental campaign has been designed to enable the fair comparison of sosmon performance

with another detector proposed in literature [3], which exploits kernel-level facilities and

training-based algorithm to detect anomalies.

128

5.1.1 Definition phase

Objectives. The objectives of the experiments are:

(i) to show the suitability of the framework for detecting the activation of software faults;

(ii) to quantitatively assess its performance by demonstrating the effectiveness under dif-

ferent workload, faultload and OSes;

(iii) to perform a sensitivity analisys in order to provide some indications on how the quan-

tities involved in the configuration of the detector affect the detection; and

(iv) to evaluate the extent to which the monitoring intrusiveness impacts on the overall

performance.

The performance of the framework needs also be comparable with another detectors

proposed in literature. In particular, the detector proposed in [3], hereinafter the Static

algorithm, has been chosen for comparison. There are two main reasons for such a choise.

First, the Static algorithm has been designed with similar requirements of sosmon. Indeed,

the main objective is to reveal the activation of software faults in mission-critical software

systems that are based on OTS components. Second, the implementation of the frame-

work shares with sosmom the using of (i) kernel-level tracing and (ii) count and thresholds

approaches to reveal anomalies. However, differently from sosmon, the algorithm is based

on a preliminary profiling and training phases. The purpose of the former is to collect

OS-level indicators of the system behaviors and then to derive some descriptive values (i.e.,

minimum, maximum, mean and the variance). The latter phase is instead performed to

derive most suitable thresholds that serve to the detector to reveal anomalies for the target

129

system. Of course, the Static algorithm needs to be trained for each different target system

to work properly.

Target system. The detection activity is performed using an industrial case study,

namely the SWIM-BOX R©. This is a pilot system realized within the SWIM SUIT FP6

European project1 for supporting interoperability of the future European ATM systems

allowing integration of ATM systems.

SWIM-BOX is designed to offer several facilities: synchronous/asynchronous commu-

nication patterns (request/reply, publish/subscribe), security services (e.g., authentication,

authorization, encryption) and distributed and transactional data storage.

SWIM-BOX

SDD
Service

Core

Pub/Sub
Service

Registry
Service

AID
Service

MGMT
Service

Security
Service

SDS
Service

Req/Rep
Service

DDS Middleware

FDD
Service

DATABASE

Figure 5.1: SWIM-BOX high-level architecture

1For the System Wide Information Management (SWIM) initiative see
www.eurocontrol.int/programmes/system-wide-information-management-swim.

130

SWIM-BOX high-level architecture is depicted in Figure 5.1. SWIM-BOX has been de-

signed by integrating ad-hoc implemented components, which are domain specific, such as

Flight Data Domain service (FDD), Surveillance Data Domain service (SDD), Aeronautical

Data Domain (ADD), and application-independent OTS components such as the Manage-

ment (MNG) Service, the JBoss application server, the database and the Data Distribution

Service (DSS) middleware, i.e., OpenSplice and RTI.

SWIM-BOX has been deployed on Windows and Linux platforms. The Linux testbed is

equipped with Intel Xeon 2.5 GHz (4 cores) CPU, 8GB RAM, running Red Hat Enterprise

Linux 5. The Windows testbed consists of an Intel Pentium 4 3.4 GHz (2 cores), with 3GB

RAM, running Windows Server 2008.

The case study scenario encompasses two legacy entities, named the Manager and the

Contributor, which cooperate for managing Flight Data Plans. The Manager is in charge of

the following operations: creating Flight Objects (FOs), i.e., data including flight trajectory,

date of departure, estimated date of arrival; updating FOs if necessary, and managing FOs

life cycle. The Manager can publish a FO by sharing it with any interested ATM entity,

i.e. a subscriber. Moreover, it can perform a handover operation when the FOs need to be

managed by another ATM system.

The Contributor is the entity that receives, asynchronously, FOs information, and pe-

riodically reads all available FOs summaries; thus, it acts as subscriber. However, the

Contributor may also modify the FOs communicating with the Manager by means of the

SWIM-BOX facilities; in this case, it acts as publisher.

A (simplified) interaction scenario between the the Manager and the Contributor is

131

depicted in Figure 5.2.

By means of the SWIM-BOX facilities the Contributor requests FOs updates by sub-

scribing to the FO update topic. Then, when the Manager publishes a FO, the SWIM-BOX

needs to perform a set of checks to verify that the data published is consistent (e.g., it has

unique flight object identifier) and the entity publishing the data has the right privileges.

If the checks are successful, the SWIM-BOX takes care to distribute the updated data to

all entities interested, i.e., the Contributor in such a case.

Quantities to assess. In Section 2.3, the most suitable metrics to evaluate the per-

formance of detector have been discussed. The metrics used to characterize the anomaly

detection in the considered scenario are: Coverage (C); Accuracy (A); average Query Ac-

curacy Probability (aPA); average Mistake Rates (aλM); average Mistake Duration (aTM).

Figure 5.2: Interaction scenario for the case-study

132

These have been chosen, based on a review of the metrics used in literature described in

Section 2.3 and in [152], as the best suited for the case study target system; other metrics

could be used in different scenarios.

Workload. The experiments consist in the execution of several performance tests de-

signed during the SWIM-BOX verification and validation phase. In particular, the simple

operational scenario depicted in Figure 5.2 has been slightly extended in order to apply

different workloads.

By means of the SWIM-BOX facilities the Contributor requests FOs updates. The

Manager publishes for a given period of time many FOs at a randomly variable rate. This

is useful to represent the arrival of burst of messages, i.e., a collection of message received

into a single interaction, with respect to the SWIM-BOX, at different rates. Several bursts

are then exchanged with varying number of messages per minute, messages per burst and

number of bursts. The test ends when all the FOs are received and all accessory operations

are completed (e.g., the Contributor and the Manager unsubscribe).

Faultload. To accelerate the collection of failure related data, we inject faults that

mimic the activation of residual software faults during operation. In particular faulty ex-

periments emulate realistic failures that occur at the data distribution middleware. These

faults are usually activated during the exchange of messages between the Manager and

the Contributor. Then, the resulting errors may propagate to the interface of the JBoss

application server and may lead to:

133

• hang - the system appears to be running, but its services may be perceived as unre-

sponsive because CPU cycles are improperly consumed (active hang) or because of

indefinite waiting for resources that will never be released (passive hang);

• crash - a process (thread) ends its execution unexpectedly;

• content - FOs are incorrectly delivered;

• performance degradation - the quality of the delivered service, as perceived by the

user in terms of response time, throughput, progressively degrades overtime.

The tool proposed in [143] has been used to automatically modify the source code and

to inject the discussed faultload. When source code is not available, other approaches can

be applied, such as injection at binary-level [21]. The goal of the detector is to reveal

the activation of those faults before errors propagate to the interface causing more severe

consequences.

We inject one fault per experiment using fault classes defined in the empirical study

described in Duraes et al.[21]. Authors define the 17 most representative classes of software

faults with respect to the Orthogonal Defect Classification [31].

According to them, the fault classes that most frequently occur in real systems are:

“missing some small parts of algorithm” (MLPA) and “missing/wrong value assigned to

a variable” (MVAV/WVAV). Tables 5.1 and 5.2 list the type and the number of the in-

jected faults, respectively. It is worth to note that as for fault type, it has been used the

classification provided in [21].

It should be noted that some faulty experiments may result in more that one type of

134

Table 5.1: Considered fault types
Fault Type Acronym

MVAV Missing Variable Assignment us-
ing a Value

MVAE Missing Variable Assignment us-
ing a Value in Expression

WVAE Wrong Variable Assignment us-
ing a Value in Expression

EVAV Extraneous Variable Assignment
using another Variable

MIA Missing IF construct Around
statement

MPFC Missing Parameter in Function
Call

WPFV Wrong variable used in Parame-
ter of Function Call

MFC Missing Function Call
MLPA Missing small and Localized Part

of the Algorithm
MIEB Missing If construct plus state-

ment plus Else Before statement

failures, e.g., crash and content. Moreover, some faulty tests end correctly despite of the

injection of a fault. This is usually common for fault injection experiments, since the intro-

duction of a fault in the source code, does not guarantee the its activation. Furthermore,

even if the fault is activated some internal redundancy can mask the resulting error(s).

As for the analysis of faulty tests, this work only considers the experiments that fail.

5.1.2 Planning phase

Experiments. Two sets of experiments are planned:

• Golden runs are experiments correctly executed, with FOs distributed with no errors

returned to the Manager or the Contributor. These runs represent the correct behavior

135

Table 5.2: Source-code faults injected in the case study
ODC type Fault Nature Fault Type Num. of Faults

Assignment
MISSING MVAV 8

MVAE 12
WRONG WVAE 8
EXTRAN. EVAV 2

Checking MISSING MIA 2

Interface MISSING MPFC 2
WRONG WPFV 2

Algorithm MISSING
MFC 11
MLPA 2
MIEB 1

Total 50

of the system;

• Faulty runs consist in tests which fail because of an injected fault. The anomaly

detector has to reveal the activation of the injected fault.

The experimental campaign consists of 35 golden runs and 20 faulty runs executed on Linux

and Windows OSs, for a total number of 110 experiments. The test duration, expressed in

minutes, is chosen randomly in the set {5, 20, 45, 90}.

As for the publication rate, which is expressed in publications per minute (ppm), it is

chosen randomly in {20, 100, 300} for each run; the time, expressed in seconds, between two

bursts of messages is chosen randomly in {30, 300}. A rate of 200 (20) FOs ppm represents

a high (low) stressful workload in a typical ATM system. The aforementioned values have

been defined with the support of a ATM domain experts.

As for the configurations of the detector, the following parameter values are considered:

SPS coverage c ∈ {0.9, 0.99, 0.9999}; memory m ∈ {10, 20, 40}; combination window w ∈

136

{2, 5, 10, 20}; G ∈ [1/14, 2/14, ..., 13/14] for Windows OS, and G ∈ [1/23, 2/23, ..., 22/23]

for Linux OS.

As for the Static algorithm, the worst-case (lower and upper) thresholds are configured

using the following bounds: [min, max]; [µ − σ, µ + σ]; [µ − 2σ, µ + 2σ], where: min and

max are the minimum and the maximum values in the data set derived from the profiling

phase; µ and σ are the mean and the standard deviation, respectively.

Outcomes. Experiment outcomes are organized by means of the star schema illustrated

in Figure 5.3. This intuitive model organizes experiment outcomes in facts and dimensions

[145]. It is worth to recall that facts generically represent a specific business or process

activity; while, dimensions are interesting analysis perspectives.

In the considered scenario facts refer to the events collected by means of the kernel-level

facility. Dimensions are instead specific characteristics of the experimental setup and are

related to the different perspectives of analysis of the facts. The following dimensions are

considered:

• Target System. Characteristics of the testbed such as the OS, the number of CPU,

the CPU speed, the amount of RAM and the disk speed;

• Scenario. The description of the testing scenario, e.g., the number of entities involved

in the communication and their role (i.e. Manager or Contributor). This dimension

is useful to specify different configurations for the same Target System;

• Events. The type of event collected by the tracing facilities, from which indicators

137

are derived;

• Workload. Characteristics of the adopted workload. As discussed in the definition

phase, several bursts are exchanged at different number of messages per minute rate,

messages per burst and bursts per experiment;

• Faultload. This dimension accounts for the type of the injected fault and the software

component target of the injection;

• Run. Information related to the execution of the test, e.g., start time, end time,

sample period.

Figure 5.3: Data repository designed for OLAP analysis

138

5.1.3 Execution phase

The experiments analysis and the result analysis have been performed through two different

steps. First, the golden runs and the faulty runs defined in the planning phases of the

methodology have been executed and the raw data collected by the monitors inserted in the

target system have been temporary stored in a set of csv files. This set of data represent

the trace of the system and the input data of the two considered detectors. The algorithms

of the detectors have been applied in a post-processing phase rather that on-line. In this

way it has been possible to simulate on-line behaviour of both the detectors varying their

operating parameters.

The second step consists in post-processing analysis in order (i) to compute the thresh-

olds (adaptive in case of sosmon and fixes in case of Static algorithm) and (ii) to obtain the

time in which the anomalies would have been detected.

As for sosmon, the thresholds are computed receiving as input the collected traces and

the detectors parameters (i.e., c and m for sosmon). As for the detection time, it has been

computed using the indicators, the thresholds and the other detector parameters, i.e., the

combination window w and the global threshold G.

Considering the different detector configurations we analyzed 133,650 sets of data, since

for each run the anomalies have been evaluated by varying all the detector parameters,

i.e., c ∈ {0.9, 0.99, 0.9999}, m ∈ {10, 20, 40}, w ∈ {3, 5, 10, 20, 40}, with w ≤ m and G ∈

{1/14, 2/14, ..., 13/14} for Windows OS, and G ∈ {1/23, 2/23, ..., 22/23} for Linux OS.

139

As for the Static algorithm, a preliminary profiling phase is required to tune its param-

eters for the target system. We divided the available data in three sets: i) the training set

(we use a subset of about 20% of runs) to evaluate the detector parameters; ii) the valida-

tion set, about 30% of the runs, to select the best configuration evaluated in the training

set; and iii) the testing set, namely the remaining 50% of runs, to evaluate the performance

of the algorithm.

For each monitored indicator, three different thresholds are used (which are, as previ-

ously discussed, [min, max]; [µ − σ, µ + σ]; [µ − 2σ, µ + 2σ]); then, the configuration that

gives the best performance of both training and validation sets is chosen [103]; finally, the

Static algorithm is applied by using the chosen configuration. As for the training set, 23,760

sets of data have been analyzed.

As for the outcome of faulty runs, Table 5.3 summarizes the distribution of failures

observed by inspecting logs and the data received by the Contributor.

Table 5.3: Distribution of failures observed in faulty runs

Failure Type Distribution
Passive Hang 50%
Active Hang 36%
Crash 12%
Content 2%

140

5.1.4 Analysis Phase

This section first introduces the preliminary operation, i.e., the data staging, needed for re-

sults analysis; then, the results of performance evaluation, for Linux and Windows platforms

are shown by carrying out the comparison with the Static algorithm. Finally, a sensitivity

and an intrusiveness analysis are discussed to show how much the parameters configuration

and the intrusiveness of the monitoring infrastructure influence the performance of sosmon.

Data Staging. The purpose of data staging is to get experiment outcomes ready for

the analysis. It is used to gather and homogenize data from heterogeneous sources and to

perform operations such as data aggregation and the discovery (and correction) of corrupted

or inaccurate data.

An OLAP approach [145] is used (i) to store and organize the measurements collected

during experiments in a multidimensional data structure, and (ii) to analyze the collected

data. A single repository is used to store experimental data. The repository is designed

according to the output of the planning phase, by using the star schema shown in Figure

5.3 and allows to store data coming from different target systems and experiments.

Performance under Linux and Windows OS

It is useful to remind that the proposed detector has four configuration parameters: cover-

age c, memory m, combination window w, global threshold G, while the Static algorithm

parameters are fixed after the training phase.

141

In Figures 5.4 and 5.5 the sosmon is compared, for both Linux and Windows, with

Static Algorithm in terms of coverage, accuracy, average mistake time, average mistake

rate and average query accuracy probability. The mistake time and mistake rate values are

normalized with original values on the top of the bars. The best performance of sosmon

is achieved by choosing the configuration that achieves the maximum Coverage and then

maximum accuracy metrics. These configurations are for Linux and Windows (c, m,w, G) =

(0.9999, 20, 5, 0.2) and (c, m,w, G) = (0.99, 40, 20, 0.4), respectively.

!" !"

#$%&"

#$%'"

#$%&"

#$%'"

#$&%"

#$&&"

#$%'"

"

#$%("

#$&"

#$&("

#$&)"

#$&*"

#$&&"

#$%"

#$%("

#$%)"

#$%*"

#$%&"

!"

+,-.,/" +0123"456,7809."

:,;<716<"

433=713>"

??!@1AB??"

??!@1BC??"

1D4"

Figure 5.4: Best experimental results in Linux using coverage c = 0.9999, memory m = 20,
combination window w = 5 and G = 0.2

It is worth noting that for accuracy metrics, i.e., aTM, aMR the lower is the better, vice

versa for aPA,A and C.

Table 5.5 summarizes the performance for a subset of configurations, which are selected

using the insights provided in previous work comparing the performance of SPS algorithm

142

!" !"

#$%&"
#$%%"

#$&%"

#$'("

#$&'"

#$&)"

#$%#"

#$&*"

#$+"

#$+("

#$%"

#$%("

#$&"

#$&("

#$'"

#$'("

!"

,-./-0" ,1234"567-891:/"

;-<=827="

544>824?"

@@!A2BC@@"

@@!A2CD@@"

2E5"

Figure 5.5: Best experimental results in Windows using coverage c = 0.99, memory m = 40,
combination window w = 20 and G = 0.4

varying the memory and the coverage parameters[134].

The results provided in Table 5.5 reveal that a good trade-off between Coverage and

accuracy metrics can be obtained with different configurations. In particular, the configu-

rations with c = 0.9999, m ∈ {20, 40}, w ∈ {10, 20} and G ∈ {0.1, 0.2} for both Linux and

Windows OSs (4th row and the 5th row in Table 5.5).

As for the Static algorithm, the results (see the last two rows of Table 5.5) show that

the detector can reveal all injected faults. However, the accuracy metrics A and aPA have

a large variation from Linux to Windows: 0.95,0.92 and 0.77,0.83, respectively.

Despite, the overall satisfactory results –indeed, the performance are comparable with

the Static Algorithm, which needs to be trained for each environments– the Coverage and

the accuracy ascertain to be better in Linux than in Windows experiments.

143

Table 5.5: Coverage and accuracy of the detectors
(c,m,w,G) OS C A aTM aMR aPA

0.9999, 20, 5, 0.1 Lin 1 0.91 3.00 0.035 0.88
Win 0.7 0.83 3.66 0.047 0.83

0.9999, 20, 5, 0.2 Lin 1 0.97 2 0.021 0.95
Win 0.6 0.92 3.02 0.027 0.91

0.9999, 20, 10, 0.2 Lin 1 0.94 5 0.014 0.90
Win 0.9 0.85 6.38 0.025 0.84

0.9999, 40, 20, 0.1 Lin 1 0.82 10.7 0.019 0.74
Win 0.9 0.69 15 0.024 0.62

0.99, 20, 10, 0.2 Lin 1 0.72 9.27 0.037 0.68
Win 0.7 0.85 7.00 0.025 0.82

0.99,40, 20, 0.2 Lin 0.91 0.73 14.52 0.016 0.72
Win 1 0.78 13.18 0.022 0.70

0.99, 20, 20, 0.4 Lin 0.82 0.82 9.11 0.020 0.81
Win 1 0.75 12.63 0.023 0.70

Static Algorithm Lin 1 0.95 4.75 0.024 0.92
Win 1 0.77 4.57 0.031 0.83

The performance under Windows OS can be explained considering that the monitoring

infrastructure, i.e., WRPM, does not allow to fully isolate the contribution of the compo-

nents of interest. Indeed, as explained in Section 3.3.1, it is not possible to filter some

collected event traces. For instance, WRPM is not able to filter disk/network I/O through-

put for a subset of processes, since it provides only the overall throughput (including all

running processes). The same holds for system call errors and semaphore counters. For

this reason, an anomaly occurring in some processes may be masked by the behavior of

other components. Thus, it is the quality of the monitoring infrastructure that makes more

difficult to reveal anomalies in the Windows testbed.

Despite such intrinsic difficulties, Table 5.5 also shows that, as for Windows, sosmon

144

can reveal relevant anomalies (i.e., those related to the activation of the injected faults) by

slightly modifying the detector configuration that achieve full Coverage in Linux experi-

ments. In particular, by decreasing the coverage parameter c and by increasing the memory

parameter m the detector achieves full Coverage (see the 3rd to last and the 2nd to last

rows of Table 5.5). The price to pay is a lower accuracy. The configurations giving full

Coverage and acceptable accuracy metrics have c = 0.99, m = 40, w = 20 and G = 0.2 or

0.4.

In summary, the proposed detector has good performance on both Linux OS and Win-

dows OS and the results are comparable with the Static algorithm, which is separately

trained for each environment. Furthermore, the accuracy metrics of sosmon can also be

better than the Static Algorithm, e.g., by considering the configurations 0.9999, 20, 5, 0.2

and 0.99, 40, 5, 0.2 for Linux and Windows, respectively.

Sensitivity analysis

The sensitivity analysis of sosmon parameters is carried out to show their impact on the

performance and to give to practitioners guidelines for its field tuning. First, some ob-

servations on the relations between global threshold G and coverage c are provided; then,

memory m and combination window w are considered.

It is worth to note that to ease the comparison of performance in graphical results,

again normalized values of the aTM and aMR (i.e., 1 − ‖aTM‖ and 1 − ‖aMR‖) are

shown. Hence, in the following figures all the considered metrics have a [0, 1] range with

145

the optimum in 1.

Varying global threshold G and coverage c

Figure 5.6 shows experimental results varying the global threshold G and fixing the param-

eters c = 0.9999, m = 20, w = 5. The specific values are for Linux, but similar results are

achieved in Windows experiments. It is possible to observe a trade-off between C and the

other accuracy metrics. Sosmon can reveal the activations of faults with smaller values for

G at the price of a lower accuracy. On the contrary, not all activations of injected faults

are detected with larger values for G.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

!-!'(" !-!,!" !-$&(" !-$+!" !-%%(" !-%*!" !-&$(" !-&)!"

!"

#$%&''''(")$*%("+$,-.#"

./012341"

56672368"

$9!3:;!"

$9!3;<!"

3=5"

Figure 5.6: Experimental results for Linux using coverage c = 0.9999, memory m = 20,
combination window w = 5 and varying global threshold G

The trend of Figure 5.6 is confirmed using c = 0.9, as shown in Figure 5.7. However, the

thresholds G are much larger. This is due to the decrease in the SPS coverage parameter. In

fact, with a lower c the SPS module computes more unreliable bounds; hence, more alarms

146

are triggered and the global threshold G has to be larger to increase the accuracy.

!"#$

!"%$

!"&$

!"'$

!"($

!")$

!"*$

!"+$

,$

!-!&'$!-,%'$!-##'$!-%,'$!-&!'$!-&+'$!-'*'$!-()'$!-)('$!-*''$

!"

#$%&'(")$*%("+$,"-.#"

./012341$

56672368$

,9!3:;!$

,9!3;<!$

3=5$

Figure 5.7: Experimental results for Linux using coverage c = 0.9, memory m = 20, combi-
nation window w = 5 and varying global threshold G

Varying memory m

Figure 5.8 shows how the memory parameter m affects the detection. The other sosmon

parameters are so fixed: c = 0.9999, w = 5, G = 0.2.

Results show that better performance is achieved with m = 20. It is useful to recall

that small values for m mean that the adaptive thresholds are computed using few data

samples. Thus the computed thresholds are less accurate. This explain the higher number

of false positive and so the worse accuracy metrics.

Moreover, since so-computed thresholds are very reactive to small changes in the mon-

itored indicators, relevant anomalies could be gone undetected leading to low coverage.

The behavior improves when the memory depth is increased since thresholds become both

147

smooth and sensitive. However, a further increasing in the memory causes the SPS algo-

rithm to compute very large, highly conservative and non reactive thresholds that, for the

target system implies a lower Coverage.

!"

!#$"

!#%"

!#&"

!#'"

("

)*%!")*$!")*(!"

!"#$%&'

()*+,,,,-'.)/-'0)*+1'

+,-./01."

2334/035"

(6!078!"

(6!089!"

0:2"

Figure 5.8: Experimental results for Linux using coverage c = 0.9999, combination window
w = 5, global threshold G = 0.18 and varying memory m

Varying combination window w

Figure 5.9 reports experimental results varying combination window w, and by fixing other

parameters to c = 0.9999, m = 20, G = 0.2.

Results shows that increasing w implies better Coverage. On the contrary, a smaller w

increases the accuracy metrics at the price of missing the activation of some faults. A good

trade-off for between Coverage and accuracy metrics is achieved with w = 5, 10.

Intrusiveness analysis

As discussed in 2, one of the main problems of monitoring infrastructure is its intrusiveness

and overhead. Indeed, any modifications to the operating environment (e.g., additional

148

!"

!#$"

!#%"

!#&"

!#'"

("

)*$!")*(!")*+")*,"

!"#$%&'("&)*%&+"*)*),-./0)

/12344445)#1625)71236)

-./01230"

45561257"

(8!29:!"

(8!2:;!"

2<4"

Figure 5.9: Experimental results for Linux using coverage c = 0.9999, memory m = 20,
global threshold G = 0.2 and varying w

components, OS patch) may influence the mission of the system. Therefore, reducing the

intrusiveness and the overhead of the proposed framework is a key-factor to make it suited

for mission-critical systems.

To this aim, since the principal modifications on the target system are done at OS by

enabling the kernel-level probes, two further experiments have been performed. First, the

we have evaluated the monitoring overhead on the target system when all the probes are

enabled. Then the performance of the detector has been compared by using a limited num-

ber of probes.

Overhead evaluation Monitoring introduces various overheads, which arise from the mea-

surement, collection, handling, and processing of the monitoring data. The overhead is

usually a function of the type of data collected and the collection rate.

The overhead of sosmon framework has been measured by comparing the execution time

149

of the performance tests, with and without the monitoring infrastructure. In order to be

more confident on the results the number of Flight Object operations per seconds has been

progressively increased across tests.

Figures 5.10 shows results of this experiments. It should be noted that the overhead has

been lower than 2% in every case, even during most intensive workload periods.

Figure 5.10: Overhead for the SWIM-BOX varying the invocation period of the operations

Performance varying the number of probes

Different sets of indicators have been used: 10 sets of 9 indicators, 20 sets of 4 indicators

and 40 sets of 2 indicators. For each set indicators have been chosen randomly using an

uniform distribution.

Experimental results for Linux and Windows are summarized in Figure 5.11. For the

sake of simplicity, only mean values and variance of Coverage and Accuracy are shown for

each considered set size, i.e, 9, 4 and 2. The mean Coverage and Accuracy are on the left

y-axis; variance is on the right; the number of monitored indicators is on the x-axis.

150

The results under Linux show that reducing the number of monitored indicators does

not affect Coverage. In particular, even if only two indicators are collected, the framework

is able to detect the activation of all the injected faults. The price to pay for the limited

instrumentation is a worse accuracy. In fact, the mean values for all the sets of Coverage

is 100% but the mean Accuracy is 76%. The smaller variance highlights that all sets of

randomly-chosen indicators give similar results.

The results under Windows (dotted lines in Figure 5.12) reveal that when the number

of monitored indicators decreases, only specific subsets of indicators allow to detect all the

injected faults. Indeed, the mean Coverage decreases is 86% and the mean Accuracy to

72%; while, the variance of the experimental results increases. This means that using a low

intrusive monitoring infrastructure in Windows is possible at the prize of monitoring the

most appropriate indicators.

151

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

," '" %"

!
"
#$
"
%
&'
(

)
'
"
%
(

*+),'#(-.()-%$/-#'0(!"#$",1'2(

3$%+4(56(

-"./01" 2"./01" -"3045016/" 2"3045016/"

Figure 5.11: Results of sensitivity analysis of Coverage and Accuracy to the number of
monitored indicators in Linux

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

," '" %"

!
"
#$
"
%
&'
(

)
'
"
%
(

*+),'#(-.()-%$/-#'0(!"#$",1'2(

3$%0-42(56(

-"./01" 2"./01" -"3045016/" 2"3045016/"

Figure 5.12: Results of sensitivity analysis of Coverage and Accuracy to the number of
monitored indicators in Windows

152

Conclusion

This dissertation addressed the important problem of on-line anomaly detection in mission-

critical software systems that are made of several OTS components. The improvement of

detection mechanisms is fundamental to achieve better fault tolerance coverage, which in

turn leads to an overall improvement of the system dependability. In particular, the work

investigated the effectiveness and efficiency of the OS-level anomaly detection approach,

which is particularly suited for OTS-based systems since it does not require to modify

the application components. The work also contributed to the state-of-the art with a

novel detection framework, i.e., sosmon, that relies on the following key characteristics: (i)

the possibilities to deploy this mechanism on different OTS systems, working at the OS-

level and, hence, without modifying the monitored application components; (ii) exploiting

internal algorithms that make use of statistical observations on the monitored indicators to

deal with non-stationary and variable operating conditions; (iii) the possibilities of tuning

the framework according to the type of dependability requirements of the systems.

To investigate the suitability of OS-level detection approach this dissertation analyzed

the following important aspects: (i) is the approach effective under different worklaod, fault-

load (which lead to anomalies) and under variable and non-staionary operating conditions?

153

(ii) is the approach applicable with different operating systems? (iii) how much the in-

trusiveness of the OS-level monitoring infrastructure influences the detection performance?

and its overhead can be limited without hampering detection ability?

The effectiveness of the approach was assessed by quantitatively evaluating the perfor-

mance of the proposed framework through extensive experiments based on fault injection

conducted on an OTS-based mission-critical system for Air Traffic Management (ATM),

i.e., the SWIMBOX. The results showed that the proposed framework exhibits good perfor-

mance (with respect to the detection needs for the target system) – indeed, 100% Coverage

and about 95− 80% of Accuracy can be obtained.

The suitability of the approach under different OSs was shown by implementing the

framework for two operating systems, namely Red Hat EL 5 and Windows Server 2008, in

which the SWIM-BOX was deployed. The analyses showed that the framework performs

better on Linux since in the Windows environment it is more difficult to reveal some indi-

cators’ anomalies. Indeed, it was not possible to isolate the contribution of the components

of interest with the Windows monitoring infrastructure. Nevertheless, the activation of all

the injected faults was revealed.

The performance of the framework was also compared with another OS-level detector

proposed in literature [3] that exploits preliminary training phase to reveal anomalies. Re-

sults showed that the proposed detector has similar performance of the latter, which needs

to be trained in each operating environment.

Finally, the work explored the framework performance varying the level of intrusiveness

of the monitoring infrastructure to analyze whether reasonable performance can be obtained

154

through reducing the number of monitored indicators. Results showed that the performance

is acceptable even when the set of OS-level indicators is very limited (e.g., to only 2 or

4). However, while the selection for Linux does not appear critical and could be done

almost randomly or selecting those indicators easier to monitor, in the case of the Windows

environments a proper selection requires a careful analysis since a bad choice might impair

the success of the entire framework.

By summarizing, the ability of the presented anomaly-detector framework to adapt its

behavior to different working scenarios and its low intrusiveness, enriched by the encour-

aging results obtained in the experimental campaign, lays the ground towards practical

deployment of sosmon in many real systems (varying from large scale complex and mission-

critical OTS-based software systems to smaller and less critical systems), which have to

deal with unreliable OTS components. Indeed, the framework can be applied to a variety of

circumstances and applications in a much more efficient and cheap way than instrumenting

the application components themselves; in fact, instead of re-instrumenting each OTS item

and application each time, it will be just necessary to tune a ready-to-use framework.

155

Bibliography

[1] M. R. Lyu, Ed., Handbook of Software reliability Engineering. Hightstown, NJ, USA: McGraw-
Hill, Inc., 1996.

[2] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Comput. Surv.,
vol. 41, no. 3, pp. 1–58, Jul. 2009.

[3] G. Carrozza, M. Cinque, D. Cotroneo, and R. Natella, Operating System Suppor t to Detect
Application Hangs, in Proceedings of the Second international conference on Verification and
Evaluation of Computer and Communication Systems, 2008, pp. 117–127.

[4] (2012). [Online]. Available: http://googleenterprise.blogspot.it/2011/09/
what-happened-wednesday.html. March 2013

[5] D. Siewiorek, R. Chillarege, and Z. Kalbarczyk, Reflections on industry trends and experi-
mental research in dependability, IEEE Trans. on Dependable and Secure Computing, vol. 1,
no. 2, pp. 109–127, april-june 2004.

[6] R. Chillarege, Understanding Bohr-Mandel Bugs through ODC Triggers and a Case Study
with Empirical Estimations of Their Field Proportion, in IEEE Third International Workshop
on Software Aging and Rejuvenation (WoSAR), 2011, pp. 7–13.

[7] J. C. and M. M, Progress achieved in the research area of Critical Information Infrastructure
Protection, IST-FP6 Projects CRUTIAL, IRRIIS and GRID, Tech. Rep., March 2007.

[8] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, Basic Concepts and Taxonomy of
Dependable and Secure Computing, IEEE Trans. on Dependable Secure Computing, vol. 1,
no. 1, pp. 11–33, 2004.

[9] N. Falliere, L. O. Murchu, and E. Chien, W32.Stuxnet Dossier, Symantic Security Response,
Tech. Rep., Oct. 2010.

[10] [Online]. Available: http://www.oig.dot.gov/library-item/3911. March 2013

[11] P. Koopman and J. DeVale, The Exception Handling Effectiveness of POSIX Operating Sys-
tems, IEEE Trans. on Software Engineering, vol. 26, no. 9, pp. 837–848, 2000.

[12] K. Vaidyanathan and K. S. Trivedi, A Measurement-Based Model for Estimation of Resource
Exhaustion in Operational Software Systems, in Proceedings of the 10th International Sympo-
sium on Software Reliability Engineering, 1999, pp. 84–93.

[13] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang, Failure Data Analysis
of a Large-Scale Heterogeneous Server Environment, in Proceedings of the 2004 International
Conference on Dependable Systems and Networks, 2004.

156

http://www.oig.dot.gov/library-item/3911
http://googleenterprise.blogspot.it/2011/09/what-happened-wednesday.html
http://googleenterprise.blogspot.it/2011/09/what-happened-wednesday.html

Bibliography 157

[14] R. Matias, P. Barbetta, K. Trivedi, and P. Filho, Accelerated Degradation Tests Applied to
Software Aging Experiments, IEEE Trans. Reliability, vol. 59, no. 1, pp. 102 –114, march
2010.

[15] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo, Workload Characterization for Soft-
ware Aging Analysis, in IEEE 22nd International Symposium on Software Reliability Engi-
neering (ISSRE), 2011, pp. 240 –249.

[16] A. Bovenzi, D. Cotroneo, R. Pietrantuono, , and S. Russo, On the Aging Effects due to
Concurrency Bugs: a Case Study on MySQL, in IEEE 23nd International Symposium on
Software Reliability Engineering (ISSRE), 2012.

[17] M. Grottke and K. S. Trivedi, Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate,
Computer, vol. 40, pp. 107–109, 2007.

[18] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. Peterson, Lightweight, high-resolution
monitoring for troubleshooting production systems, in Proceedings of the 8th USENIX
conference on Operating systems design and implementation, 2008, pp. 103–116.

[19] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, Magpie: online modelling and
performance-aware systems, in Workshop on Hot Topics in Operating Systems, USENIX, Ed.,
2003.

[20] I. Irrera, J. Durães, M. Vieira, and H. Madeira, Towards Identifying the Best Variables for
Failure Prediction Using Injection of Realistic Software Faults, in IEEE 16th Pacific Rim
International Symposium on Dependable Computing (PRDC), dec. 2010, pp. 3 –10.

[21] J. A. Durães and H. S. Madeira, Emulation of Software faults: A field data study and a
practical approach., IEEE Trans. Software Engineering, vol. 32(11), pp. 849–867, 2006.

[22] J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable
components, Automata Studies, vol. 34, pp. 43–99, 1956.

[23] A. Avižienis, Design of fault-tolerant computers, in Proceedings of the November Fall Joint
Computer Conference, 1967, pp. 733–743.

[24] J. Laprie, Dependable computing and fault tolerance: concepts and terminology, in 15th IEEE
Int. Symp. on Fault-Tolerant Computing, 1985, pp. 2–11.

[25] A. Bondavalli, S. Chiaradonna, D. Cotroneo, and L. Romano, Effective Fault Treatment for
Improving the Dependability of COTS and Legacy-Based Applications, IEEE Trans. on De-
pendable Secure Computing, vol. 1, pp. 223–237, October 2004.

[26] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software Rejuvenation: Analysis, Module
and Applications, in International Symposium on Fault-Tolerant Computing, 1995, pp. 381–
390.

[27] J. K. A. Avizienis, Fault tolerance by design diversity: concepts and experiments, Computer,
vol. 17, no. 8, pp. 67–80, Aug 1984.

[28] M. Grottke, A. Nikora, and K. Trivedi, An empirical investigation of fault types in space
mission system Software, in IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2010, pp. 447–456.

[29] T. Yoshimura, H. Yamada, and K. Kono, Can Linux be Rejuvenated without Reboots?, in
IEEE Third International Workshop on Software Aging and Rejuvenation (WoSAR), 2011,
pp. 50–55.

Bibliography 158

[30] R. Gupta and T. C. Mowry, Eds., Faults in Linux: ten years later. ACM, 2011.

[31] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and
M.-Y. Wong, Orthogonal Defect Classification-A Concept for In-Process Measurements, IEEE
Trans. on Software Engineering, vol. 18, pp. 943–956, November 1992.

[32] J. Christmansson and R. Chillarege, Generation of an error set that emulates Software faults
based on field data, in Proceedings of the The Twenty-Sixth Annual International Symposium
on Fault-Tolerant Computing (FTCS), 1996, pp. 304–313.

[33] J. Gray, Why do Computer Stop and What Can be About it?, in Symposium on Reliability in
Distributed Software and Database Systems, 1986, pp. 3–12.

[34] K. S. Trivedi, R. Mansharamani, D. S. Kim, M. Grottke, and M. Nambiar, Recovery from
Failures Due to Mandelbugs in IT Systems, in IEEE 17th Pacific Rim International Symposium
on Dependable Computing (PRDC), 2011, pp. 224–233.

[35] N. W. Green, A. R. Hoffman, T. K. M. Schow, and H. B. Garrett, Anomaly trends for
robotic missions to Mars: Implications for mission reliability, in Proceedings of the 44th AIAA
Aerospace Sciences Meeting and Exhibit, 2006, pp. 1–9.

[36] A. R. Hoffman, N. W. Green, and H. B. Garrett, Assessment of in-flight anomalies of long
life outer planet missions, in Proceedings of the European Space Agency 5th International
Symposium on Environmental Testing for Space Programmes, 2004, pp. 43–50.

[37] D. P. S. Ting-ting Y. Lin, Error Log Analysis: Statistical Modeling and Heuristic Trend
Analysis, IEEE Trans. on Reliability, vol. 39, pp. 419–432, 1990.

[38] R. I. M. Kalyanakrishnam, Z. Kalbarczyk, Failure Data Analysis of a LAN of Windows NT
Based Computers, in Proceedings of the 18th IEEE Symposium on Reliable Distributed Sys-
tems, 1999, pp. 178–187.

[39] I. Lee and R. Iyer, Diagnosing rediscovered Software problems using symptoms, IEEE Trans.
on Software Engineering, vol. 26, no. 2, pp. 113–127, feb 2000.

[40] M.Cinque, D. Cotroneo, R. Natella, and A. Pecchia, Assessing and improving the effectiveness
of logs for the analysis of Software faults, in International Conference on Dependable Systems
and Networks (DSN), 2010, pp. 457–466.

[41] [Online]. Available: http://aws.amazon.com/message/65648/. March 2013

[42] N. E. Fenton, Software Metrics: A Rigorous and Practical Approach, 2nd ed. Boston, MA,
USA: International Thomson Computer Press, 1996.

[43] [Online]. Available: http://www-01.ibm.com/Software/tivoli/. March 2013

[44] M. Brodie, I. Rish, and S. Ma, Optimizing Probe Selection for Fault Localization, in Operations
& Management, 12th International Workshop on Distributed Systems, 2001, pp. 88–98.

[45] I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik, and K. Hernandez,
Adaptive diagnosis in distributed systems, IEEE Trans. on Neural Networks, vol. 16, no. 5,
pp. 1088 –1109, sept. 2005.

[46] L. Falai and A. Bondavalli, Experimental Evaluation of the QoS of Failure Detectors on Wide
Area Network, in Proceedings of the 2005 International Conference on Dependable Systems
and Networks, 2005, pp. 624–633.

http://www-01.ibm.com/Software/tivoli/
http://aws.amazon.com/message/65648/

Bibliography 159

[47] J. Herder, H. Bos, B. Gras, P. Homburg, and A. Tanenbaum, Construction of a Highly De-
pendable Operating System, in Sixth European Dependable Computing Conference, oct. 2006,
pp. 3 –12.

[48] C. Simache, M. Kaaniche, and A. Saidane, Event log based dependability analysis of Windows
NT and 2K systems, in Proceedings of Pacific Rim International Symposium on Dependable
Computing (PRDC), dec. 2002, pp. 311 –315.

[49] F. Salfner and M. Malek, Using Hidden Semi-Markov Models for Effective Online Failure
Prediction, in 26th IEEE International Symposium on Reliable Distributed Systems, oct. 2007,
pp. 161–174.

[50] M. K. C. Simache, Availability assessment of sunOS/solaris unix systems based on syslogd
and wtmpx log files: A case study, in Pacific Rim International Symposium on Dependable
Computing (PRDC), 2005, pp. 49–56.

[51] A. Bovenzi and G. Carrozza, Monitoring Infrastructure for Diagnosing Complex Software, in
Innovative Technologies for Dependable OTS-Based Critical Systems. Springer Milan, 2013,
pp. 189–202.

[52] R. K. Sahoo, A. J.Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma, R. Vilalta, and A. Sivasubra-
maniam, Critical event prediction for proactive management in large-scale computer clusters,
in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, 2003, pp. 426–435.

[53] A. Pecchia, A. Sharma, Z. Kalbarczyk, D. Cotroneo, and R. K. Iyer, Identifying Compromised
Users in Shared Computing Infrastructures: A Data-Driven Bayesian Network Approach, in
IEEE Symposium on Reliable Distributed Systems (SRDS), 2011, pp. 127–136.

[54] M. Cinque, D. Cotroneo, and A. Pecchia, Event Logs for the Analysis of Software Failures: A
Rule-Based Approach, IEEE Trans. on Software Engineering, vol. Pre Print, no. 99, 2012.

[55] A. Andrzejak and L. Silva, Using machine learning for non-intrusive modeling and prediction
of Software aging, in IEEE Network Operations and Management Symposium (NOMS), april
2008, pp. 25–32.

[56] M. Bertier, O. Marin, and P. Sens, Implementation and performance evaluation of an adaptable
failure detector, in Proceedings of the 32th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2002, pp. 354–363.

[57] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, Failure Resilience for
Device Drivers, in Proceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2007, pp. 41–50.

[58] OMG. [Online]. Available: http://www.omg.org/spec/FT/1.0. March 2013

[59] M. Brodie, I. Rish, and S. Ma, Intelligent probing: A cost-effective approach to fault diagnosis
in computer networks, IBM Systems Journal, vol. 41, no. 3, pp. 372–385, 2002.

[60] M. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer, Using runtime paths for
macroanalysis, in Proceedings of the 9th Conference on Hot Topics in Operating Systems,
2003, pp. 14–19.

[61] G. Khanna, P. Varadharajan, and S. Bagchi, Automated online monitoring of distributed
applications through external monitors, IEEE Trans. on Dependable and Secure Computing,
vol. 3, no. 2, pp. 115–129, april-june 2006.

http://www.omg.org/spec/FT/1.0

Bibliography 160

[62] P. Huang, A. Feldmann, and W. Willinger, A non-instrusive, wavelet-based approach to de-
tecting network performance problems, in Proceedings of the 1st ACM SIGCOMM Workshop
on Internet Measurement, 2001, pp. 213–227.

[63] Y. Zhang and V. Paxson, Detecting stepping stones, in Proceedings of the 9th conference on
USENIX Security Symposium, vol. 9, 2000, pp. 13–23.

[64] S. Forrest, S. A. Hofmeyr, A. S. Ji, and T. A. Longstaff, A sense of self for unix processes, in
Proceedings of IEEE Symposium on Security and Privacy, 1996, pp. 120–129.

[65] W. Lee and S. J. Stolfo, Data mining approaches for intrusion detection, in Proceedings of the
7th conference on USENIX Security Symposium, vol. 7, 1998, pp. 7–21.

[66] D. Wagner and D. Dean, Intrusion Detection via Static Analysis, in Proceedings of the 2001
IEEE Symposium on Security and Privacy, 2001, pp. 156–168.

[67] F. Maggi, M. Matteucci, and S. Zanero, Detecting Intrusions through System Call Sequence
and Argument Analysis, IEEE Trans. on Dependable and Secure Computing, vol. 7, no. 4, pp.
381–395, oct.-dec. 2010.

[68] L. Wang, Z. Kalbarczyk, W. Gu, and R. Iyer, Reliability MicroKernel: Providing Application-
Aware Reliability in the OS, IEEE Trans. on Reliability, vol. 56, no. 4, pp. 597 –614, dec.
2007.

[69] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, Dynamic instrumentation of production
systems, in Proceedings of the annual conference on USENIX Annual Technical Conference,
2004, pp. 2–15.

[70] M. Agarwal, Eigen space based method for detecting faulty nodes in large scale enterprise
systems, in IEEE Network Operations and Management Symposium (NOMS), april 2008, pp.
224–231.

[71] A. Avritzer and E. J. Weyuker, Monitoring Smoothly Degrading Systems for Increased
Dependability, Empirical Software Engineering, vol. 2, pp. 59–77, 1997.

[72] G. Khanna, M. Y. Cheng, P. Varadharajan, S. Bagchi, M. Correia, and P. Verissimo, Au-
tomated Rule-Based Diagnosis Through a Distributed Monitor System, IEEE Trans. on De-
pendable and Secure Computing, vol. 4, no. 4, pp. 266–279, oct.-dec. 2007.

[73] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Management Protocol
(SNMP). [Online]. Available: http://www.ietf.org/rfc/rfc1157.txt. March 2013

[74] [Online]. Available: http://docs.oracle.com/javase/tutorial/jmx/index.html. March 2013

[75] [Online]. Available: http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582.
aspx. March 2013

[76] [Online]. Available: https://www.oasis-open.org/committees/wsdm/. March 2013

[77] M. L. Massie, B. N. Chun, and D. E. Culler, The ganglia distributed monitoring system:
design, implementation, and experience, Parallel Computing, vol. 30, no. 7, pp. 817–840, Jul.
2004.

[78] R. Van Renesse, K. P. Birman, and W. Vogels, Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data mining, ACM Trans. Comput. Syst.,
vol. 21, no. 2, pp. 164–206, May 2003.

https://www.oasis-open.org/committees/wsdm/
http://www.ietf.org/rfc/rfc1157.txt
http://docs.oracle.com/javase/tutorial/jmx/index.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa394582.aspx

Bibliography 161

[79] K. Park and V. S. Pai, CoMon: a mostly-scalable monitoring system for PlanetLab, SIGOPS
Oper. Syst. Rev., vol. 40, no. 1, pp. 65–74, Jan. 2006.

[80] [Online]. Available: linux.die.net/man/8/ping. March 2013

[81] [Online]. Available: linux.die.net/man/8/traceroute. March 2013

[82] A. Frenkiel and H. Lee, EPP: A Framework for Measuring the End-to-End Performance of Dis-
tributed Applications, in Proceedings of Performance Engineering ’Best Practices’ Conference,
I. A. of Technology, Ed., 1999.

[83] [Online]. Available: http://sebastien.godard.pagesperso-orange.fr/. March 2013

[84] K. Yaghmour and M. R. Dagenais, Measuring and characterizing system behavior using
kernel-level event logging, in Proceedings of the annual conference on USENIX Annual
Technical Conference, 2000, pp. 2–15.

[85] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and B. Chen, Locating system problems
using dynamic instrumentation, in Proceedings of the Ottawa Linux Symposium, 2005, pp. 49–
64.

[86] S. Agarwala and K. Schwan, SysProf: Online Distributed Behavior Diagnosis through Fine-
grain System Monitoring, in Proceedings of the 26th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), 2006, pp. 8–15.

[87] [Online]. Available: http://technet.microsoft.com/en-us/library/cc771692%28v=ws.10%29.
aspx. March 2013

[88] PerfMon monitoring tool. [Online]. Available: http://perfmon2.sourceforge.net/. March 2013

[89] M. D. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz, and C. Xiao, The
Daikon system for dynamic detection of likely invariants, Science of Computing Programming,
vol. 69, pp. 35–45, December 2007.

[90] K. Shen, M. Zhong, and C. Li, I/O system performance debugging using model-driven anomaly
characterization, in Proceedings of the 4th USENIX Conference on File and Storage Technolo-
gies, 2005, pp. 23–36.

[91] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva, Traffic model and performance evaluation of
Web servers, Perform. Eval., vol. 46, no. 2-3, pp. 77–100, Oct. 2001.

[92] L. Li, K. Vaidyanathan, and K. S. Trivedi, An Approach for Estimation of Software Aging in a
Web Server, in Proceedings of the International Symposium on Empirical Software Engineering,
2002, pp. 91–100.

[93] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox, Capturing, indexing,
clustering, and retrieving system history, in Proceedings of the twentieth ACM symposium on
Operating systems principles, 2005, pp. 105–118.

[94] M. K. Agarwal, M. Gupta, V. Mann, N. Sachindran, N. Anerousis, and L. B. Mummert,
Problem Determination in Enterprise Middleware Systems using Change Point Correlation of
Time Series Data, in IEEE Network Operations and Management Symposium (NOMS), 2006,
pp. 471–482.

[95] M. Chen, E. Kiciman, E. Fratkin, and E. B. A. Fox, Pinpoint: Problem Determination in
Large, Dynamic Internet Services, in Proceedings of the 32th IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), 2002, pp. 595–604.

http://perfmon2.sourceforge.net/
file://localhost/Users/Antonio/Dropbox/Thesis/linux.die.net/man/8/ping
file://localhost/Users/Antonio/Dropbox/Thesis/linux.die.net/man/8/traceroute
http://sebastien.godard.pagesperso-orange.fr/
http://technet.microsoft.com/en-us/library/cc771692%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc771692%28v=ws.10%29.aspx

Bibliography 162

[96] J. Dilley, R. Friedrich, T. Jin, and J. A. Rolia, Measurement Tools and Modeling Techniques
for Evaluating Web Server Performance, in Computer Performance Evaluation, 1997, pp. 155–
168.

[97] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, Anomaly? Application change?
or Workload change? Towards Automated Detection of Application Performance Anomaly
and Change, in Proceedings of the 38th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), june 2008, pp. 452–461.

[98] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed. Pearson
Education, 2003.

[99] L. Li and A. Malony, Model-Based Performance Diagnosis of Master-Worker Parallel Compu-
tations, in Proceedings of Euro-Par Parallel Processing LNCS 4128, 2006, pp. 35–46.

[100] D. G. Benoit, Automatic Diagnosis of Performance Problems in Database Management Sys-
tems, Ph.D. dissertation, Queen’s University, 2003.

[101] K. Hätönen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivonen, Knowledge Dis-
covery from Telecommunication Network Alarm Databases, in Proceedings of the Twelfth In-
ternational Conference on Data Engineering, 1996, pp. 115–122.

[102] S. Rovnyak, S. Kretsinger, J. Thorp, , and D. Brown, Decision trees for real-time transient
stability prediction, IEEE Trans. Power Syst, vol. 9, no. 3, pp. 1417–1426, 1994.

[103] F. Salfner, M. Lenk, and M. Malek, A survey of online failure prediction methods, ACM
Computuping Survey, vol. 42, no. 3, pp. 1–42, 2010.

[104] A. Daidone, F. D. Giandomenico, A. Bondavalli, and S. Chiaradonna, Hidden Markov Models
as a Support for Diagnosis: Formalization of the Problem and Synthesis of the Solution, in
25th IEEE Symposium on Reliable Distributed Systems, 2006, pp. 245–256.

[105] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recog-
nition, in Readings in speech recognition, A. W. . K.-F. Lee, Ed., 1990, pp. 267–296.

[106] F. Salfner, M. Schieschke, and M. Michael, Predicting failures of computer systems: a case
study for a telecommunication system, in Proceedings of the 20th international conference on
Parallel and distributed processing, 2006, pp. 348–348.

[107] V. Jecheva, About Some Applications of Hidden Markov Model in Intrusion Detection Systems,
in Proceedings of International Conference on Computer Systems and Technologies, 2006.

[108] K. R. Joshi, W. H. Sanders, M. A. Hiltunen, and R. D. Schlichting, Automatic Model-Driven
Recovery in Distributed Systems, in Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems, 2005, pp. 25–38.

[109] A. Nickelsen, J. Gronbaek, T. Renier, and H.-P. Schwefel, Probabilistic Network Fault-
Diagnosis Using Cross-Layer Observations, in Proceedings of the International Conference on
Advanced Information Networking and Applications, 2009, pp. 225–232.

[110] M. Jiang, M. Munawar, T. Reidemeister, and P. Ward, Efficient Fault Detection and Diag-
nosis in Complex Software Systems with Information-Theoretic Monitoring, IEEE Trans. on
Dependable and Secure Computing, vol. 8, no. 4, pp. 510–522, july-aug. 2011.

[111] G. Jiang, H. Chen, and K. Yoshihira, Modeling and Tracking of Trans. Flow Dynamics for
Fault Detection in Complex Systems, IEEE Trans. on Dependable and Secure Computing,
vol. 3, pp. 312–326, 2006.

Bibliography 163

[112] R. Pietrantuono, S. Russo, and K. Trivedi, Online Monitoring of Software System Reliability,
in European Dependable Computing Conference (EDCC), april 2010, pp. 209–218.

[113] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and G. Carrozza, Error detection framework for
complex Software systems, in Proceedings of the 13th European Workshop on Dependable
Computing, 2011, pp. 61–66.

[114] S. Ghanbari and C. Amza, Semantic-Driven Model Composition for Accurate Anomaly Di-
agnosis, in Proceedings of the International Conference on Autonomic Computing, 2008, pp.
35–44.

[115] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni, Threshold-based mech-
anisms to discriminate transient from intermittent faults, IEEE Trans. on Computers, vol. 49,
no. 3, pp. 230 –245, mar 2000.

[116] N. N. Tendolkar and R. L. Swann, Automated Diagnostic Methodology for the IBM 3081
Processor Complex, IBM J. Research and Development, vol. 26, pp. 78–88, 1982.

[117] G. Mongardi, “Dependable computing for railway control systems, in Proceedings of DCCA,
1993, pp. 255–277.

[118] D. Powell, C. Rabéjac, and A. Bondavalli, Alpha-count mechanism and inter-channel diagnosis,
ESPRIT Project 20716 GUARDS Report, Tech. Rep., 1998.

[119] L. Romano, A. Bondavalli, S. Chiaradonna, and D. Cotroneo, Implementation of
Threshold-based Diagnostic Mechanisms for COTS-Based Applications, in Proceedings of the
21st IEEE Symposium on Reliable Distributed Systems, 2002.

[120] A. Casimiro, P. Lollini, M. Dixit, A. Bondavalli, and P. Verissimo, A framework for depend-
able QoS adaptation in probabilistic environments, in Proceedings of the ACM symposium on
Applied computing, 2008, pp. 2192–2196.

[121] M. Serafini, A. Bondavalli, and N. Suri, On-Line Diagnosis and Recovery: On the Choice
and Impact of Tuning Parameters, IEEE Trans. on Dependable and Secure Computing, vol. 4,
no. 4, pp. 295–312, oct.-dec. 2007.

[122] A. Bulut and A. Singh, A unified framework for monitoring data streams in real time, in
Proceedings. 21st International Conference on Data Engineering, april 2005, pp. 44–55.

[123] D. Cotroneo, D. Di Leo, and R. Natella, Adaptive monitoring in microkernel OSs, in Interna-
tional Conference on Dependable Systems and Networks Workshops, 2010, pp. 66 –72.

[124] [Online]. Available: www.bmc.com/. March 2013

[125] [Online]. Available: http://www.netuitive.com/. March 2013

[126] T. Idé and H. Kashima, Eigenspace-based anomaly detection in computer systems, in Proceed-
ings of the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, 2004, pp. 440–449.

[127] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat, Pip: detecting
the unexpected in distributed systems, in Proceedings of the 3rd conference on Networked
Systems Design & Implementation, vol. 3, 2006, pp. 9–23.

[128] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, Rainbow: architecture-
based self-adaptation with reusable infrastructure, Computer, vol. 37, no. 10, pp. 46–54, oct.
2004.

http://www.netuitive.com/
file://localhost/Users/Antonio/Dropbox/Thesis/www.bmc.com/

Bibliography 164

[129] A. Daidone, Critical Infrastructures: a Conceptual Framework for Diagnosis, Some Applica-
tions and Their Quantitative Analysis, Ph.D. dissertation, Università degli Studi di Firenze,
April 21th 2010.

[130] W. Chen, S. Toueg, and M. K. Aguilera, On the Quality of Service of Failure Detectors, IEEE
Trans. on Computers, vol. 51, no. 1, pp. 561–580, 2002.

[131] M. Basseville and I. Nikiforov, Detection of abrupt changes: theory and application. Prentice-
Hall, Inc., 1993.

[132] M. Jiang, M. Munawar, T. Reidemeister, and P. Ward, Detection and Diagnosis of Recur-
rent Faults in Software Systems by Invariant Analysis, in Proceedings of the 11th IEEE High
Assurance Systems Engineering Symposium, 2008, pp. 323–332.

[133] I. S. Board, IEEE Standard Classification for Software Anomalies, in IEEE Std 1044, 1993.

[134] A. Bondavalli, F. Brancati, and A. Ceccarelli, Safe Estimation of Time Uncertainty of Local
Clocks, in Proceedings of International IEEE Symposium on Precision Clock Synchronization
for Measurement, Control and Communication (ISPCS), 2009, pp. 47–52.

[135] S. Ross, Introduction to probability and statistics for engineers and scientists. Elsevier Aca-
demic Press, 2003.

[136] H. Risken, The Fokker-Planck equation: methods of solutions and applications, 2nd ed.
Springer, Berlin, 1989.

[137] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation
in Software Engineering: an introduction. Norwell, MA, USA: Kluwer Academic Publishers,
2000.

[138] K. M. Chandy and L. Lamport, Distributed snapshots: determining global states of distributed
systems, ACM Trans. Comput. Syst., vol. 3, no. 1, pp. 63–75, Feb. 1985.

[139] D. Montgomery, Design and Analysis of Experiments. Wiley, 2008.

[140] M. D. Cin, K. Kanoun, K. Buchacker, L. L. Zuinga, R. Lindstrom, A. Johanson, H. Madeira,
V. Sieh, , and N. Suri, DBench - workload and faultload selection, DBench Project, Tech.
Rep., June 2002.

[141] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, Towards characterizing cloud backend
workloads: insights from Google compute clusters, SIGMETRICS Perform. Eval. Rev., vol. 37,
no. 4, pp. 34–41, Mar. 2010.

[142] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell,
Fault Injection for Dependability Validation: A Methodology and Some Applications, IEEE
Trans. on Software Engineering, vol. 16, no. 2, pp. 166–182, 1990.

[143] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, On Fault Representativeness of Software
Fault Injection, IEEE Trans. on Software Engineering, vol. 39, no. 1, pp. 80–96, 2012.

[144] I. C. Society, Ed., Second Workshop on Sharing Field Data and Experiment Measurements on
Resilience of Distributed Computing Systems, 2010.

[145] M. Vieira, J. Costa, and H. Madeira, The OLAP and Data Warehousing Approaches for
Analysis and Sharing of Results from Dependability Evaluation Experiments, in Proceedings
of the 33th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2003, pp. 86–91.

Bibliography 165

[146] N. Laranjeiro, M. Vieira, and H. Madeira, Robustness Validation in Service-Oriented Archi-
tectures, in Architecting Dependable Systems VI, R. de Lemos, J.-C. Fabre, C. Gacek, F. Gad-
ducci, and M. ter Beek, Eds. Springer Berlin / Heidelberg, 2009, vol. 5835, pp. 98–123.

[147] D. A. Menascé, Workload Characterization, IEEE Internet Computing, vol. 7, no. 5, pp. 89–92,
2003.

[148] A. Johansson and N. Suri, On the impact of injection triggers for OS robustness evaluation,
in International Symposium on Software Reliability Engineering, 2007, pp. 127–136.

[149] R. Jain, The Art Of Computer Systems Performance Analysis:. Wiley, 1991.

[150] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimentation, 1st ed.
Springer Publishing Company, Incorporated, 2010.

[151] R. Matias and P. Filho, An Experimental Study on Software Aging and Rejuvenation in
Web Servers, in 30th Annual International Computer Software and Applications Conference
(COMPSAC), vol. 1, sept. 2006, pp. 189 –196.

[152] A. Bovenzi, F. Brancati, S. Russo, and A. Bondavalli, A Statistical Anomaly-Based Algo-
rithm for On-line Fault Detection in Complex Software Critical Systems, in Lecture Notes in
Computer Science (LNCS), vol. 6894, 2011, pp. 128–142.

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The Role of Anomaly Detection for Dependable Systems
	Basic Concepts and Definitions
	The Genesis of Software Anomalies
	The Anomaly Detection Problem
	Anomaly Detection Challenges in Mission-Critical Software Systems

	Monitoring and Detection: Approaches and Frameworks
	Background
	Approaches and Frameworks
	Monitoring
	Detection

	Metrics for Quantitative Evaluation

	OS-level Detection of Anomalies
	Requirements and Assumptions
	High-level Architecture of the Framework
	Internals of the Framework
	OS Monitoring Infrastructure
	The Statistical Predictor and Safety Margin Algorithm
	The -counter

	Parameters Tuning and Computational Cost

	Experimental Methodology
	Motivations
	The Adopted Methodology
	Overview
	Definition
	Planning
	Execution
	Analysis

	Experimental Results
	The SWIM-BOX Case Study
	Definition phase
	Planning phase
	Execution phase
	Analysis Phase

	Conclusion
	Bibliography

